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ON THE ONE DIMENSIONAL POLYNOMIAL

AND REGULAR IMAGES OF R
n

JOSÉ F. FERNANDO

Abstract. In this work we present a full geometric characterization of the 1-dimensional
polynomial and regular images S of Rn and we compute for all of them the invariants
ppSq and rpSq, already introduced in [FG2].

1. Introduction

A map f :“ pf1, . . . , fmq : Rn Ñ R
m is a polynomial map if each of its components

fi P Rrxs :“ Rrx1, . . . , xns. A subset S of Rm is a polynomial image of Rn if there exists a
polynomial map f : Rn Ñ R

m such that S “ fpRnq. Let S be a subset of Rm; we define

ppSq :“
#

least p ě 1 such that S is a polynomial image of Rp,

`8 otherwise.

More generally, a map f :“ pf1, . . . , fmq : Rn Ñ R
m is a regular map if each component

fi is a regular function of Rpxq :“ Rpx1, . . . , xnq, that is, each fi “ gi{hi is a quotient of
polynomials such that the zero set of hi is empty. Analogously, a subset S of Rm is a
regular image of Rn if it is the image S “ fpRnq of Rn by a regular map f and we define
the invariant

rpSq :“
#

least r ě 1 such that S is a regular image of Rr,

`8 otherwise.

Obviously, rpSq ď ppSq and by Tarski’s Theorem (see [BCR, 2.8.8]) the dimension dimS

of S is less than or equal to both of them. Of course, the inequalities dimS ď rpSq ď ppSq
can be strict and it may happen that the second invariant is finite while the third is
infinite, even if S Ă R (see Lemma 3.1).

A celebrated Theorem of Tarski-Seidenberg [BCR, 1.4] says that the image of any
polynomial map (and more generally of a regular map) f : Rm Ñ R

n is a semialgebraic
subset S of Rn, that is, it can be written as a finite boolean combination of polynomial
equations and inequalities, which we will call a semialgebraic description. By elimination
of quantifiers, S is semialgebraic if it has a description by a first order formula possibly
with quantifiers. Such a freedom gives easy semialgebraic descriptions for topological
operations: interiors, closures, borders of semialgebraic sets are again semialgebraic.

In an Oberwolfach week [G], Gamboa proposed to characterize the semialgebraic sets
of Rm which are polynomial images of Rn for some n ě 1. The interest of polynomial
(and also regular) images is far from discussion since there are many problems in Real
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2 JOSÉ F. FERNANDO

Algebraic Geometry that for such sets can be reduced to the case S “ R
n (see [FG1],

[FG2] or [FGU] for further comments). Examples of such problems are:

‚ optimization of polynomial (and/or regular) functions on S,
‚ characterization of the polynomial (or regular functions) which are positive semi-
definite on S (Hilbert’s 17th problem and Positivestellensatz),

As we have already pointed out in [FG1] there are some straightforward properties
that a regular image S Ă R

m much satisfy: it must be pure dimensional, connected,
semialgebraic and its Zariski closure must be irreducible. Furthermore, S must be, by
[FG3, 3.1], irreducible in the sense that its ring N pSq of Nash functions on S is an integral
domain. Recall here that a Nash function on an open semialgebraic subset U Ă R

m is
an analytic function that satisfies a nontrivial polynomial equation, that is, there exists
P P Rrx, ys such that P px, fpxqq “ 0 for all x P U . Now, the ring N pSq of Nash functions
on S is the collection of all functions on S that admit a Nash extension to an open
semialgebraic neighborhood U of S in R

m, endowed with the usual sum and product (for
further details see [FG3]).

In this work we focus our attention in the one dimensional case and we present a full
geometric characterization of the polynomial and regular one dimensional images of Rn;
in fact, we compute the exact value of the invariants p and r for all of them. As we
will see along this work in the one dimensional case the only three possible values for
both invariants p and r are 1, 2 or `8. In fact, all the possibilities with the restriction
1 ď r ď p ď `8 are attained except for the pair r “ 1 y p “ 2 which is not attainable (see
Theorems 1.1 and 1.3, Propositions 1.2 and 1.4, Corollary 1.5 and Lemma 3.1 to complete
the picture). We provide the following table illustrating the situation.

S R ó r0,`8q ´ r0, 1q p0,`8q p0, 1q Any non rational algebraic curve

rpSq 1 1 1 2 2 `8
ppSq 1 2 `8 2 `8 `8

We recall that the study of the one dimensional polynomial images of Rn was partially
and naively approached before in our previous work [FG2, §2], but without presenting any
conclusive result.

Notations and terminology. Before stating our main results, whose proofs are devel-
oped in Section 3 after the preparatory work of Section 2, we recall some preliminary
standard notations and terminology. We write K to refer indistinctly to R or C and we
denote by H8pKq :“ tx0 “ 0u the hyperplane of infinity of the projective space KP

m,
which contains K

m as the set KP
mzH8pKq “ tx0 “ 1u. In case m “ 1, we denote

tp8u :“ tx0 “ 0u the point of infinity of the projective line KP
1.

For each n ě 1 denote by

σn : CPn Ñ CP
n, z “ pz0 : z1 : ¨ ¨ ¨ : znq ÞÑ z “ pz0 : z1 : ¨ ¨ ¨ : znq

the complex conjugation. Clearly, RPn is the set of fixed points of σn. A set A Ă CP
n is

called invariant if σpAq “ A. It is well-know that if Z Ă CP
n is an invariant nonsingular

(complex) projective variety, then Z X RP
n is a nonsingular (real) projective variety. We

also say that a rational map h : CPn
99K CP

m is invariant if h ˝ σn “ σm ˝ h. Of course,
h is invariant if its components can be chosen as homogeneous polynomials with real’
coefficients; hence, it provides by restriction a “real” rational map h|RPn : RPn

99K RP
m.
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Given a semialgebraic set S Ă R
m Ă RP

m Ă CP
m, we denote by ClzarKPmpSq its Zariski

closure in KP
m. Obviously, ClzarCPmpSq X RP

m “ ClzarRPmpSq and ClzarpSq “ ClzarRPmpSq X R
m

is the Zariski closure of S in R
m. We denote by Spkq the set of points of S that have local

dimension k.

Recall that a complex rational curve is the image of CP1 under a birational (and hence
regular) map while a real rational curve is a real projective irreducible curve C such that
Cp1q is the image of RP1 under a birational (and hence regular) map (see Lemma 2.1).

Main results. We begin by a geometrical characterization of the 1-dimensional polyno-
mial images of Euclidean spaces (that is, those with p “ 1, 2, see also [FG2, 2.1-2]) and
after that we determine those with p “ 1.

Theorem 1.1. Let S Ă R
m be a 1-dimensional semialgebraic set. Then, the following

assertions are equivalent:

(i) S is a polynomial image of Rn for some n ě 1.
(ii) S is irreducible, unbounded and ClzarCPmpSq is an invariant rational curve such that

ClzarCPmpSq X H8pCq is a singleton tpu and the germ ClzarCPmpSqp is irreducible.

In particular, if that is the case ppSq ď 2.

Proposition 1.2. Let S Ă R
m be a 1-dimensional semialgebraic set which is a polynomial

image of Rn for some n ě 1. Then, ppSq “ 1 if and only if S is closed in R
m.

The counterpart of the previous results in the regular setting consist of the full geo-
metric characterization of the 1-dimensional regular images of Euclidean spaces and the
description of those with r “ 1.

Theorem 1.3. Let S Ă R
m be a 1-dimensional semialgebraic set. Then, the following

assertions are equivalent:

(i) S is a regular image of Rn for some n ě 1.
(ii) S is irreducible and ClzarRPmpSq is a rational curve.

In particular, if that is the case rpSq ď 2.

Proposition 1.4. Let S Ă R
m be a 1-dimensional semialgebraic set which is a regular

image of Rn for some n ě 1. Then, rpSq “ 1 if and only if either

(i) ClRPmpSq “ S or
(ii) ClRPmpSqzS “ tpu is a singleton and the analytic closure of the germ Sp is irre-

ducible.

Corollary 1.5. There is no 1-dimensional semialgebraic set S Ă R
m with ppSq “ 2 and

rpSq “ 1.

Proof. Suppose, by way of contradiction, that there exists a semialgebraic set S Ă R
m

with dimS “ 1, ppSq “ 2 and rpSq “ 1. By Theorem 1.1 and Proposition1.2, we deduce
that S is unbounded and S is not closed in R

m. Thus, ClRPmpSqzS has at least two
elements: one point in H8pRq because S is unbounded and another one in R

m, since S is
not closed in R

m. But by Proposition 1.4, ClRPmpSqzS is either empty or a singleton, a
contradiction; hence, the statement follows. �
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2. Main tools

In this section, we present the main tools used to prove the results presented in this
article. In what follows, we will use freely usual concepts of (complex) Algebraic Geometry
as: rational map, regular map, normalization, etc. and we refer the reader to [M, Sh1] for
further details. We recall first here the following useful and well-known fact concerning
the regularity of rational maps defined on a nonsingular curve (see [M, 7.1]) that will be
used several times in the sequel.

Lemma 2.1. Let Z Ă CP
n be a nonsingular projective curve and let F : Z 99K CP

m be a
rational map. Then, F extends (uniquely) to a regular map F 1 : Z Ñ CP

m. Moreover, if
Z,F are invariant so is F 1.

Normalization of an algebraic curve. A main tool will be the normalization p rX,Πq of
an either affine or projective algebraic curve X, both in the real and in the complex case.
As it is well-know, the normalization is birationally equivalent to X and so unique up to
biregular homeomorphism; furthermore, if X is an invariant complex algebraic curve, we

may assume that also both rX and π are invariant. To prove this, one can construct p rX,πq
as the desingularization of X via a finite chain of suitable invariant blowing-ups. Recall

also that all the fibers of Π : rX Ñ X are finite and if x P X is a non singular point, then
the fiber of x is a singleton. Moreover, if X is complex, then the cardinal of the fiber of
a point x P X coincides with the number of irreducible components of the germ Xx. If

X Ă R
m is an affine algebraic curve, Y :“ ClzarCPmpXq and prY Ă CP

k,Πq is an invariant
normalization of Y , we have that:

‚ p rZ :“ rY X RP
k,Π| rZq is the normalization of Z :“ ClzarRPmpXq and Πp rZq “ Zp1q,

‚ p rX :“ rY X R
k, π :“ Π| rXq is the normalization of X and πp rXq “ Xp1q. �

Next two results are the clue to prove the Main results stated in the Introduction.

Lemma 2.2. Let f : R Ñ R
m be a non-constant rational map and let S :“ fpRq. Then,

(i) f extends (uniquely) to an invariant regular map F : CP
1 Ñ CP

m such that
F pCP1q “ ClzarCPmpSq.

(ii) ClzarCPmpSq is an invariant rational curve and if pCP1,Πq is an invariant normal-

ization of ClzarCPmpSq there is an invariant surjective regular map rF : CP1 Ñ CP
1

such that F “ Π ˝ rF .
(iii) If f is polynomial, then we may choose Π and rF so that π :“ Π|R and rf :“ rF |R

are polynomial. In particular, ClzarCPmpSq X H8pCq is a singleton p and the germ
ClzarCPmpSqp is irreducible.

Proof. (i) Observe that f extends naturally to an invariant rational map

F :“ pF0 : F1 : ¨ ¨ ¨ : Fmq : CP1
99K CP

m,

where Fi P Rrx0, x1s are homogeneous polynomials of the same degree d. In fact, such
extension is, by Lemma 2.1, regular and unique. Moreover, since S “ fpRq, then F pCP1q Ă
ClzarCPmpSq contains, by [M, 2.31], a non-empty Zariski open subset of the ClzarCPmpSq; hence,
since F is proper and ClzarCPmpSq is irreducible, we conclude, by [M, 2.33], that F pCP1q “
ClzarCPmpSq.

(ii) Let prY Ă CP
k,Πq be a σ-invariant normalization of Y :“ ClzarCPmpSq. Now, the

composition Π´1 ˝ F : CP1
99K rY defines an invariant rational map that extends to an

invariant surjective regular map rF : CP1 Ñ rY such that F “ Π ˝ rF . Now, by [M, 7.6,
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7.20], rY is a smooth curve of arithmetic genus 0, that is, a smooth rational curve (see [M,

7.17]); hence, we may take rY “ CP
1. Thus, pRP1,Π|RP1q is the normalization of ClzarRPmpSq

and ΠpRP1q “ ClzarRPmpSqp1q.

(iii) If f is polynomial, then F0 :“ xd0. Write Π :“ pΠ0, . . . ,Πmq and rF :“ p rF0, rF1q,
where Πi, rFj P Rrx0, x1s are homogeneous polynomials, and let us check that we may

assume Π0 “ λxe
0
and rF0 “ µxℓ

0
for some positive integers e, ℓ such that d “ eℓ; hence,

π :“ Π|R and rf :“ rF |R are polynomial.

Indeed, observe first that rF is non constant because it is surjective. Factorize

Π0 “
eź

i“1

paix1 ´ bix0q P Crx0, x1s

where ai, bi P C and pai, biq ‰ p0, 0q for i “ 1, . . . ,m. Let us check that all the factors

aix1 ´ bix0 are proportional. Denote pi :“ rFip1, x1q and observe that

eź

i“1

paip1 ´ bip0q “ Π0pp0, p1q “ F0p1, x1q “ 1;

hence, all the factors in the previous expression are non zero constants ci P C. Suppose
that two of the pairs pai, biq are not proportional, for instance, pa1, b1q and pa2, b2q are not
proportional. Then, pp0, p1q is the unique solution of the linear system

"
a1x1 ´ b1x0 “ c1,

a1x2 ´ b2x0 “ c2

and so p0, p1 P C, which contradicts the fact that rF is non constant. Thus, we may write
Π0 “ ˘pax1 ´ bx0qe where a, b P R and pa, bq ‰ p0, 0q. Consider an invariant change of
coordinates Ψ : CP1 Ñ CP

1 that transforms pa : bq onto p0 : 1q and define Π1 :“ Π ˝Ψ. Of

course, pCP1,Π1q is an invariant normalization of ClzarCPmpSq with Π1
0

“ λxe
0
. Define rF 1 as

the regular extension of pΠ1q´1 ˝ F to CP
1; in particular, F “ Π1 ˝ rF 1. Since λp rF 1

0qe “ xd0,

we conclude rF 1
0 “ µxℓ0.

Finally, we have that Π´1pClzarCPmpSq X H8pCqq “ tp0 : 1qu and so, we deduce that
ClzarCPmpSq X H8pCq “ tpu is a singleton and that the germ ClzarCPmpSqp is irreducible. �

Lemma 2.3. Let f :“ pf1, . . . , fmq : Rn Ñ R
m be a non-constant rational map such that

its image fpRnq has dimension 1. Then,

(i) f factors through R, that is, there exist a rational function g P Rpxq and a rational
map h : R Ñ R

m such that f “ h ˝ g.
(ii) If f is moreover a polynomial map, we may also take g and h polynomial.

Proof. Let F :“ Rpf1, . . . , fmq be the smallest subfield of the field of rational functions Rpxq
in n variables that contains R and f1, . . . , fm. Note that tr.degpF|Rq “ dimpim fq “ 1
we may assume that f1 R R. Thus, by Lüroth’s Theorem, there exists a rational function

g P RpxqzR such that F “ Rpgq. Since fi P F “ Rpgq, we have fi “ Pipgq
Qipgq for some coprime

polynomials Pi, Qi P Rrts. Now, the rational map h :“ p P1

Q1
, . . . , Pm

Qm
q : R Ñ R

m, satisfies

f “ h ˝ g and so (i) holds.

Next, suppose that f is moreover polynomial. Following [Sch2, Lem.2] (see also [Sch1,
Lem. 2, pag. 710-711]):

(2.3.1) We may assume that the Lüroth’s generator g of F is in fact polynomial.
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Now, by Bezout’s Lemma, we can write 1 “ PiAi ` QiBi for some Ai, Bi P Rrts.
Substituting the variable t by g we get the polynomial identity

1 “ PipgqAipgq ` QipgqBipgq “ QipgqfiAipgq ` QipgqBipgq “ Qipgq
`
fiAipgq ` Bipgq

˘
;

hence, Qipgq is a nonzero constant, and so the polynomials hi :“ Piptq
Qipgq fit our situation.

For the sake of completeness let us include the elementary proof of [Sch2, Lem.2] that
shows statement 2.3.1. Let g0 P RpxqzR be a Lüroth’s generator of F. Since the extension
F|R has transcendence degree 1, we may assume that F :“ f1 P RrxszR. Let R,S P
Rrtszt0u and P,Q P Rrxszt0u be pairs of relatively prime polynomials such that

F “ Rpg0q
Spg0q & g0 “ P

Q
ùñ F “ QrRpP {Qq

QsSpP {QqQ
s´r,

where r :“ degpRq and s :“ degpSq. Notice that the polynomials Q, QrRpP {Qq and
QsSpP {Qq are pairwise relatively prime; once this is show, it follows directly, using the
fact that Rrxs is a UFD, that β :“ QsSpP {Qq P R and s ´ r ě 0.

Indeed, it is straightforward to show, using that R,S P Rrts, that
gcdpQ,QrRpP {Qqq “ gcdpQ,QsSpP {Qqq “ gcdpP,Qq “ 1.

Next, by Bezout’s Lemma, we find polynomials A1, A2 P Rrts of degrees ki :“ degpAiq
such that 1 “ A1R`A2S and substituting t ❀ P {Q and multiplying the expresion by Qℓ

where ℓ :“ maxtdegpA1q ` degpRq,degpA2q ` degpSqu, we get

Qℓ “ Qℓ´k1´rpQk1A1pP {QqqpQrRpP {Qqq ` Qℓ´k2´rpQk2A2pP {QqqpQrSpP {Qqq
and so the gcdpQrRpP {Qq, QsSpP {Qqq divides Qℓ; hence,

gcdpQrRpP {Qq, QsSpP {Qqq “ gcdpQrRpP {Qq, QsSpP {Qq, Qℓq “ 1.

Factorize S “ αpt ´ ξ1q ¨ ¨ ¨ pt ´ ξsq where α P Rzt0u and ξi P C. We have

β “ QsSpP {Qq “ αpP ´ ξ1Qq ¨ ¨ ¨ pP ´ ξsQq;
whence, pP ´ξiQq “ γi P C for 1 ď i ď s. If any two ξ1

is were distinct, for instance, ξ1 ‰ ξ2,
we would get pξ2 ´ ξ1qQ “ γ1 ´ γ2 P C; hence, Q P Rrxs X C “ R and P P Rrxs X C “ R,
which contradicts the fact that g0 “ P {Q P RpxqzR. Thus, S “ αpt ´ ξqs where α, ξ P R

and s ě 0.

If s “ 0, we may assume Q “ 1 and g :“ g0 “ P P Rrxs. If s ą 0, then P ´ ξQ “ γ P R

and so g0 “ P {Q “ ξ ` γ{Q; hence, F “ Rpg0q “ Rpξ ` γ{Qq “ Rpγ{Qq “ Rpgq, where
g :“ Q P Rrxs, as wanted. �

We finish this section with an elementary crucial example.

Example 2.4. S
1 and RP

1 are regular images of R. Since RP
1 is the image of S1 via the

canonical projection π : S1 Ñ RP
1, it is enough to prove that S1 is a regular image of R.

To that end, we may take for instance the regular map

f : R Ñ S
1, t ÞÑ

´´ t2 ´ 1

t2 ` 1

¯2

´
´ 2t

t2 ` 1

¯2

, 2
´ t2 ´ 1

t2 ` 1

¯´ 2t

t2 ` 1

¯¯
.

Observe that the previous map is the composition of the inverse of the stereographic
projection of S1 from p1, 0q with

g : C ” R
2 Ñ C ” R

2, z “ x `
?

´1y ” px, yq ÞÑ z2 ” px2 ´ y2, 2xyq.
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3. Proofs of the main results

The purpose of this section is to prove Theorems 1.1 and 1.3 and Propositions 1.2 and
1.4. We begin approaching the case m “ 1, that is, S :“ I is an interval of R.

Lemma 3.1. Let I Ă R be an interval. Then,

(i) ppIq ă `8 if and only if I is unbounded. Moreover, if such is the case ppIq ď 2
and ppIq “ 2 if and only if I Ĺ R is moreover open.

(ii) rpIq ď 2. Moreover, rpIq “ 2 if and only if I Ĺ R is open.

Proof. (i) First, if f : R Ñ R is a non-constant polynomial map, the image of f is either
R or a proper closed unbounded interval; hence, if I Ĺ R is open, then ppIq ě 2. In any
case, if ppIq “ n ă `8 and g : Rn Ñ R is a polynomial map such that gpRnq “ I, we
take x0 P R

n with gpx0q ‰ gp0q and consider the non-constant polynomial map f : R Ñ
R, t ÞÑ gptx0q; hence, fpRq Ă I is unbounded.

To finish, it is enough to prove that the interval r0,`8q is a polynomial image of R
while p0,`8q is a polynomial image of R2. To that end, consider the polynomial maps

f1 : R Ñ R, t ÞÑ t2 and f2 : R
2 Ñ R, px, yq ÞÑ pxy ´ 1q2 ` x2.

(ii) For the second part of this assertion observe that, by Lemma 2.1, a regular map
f : R Ñ R, extends regularly to a map F : RP1 Ñ RP

1. Thus, the image of F is either RP1

or a proper closed interval J of RP1. If F pp8q “ p8, then I “ Jztp8u is an unbounded
closed interval of R. On the other hand, if F pp8q “ c P R, then J “ ra, bs is a bounded
closed interval of R and I is either equal to J (if F´1pcq is not a singleton) or Jztcu (if
F´1pcq is a singleton). Hence, since I is connected, it is either ra, bs or one of the half-open
bounded intervals ra, bq or pa, bs. Thus, if I Ĺ R is open, then rpIq ě 2.

To finish the proof and in view of (i), it is enough to notice that the intervals r0, 1s and
p0, 1s are regular images of R via the regular maps

f3 : R Ñ R, t ÞÑ t

1 ` t2
` 1

2
, f4 : R Ñ R, t ÞÑ 1

1 ` t2

while the interval p0, 1q is a regular image of R2 via the regular map

f5 : R
2 Ñ R, px, yq ÞÑ pxy ´ 1q2 ` x2

1 ` pxy ´ 1q2 ` x2
.

The concrete details are left to the reader. �

Proof of Theorem 1.1. (i) ùñ (ii) We know that S is unbounded and, by [FG3, 3.1],
S is irreducible. Next, since ppSq ă `8, there exists a regular map f : Rn Ñ R

m such
that fpRnq “ S. By Lemma 2.3, there are polynomial maps h : R Ñ R

m and g : Rn Ñ R

satisfying f “ h ˝ g; notice that the Zariski closures of fpRnq and hpRq coincide. Now, by
Lemma 2.2 applied to the polynomial map h, we conclude that ClzarCPmpSq is an invariant
rational curve such that ClzarCPmpSq X H8pCq “ tpu is a singleton and the germ ClzarCPmpSqp
is irreducible.

(ii) ùñ (i) Let Π :“ pΠ0 : . . . : Πmq : CP1 Ñ ClzarCPmpSq be an invariant normalization
of ClzarCPmpSq; in particular, πpRP1q “ ClzarRPmpSqp1q. Since ClzarCPmpSq X H8pCq “ tpu is a
singleton and the germ ClzarCPmpSqp is irreducible, we may assume that

Π´1pClzarCPmpSq X H8pCqq “ tp0 : 1qu;
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hence, Π0 “ td0 for some d ě 1. Therefore, π :“ Π|R : R ” RP
1ztp8u Ñ R

m is a polynomial
map, and since S is irreducible and 1-dimensional, S Ă πpRq “ ClzarRPmpSqp1qzH8pRq.
Moreover, since pR, πq is the normalization of ClzarpSq, there exists, by [FG3, 3.5], an
interval I Ă R such that πpIq “ S; in fact, since S is unbounded, so is I. Now, by Lemma
3.1, I and so S are polynomial images of R2, as wanted. �

Proof of Proposition 1.2. If ppSq “ 1, there exists a non-constant polynomial map
f : R Ñ R

m such that fpRq “ S. Now, since f is proper, S is closed in R
m.

Conversely, as we have seen in the proof of (ii) ùñ (i) in Theorem 1.1, there exists
a polynomial map π : R Ñ R

m such that pR, πq is the normalization of ClzarpSq. Thus,
there exists, by [FG3, 3.5], an interval I Ă R such that πpIq “ S. Since S is unbounded
and closed, such interval can also be taken unbounded and closed. Thus, by Lemma 3.1,
I and so S are polynomial images of R. �

Proof of Theorem 1.3. (i) ùñ (ii) First, by [FG3, 3.1], S is irreducible. Let now
f : Rn Ñ R

m be a regular map such that fpRnq “ S. By Lemma 2.3, there exist a

rational function g P Rpxq and a rational map h :“ ph1

h0
, . . . , hm

h0
q : R Ñ R

m such that

f “ h ˝ g. Now, by Lemma 2.2, we deduce that ClzarRPmpSq is a rational curve.

(ii) ùñ (i) Let π : RP1 Ñ ClzarRPmpSq be the normalization of ClzarRPmpSq; recall that
πpRP1q “ ClzarRPmpSqp1q. If S “ ClzarRPmpSqp1q, then S is, by Example 2.4, a regular image of
R. On the other hand, if S ‰ ClzarRPmpSqp1q, we may assume that the image of the infinite

point p8 of RP1 under π belongs to ClzarRPmpSqp1qzS. Now, by [FG3, 3.5], there exists an

interval I Ă R “ RP
1ztp8u such that πpIq “ S. By Lemma 3.1, we conclude that I and

so S are regular images of R2. �

Proof of Proposition 1.4. Suppose first that rpSq “ 1. Let f : R Ñ R
m be a regular

map such that fpRq “ S Ă ClzarpSq. By Lemma 2.2, f extends to a surjective regular

map F : CP1 Ñ ClzarCPmpSq and we may decompose F “ Π ˝ rF where rF : CP1 Ñ CP
1 is

an invariant surjective regular map and pCP1,Πq is an invariant normalization of CP1; we
may assume that p8 P Π´1pH8pCqq. Since f is a regular map,

∅ “ F´1pH8pCqq X R “ p rF q´1pΠ´1pH8pCqqq X R.

Thus, since p8 P Π´1pH8pRqq, we deduce that the image of rf :“ rF |R is contained in R

and so rf : R Ñ R is a regular map such that f “ π ˝ rf , where π :“ Π|R. By Lemma 3.1,

we may assume rfpRq “ R, r0,8q, r0, 1s or r0, 1q.
In case rfpRq “ r0, 1s, then ClRPmpSq “ S. Otherwise, let q :“ p8 in case rfpRq “ R

or r0,8q, and q :“ 1 in case rfpRq “ r0, 1q. Observe that J :“ rfpRq Y tqu is a closed
subset of RP

1; hence, its image S Y tπpqqu under π is a closed subset of RP
m and so

ClRPmpSq “ S Y tπpqqu. Thus, ClRPmpSqzS is either empty or a singleton.

Suppose now that ClRPmpSqzS “ tp :“ πpqqu; hence, π´1ppq X rfpRq “ ∅ because

S “ fpRq “ πp rfpRqq and so π´1ppq X J “ tqu. Thus, Sp “ πpp rfpRqqqq and we conclude
that the analytic closure of the germ Sp is irreducible.

Conversely, by Theorem 1.3 and [FG3, 3.5] there exists a connected subset I Ă RP
1

such that πpIq “ S, where pRP1, πq is the normalization of ClzarRPmpSq. In fact, I is the
unique 1-dimensional connected component of π´1pSq. We distinguish two possibilities:

Case 1. ClRPmpSq “ S. Then, S is closed in RP
m and so I is either RP

1 or a compact
interval contained in RP

1 that we may assume equal to r0, 1s.
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Case 2. ClRPmpSqzS “ tpu is a singleton and the analytic closure of the germ Sp is
irreducible. Observe that ClRPmpSq “ πpClRP1pIqq and, since the analytic closure of
the germ Sp is irreducible, we deduce that pπ|Cl

RP1
pIqq´1ppq “ tau is a singleton. Thus,

I “ ClRP1pIqztau and we may assume that either I “ r0, 1q or I “ R.

In both cases we conclude, by Lemma 3.1 and Example 2.4, that S is a regular image
of R, as wanted. �
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