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Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain

(Dated: June 23, 2020)

We study the ergodic side of the many-body localization transition in its standard model, the disordered

Heisenberg quantum spin chain. We show that the Thouless energy, extracted from long-range spectral statis-

tics and the power-spectrum of the full momentum distribution fluctuations, is not large enough to guarantee

thermalization. We find that both estimates coincide and behave non-monotonically, exhibiting a strong peak at

an intermediate value of the disorder. Furthermore, we show that non-thermalizing initial conditions occur well

within the ergodic phase with larger probability than expected. Finally, we propose a mechanism, driven by the

Thouless energy and the presence of anomalous events, for the transition to the localized phase.

I. INTRODUCTION

In classical mechanics there is a strong link between ergod-

icity and thermalization. However, the situation is different

in quantum mechanics. The conjecture by Bohigas, Giannoni

and Schmit (BGS) [1] establishes that the spectral fluctuations

of quantum systems with an ergodic classical analogue exactly

follow random matrix theory (RMT) [2, 3]. Hence, deviations

from ergodicity are usually identified via spectral statistics.

Alternatively, quantum thermalization is justified by the

eigenstate thermalization hypothesis (ETH) [4–10], which

refers to the properties of expected values of physical observ-

ables in the eigenstates of the Hamiltonian. It is normally ac-

cepted that a quantum system thermalizes if the diagonal fluc-

tuations of these expected values decrease fast enough with

the system size [5]. This statement is believed to be a conse-

quence of quantum chaos and, ultimately, of RMT. Notwith-

standing, RMT is more strict regarding the behavior of these

diagonal fluctuations: they must constitute an uncorrelated

random sequence, a request only present in the most rigurous

view of ETH [11]. Hence, the link between quantum chaos

and thermalization is by no means established yet, as a com-

plete connection between these two theories is still missing.

Unfortunately, simulating large quantum systems is not feasi-

ble, so it is not clear whether ergodicity in the sense of BGS is

mandatory for thermalization, or a less rigurous definition for

the term is sufficient.

In this Article we deal with this issue by investigating one

of the most striking exceptions to thermal behavior in many-

body quantum systems: the transition to many-body local-

ization (MBL) [4, 12–33]. The MBL phase is an insulating

quantum phase of matter that emerges in some disordered

interacting many-body systems, like the paradigmatic one-

dimensional spin chain, when the disorder is large enough
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[4, 13–15]. Several experiments in one-dimensional lattice

fermions and bosons [16, 17], two-dimensional interacting

bosons [18], trapped ultracold ions [19], and superconduct-

ing qubits [20, 21] have found its signatures. Notwithstand-

ing, its relevance in the thermodynamic limit (TL) is still un-

der active discussion [22, 23]. Its counterpart, the ergodic

phase, in which thermalization is normally expected, is usu-

ally not under such scrutiny. However, the transition between

the MBL phase and the ergodic phase is not well understood

yet. Griffiths effects where anomalously different disorder

regions dominate the behavior are supposed to be very rele-

vant close to the transition [34, 35], although recent studies

deny that relevance [36]. The possibility of the existence of a

non-ergodic but extended phase (a so-called bad metal) be-

tween the ergodic and the MBL phases has been proposed

but whether it survives in the TL is in doubt [24–27]. Nu-

merical studies of the ergodic phase in spin models showing

transitions to a MBL phase for large disorder have found that

the ergodic phase shows subdiffusive dynamics and other non-

trivial behavior [28–30]. Yet, it is not clear if these properties

are generic or system dependent and they are probably very

much affected by intrinsic limitations of the numerical size

scaling due to the exponential growth of Hilbert space dimen-

sions. Overall, MBL and the associated transition continue to

receive a great deal of attention from different viewpoints and

approaches [37–47].

Here, we deal with the disordered Heisenberg chain, where

a transition from ergodic to MBL phases is expected to oc-

cur. We focus on the deviations from RMT that happen within

the usually identified as ergodic region [48–53], and we study

their consequences in ETH and thermalization. We report a

neat connection between the Thouless energy, ETh [54, 55],

the energy scale beyond which spectral statistics deviate from

RMT universal results, and the diagonal fluctuations of rel-

evant observables. We find that these fluctuations cease to

constitute an uncorrelated random signal beyond the scale set

out by the Thouless energy, giving rise to another deviation

from RMT. For small spin chains, this scale determines up to

what extent the system thermalizes —the smaller the Thou-
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less energy, the more probable is to find a non-thermalizing

initial condition. Furthermore, the transition from the more

chaotic to the MBL region is triggered by an extended region

in which the distribution of deviations from thermal equilib-

rium is very long-tailed, a region which is also characterized

by a very small Thouless energy. This fact is compatible with

other features associated to Griffith effects [34–36, 39, 56, 57].

Finite-size scaling available to current computational capabil-

ities suggests that this region does not shrink as the system

size is increased, but its fate in the thermodynamic limit is

still not clear. Hence, the following picture is compatible with

our results: (i) an integrable limit when the chain is disorder-

free; (ii) a narrow (almost) ergodic region, at small disorder;

(iii) an anomalous region, within the apparent ergodic phase,

with a significant probability of finding non-thermalizing ini-

tial conditions; and (iv) the MBL phase, in which generic

initial conditions are expected not to thermalize.

The remainder of this paper is organized as follows. In Sec.

II we review the concept of quantum thermalization, governed

by ETH, and comment on its connection with RMT. We ar-

gue that the deviations from RMT in many-body ergodic sys-

tems, identified by the Thouless energy, must have measur-

able consequences in the thermalization process. In Sec. III

we introduce the model that we use: the Heisenberg chain,

which has become the standard model to test many-body lo-

calization. Sec. IV is devoted to a large part of our main

results. We devise a novel approach to treat the diagonal fluc-

tuations of the ETH so that they can be easily put in com-

parison with results that involve long-range spectral statistics.

We find that there exists a characteristic scale well-within the

ergodic phase that can be identified in both measures. It be-

haves non-monotically and very approximately coincide for

spectral statistics and the diagonal flucutations of observables.

We then study thermalization by a quench protocol in this re-

gion, and find that it shows vast differences even within the er-

godic phase, so deviations from RMT represent an important

role, at least in finite systems. In Sec. V we investigate the

transition from the ergodic to the many-body localized phase.

Our results suggest that the emerging structure is a precursor

of the transition, heavily influenced by Griffiths effects. We

find anomalously long-tailed distributions that do not show

any scaling with the system size which, strictly, is incompat-

ible with thermalization. Our results suggest that the ergodic

region of the model is actually not as wide as put forward by

some previous works. Finally, in Sec. VI we gather the main

results of our work.

II. THERMALIZATION AND ITS MECHANISM

Let us consider an initial condition, |ψ(0)〉, evolving in

an isolated quantum system with Hamiltonian H , |ψ(t)〉 =
exp (iHt/~) |ψ(0)〉. The key element to determine if this par-

ticular initial condition thermalizes is the behavior of long-

time averages of expected values of physical observables,

〈Ô〉t := lim
τ→∞

1

τ

∫ τ

0

dt 〈ψ(t)| Ô |ψ(t)〉

=
∑

n

|Cn|2 〈En| Ô |En〉 ,
(1)

where |En〉 represents the eigenstate with energy En,

H |En〉 = En |En〉, and |Cn|2 := |〈ψ(0)| En〉|2 is the prob-

ability of finding the system in the eigenstate |En〉. For sim-

plicity, we have assumed that the energy spectrum is not de-

generate.

Thermalization occurs if Eq. (1) is equal to the microcanon-

ical average,

〈Ô〉ME :=
1

N

∑

En∈[E−∆E,E+∆E]

〈En| Ô |En〉 , (2)

whereE is the (macroscopic) energy of the system, and ∆E a

small energy window,∆E/E ≪ 1, containing a large number

of levels, N ≫ 1.

It is well known that long-time averages like Eq. (1) re-

main close to an equilibrium value under very generic circum-

stances [58, 59], although some questions remain open [60].

However, this equilibrium value is not necessarily equal to Eq.

(2). In classical mechanics, the link between the equivalent re-

sults is well supported by chaos. If the system is ergodic and

mixing, any trajectory erratically explores the whole region of

the phase space with energy E, and therefore long-time aver-

ages become equivalent to phase space averages restricted to

the right value of the energy E [61].

In quantum mechanics, the situation is rather different. The

equivalence between microcanonical and long-time averages

lies in the ETH [6–8, 51–53]. In a few words, this theory states

that a system is expected to thermalize for an observable Ô if

the diagonal terms Onn := 〈En| Ô |En〉, n ∈ {1, . . . , N}
change with energy smoothly enough.

To get a more detailed picture [10], let us consider that,

regardless of whether the system thermalizes or not, one has

Onn = 〈Ô〉ME +∆n, n ∈ {1, . . . , N}, (3)

where N denotes the size of the Hilbert space, and the quan-

tity ∆n represents how close the diagonal element Onn is to

the microcanonical average, 〈·〉ME; we will call it diagonal

fluctuations. The ETH requires that ∆n decreases fast with

the system size for thermalizing systems [10]. In its strong

version, it demands that all the values of ∆n be negligible; for

its weak version, it suffices that most ∆n fulfill this condition

[9, 60].

These facts do establish a link between quantum thermal-

ization and chaos, but not so strong as in classical mechanics.

The quantum analogs of mixing classical systems give rise to

energy spectra whose statistical properties coincide with those

of RMT [1]. Regarding the diagonal fluctuations, ∆n, RMT

gives rise to an uncorrelated random signal with exponentially

decaying width with the system size [10]. This constitutes

a stronger condition for ∆n than the one demanded by the



3

ETH, and it is only considered under certain circumstances

[11]. Contrarily, ∆n can show some structure in integrable

systems, due to the presence of additional quantum numbers

[62, 63].

Deviations from RMT are well known, even within regions

identified as ergodic. In disordered many-body systems these

deviations can be identified via the so-called Thouless energy

[54, 55]. In noninteracting disordered metals, this is an en-

ergy scale related to the typical time that a particle takes to

diffuse across the sample. However, for interacting systems,

the meaning of this quantity is still under active discussion,

although there is some convincing evidence that it might be

related to a complex anomalous diffusion process [64]. As ex-

pected in the noninteracting limit, level statistics of interacting

systems were shown to be well described by RMT universal

results for eigenvalues separated by less than this quantity, but

deviate towards the typical behavior for integrable systems at

larger scales [64]. However, the dynamical consequences of

this fact are not clear at all. The emergence of a finite Thou-

less energy has been argued to be connected with Griffiths

effects and the subdiffusive phase appearing on the ergodic

phase, but this is still a subject that deserves further inves-

tigation as some questions remain open to this day. At the

same time, ergodicity has been assumed if the Thouless en-

ergy grows fast-enough with the system size [22, 33], but no

stringent test regarding thermalization has been done to sup-

port this claim. The main aim of this paper is to study the role

played by this energy scale in the thermalization process, a

topic in which, we believe, there has been little to no research.

III. MODEL

We work with the standard model for MBL: a one-

dimensional chain with two-body nearest-neighbor couplings,

L sites, and onsite magnetic fields, the Heisenberg model [64–

68],

H =

L∑

ℓ=1

ωℓŜ
z
ℓ

+ J
L−1∑

ℓ=1

(
Ŝx
ℓ Ŝ

x
ℓ+1 + Ŝy

ℓ Ŝ
y
ℓ+1 + λŜz

ℓ Ŝ
z
ℓ+1

)
,

(4)

where Ŝx,y,z
ℓ are the total spin operators at site ℓ ∈

{1, . . . , L}. We choose J = 1, ~ := 1. Periodic boundary

conditions are applied, which minimize finite-size effects. For

our simulations, we let λ vary to study quenched dynamics,

while we fix λ = 1 to analyze eigenlevel statistics. Disorder is

implemented by the uniformly, randomly distributed magnetic

fields ωℓ ∈ [−ω, ω]. For ω = 0, the chain is disorder-free and

it gives rise to fully integrable dynamics that can be described

by means of the Bethe-ansatz [4, 5]. For intermediate values

of ω, the chain is believed to exhibit an ergodic phase where

most initial conditions are expected to thermalize. The spec-

tral statistics of this region are complex: they show a behavior

close to the Gaussian orthogonal ensemble (GOE), following

RMT, but with long-range deviations due to the Thouless en-

ergy. Overall, this metallic region is by no means a common

one as a number of anomalous phenomena have been previ-

ously diagnosed. Close to the transition, a Griffith-like phase

[25, 34, 35, 39, 45, 69–71] is responsible for slow subdiffusion

and sublinear power-law growth of the entanglement entropy.

For ω larger than a critical value which depends on the system

size L, the model enters the many-body localized phase where

(generic) initial conditions do not thermalize at all. Both the

Bethe-ansatz and the MBL phases show Poissonian spectral

statistics, which means energy levels are here essentially un-

correlated.

As commonly done in the literature, in this work we con-

sider the the eigenvalues associated to the eigenstates of Ŝz :=∑
i Ŝ

z
i . Since this operator commutes with the Hamiltonian,

[H, Ŝz] = 0, we restrict ourselves to the sector Sz = 0, where

Sz is the eigenvalue of the operator Ŝz . Thus the dimension

of the Hilbert space is d =
(

L
L/2

)
, but we will only consider

the centralN =
(

L
L/2

)
/3 eigenstates {|En〉}Nn=1 to avoid bor-

der effects. Main results are shown for L = 16, which gives

N = 4290, but for finite-size scaling considerations some re-

sults will also be shown for other values of L.

IV. THOULESS ENERGY AND EIGENSTATE

THERMALIZATION HYPOTHESIS

A. Short-range spectral statistics

By far, the most common indicator in the literature to iden-

tify the ω range for which systems show ergodic or integrable

dynamics is short-range spectral statistics [50]. To this end,

the distribution of the ratio of two-level spacings [72, 73],

P (r), has been employed to a great extent. This is just the

distribution of r: the random variable taking on values

rn :=
En+1 − En

En − En−1
, ∀n ∈ {2, . . . , N − 1}. (5)

The set of energies is supposed to be in ascending order,

{E1 ≤ . . . ≤ EN}. This spectral statistic captures short-

range spectral correlations only and is not to be trusted when

long-range correlations are to be investigated. Specifically,

only the spectral properties of energies separated by level dis-

tances less than or equal to 2 can be described by this statis-

tic. In particular, we make use of the equivalent measure 〈r̃〉
where r̃ is the random variable

r̃n := min

{
rn,

1

rn

}
∈ [0, 1], ∀n ∈ {2, . . . , N − 1}. (6)

The quantity 〈r̃〉 is always defined, as opposed to 〈r〉, which

diverges for a spectrum with Poissonian statistics. For the

chaotic GOE, 〈r̃〉GOE ≈ 0.5307(1), while for the integrable

(Poissonian) limit this is 〈r̃〉P = 2 ln 2− 1.

This information is complemented with the interpolating
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distribution of the ratios suggested in [74],

Pγβ(r) := Cβ
(r + r2)β

[(1 + r)2 − γ(β)r]1+3β/2
. (7)

The generalized Dyson index β ∈ [0, 1] indicates the degree

of chaos: β = 0 is for Poisson whereas β = 1 is for GOE.

The ansatz for γ = γ(β) in the Poisson-GOE transition pro-

posed in [74] has been used, and β is obtained by fitting (7)

to the numerical histograms for each value of the disorder pa-

rameter, ω. Finally, Cβ are normalization constants implicitly

verifying
∫∞

0 dr Pγβ(r) = 1.

To easily compare both estimates, the results for 〈r̃〉 are

shown after the rescaling η := 〈r̃〉P−〈r̃〉
〈r̃〉P−〈r̃〉GOE

, which is such

that η = 0 for Poisson and η = 1 for GOE. These quanti-

ties are shown in Fig. 1. For all three values of L, there is

a strong plateau that shrinks as L is decreased. Conversely,

short-range measures provided by the ratios suggest that as L
is increased the plateau that determines the size of the ergodic

region should stretch in the directions of both large and small

ω. This is the region usually identified as ergodic in the liter-

ature [14, 31, 64, 65]. The transition to the many-body local-

ized phase is initiated at a certain value of the disorder strength

that strongly depends on the system size, L. For L = 16, this

ergodic region covers about 0.2 . ω . 1.8, although the

exact boundaries have not been completely delimited. How-

ever, the ratios only afford information about the distribution

of eigenlevels separated by small distances, and cannot cap-

ture in any way long-range spectral correlations, i.e., the sta-

tistical properties of eigenlevels further apart. We will see in

the next subsection that this leads to important consequences.

B. Time series approach to the diagonal fluctuations

The results of the previous section are not sensitive to the

existence of the Thouless energy, ETh. Its value is commonly

obtained from long-range spectral statistics. For disordered

spin-chains, the number variance Σ2(L) [64] and the spectral

form-factorK(τ) [22, 23] have been used. A simpler and con-

venient alternative is given by the δn spectral statistic [75, 76].

It measures the distance between the n-th unfolded energy

level, a dimensionless quantity obtained from the smooth part

of the cumulative level density εn := N(En), being En the

n-th energy level [77], and its average value in an equiespaced

spectrum, 〈εn〉 = n, i.e.,

δn := εn − n, n ∈ {1, . . . , N}. (8)

Formally, δn can be seen as a time series signal where the

discrete time is represented by the level order index n. Its

power spectrum, 〈P δ
k 〉, was shown to provide a neat character-

ization of fully chaotic and integrable systems in terms of the

power-law decay 〈P δ
k 〉 ≃ 1/kα, where the exponent depends

on level correlations and takes the value α = 2 for uncorre-

lated (i.e., integrable) spectra and α = 1 for quantum chaotic

systems [75, 78, 79], without making explicit reference to any

random matrix ensemble. As mentioned above, to calculate
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FIG. 1. Panel (a): η and Dyson index β for L = 16 as a function

of the disorder parameter ω. Panel (b): η for L ∈ {12, 14, 16} as a

function of ω.

δn knowledge of the cumulative spectral function is required.

This function essentially gives the number of levels with en-

ergy less than or equal to a certain energy valueE, and can be

writtenN(E) =
∑N

n=1 Θ(E−En), where Θ is the Heaviside

step function. This function can be split into a smooth part N

and a fluctuating part Ñ , i.e., N(E) = N(E) + Ñ(E). Sep-

arating the smooth cumulative level function from the fluctu-

ations and then mapping the original energies {En}Nn=1 onto

new, dimensionless ones {εn}Nn=1 = {N(En)}Nn=1 is called

unfolding procedure [77], and it sets the mean level density

to unity. It is under these circumstances that RMT universal

predictions hold [2, 50]. Different methods can be used to this

end. When there is no theoretical underlying statistical the-

ory that provides N(E), as in this case, it must be obtained

by numerically fitting an staircase function with a polynomial

of a certain degree. Note that δn is a dimensionless quantity

because on the unfolded scale the transformed energies are

simply numbers without units.

The similarities between Eqs. (3) and (8) suggest a remark-

able link between spectral statistics and the ETH. We note that

∆n has the physical dimensions of the observable to which it

refers. Thus, to make it dimensionless, as δn is, we normalize

by the standard deviation σ∆n
= 〈∆2

n〉,

∆̃n :=
∆n

σ∆n

=
Onn

σ∆n

− 〈Ô〉ME

σ∆n

, n ∈ {1, . . . , N}. (9)

The first result of this section comes from analyzing δn and

∆̃n with the same tools. In short, we extend the time series
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analysis approach that was initially conceived for the δn statis-

tic to the diagonal fluctuations, and treat them both equiv-

alently. It is the formal similarity between the two quanti-

ties that compels us to carry on such a procedure: while δn
represents the deviation of the n-th excited level with respect

to its value in an equiespaced spectrum, ∆̃n is a measure of

the (normalized) deviation of the n-th diagonal fluctuation of

quantum observables with respect to its microcanonical equi-

librium value.

As observables Ô, we choose the full momentum distribu-

tion on a one-dimensional lattice with lattice constant set to

unity, i.e.,

n̂q :=
1

L

L∑

m,n=1

e2πi(m−n)q/Lŝ+mŝ
−
n , q ∈ {0, . . . , L− 1},

(10)

where ~ := 1 and ŝ± are the usual ladder spin operators.

In Fig. 2 we show a number of diagrams corresponding

to a particular realization of the observable n̂0. Left panels

display the raw diagonal averages Onn = 〈En| n̂0 |En〉 for

ω ∈ {0, 0.6, 1, 1.4, 2.2, 10} (see caption for details). Right

panels display ∆̃n for the same cases. The first remarkable

fact is that both integrable limits, ω = 0 and ω = 10, behave

in a very different way. n̂0 is constant of motion for ω = 0,

and hence bothOnn and ∆̃n show a clear structure of the kind

of a Peres lattice, as expected for integrable dynamics [62].

On the contrary, no such structure is seen in the MBL phase,

represented in panels (f) and (l). Therefore, we expect ob-

servables n̂q to show different features in the transition from

ergodicity to both integrable limits. Besides this fact, it is dif-

ficult to extract conclusions from the rest of the panels, as they

cannot be statistically told apart in an easy way and are very

noisy. If we fix our attention in ∆̃n, panels corresponding to

ω = 0.6, ω = 1 and ω = 10 look very similar: the major-

ity of the points are distributed over, roughly, ∆̃n ∈ (−2, 2).
Panel (k), corresponding to ω = 2.2, shows a quite large set

of extreme points outside this interval; and panel (j), corre-

sponding to ω = 1.4 seems to be in an intermediate situation.

Notwithstanding, as these results constitute just one realiza-

tion of the noise, no safe conclusions can be inferred. We will

come back to this result later on.

Besides the qualitative interpretation sketched above, rele-

vant information can be obtained from analyzing the power

spectrum 〈P ∆̃
k 〉 of ∆̃n. To obtain this quantity, the following

steps need to be taken:

• Fix the disorder strength ω.

• Fix q ∈ {0, . . . , L−1} and a particular realization of ω.

Let W be the total number of realizations of each value

of ω.

• Calculate the main trend of Onn, Fig. 2, which ac-

counts for 〈Ô〉ME. Then, ∆n = Onn − 〈Ô〉ME, n ∈
{1, . . . , N}.

• Find ∆̃n from its definition in Eq. (9).
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FIG. 2. Particular realization of the diagonal averages Onn (red sym-

bols) and ∆̃n (green symbols) for the observable n̂0 as a function of

n ∈ {1, . . . , 4290} for L = 16. Panel (a) and (g) display ω = 0;

panels (b) and (h), ω = 0.6; panels (c) and (i), ω = 1; panels (d)
and (j), ω = 1.4; panels (e) and (k), ω = 2.2, and panels (f) and

(l), ω = 10.

• Apply discrete Fourier transform to ∆̃n,

F(∆̃n) :=
1√
N

N∑

n=1

∆̃n exp

(−2πikn

N

)
, (11)

where k ∈ {1, 2, . . . , N − 1}, and then take squared

modulus, P ∆̃
k := |F(∆̃n)|2. This yields the power spec-



6

trum.

• Repeat for each of the L values of q and the W values

of ω.

• Average over theseM = L×W power spectra to obtain

the mean estimator 〈P ∆̃
k 〉 in the usual way,

〈P ∆̃
k 〉 = 1

M

M∑

i=1

(
P ∆̃
k

)

i
, k ∈ {1, . . . , N − 1}, (12)

where
(
P ∆̃
k

)

i
denotes the ith power spectrum. This

yields the averaged power spectrum for the disorder

value ω initially fixed.

The microcanonical average is accounted for by fittingOnn

to a polynomial of degree 4, which allows us to obtain the

smooth part of diagonal terms as those in Fig. 2 by remov-

ing the fluctuations. As a consequence, the quantity ∆n keeps

track of the fluctuations of expected values of physical observ-

ables in the Hamiltonian eigenbasis instead, and it strongly

oscillates around zero, i.e., its mean value, 〈∆n〉 = 0 (see

Fig. 2). We remark that a fit to the main trend of Onn is

replacing the actual 〈Ô〉ME, which would suffer from spuri-

ous effects that originate when averaging over a finite energy

window [77]. We average over W = 40 realizations of the

magnetic field and L = 16 observables given by Eq. (10) in

each case, so M = 640. As mentioned in Sec. III, we work

with the N =
(
16
8

)
/3 = 4290 central eigenstates.

Results in Fig. 3 focus on the power-spectra of the signals

δn and ∆̃n on the expected ergodic region. For L = 16, it

covers 0.2 . ω . 1.8 [31, 65, 67] (also see Fig. 1). The

power-spectrum of ∆̃n, 〈P ∆̃
k 〉 := 〈|F(∆̃n)|2〉, is shown in

Fig. 3(a). We find that, for each ω, large frequencies beyond

a minimum value k > kmin exhibit, all, an equivalent weight,

which corresponds to white, featureless (uncorrelated) noise.

Conversely, small frequencies below such a minimum value

k < kmin show an increasingly larger weight as k is smaller,

which immediately leads to a colored noise. This means that

there is structure in the modes of the Fourier transform corre-

sponding to large periods, i.e., to eigenstates very far apart

from each other. Hence, kmin determines a characteristic

scale. As RMT demands that diagonal fluctuations behave

like an uncorrelated white noise, only Fourier modes shorter

than the corresponding to kmin behave as expected for an er-

godic region; larger scales show some structure. The lesser

deviations from the ergodic expected value, zero, happen for

intermediate values of the disorder close to ωc = 0.5.

This behavior resembles that of ETh within the ergodic re-

gion and across the transition to MBL [22, 23, 64]. To delve

into this coincidence, we invoke the δn statistic, Eq. (8). We

follow the same procedure as before but now unfold with a

polynomial of degree 6 to obtain the smooth cumulative level

density and, therefore, the unfolded energies εn = N(En),
which is essentially the only requisite to calculate δn. We

have discarded 10% of the energies closest to both spectrum

edges before and after unfolding (that is, we discard a total
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FIG. 3. (a): power-spectrum 〈P ∆̃

k 〉 of the diagonal fluctuations, Eq.

(9) as a function of k ∈ {1, . . . , N/2}. Results are averages over

640 realizations of N = 4290 expected values. (b): power-spectrum

〈P δ
k 〉 of the δn statistic, Eq. (8), for the system H(λ = 1), Eq. (4).

Theoretical power-spectra for the ergodic, Eq. (13), and integrable

cases [76]. Results are averages over 100 spectra of N = 4290 levels

each. The number of sites is always L = 16 in this figure.

of 20% of the original levels), as these usually show anoma-

lously large fluctuations and are not representative of the sam-

ple [77]. Within the spectral form-factor approximation the

reference GOE theoretical curve for this power-spectrum is

given [76] by the free-parameter expression

〈P δ
k 〉GOE =

N2

4π2

[
K
(

k
N

)
− 1

k2
+

K
(
1− k

N

)
− 1

(N − k)2

]

+
1

4 sin2
(
πk
N

) − 1

12
,

(13)

where k ∈ {1, 2, . . . , N − 1}, N denotes the size of each

spectrum in the ensemble over which the average has been

performed, and K is the spectral form-factor [2], which for

GOE can be written

K(τ)GOE =





2τ − τ log(1 + 2τ), τ ≤ 1

2− τ log

(
2τ + 1

2τ − 1

)
, τ ≥ 1

(14)

In Fig. 3(b) we show the power spectrum of δn,

〈P δ
k 〉 := 〈|F(δn)|2〉 =

〈∣∣∣∣∣
1√
N

N∑

n=1

δn exp

(−2πikn

N

)∣∣∣∣∣

2〉
,

(15)

k ∈ {1, 2, . . . , N−1}, calculated again by applying a discrete

Fourier transform to the signal. It deviates from RMT univer-

sal behavior given in Eq. (13) at roughly the same value as

∆̃n, kmin. That is, the characteristic scale given by the Thou-

less energy is directly transferred to the diagonal fluctuations.

Furthermore, this scale can be interpreted for the δn statistic

in the same terms that for ∆̃n: large frequencies beyond a
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minimum value k > kmin all lie on the theoretical GOE curve

(13), i.e., eigenlevels separated by large distances correspond-

ing to those frequencies k follow universal chaotic behavior

in the context of RMT. Conversely, small frequencies below a

minimum value k < kmin show a clear deviation towards the

integrable result for the power spectrum, indicating that the

correlation between these energy levels only holds up to small

energy distances associated to those frequencies k.

Remarkably, the transition from GOE to integrable statis-

tics as the value of ω is increased within the ergodic phase

is characterized by an increasing value of kmin, but for suf-

ficiently large values of k the power spectrum always lies on

the theoretical ergodic curve, regardless of ω (unless of course

ω is large enough for the system to be well within the local-

ized phase). Exactly the same interpretation can be done

with the diagonal fluctuations. It is worth to point out that

this is not the only possible shape for this kind of transition in

terms of long-range spectral statistics. A number of systems

show intermediate values for the power-law exponent, mean-

ing that the power spectrum of δn statistic separates from the

theoretical GOE curve at all frequencies, drifting towards the

integrable result [78–81]. In other systems, the deviation from

RMT happens for high frequencies first [82]. As we have

pointed out before, this means that the particular features of

the transition from GOE to integrability in the δn statistics of

the Heisenberg spin chain are directly transferred to the diag-

onal fluctuations. Both magnitudes preserve the typical prop-

erties of an ergodic system up to a characteristic scale, and

deviate from the RMT behavior beyond this scale.

To interpret these results, we link the frequency k to the

scaled (dimensionless) time τ of the spectral form-factor,

τ = k/N [76]. Then, we define a Thouless frequency,

kTh := NτTh, where τTh is the Thouless time. The Thou-

less time is the time scale associated to the Thouless energy.

Thouless time and Thouless energy have been shown to be

essentially inverse quantities not only in noninteracting but

also in interacting systems (i.e., ETh ∝ 1/τTh) [48, 49, 83].

From it we obtain the inverse of the Thouless time ℓTh :=
1/τTh = N/kTh, which represents a limiting scale for RMT-

like behavior: energy levels within less than ℓTh are correlated

like RMT spectra; those separated by more than ℓTh deviate

from this behavior towards integrable-like correlations. Note

that this scale is dimensionless and represents how many en-

ergy levels are between two whose correlation is being cal-

culated. A good estimate of the Thouless Energy is then

ETh = τ−1
Th = ℓTh/g(ǫ) ∝ ℓTh, where ǫ is the average en-

ergy, and g(ǫ), the density of states at such energy. As the

frequency of Fig. 3(a) has the same physical meaning, a sim-

ilar reasoning can be applied to this last case as well.

To determine kmin ≈ kTh we choose the first k for which

the power-spectra fluctuate below ergodic expectations: the

chaotic curve for 〈P δ
k 〉 [76], and zero for 〈P ∆̃

k 〉 (see discus-

sion above in this section). Next, we calculate the charac-

teristic length ℓmax := N/kmin ≈ ℓTh. Results are shown in

Fig. 4(a). We find good not only qualitative but also quantita-

tive agreement between these results for both power-spectra.

The value of ℓmax obtained from δn, which measures the long-

range statistic of eigenlevels, and ∆̃n, which refers to the fluc-
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FIG. 4. (a): Value of the characteristic scale ℓmax as a function

of ω in the ergodic region for 〈P δ
k 〉 and 〈P ∆̃

k 〉 and L = 16. (b):
Normalized ℓmax/N = k−1

min as a function of ω for 〈P δ
k 〉 and L ∈

{12, 14, 16, 18}.

tuations of expected values of physical observables around the

standard microcanonical average, are very approximately the

same. This reinforces our previous conclusion: there exists a

certain structure that manifests in both these two very different

measures. Putting together Figs. 2 and 4, we can conjecture,

for now, that the smaller kmin, the more presence of anoma-

lous points in ∆̃n.

In Fig. 4(b), we show ℓmax/N , representing such a critical

scale. As L is increased, fluctuations get gradually smoothed

out, but the general structure remains very similar. This shows

that the region 0.2 . ω . 1.8 is not ergodic in the sense of

BGS. It is characterized by a clear structure (usually associ-

ated with integrable-like, i.e., non-ergodic phenomena in the

sense of BGS) which remains approximately unchanged irre-

spective of L: ℓmax/N has a maximum for 0.5 . ω . 0.6 (at

which RMT behavior only holds within a scale equivalent to

the 10% of the studied levels), and decreases for both larger

and smaller values of disorder.

These results need to be put in comparison with those af-

forded by the more common ratios (see Fig. 1). For the

Heisenberg spin chain, as exemplified by the δn spectral statis-

tic, short-range results can be quite misleading, as the Thou-

less energy behaves non-monotically and shows complex,

strongly disorder-dependent behavior that is absolutely absent

from the homogeneous picture provided by the ratios. What

the δn statistic tells us, as opposed to the ratios (or any other

measure of short-range spectral statistics), is that even in the

supposedly fully ergodic region there is an emergent structure

that appears only between eigenlevels separated by more than

a critical distance, precisely ℓmax, so these effects can in no

way be diagnosed with measures that only afford information

about eigenlevels separated by two levels or less. Addition-

ally, finite-size scalings have revealed in the past [66, 84, 85]

that in the thermodynamic limit the influence of the Bethe-

ansatz region may shrink to a single point ω = 0 (i.e., an ar-
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bitrarily small ω > 0 would immediately take the system into

the chaotic regime) and that the opposite side, the localized

phase, could also be reduced to a single critical point, located

at very high disorder. However, Fig. 4(b) shows no trace of

such a scaling behavior: the ‘most ergodic’ point seems to be

fixed around 0.5 . ω . 0.6, irrespective of L, i.e., there does

not seem to be any clear scaling whatsoever. Thus, it does not

seem very reasonable to expect the emerging structure in ℓmax

to be a finite-size effect arising from the fact that there are two

limiting integrable regions. Although we lack the evidence to

state that this situation might be representative for very large

values of L, we do have proof indicating that, at least for the

finite values of L usually considered, the structure in the char-

acteristic scale is robust.

C. Quenched dynamics on the expected ergodic phase

From the previous results, the following question arises: do

these (small) deviations from the RMT behavior entail mea-

surable consequences in equilibrium states? In other words,

how do these spectral properties manifest dynamically in

terms of equilibration? The variance σ2
∆n

= 〈∆2
n〉 indicates

whether typical states thermalize or not, and previous results

suggest that it is small enough within the apparent ergodic re-

gion [4]. However, if one understands that ergodicity means

that (almost) any initial condition thermalizes (as in the BGS

result in RMT), this may still be insufficient.

We investigate here the probability of finding non-

thermalizing initial conditions on the ergodic side. The anal-

ysis will be later extended to a greater region. We conjec-

ture that the key to this probability is the number of signifi-

cantly populated eigenstates, N. If N < ℓTh, diagonal fluc-

tuations behave as an uncorrelated white noise at all scales

within the populated window, and no anomalous effects may

be expected. Otherwise, the emerging structure of diagonal

fluctuations can impede thermalization for certain initial con-

ditions: the larger the ratio N/ℓTh, the more likely to find a

non-thermalizing one. The consequence is an anomalous re-

gion with a significantly large ratio of non-thermalizing initial

conditions.

To test this conjecture, we start from the central state of a

certain initial value for λ in Eq. (4), λi > 1, and quench it onto

λf = 1, with the same values for the random magnetic field,

ωn. The size of this quench, ∆λ := |λi − λf|, determines the

width, N, of the resulting state. We work with five different

values of ω and five different quench sizes.

In Fig. 5(a) we plot the probability that the relative error

of the difference between the long-time, 〈n̂q〉t, and the micro-

canonical, 〈n̂q〉ME
averages be greater than 5%, for different

values of the disorder within the ergodic region, and differ-

ent quench sizes. We have averaged over all 16 observables

and 40 realizations of the random magnetic field. The mi-

crocanonical average is obtained with 41 eigenstates around

the expected energy of the initial state. We gather the fol-

lowing conclusions from this figure. First, the probability of

finding a non-thermalizing initial condition increases as ℓmax

decreases. The case with ω = 1.5 is very significative. Al-
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FIG. 5. (a): probability that the relative difference between 〈n̂q〉ME

and 〈n̂q〉t be greater than 5% (see text for details). The errorbars

represent the standard deviation of the mean. (b): average of the

eigenstate populations for the five quench sizes, obtained from 20
disorder realizations for each ω, and ∆λ ∈ {0.1, 0.2, 0.3, 0.4, 0.8}.

The x axis represents the ratio of populated levels with respect to N ,

with ∆n = 0 being the centre of the populated window.

though it is still within the ergodic region, the probability of

finding an initial condition which deviates more than a 5% of

the microcanonical prediction fluctuates around 30%. Second,

this probability is generally higher for larger quenches, which

populate larger number of levels. In Fig. 5(b), a disorder av-

erage of the eigenstate populations for the five quench sizes

is shown. We display the probability of finding the system in

the eigenstate |En〉, Pn, versus the position of the eigenstate

with respect to the central level, ∆n (that is, ∆n/N = 0 for

the central level, and, for example, there are n = 0.1N levels

between the one labelled with ∆n/N = 0.1 and the central

one, where N = 4290 is the total number of considered lev-

els). This panel shows that the distribution of populated lev-

els is quite wide in all the cases. Under many circumstances,

the populated window resulting from the quench can be wider

than ℓmax, and it is clearly seen that, the larger the quench, the

wider the populated energy window. The case with the great-

est ℓmax, ω = 0.6, is the least sensible to ∆λ, and the one

showing the smallest probability of such anomalous events.

The cases ω ∈ {0.3, 0.9} show a neat increase of this prob-

ability with ∆λ. For ω ∈ {1.2, 1.5}, the behavior is more

erratic, probably because the initial condition is wider than

ℓmax for all quench sizes.

These results are compatible with our previous statement.

The probability of non-thermalizing initial conditions de-
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FIG. 6. N/N for Γ ∈ {0.063, 0.095, 0.126, 0.159, 0.194} from

eigenlevels of Eq. (4) with ω = 0.6. Averages are taken over 1000

(L = 10, 12, 14), 100 (L = 16), and 20 (L = 18) realizations.

creases with increasing values of ℓmax.

Fig. 6 provides a hint about the consequences of this fact in

the thermodynamic limit. We show how the number of pop-

ulated eigenstates after a typical quench changes with L. We

assume that the width of the corresponding initial state grows

as expected for a canonical equilibrium state [61], σE ∝
√
L.

Then, we study the number of levels, N, populated in an en-

ergy window of width σE = Γ
√
L, being Γ representative of

the quench size. The ratio N/N remains approximately con-

stant, suggesting that typical quenches may be wider thanETh

even in the thermodynamic limit. We cannot extrapolate our

results to much larger (macroscopic) systems, but they suffice

to conclude that investigating quenched-dynamics requires a

huge number of energy levels, a number that seems to grow

linearly with the size of the system’s Hilbert space, N ∝ N .

Therefore, spectral statistics from a very small number of lev-

els around the central one, like those afforded by, e.g., the

shift-invert method [86], are not enough to capture all the fea-

tures associated to quenched dynamics.

V. ANOMALOUS PHENOMENA AROUND THE

TRANSITION POINT

The picture emerging from these results is the following.

The expected ergodic region has a subregion, 0.5 . ω . 1,

in which the probability of non-thermalizing events is quite

low. However, there exists another subregion, 1 . ω . 1.8,

in which non-thermalizing events are high-probable enough

to suspect that thermalization is not guaranteed for any initial

condition. This is compatible with the much-debated Griffiths

effects, appearing in some systems that display a transition to

MBL from the ergodic side [34–36, 56, 57].

To deepen into this matter, we have performed a stringent

numerical test involving quenches of width ∆λ = 0.4 for dif-

ferent values of the system size L ∈ {10, 12, 14, 16}. For the

first case, 1000 different realizations of the random magnetic

field have been performed; for L = 12, the number of realiza-

tions is 500, and for L = 14 and L = 16, we have performed

240 different realizations. As the corresponding total Hilbert

space sizes are very different (from d = 252 for L = 10 to

d = 12870 for L = 16), we have used different microcanon-

ical windows: ∆E = 21 for L = 10; ∆E = 31 for L = 12,

and ∆E = 41 for L = 14 and L = 16. We have checked that

small changes in these windows do not alter the results. In this

numerical experiment, we consider not only the ergodic phase

of the chain but also the many-body localization edge, where

the transition is supposed to take place.
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FIG. 7. (a): Comparison of kmin, obtained from 〈P ∆̃

k 〉, and P (5σ)
and P (7σ) for L = 16. (b): P (7σ) as a function of the disorder

strength ω for L ∈ {10, 12, 14, 16}. Results correspond to expected

values of the the full momentum distribution, n̂q , q ∈ {0, . . . , L−1}
in the eigenstates of Eq. (4).

The link between these facts and the presence of correla-

tions in ∆̃n is further explored in Fig. 7. In Fig. 7(a) we

show a comparison between the probabilities of anomalous

events and the value of kmin obtained from the power spec-

trum of the diagonal fluctuations around the microcanonical

average. The procedure to calculate kmin is the same as be-

fore. To obtain the probabilities of anomalous events, we have

fitted a Gaussian distribution to the histograms of the relative

differences between 〈n̂q〉ME and 〈n̂q〉t, obtaining the standard

deviation σ. From this result, we have calculated the probabil-

ities of events whose relative deviation from 〈n̂q〉ME is larger

than 5σ and 7σ. For ω ≈ 0.5, the value of kmin is minimal,

corresponding to very large values of ℓmax. This means that

the signal ∆̃n gives here basically an uncorrelated white noise.

As ω is increased, the emerging structure extends to all scales

throughout the entire range of disorder values, until it reaches

it maximum at ω ≈ 2.2 (corresponding to minimal values of
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ℓmax instead). As ω is further increased into the depths of the

localized phase, the structure in kmin gradually disappears,

leaving behind quite a symmetric pattern around ω ≈ 2.2. As

the MBL phase is approached, ∆̃n turns back into an uncor-

related white noise (which gives minimal values of kmin), but

with much larger width, explaining why thermalization is not

expected in this phase for any initial condition [4, 12]. It is

interesting to observe that these characteristic scales are also

mimicked by the probability of anomalous events beyond 5σ,

P (5σ) and 7σ, P (7σ), as obtained from a Gaussian distribu-

tion. This result shows that there exists quite a wide region,

1.5 . ω . 3, i.e. centered around the transition region from

the ergodic to the MBL phase for L = 16, with a very large

probability of anomalous events. Furthermore, these facts pro-

vide a quantitative explanation for the picture gathered from

Fig. 2. From panels (h) to (l) of that figure, we concluded that

the probability of finding a large value for |∆̃n| is larger for in-

termediate values of ω, ω = 2.2, than for values representing

both the more chaotic region, ω = 0.6, and the MBL phase,

ω = 10. Results displayed in panel (a) of Fig. 7 corroborate

this idea.

The probability of anomalous events beyond 7σ as a func-

tion of the disorder for different values of L is shown in Fig.

7(b). The probability of such events is similar for all values

of L (except for L = 10, which may be not be representa-

tive as the size is too small) and, in any case, it shows no

sign of a scaling behavior, i.e., these anomalies do not seem

to decrease for larger chains. This leads us to the following

conjecture, stating that this structure formation is a precursor

of the transition: the transition onto the MBL phase from

the ergodic phase is initiated by an increase of the probability

of anomalous, non-thermalizing, initial conditions, within the

apparent ergodic region and driven by the Thouless energy.

This is directly linked to heavily long-tailed distributions near

the MBL edge that have been diagnosed in the past as well

[39] and several other anomalies characterizing the transition

[25, 29, 30, 34, 38, 57, 64], notably including, but not limited

to, manifestations of Griffiths effects and the presence of slow

dynamics.

The consequences in the thermalization process are ex-

plored in Fig. 8. Fig. 8(a) shows a scaling of the value of

σ obtained as explained above. Even though it is quite dar-

ing to extrapolate these results to much larger (macroscopic)

systems, the usual conclusion gathered from them is that they

seem compatible with a fully ergodic region in the entire pa-

rameter space 0.6 < ω < 3 in the thermodynamic limit, as it

displays a power-law decay when the system size is increased.

Clearly the exponent of this power-law decay depends on

the disorder strength as it is greater for ω ∈ {0.6, 1}, well-

within the ergodic phase, than it is for very large values of ω.

Notwithstanding, it is recommendable to study more phenom-

ena before accepting this conclusion. Fig. 8(b) − (c) shows

a scaling of the probability of anomalous events P (5σ) and

P (7σ) with the system size L. Here, we find two main results.

First, the probability of such events is much larger than ex-

pected from a Gaussian distribution, throughout the entire re-

gion ω ∈ [0.6, 3], as the Gaussian probabilities of occurrence

beyond 5σ and 7σ are, respectively,P (5σ)Gaussian ≈ 5.7·10−7

and P (7σ)Gaussian ≈ 2.6 · 10−12. These theoretical values

are obviously a lot smaller than those obtained numerically

for both cases, by several orders of magnitude. Second, the

power-law decay that is present in panel (a) is absent from

panels (b) and (c). For large values of the system size a de-

crease of the probability of anomalous events can only be

found for small values of ω, in particular those closest to

the point where the characteristic distance ℓmax is largest,

whereas for others there is no evidence of such (the probability

of anomalies is approximately the same for largeL or even in-

creases). This is again a manifestation of very long-tailed dis-

tributions around the transition [39]. And it seems enough to

call into question the naı̈ve extrapolation inferred from panel

(a) of Fig. 8. Results shown in panels (b) and (c) of the same

figure show that the analysis of thermalization is much more

involved, since anomalous non-thermalizing events are highly

probable before the MBL phase is reached, i.e., they are not

rare at all.

Finally, in Fig. 9 we plot a scaling of the probability of find-

ing initial conditions further away than 10%, 20% and 40%

from its microcanonical equilibrium value in a fully ergodic

region. The disorder value is here fixed at ω = 2.2, cor-

responding to the maximum of kmin and the probability of

anomalous non-thermalizing events as seen in Fig. 7 and Fig.

8. We compare here the expected result for a Gaussian dis-

tribution with the width, σ, obtained from Fig. 8(a) (dotted

line and empty symbols), with the one obtained from numer-

ics (solid line and full symbols); in all the cases, the shadowed

region highlights the difference between the expectation and

the numerical result. These results reinforce our previous con-

clusion. The probability of non-thermalizing events decrease

much slower than expected from the Gaussian distributions

underlying the ETH. And it is not clear at all how to extrap-

olate to very large (macroscopic) systems. This entails that,

at least for finite systems, thermalization should in principle

not be expected for every initial condition within a wide re-

gion covering part of the apparent ergodic phase. Further in-

vestigation is needed to even conjecture what happens in the

thermodynamic limit.

VI. CONCLUSIONS

We have provided a numerical, stringent study of the inter-

play between long-range spectral statistics and the diagonal

fluctuations of physical observables around the microcanon-

ical equilibrium value in the paradigmatic model for many-

body localization, the Heisenberg spin-1/2 chain. There is a

strong link between these two indicators of the dynamics of

a quantum system. We have studied the power spectrum of

the δn statistics to compare spectral correlations with the re-

sults coming from Random Matrix Theory, while analogously

we have studied the power spectrum of the diagonal fluctua-

tions of representative observables ∆n to analyze the eigen-

state thermalization hypothesis, which underlies the ability of

a quantum system to thermalize.

The power spectrum of these two quantities are quantita-

tively characterized by the same characteristic scale ℓmax. In
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FIG. 8. (a): Scaling of the standard deviation σ obtained from

fitting the relative difference between time 〈n̂q〉t and microcanoni-

cal 〈n̂q〉ME averages to a Gaussian distribution as a function of the

system size. (b) − (c): Scaling of the probability of anomalous

events beyond 5σ, P (5σ), and 7σ, P (7σ), as a function of the sys-

tem size (log-log scale is used for all three panels). Results corre-

spond to expected values of the the full momentum distribution, n̂q ,

q ∈ {0, . . . , L− 1} in the eigenstates of Eq. (4). Colors/point types

represent disorder strengths ω ∈ {0.6, 1, 1.4, 1.8, 2.2, 2.6, 3} from

bottom to top in panel (a). Double logarithmic scale is used in all

panels.

the case of spectral correlations, the δn, the value of ℓmax

indicates that Random Matrix Theory-like correlations be-

tween levels hold up to this scale. Dividing ℓmax by the den-

sity of states gives the famous Thouless energy scale, ETh.

In the case of ∆n, ℓmax indicates that the signal is essen-

tially a white noise with little to no structure up to this scale,

which is in turn associated with the Gaussian distribution of

thermalizing events. Thus, the Thouless energy, the scale

below which RMT universality breaks down, behaves non-

monotically on the ergodic phase and its maximum is fixed

constant at 0.5 . ω . 0.6 regardless of the system size (i.e.,

it does not scale). This puts under scrutiny the existence of

a full ergodic region below a certain critical value of the dis-

order. Contrary to what is usually inferred from short-range

spectral statistics, like the distribution of ratios of consecutive

level spacings, in finite systems there exists no ergodic plateau
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P
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FIG. 9. Scaling of the probability of initial conditions further than

10%, 20% and 40% from the equilibrium microcanonical average as

a function of the system size for ω = 2.2. Solid lines with filled

points represent the numerical value of Perror, while dotted lines with

empty points show the corresponding value as obtained from a Gaus-

sian distribution. Results correspond to expected values of the the

full momentum distribution, n̂q , q ∈ {0, . . . , L − 1} in the eigen-

states of Eq. (4). Double logarithmic scale is used.

between the integrable limit, ω = 0, and the MBL phase, but

a region with a complex structure, with its most chaotic part

around ω ∼ 0.5.

Then, we have presented numerical evidence implying

that non-thermalizing events are significantly probable even

within the apparent ergodic region of the Heisenberg chain, as

a consequence of the previous structure. We have shown that

ergodic RMT-like behavior only holds for quite short energy

scales. The small value of the Thouless energy favours the

existence of these anomalous initial conditions. The distribu-

tion of thermalizing events from the ETH acquires very long

tails as we have shown by studying the probability of error

between the microcanonical and time averages by a quench

protocol. Studying these quantities as a function of disorder

paints a very complex picture of the transition between the er-

godic and the MBL phase. The minimum of ℓmax is found

around ω ≈ 2.2 where we also find the largest probabilities of

extreme values. At ω & 3.6 the system has completely entered

the localized phase where the width of the distribution is much

larger implying that generic initial conditions do not thermal-

ize in this phase. These results give rise to the following pic-

ture. First, a more or less ergodic region, with small width

for this distribution, and a small probability of anomalous

events. Then, an intermediate extended phase, in which the

width is still small, but the probability of anomalous events is

largely increased. And finally, the MBL phase, characterized

by a more Gaussian but wider distribution of relative devia-

tions from thermal equilibrium. This complex picture does not

change significantly when we increase the size of the system,

although a lot of caution is needed when trying to extrapolate

to larger sizes in spin models of this kind. Our results seem

incompatible with a fully ergodic region emerging in the ther-

modynamic limit in the entire parameter range 0 < ω . 3.6
(for L = 16). They also suggest that ergodicity in the sense
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of the BGS conjecture may be a necessary condition to guar-

antee thermalization for (almost) any initial condition. In this

sense, studying short-range spectral correlations alone is not

enough to understand chaos and thermalization in many-body

quantum systems. It is important to fully grasp the complexity

that emerges in the structure of long-range spectral statistics

and the diagonal fluctuations of observables. Another impor-

tant conclusion is that a large number of energy levels and

eigenstates are necessary to study the consequences of non-

equilibrium dynamics and thermalization. Sudden quenches,

the usual procedure to track the relaxation to equilibrium in

small quantum systems, do significatively populate large num-

ber of energy levels. The results in this paper show that the

structure of long-range spectral statistics and diagonal fluctu-

ations of representative observables becomes highly complex

within this range.
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Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Obser-

vation of many-body localization of interacting fermions in a

quasirandom optical lattice, Science 349, 842 (2015).

[17] A. Lukin, M.Rispoli, R. Schittko, M. E. Tai, A.M. Kaufman,
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