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ON THE ONE DIMENSIONAL POLYNOMIAL
AND REGULAR IMAGES OF R"

JOSE F. FERNANDO

ABSTRACT. In this work we present a full geometric characterization of the 1-dimensional
polynomial and regular images S of R™ and we compute for all of them the invariants
p(S) and r(9), already introduced in [FG2].

1. INTRODUCTION

A map f := (f1,...,fm) : R" - R™ is a polynomial map if each of its components
fi e R[x] :== R[xq,...,%,]. A subset S of R™ is a polynomial image of R™ if there exists a
polynomial map f : R™ — R such that S = f(R™). Let S be a subset of R™; we define

(s least p > 1 such that S is a polynomial image of R?,
p(S) =
~+00 otherwise.

More generally, a map f := (f1,..., fm) : R" — R™ is a regular map if each component
fi is a regular function of R(x) := R(xy,...,x,), that is, each f; = g;/h; is a quotient of
polynomials such that the zero set of h; is empty. Analogously, a subset S of R™ is a
reqular image of R™ if it is the image S = f(R"™) of R™ by a regular map f and we define
the invariant

(s least = 1 such that S is a regular image of R",
r(S) :=
+o0 otherwise.

Obviously, r(S) < p(S) and by Tarski’s Theorem (see [BCR, 2.8.8]) the dimension dim S
of S is less than or equal to both of them. Of course, the inequalities dim S < r(S) < p(95)
can be strict and it may happen that the second invariant is finite while the third is
infinite, even if S c R (see Lemma 3.1).

A celebrated Theorem of Tarski-Seidenberg [BCR, 1.4] says that the image of any
polynomial map (and more generally of a regular map) f : R™ — R" is a semialgebraic
subset S of R™, that is, it can be written as a finite boolean combination of polynomial
equations and inequalities, which we will call a semialgebraic description. By elimination
of quantifiers, S is semialgebraic if it has a description by a first order formula possibly
with quantifiers. Such a freedom gives easy semialgebraic descriptions for topological
operations: interiors, closures, borders of semialgebraic sets are again semialgebraic.

In an Oberwolfach week [G], Gamboa proposed to characterize the semialgebraic sets
of R™ which are polynomial images of R" for some n > 1. The interest of polynomial
(and also regular) images is far from discussion since there are many problems in Real
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Algebraic Geometry that for such sets can be reduced to the case S = R" (see [FG1],
[FG2] or [FGU]J for further comments). Examples of such problems are:

e optimization of polynomial (and/or regular) functions on S,
e characterization of the polynomial (or regular functions) which are positive semi-
definite on S (Hilbert’s 17th problem and Positivestellensatz),

As we have already pointed out in [FG1] there are some straightforward properties
that a regular image S < R™ much satisfy: it must be pure dimensional, connected,
semialgebraic and its Zariski closure must be irreducible. Furthermore, S must be, by
[FG3, 3.1], irreducible in the sense that its ring A/(S) of Nash functions on S is an integral
domain. Recall here that a Nash function on an open semialgebraic subset U < R™ is
an analytic function that satisfies a nontrivial polynomial equation, that is, there exists
P € R[x,y] such that P(z, f(z)) = 0 for all z € U. Now, the ring N (S) of Nash functions
on S is the collection of all functions on S that admit a Nash extension to an open
semialgebraic neighborhood U of S in R™, endowed with the usual sum and product (for
further details see [FG3]).

In this work we focus our attention in the one dimensional case and we present a full
geometric characterization of the polynomial and regular one dimensional images of R";
in fact, we compute the exact value of the invariants p and r for all of them. As we
will see along this work in the one dimensional case the only three possible values for
both invariants p and r are 1,2 or +00. In fact, all the possibilities with the restriction
1 <r < p < +o are attained except for the pair r = 1 y p = 2 which is not attainable (see
Theorems 1.1 and 1.3, Propositions 1.2 and 1.4, Corollary 1.5 and Lemma 3.1 to complete
the picture). We provide the following table illustrating the situation.

S |R6[0,+0) | —|[0,1) ] (0,40) | (0,1) | Any non rational algebraic curve

r(S) 1 1 1 2 2 +o0

p

(
(

S) 1 2| +o 2 +00 +00

We recall that the study of the one dimensional polynomial images of R™ was partially
and naively approached before in our previous work [FG2, §2], but without presenting any
conclusive result.

Notations and terminology. Before stating our main results, whose proofs are devel-
oped in Section 3 after the preparatory work of Section 2, we recall some preliminary
standard notations and terminology. We write K to refer indistinctly to R or C and we
denote by Hy(K) := {z¢o = 0} the hyperplane of infinity of the projective space KP™,
which contains K™ as the set KP"™\Hy (K) = {xg = 1}. In case m = 1, we denote
{peo} := {xg = 0} the point of infinity of the projective line KP*.

For each n > 1 denote by

on :CP" > CP", z2=(20:21:--:2,)—2=(20:21: " Zn)

the complex conjugation. Clearly, RPP" is the set of fixed points of o,. A set A < CP" is
called invariant if o(A) = A. It is well-know that if Z < CP” is an invariant nonsingular
(complex) projective variety, then Z n RP"™ is a nonsingular (real) projective variety. We
also say that a rational map h : CP"™ --» CP™ is invariant if h o o, = o, 0 h. Of course,
h is invariant if its components can be chosen as homogeneous polynomials with real’
coefficients; hence, it provides by restriction a “real” rational map h|gpn : RP™ --» RP"™.
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Given a semialgebraic set S < R"™ < RP"™ < CP™, we denote by ClEsm(S) its Zariski
closure in KP™. Obviously, Cl&p. (S) n RP™ = Clgpm (S) and CI*(S) = Clgpnm(S) n R™
is the Zariski closure of S in R™. We denote by S() the set of points of S that have local
dimension k.

Recall that a complex rational curve is the image of CP! under a birational (and hence
regular) map while a real rational curve is a real projective irreducible curve C' such that
C(yy is the image of RP! under a birational (and hence regular) map (see Lemma 2.1).

Main results. We begin by a geometrical characterization of the 1-dimensional polyno-
mial images of Euclidean spaces (that is, those with p = 1,2, see also [FG2, 2.1-2]) and
after that we determine those with p = 1.

Theorem 1.1. Let S < R™ be a 1-dimensional semialgebraic set. Then, the following
assertions are equivalent:
(i) S is a polynomial image of R™ for some n > 1.
zar

(ii) S is irreducible, unbounded and Clgpm(S) is an invariant rational curve such that
Clgpm (S) N Hy(C) is a singleton {p} and the germ ClEp.(S), is irreducible.

In particular, if that is the case p(S) < 2.

Proposition 1.2. Let S < R™ be a 1-dimensional semialgebraic set which is a polynomial
image of R™ for some n = 1. Then, p(S) =1 if and only if S is closed in R™.

The counterpart of the previous results in the regular setting consist of the full geo-
metric characterization of the 1-dimensional regular images of Euclidean spaces and the
description of those with r = 1.

Theorem 1.3. Let S < R™ be a 1-dimensional semialgebraic set. Then, the following
assertions are equivalent:

(i) S is a regular image of R™ for some n > 1.
(i) S is irreducible and Clgpm(S) is a rational curve.

In particular, if that is the case r(S) < 2.

Proposition 1.4. Let S < R™ be a 1-dimensional semialgebraic set which is a regqular
image of R™ for some n = 1. Then, r(S) =1 if and only if either

(i) Clgpm(S) =S or
(ii) Clgpm(S)\S = {p} is a singleton and the analytic closure of the germ S, is irre-
ducible.

Corollary 1.5. There is no 1-dimensional semialgebraic set S < R™ with p(S) = 2 and

r(S) =1

Proof. Suppose, by way of contradiction, that there exists a semialgebraic set S < R™
with dim S = 1, p(S) = 2 and r(S) = 1. By Theorem 1.1 and Propositionl.2, we deduce
that S is unbounded and S is not closed in R™. Thus, Clgpm(S)\S has at least two
elements: one point in Hy, (R) because S is unbounded and another one in R™, since S is
not closed in R™. But by Proposition 1.4, Clgpm (S)\S is either empty or a singleton, a
contradiction; hence, the statement follows. O
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2. MAIN TOOLS

In this section, we present the main tools used to prove the results presented in this
article. In what follows, we will use freely usual concepts of (complex) Algebraic Geometry
as: rational map, regular map, normalization, etc. and we refer the reader to [M, Sh1] for
further details. We recall first here the following useful and well-known fact concerning
the regularity of rational maps defined on a nonsingular curve (see [M, 7.1]) that will be
used several times in the sequel.

Lemma 2.1. Let Z < CP" be a nonsingular projective curve and let F': Z --+ CP™ be a
rational map. Then, F extends (uniquely) to a reqular map F' : Z — CP™. Moreover, if
Z,F are invariant so is F".

Normalization of an algebraic curve. A main tool will be the normalization (X, II) of
an either affine or projective algebraic curve X, both in the real and in the complex case.
As it is well-know, the normalization is birationally equivalent to X and so unique up to
biregular homeomorphlsm furthermore, if X is an invariant complex algebraic curve, we
may assume that also both X and 7 are invariant. To prove this, one can construct (X )
as the desingularization of X via a finite chain of suitable invariant blowing-ups. Recall
also that all the fibers of I : X — X are finite and if z € X is a non singular point, then
the fiber of x is a singleton. Moreover, if X is complex, then the cardinal of the fiber of
a point x € X coincides with the number of irreducible components of the germ X,. If
X < R™ is an affine algebraic curve, Y := Cl%&%,.(X) and (Y < CP*,1I) is an invariant
normalization of Y, we have that:

o« (Z:=Yn RP¥, 1| ) is the normalization of Z := CIg§.(X) and (Z) = Zy,
o (X:=Y ARk 1= II] ) is the normalization of X and m(X) = Xy O

Next two results are the clue to prove the Main results stated in the Introduction.
Lemma 2.2. Let f: R — R™ be a non-constant rational map and let S := f(R). Then,

(i) f eatends (uniquely) to an invariant reqular map F : CP! — CP™ such that
F(CPY) = CI4x,, ().

(ii) CIZ5.(S) is an invariant rational curve and if (CPY,TI) is an invariant normal-
ization of Clgpm (S) there is an invariant surjective reqular map F : CP! — CP!
such that F =Tl o F. N L

(i) If f is polynomial, then we may choose 11 and F so that 7 := Il|g and f := F|g
are polynomial. In particular, ClEpm(S) N He(C) is a singleton p and the germ

ClEpm (S)p is irreducible.
Proof. (i) Observe that f extends naturally to an invariant rational map
Fi=(Fy:F: Fp,) : CP! -——» CP™,

where F; € R[x¢,x;] are homogeneous polynomials of the same degree d. In fact, such
extension is, by Lemma 2.1, regular and unique. Moreover, since S = f(R), then F(CP!)
Cl&pm (S) contains, by [M, 2.31], a non-empty Zariski open subset of the Cl&p.. (S); hence,
since F' is proper and CIZ%, (S) is irreducible, we conclude, by [M, 2.33], that F(CP!) =
ClEpm (9).

(ii) Let (Y < CP*,II) be a o-invariant normalization of Y := ClZ%,(S). Now, the
composition II"! o F : CP! --» Y defines an invariant rational map that extends to an
invariant surjective regular map F : CP! - Y such that F = IIo F. Now, by [M, 7.6,
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7.20], Y is a smooth curve of arithmetic genus 0, that is, a smooth rational curve (see [M,
7.17)); hence, we may take Y = CPL. Thus, (RP!, II|pp1) is the normalization of C1&3.. (S)
and II(RP') = CIggn (S) ).

(iii) If f is polynomial, then Fy := x4. Write IT := (Ilo,...,IL,,) and F := (Fp, F}),
where 1I;, F; € ]R[xo,xl] are homogeneou& polynomials, and let us check that we may
assume Ily = )\xo and Fo = uxo for some positive integers e, £ such that d = ef; hence,
7 = Il|g and f = F|R are polynomial.

Indeed, observe first that F'is non constant because it is surjective. Factorize

&
HQ = H(aixl — biXO) € C[Xo,xl]
i=1
where a;,b; € C and (a;,b;) # (0,0) for i@ = 1,...,m. Let us check that all the factors
a;x1 — b;xg are proportional. Denote p; := Fj(1,x1) and observe that
e
[ J(aips = bipo) = To(po. p1) = Fo(l,x1) = 1;
i=1
hence, all the factors in the previous expression are non zero constants ¢; € C. Suppose
that two of the pairs (a;, b;) are not proportional, for instance, (a1,b;) and (ag,be) are not
proportional. Then, (pg,p1) is the unique solution of the linear system
a1x; — bixg = c1,
a1xg — b2X0 = C2

and so pg, p1 € C, which contradicts the fact that F is non constant. Thus, we may write
Iy = +(ax; — bxg)® where a,b € R and (a,b) # (0,0). Consider an invariant change of
coordinates W : CP! — CP! that transforms (a : b) onto (0 : 1) and define II" := ITo ¥. Of
course, (CP',II’) is an invariant normalization of CIZ%,, (S) with II) = Ax§. Define F' as
the regular extension of (II')~' o F to CP'; in particular, F = II' o F”. Since A(F)¢ = x,
we conclude }NWO’ = px§.

Finally, we have that IT-(CI&. (S) n Hy(C)) = {(0 : 1)} and so, we deduce that
ClgEm (S) N Hp(C) = {p} is a singleton and that the germ Clp..(S), is irreducible. O

Lemma 2.3. Let f:= (f1,..., fm) : R" = R™ be a non-constant rational map such that
its image f(R™) has dimension 1. Then,

(i) f factors through R, that is, there exist a rational function g € R(x) and a rational
map h: R — R™ such that f = hog.
(ii) If f is moreover a polynomial map, we may also take g and h polynomial.

Proof. Let F :=R(f1,..., fi) be the smallest subfield of the field of rational functions R(x)
in n variables that contains R and fi,..., f;,. Note that tr.deg(F|R) = dim(im f) =
we may assume that f; ¢ R. Thus, by Liiroth’s Theorem, there exists a rational function

g € R(x)\R such that F = R(g). Since f; € F = R(g), we have f; = Filo) for some coprime

Qi(g)
polynomials P;, Q; € R[t]. Now, the rational map h := (£t .. Q—m) R — R™, satisfies

Q1’
f =hogand so (i) holds.

Next, suppose that f is moreover polynomial. Following [Sch2, Lem.2| (see also [Schl,
Lem. 2, pag. 710-711)):

(2.3.1) We may assume that the Liiroth’s generator g of F is in fact polynomial.



6 JOSE F. FERNANDO

Now, by Bezout’s Lemma, we can write 1 = P;A; + Q;B; for some A;, B; € R[t].
Substituting the variable t by g we get the polynomial identity
1 = Pi(9)Ai(9) + Qi(9)Bi(g) = Qi(9) fiAi(9) + Qi(9)Bi(g) = Qi(9)(f:Ai(g) + Bi(9));

hence, @Q;(g) is a nonzero constant, and so the polynomials h; := 5'((2)) fit our situation.

For the sake of completeness let us include the elementary proof of [Sch2, Lem.2] that
shows statement 2.3.1. Let gp € R(x)\R be a Liiroth’s generator of F. Since the extension
F|R has transcendence degree 1, we may assume that F' := f; € R[x]\R. Let R, S €
R[t]\{0} and P,Q € R[x]\{0} be pairs of relatively prime polynomials such that

R(g()) & P — F— QTR(P/Q) Qs—r7

S(g0) P=Q Q°S(P/Q)

where r := deg(R) and s := deg(S). Notice that the polynomials @, Q"R(P/Q) and
Q*S(P/Q) are pairwise relatively prime; once this is show, it follows directly, using the
fact that R[x] is a UFD, that 8 := Q*S(P/Q) € R and s —r > 0.

Indeed, it is straightforward to show, using that R, S € R[t], that

ged(Q, Q"R(P/Q)) = ged(Q, Q°S(P/Q)) = ged(P, Q) = 1.

Next, by Bezout’s Lemma, we find polynomials Ay, Ay € R[t] of degrees k; := deg(A;)
such that 1 = A; R+ A»S and substituting t ~» P/Q and multiplying the expresion by Q°
where ¢ := max{deg(A;) + deg(R),deg(As2) + deg(S)}, we get

Q" = QMT(QMAL(P/Q)(QR(P/Q)) + Q"F77(Q" Ay (P/Q))(Q"S(P/Q))
and so the ged(Q"R(P/Q), Q*S(P/Q)) divides Q*; hence,

gcd(Q"R(P/Q),Q°S(P/Q)) = gcd(Q"R(P/Q), Q°S(P/Q), Q") = 1.
Factorize S = a(t — &)+ (t — &) where o € R\{0} and &; € C. We have

B=Q5(P/Q)=alP-6Q) - (P—&Q);
whence, (P—&Q) = v; € Cfor 1 <i < s. If any two £/s were distinct, for instance, & # o,
we would get ({2 — &1)Q = 71 — 72 € C; hence, Q e R[x] nC =R and P € R[x] n C =R,
which contradicts the fact that go = P/Q € R(x)\R. Thus, S = a(t — §)® where a,£ € R
and s > 0.
If s =0, we may assume Q =1 and g :=gyp = P R[x]. If s >0, then P—-£Q =~v€R

and so go = P/Q = { + 7/Q; hence, F = R(go) = R(§ +7/Q) = R(7/Q) = R(yg), where
g := Q € R[x], as wanted. O

F:

We finish this section with an elementary crucial example.

Example 2.4. S' and RP' are regular images of R. Since RP! is the image of S! via the
canonical projection 7 : S' — RP!, it is enough to prove that S! is a regular image of R.
To that end, we may take for instance the regular map

2 —1\2 2t \2 _/t2—1 2t
rir=shee () - () e (E)
t2+1 2 +1 t2+1/\t2+1
Observe that the previous map is the composition of the inverse of the stereographic

projection of S! from (1,0) with
g:C=R?> - C=R? z=z+V-1y=(2,9) — 2% = (2% — 9°, 2zy).
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3. PROOFS OF THE MAIN RESULTS

The purpose of this section is to prove Theorems 1.1 and 1.3 and Propositions 1.2 and
1.4. We begin approaching the case m = 1, that is, S := [ is an interval of R.

Lemma 3.1. Let I < R be an interval. Then,

(i) p(I) < +0o0 if and only if I is unbounded. Moreover, if such is the case p(I) < 2
and p(I) = 2 if and only if I < R is moreover open.
(ii) r(I) < 2. Moreover, v(I) = 2 if and only if I < R is open.

Proof. (i) First, if f : R — R is a non-constant polynomial map, the image of f is either
R or a proper closed unbounded interval; hence, if I < R is open, then p(I) > 2. In any
case, if p(I) = n < +o0 and g : R™ — R is a polynomial map such that g(R") = I, we
take o € R™ with g(xg) # ¢(0) and consider the non-constant polynomial map f : R —
R, t — g(txo); hence, f(R) = I is unbounded.

To finish, it is enough to prove that the interval [0, +00) is a polynomial image of R
while (0, +00) is a polynomial image of R?. To that end, consider the polynomial maps

flzRg’R,t'_’tQ and fQ:RQ*’Ra (x,y)’_)(xyil)2+x2

(ii) For the second part of this assertion observe that, by Lemma 2.1, a regular map
f: R — R, extends regularly to a map F : RP! — RP'. Thus, the image of F is either RP!
or a proper closed interval J of RP!. If F(py) = py, then I = J\{py} is an unbounded
closed interval of R. On the other hand, if F(py) = ¢ € R, then J = [a,b] is a bounded
closed interval of R and I is either equal to J (if F~!(c) is not a singleton) or J\{c} (if
F~!(c) is a singleton). Hence, since I is connected, it is either [a, b] or one of the half-open
bounded intervals [a,b) or (a,b]. Thus, if I < R is open, then r(I) > 2.

To finish the proof and in view of (i), it is enough to notice that the intervals [0, 1] and
(0,1] are regular images of R via the regular maps

L1
1+t2 2

fglRHR,tH f4IR*>R,t*—>

1+ ¢2
while the interval (0,1) is a regular image of R? via the regular map

(zy —1)% + 22
14 (zy —1)2 + 22

f5:R* >R, (z,y) —
The concrete details are left to the reader. O

Proof of Theorem 1.1. (i) = (ii) We know that S is unbounded and, by [FG3, 3.1],
S is irreducible. Next, since p(S) < +00, there exists a regular map f : R” — R™ such
that f(R™) = S. By Lemma 2.3, there are polynomial maps h: R — R" and ¢g : R" - R
satisfying f = h o g; notice that the Zariski closures of f(R") and h(R) coincide. Now, by

Lemma 2.2 applied to the polynomial map h, we conclude that ClZp,.(S) is an invariant

zar

rational curve such that CI¢5..(S) N He(C) = {p} is a singleton and the germ CIEp..(S),
is irreducible.

(ii) = (i) Let Il := (Tlp : ... : II,) : CP* — CI%}..(S) be an invariant normalization
of CIgn(S); in particular, m(RP') = CIg. (S)1). Since ClgE.(S) n Hp(C) = {p} is a
singleton and the germ CIfpm (S), is irreducible, we may assume that

I (CIEE (S) N Heo(C)) = {(0: 1)}
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hence, TTy = t¢ for some d > 1. Therefore, 7 := [|g : R = RP'\{p,,} — R™ is a polynomial
map, and since S is irreducible and 1-dimensional, S = 7(R) = Clgpm(S)1)\Hux(R).
Moreover, since (R,m) is the normalization of C1”*"(S), there exists, by [FG3, 3.5], an
interval I < R such that 7 (I) = S; in fact, since S is unbounded, so is I. Now, by Lemma
3.1, I and so S are polynomial images of R?, as wanted. O

Proof of Proposition 1.2. If p(S) = 1, there exists a non-constant polynomial map
f:R — R™ such that f(R) = S. Now, since f is proper, S is closed in R™.

Conversely, as we have seen in the proof of (ii) = (i) in Theorem 1.1, there exists
a polynomial map 7 : R — R™ such that (R, ) is the normalization of CI”**(S). Thus,
there exists, by [FG3, 3.5], an interval I < R such that =(I) = S. Since S is unbounded
and closed, such interval can also be taken unbounded and closed. Thus, by Lemma 3.1,
I and so S are polynomial images of R. O

Proof of Theorem 1.3. (i) = (ii) First, by [FG3, 3.1], S is irreducible. Let now
f : R" — R™ be a regular map such that f(R™) = S. By Lemma 2.3, there exist a
rational function g € R(x) and a rational map h := (Z—é, e %) : R — R™ such that
f =hog. Now, by Lemma 2.2, we deduce that Clgp.(S) is a rational curve.

(i) = (i) Let 7 : RP! — CIf.(S) be the normalization of ClZE.(S); recall that
m(RP') = Clggn (S) ). If S = Cl§n (S) (1), then S is, by Example 2.4, a regular image of
R. On the other hand, if S # leﬁgm(S)(l), we may assume that the image of the infinite
point py of RP! under 7 belongs to Clggm (5)1)\S. Now, by [FG3, 3.5], there exists an
interval I < R = RP!\{py} such that 7(I) = S. By Lemma 3.1, we conclude that I and
so S are regular images of R?. O

Proof of Proposition 1.4. Suppose first that r(S) = 1. Let f : R — R™ be a regular
map such that f(R) = § < CI**(S). By Lemma 2.2, f extends to a surjective regular
map F : CP! — CI%,.(S) and we may decompose F = I1 o F' where F : CP' — CP! is
an invariant surjective regular map and (CP!,1I) is an invariant normalization of CP!; we
may assume that py € II71(Hy(C)). Since f is a regular map,

2 = F 7 (Hy(C)) n R = (F) 7 (IT7}(Hx(C))) N R

Thus, since py € I (Hy (R)), we deduce that the image of f := F|g is contained in R
and so f : R — R is a regular map such that f = 7o f, where 7 := II|g. By Lemma 3.1,
we may assume f(R) =R, [0,00), [0,1] or [0,1).

~ ~

In case f(R) = [0,1], then Clgpm(S) = S. Otherwise, let ¢ := py in case f(R) = R
or [0,0), and ¢ := 1 in case f(R) = [0,1). Observe that J := f(R) U {¢} is a closed
subset of RP!; hence, its image S U {m(q)} under 7 is a closed subset of RP™ and so
Clgpm (S) = S U {m(q)}. Thus, Clgpm (S5)\S is either empty or a singleton.

Suppose now that Clgpm (S)\S = {p := m(q)}; hence, 7~1(p) N f(R) = & because
S =f(R)= W(f(R)) and so 7 1(p) n J = {¢}. Thus, S, = W((f(R))q) and we conclude
that the analytic closure of the germ S, is irreducible.

Conversely, by Theorem 1.3 and [FG3, 3.5] there exists a connected subset I < RP!
such that 7(I) = S, where (RP!, 7) is the normalization of CIZ.(S). In fact, I is the
unique 1-dimensional connected component of 7=1(S). We distinguish two possibilities:

CASE 1. Clgpm(S) = S. Then, S is closed in RP™ and so I is either RP! or a compact
interval contained in RP! that we may assume equal to [0, 1].
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CaseE 2. Clgpn(S)\S = {p} is a singleton and the analytic closure of the germ S, is
irreducible. Observe that Clgpm(S) = 7w(Clgp1(I)) and, since the analytic closure of
the germ S, is irreducible, we deduce that (m|cy_, ()" '(p) = {a} is a singleton. Thus,
I = Clgp1 (I)\{a} and we may assume that either I = [0,1) or I = R.

In both cases we conclude, by Lemma 3.1 and Example 2.4, that S is a regular image
of R, as wanted. O
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