
PHYSICAL REVIEW D VOLUME 35, NUMBER 10 15 MAY 1987

Thermodynamics of the Schwinger and Thirring models
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The thermodynamical partition functions for both the Schwinger and Thirring models are
evaluated. The imaginary-time formalism of quantum field theory at finite temperature and path-
integral methods are used. For the Schwinger model, the partition function displays two features:
(i) no physical (transverse) photons exist in 1+1 dimensions; (ii) the theory also describes just free
massive bosons. For the Thirring model, the partition function equals that for free massless fer-
mions. The complete thermodynamical propagators and the energies per unit volume at finite tem-

perature are also given.

I. INTRODUCTION

Quantum field theory at finite temperature has become
a useful tool to study plasmas, ' metals, condensed
matter, the variation of physical parameters (mass, mag-
netic moment) with temperature, or effective potentials
at nonzero temperature. "' We can also think of using it
to analyze the thermodynamical behavior of relativistic
quantum systems.

There are three formulations proposed for a quantum
field theory at finite temperature. On the one hand, there
is the imaginary-time formalism (ITF) of Bernard and
Matsubara, in which energy can take on only discrete
values. On the other hand, there are real-time methods:
that of Dolan and Jackiw and "thermo field dynamics"
(TFD), due to Takahashi and Umezawa, with energy tak-
ing on arbitrary values in both of them.

To study thermodynamics, the ITF seems to be more
advantageous since it gives an a priori definition for the
partition function in terms of a functional integration
over fields. The corresponding representation for the par-
tition function in the frameworks of the real-time formu-
lations would seem to require further elaboration. We
shall limit ourselves to point out that some attempts to
define the free energy in TFD have been carried out by
Ojima.

In this paper we use the ITF to study the thermo-
dynamics of the Schwinger and Thirring models. We also

obtain the finite-temperature complete propagators for
both cases. The organization of this paper is as follows.
In Sec. II we express the partition function Z for the
Schwinger model in terms of a fermion closed-loop func-
tional, which is exactly calculated. In Sec. III we get the
electromagnetic (EM) and fermion complete propagators,
and, in Sec. IV we explicitly evaluate Z and the thermo-
dynamical energy per unit volume. Finally, in Sec. V, we
generalize the work of Secs. II—IV for the Thirring
model.

As we have already mentioned we work in Euclidean
space-time, for which x =ix~, x ' =x~, k = —ik~,
k'=kM, y =yM, y'=yet, and Iy",y I

=25'", with M
meaning Minkowskian. Notice that x and k are real,
and that kx =k x +k'x' and k =(k ) +(k') .

II. THE SCHWINGER MODEL:
THE FERMION CLOSED-LOOP FUNCTIONAL

AT FINITE TEMPERATURE

The Schwinger model is the restriction of quantum
electrodynamics with massless fermions to 1+ 1 dimen-
sions. The EM field does not have dynamical degrees of
freedom and is created by the fermionic charges of the
model. Following Bernard, the partition function with
external sources in Euclidean space-time is given, using
standard notations, by

Z[J,g, g]=NNF(p) det( —t) ) f
antiperiodic f,P

yexp f d x —,'F — (t)A) P—(tt)+ie—A)g+JA +gg++
13 2u

(2.1)

N is a p-independent constant, and NF(p), the dependent one, is

+" dk'
lnNF(p) = —2(lnp)L g f 2'n = —oo

(2.2)
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where L is the (infinite) measure of the linear dimension in which the system is contained. For a detailed evaluation of
XF(/3) see the Appendix. In Eq. (2.1) we have also used the notation

d x= dx dx',

/3 '=k~T, k~ being Boltzmann's constant and T the temperature. An the other hand, J =J(x), g=g(x), g=g(x} are
bosonic and fermionic sources [J (O, x ') =J (/3x '), g(O, x ') = —g(/3x '), and g(O, x ') = —g(/3x ')]. Then, the thermo-
dynamical partition function is given by

Z=Z[0, 0,0] .

Performing the integrations over g, g, and A in (2.1) we get'"

Z =[J,g, g]=1VZoexp —ie d x y"5 „6 6
6J (x) g'(x)

(2.3)

)&exp d xdy —,'J xD "x —y J„y+ xP x —y y (2.4)

where Z0 ——ZEMZF, ZEM and Zz being, respectively, the partition functions in 1+ 1 dimensions for the free EM field
and free massless fermions. Since in 1 + 1 dimensions the free EM field has no dynamical character (there are no physi-
cal transverse photons), ZEM is a /3-independent quantity which can be absorbed into %. Hence, Zo ——ZF. As shown in
the Appendix,

—lnZF ——4
1 "dk /3k +in[1+ exp{ —/3k) ]I o 2~ 2

(2.5)

The constant NF(/3) has been absorbed into ZF. The D'"(x —y) and S(x —y) of Eq. (2.4) are the free finite-temperature
propagators for the EM and fermion fields:

1 + dk 1 „kk"D "(x —y)= ——
/3 „2~exp[ —ik(x —y)] 6 ~+(a —1)

k k

S(x —y) =— g f exp[ ik (x ——y)]—,k
1 + dk' . 1 0 (2n+1)~

/3 „„2~ /z' /3

Using standard path-integral properties, "Eq. (2.4) can be written as

Z[J,(,g]=XZF exp —, f d x d yJ (x)D""(x —y)J„(y}

p 2n 77

7 (2.6)

(2.7)

&&exp ——,
' f d x d y D'4(x —y) exp f d'x d yg'(x)G(x, y i

ed)g(y)
5A '(x) && "(y) P

with 2 "(x) the external field

2'(x) = i f d'y —D "(x —y)J„(y),
P

G (x,y ~

eA) is the solution of the differential equation

(Q+ieP )G (x,y eA ) = i 5 (x ——y),
and I. [3] is the already regularized ferrnion closed-loop functional

e X

L [p]=i tr f de' f d x p(x) lim G(x,y ~

e'A) exp ie' f dz, A "(z)
0 x~p

where the limit must be taken symmetrically.
For Eq. (2.9) we make the ansatz

G (x,y ~

eA) =exp Iie [P(x)—(5(y)] IS (x —y) .

The P(x) is the solution of —~) P(x) =BP(x), which is given by

P(x)= f d x h(x —y)Q~g(y)
P

and

1 + dk' 1 p 2n~
A(x —y) = —g f exp[ ik (x —y)], —k

/3 „„2~ /3

(2.8)

(2.9)

(2.10)

{2.1 1)

(2.12)

(2.13)
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Notice the key fact that k in (2.13) is a boson frequency (instead of a fermion one): this guarantees that (2.11) satisfies
the required antiperiodic boundary conditions. From Eqs. (2.10) and (2.11) it follows that in order to evaluate exactly
L [A] we need to know how S(x —y) behaves as x —y approaches zero. This can be achieved by using the well-known
fermion frequency series' for any function f ( k ) which is analytic in a neighborhood of the imaginary k axis

277l (2n + 1)vari
dk f (k ) — dk — dk—1 oo —&~+& exp(Pk )+1 —'~ —' exp( —13k )+1

(2.14)

in Eq. (2.7) and taking the limit x ~y. In doing so it turns out that the only divergent part comes from the first term on
the right-hand side of Eq. (2.14) and is given by

( —i) (x y).—r
lim S(x —y)= lim
x y x y 27r (x —y)~

Introducing Eqs. (2.11)—(2.13) and (2.15) into (2.10) we get

L [A]= —,
' f d x d yA„(x)II "(x —y)A„(y),

&2 1
+~ dk1 kvk11""(x—y) = — g f exp[ ik (x——y)] 5""—

rr I3 „27r k

for the fermion closed-loop functional.

O 2'&

(2.15)

(2.16)

(2.17)

III. THE SCHWINGER MODEL: THE COMPLETE THERMODYNAMICAL PROPAGATORS IN ITF

Taking Eqs. (2.16) and (2.17) into Eq. (2.8) and using path-integral techniques, we obtain

Z[J,O, O]=NZ+ exp —, trln(I+DII) ' exp —, d x d y J (x) 6 "(x —y)J&(y)
P

I +DH is a 2 & 2 matrix which in momentum space is represented by

(3.1)

1
2

QvP k 2+
7T

e kk"

On the other hand, 0 "(x —y) is the complete propagator for the EM field [symbolically Q =(D ' —Il) ']. One has

1 +" dk'B "(x —y)= —— g fP „2~ 1
exp[ —ik (x —y) ] 0+e/~

gvP k k

k

k k"
(k 2)2

(3.2)

Recall that the zero component of the momentum in (3.2) is discretized as for a boson particle, k =2nnl/3. Notice that
the gauge-independent part has acquired a mass e /&vr and the longitudinal part is the same as for the free propagator
[see (2.6)].

The complete fermion propagator is obtained from Eqs. (2.8), (2.16), and (2.17) by logarithmic differentiation with
respect to the external currents g(x) and g(y):

1 +oo 1S (x —y) =exp —— g f dk '
j 1 —exp[ ik (x —y)] I—

2 P„„k' n rr2

2 (k2)2 '
Pk'+

(3.3)

Notice that the structures of IB""(x—y) and &(x —y) are the same as for zero temperature. ' These results can also be
obtained using TFD. '

IV. THE SCHWINGER MODEL: THE THERMODYNAMICAL PARTITION FUNCTION

The thermodynamical partition function, given by Eq. (2.3), is the result of letting J =0 in Eq. (3.1):

+- dk'
Z =NZF exp ,'L g f ln—

277

2n~ (4.1)k

k'+

where L is the length of the linear dimension where the system is contained. By recalling Eq. (2.5) and Cauchy's residue
theorem (compare with Bernard ), we get
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1 dk Pk—lnZ =4 f +in[1+exp( —Pk)] +2 f —(k —wk)+ln
"dk /3 1 —exp( —flk )

L 0 2~ 2 2w 2 1 —exp( —Pwk )
+const, (4.2)

1/2

Wk= k + e
(4.3)

2 ~ 2 1(x2 —uz)" 'exp( —zx}dx
0

20
r —1/2

I (z)K„)~q(z}

According to Eqs. (2.8), (2.11)—(2.13), (2.16), and (2.17)
the Schwinger model is equivalent to a massless fermion
together with a nondynamical massive EM field with
mass e/V7r. Therefore, we could have conjectured that
its partition function would be that of the nondynamical
EM field times the one of the free massless fermions. The
actual EM partition function is not the one for a massive
free boson field: rather, it equals the latter divided by that
for a massless one. In other words, for any degree of free-
dom of the boson with mass e/V rr, one subtracts a relat-
ed quantity for the corresponding massless boson in the
partition function. All of this is just what Eq. (4.2) ac-
complishes. Notice that Z is gauge independent and that
when the interaction is removed (i.e., e =0) it reduces to
the partition function for free massless fermions, as ex-
pected.

The Helmholtz free energy is F = —/3 'lnZ. The ex-
pectation value over the thermodynamical ensemble of the
energy per unit volume is given by E/L = —8 lnZ/B/3.
We make use of Eq. (4.2), ignore the zero-point energy of
the vacuum, perform the resulting integrations and cancel
out terms using

2 f~ dk k p~ dk k
2' exp(/3k)+ 1 "o 2w exp(Pk) —1 12/3

(4.4)

Then, we obtain

E 1 WI
dk

L ~ o exp(Pwk ) —1
(4.5)

If we consider the mass e/~~ as an energy scale, we can
define high and low temperatures as those satisfying
/3e/v'~&&1 and /3e/V~&&1, respectively By m.aking
the change k +(e /n)~k, using

+31n /3e 5$(3) /3 e P'e

for high temperatures [y being the Euler constant and
g(z) being Riemann's j function] and

i 1/2
E
L 2Pe

exp( —Pe /V ~)

Xe — + + 2 2+
3

8V ~/3e ~ 8/3 e

+ O(exp( 2/3e l&~) )—

for low temperatures.
The result (4.5) indicates that, up to the additive zero-

point terms, (i) the energy per unit volume is just the one
for free scalar bosons of mass e/v'n [since the contribu-
tions from free massless bosons and fermions have disap-
peared due to (4.4)], and (ii) lnZ is also the logarithim of
the partition function for only those free scalar massive
bosons [just by integrating (4.5) over /3]. That is, in our
analysis of the thermodynamics, we recover an alternative
(and, as a matter of fact, known' ) feature of the
Schwinger model: it describes just free massive bosons (as
the fermions disappear in this complementary descrip-
tion).

( u & 0, Rer & 0, Rez & 0),
and their behavior for small and large values of z (Ref.
15), we find

E e2 2w3
+3(y —1n4~) ——,

'

4~ 3/3 e

QO

exp( —nx), x &0,
exp(x) —1

the representation for second-class modified Bessel func-
tions K„(z),

V. THE THIRRING MODEL

With the Thirring model we proceed analogously as for
the Schwinger one. Its partition function, in Euclidean
space-time, is given by

Z =NNF(/3) f uqugexp f d x[ /BE ——,'g (41' p)(—$1'A')]

with N a /3-independent constant, NF(/3) being given by (2.2), and g being a dimensionless coupling constant.
Z can be cast as

Z =Z [0,0],
where Z [g,g] is of the form
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Z[gg]=NZF exp ——,g f d x y"
P 5 x g'(x)

6 6
g(x) "g(x) exp d xdy xSx —y y

P

ZF being the partition function for free massless fermions [see Eq. (2.5)] and S(x —y) being the free propagator [see Eq.
(2.7)]. We can also write

Z[g, g]=NZF exp —g f d x y"6 „5 5
6J'(x) g'(x)

exp ——, f d x J (x) exp f d x d y g(x)S(x —y)g(y)
J=0

(5.1)

As the current Py f is conserved, we can include a coupling of it to an arbitrary longitudinal source, and, instead of Eq.
(5.1), we write

6 6 6Z[gg]=NZF exp —g d x y 5J"(x) g'(x)

with

)&exp —, d xdy J xK "x—y J y exp d xdy xS x —ygy
J=0

(5.2)

1 +" dk' . 2 kkI' . o 2n~K "(x —y)= —g f — exp[ ik(x ——y)] f(k ) —Q ~, ko=
13 „ 2~ k~ '

P

where f (k ) is an arbitrary dimensionless function of k .
Now, proceeding with Eq. (5.2) in the same way as with Eq. (2.4) we get for the fermion complete propagator

5 (x —y) =exp f dk'Il —exp[ ik(x —y—)]] z f(k ) — z2rr 13„„k 1+(g /rr)
S(x —y), k

There are three particularly interesting choices of f (k ).
For f (k ) =0 we have the propagator for the original
Thirring model, that is, without any coupling of the
current gy g to longitudinal sources. The second one is

2/f (kz)
I + (g '/vr )

that corresponds to remove the interaction. Finally, the
choice

Notice that N' is a 13-independent constant, which
amounts to conclude that the partition function for the
Thirring model is that of free massless fermions, save a
constant which depends on the coupling parameter g but
not on temperature. Therefore, the thermodynamical en-
ergy per unit volume is the same in both cases. Notice
also that Z is independent off ( k ).
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I+(g'/rr) g' k'+(e'/rr) k'
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with e a constant of dimension (length) ' and a a dimen-
sionless arbitrary parameter, reproduces the solution (3.2)
for the ferrnion propagator of the Schwinger model.

When comparing the propagator S (x —y) with that of
the zero-temperature case'' we observe that all P depen-
dences are included in the discretization of k . A real-
time expression for S (x —y) in TFD can be found in Ref.
14.

For the partition function we get

g2 +oo dk1Z =N'ZF, iV'=N exp —In 1+ L, g f 2'

APPENDIX

The P-dependent divergent constant NF(P) is deter-
mined from the free partition function ZF. In our case,

ZF =NNF(p) fantiperiodic

t

NgNfexp —f d x /BE

which implies
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lnZF =lnNF(f3)

dk ' (2n + 1) tr + k
n = —oo

+const,

L being the length of the linear dimension in which the
system is contained. By using Cauchy's residue theorem,
the last equation can be cast as

lnZF =lnNF(f3)+4L f " dk fjk + in[1+ exp( —Pk) ]
2w 2

+-
2(lnP) g f +const .

277

Identi fying

+-
1nNF(/3) = 2(lnf3) g f 2'

and ignoring the f3-independent constant we get the
Fermi-Dirac distribution for massless electrons:

1 " dk Pk
L o 2~ 2

lnZF ——4 +ln ]+exp —k

In the thermodynamical limit L~oo while L 'lnZ ap-
proaches a finite limit, save the first term on the right-
hand side, which corresponds to the zero-point energy.

Notice that for each (k,k'), NF(f3) has dimension
(length) . This agrees with the fact that f &tt &g has
dimension (length)
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