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Abstract. We present a proposal for a versatile cold-atom-based quantum
simulator of relativistic fermionic theories and topological insulators in arbitrary
dimensions. The setup consists of a spin-independent optical lattice that traps a
collection of hyperfine states of the same alkaline atom, to which the different
degrees of freedom of the field theory to be simulated are then mapped. We
show that the combination of bi-chromatic optical lattices with Raman transitions
can allow the engineering of a spin-dependent tunneling of the atoms between
neighboring lattice sites. These assisted-hopping processes can be employed
for the quantum simulation of various interesting models, ranging from non-
interacting relativistic fermionic theories to topological insulators. We present a
toolbox for the realization of different types of relativistic lattice fermions, which
can then be exploited to synthesize a majority of phases in the periodic table of
topological insulators.
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1. Introduction

In a seminal paper published in 1982 [1], Feynman discussed in great detail the problems
connected with the numerical simulation of quantum systems. He envisaged a possible
solution, the so-called universal quantum simulator, a quantum-mechanical version of the
usual simulators and computers currently exploited in many applications of the ‘classical’
world. If realized, such a device would be able to tackle many-body problems with local
interactions by using the quantum properties of nature itself [2]. Interestingly, even without
the advent of a fully universal quantum computer, the construction of small dedicated devices,
also known as purpose-based quantum simulators, would already be of significant importance
for the understanding of quantum physics. The basic idea is to engineer the Hamiltonian of
the quantum model of interest in a highly controllable quantum system and to retrieve all of the
desired information with a measurement of its properties. Many research fields would eventually
benefit from such devices: for example, two-dimensional (2D) and 3D many-body physics, non-
equilibrium dynamics or lattice gauge theories [3].

In recent years, the scientific community has been considering ultra-cold atoms as one
of the most promising candidates for the realization of a wide variety of dedicated quantum
simulations [4, 5]. Indeed, these gases are genuine quantum systems where the available
experimental techniques offer an impressive degree of control together with high-fidelity
measurements, thus combining two fundamental requirements for a quantum simulator. Among
the most recent experimental achievements, we would like to mention the observation of
Anderson localization in disordered Bose–Einstein condensates (BECs) [6, 7], the research on
itinerant ferromagnetism with cold fermions [8] or the reconstruction of the equation of state of
fermionic matter in extreme conditions, such as in neutron stars [9].

An important drawback in the applicability of cold atoms as quantum simulators is
the difficulty of coupling their spatial degrees of freedom to external magnetic fields. This
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prevents a direct simulation of quantum Hall physics [10], the controlled observation of whose
extraordinary phenomenology would shed new light on quantum many-body theory. One way of
overcoming this problem is to dress the system with ingenious laser schemes, which mimic the
effect of an external magnetic field, and thus allow the neutral atoms to behave like effectively
charged particles [11]. This approach led recently to the realization of neutral BECs coupled
to external effective magnetic and electric fields [12, 13], or even with an effective spin–orbit
coupling [14]. More generally, the scientific community has realized that even in the presence
of an optical lattice, dressing cold gases with suitable optical and microwave transitions could
push the experiments beyond the standard superfluid–Mott insulator transition and significantly
widen the spectrum of the models that are currently being simulated8. Possible applications
of such optical-lattice-based quantum simulations are numerous and diverse, ranging from the
realization of Abelian and non-Abelian static gauge fields [11, 15–18] to that of quantum Hall
states [19–23]; from the study of the anomalous quantum Hall effect [24, 25] to the quantum
spin Hall effect [26–28]; from 3D topological insulators [28, 29], to flat-band physics with
a non-trivial topological order [30, 31], or non-Abelian anyons [32]. Recently, a great deal
of effort has also been put in designing schemes where the exotic effects associated with
relativistic quasiparticles, such as Klein tunneling and Zitterbewegung, arise in a controlled
table-top experiment [33–40].

In this paper, we elaborate on the idea of using a spin-independent bi-chromatic optical
lattice dressed with suitable Raman transitions to simulate interesting non-interacting field
theories of lattice fermions. We present a concrete proposal to create a 3D optical lattice that
traps a multi-species atomic gas and to tailor arbitrary spin-dependent hopping operators. We
have already shown how this setup could break the SU(2) invariance of the hopping rates for
spin-1 atoms in spin-independent lattices, and how the simulation of systems subjected to three-
body repulsion could benefit from it [41]. Here, we extend this idea further and show that the
same setup allows for the realization of hopping operators that modify the atomic hyperfine
state. Combining this trapping scheme with Fermi gases, we show that this platform would
open a new route towards the simulation of high-energy physics and topological insulators.

This paper is organized as follows. In section 2, we describe qualitatively the idea of using
an optical superlattice to realize a general hopping operator for a multi-species cold gas of
alkalis. Further analysis and technical details are given in section 3, where we also present
some numerical results that support the possibility of controlling spin-flipping tunneling in this
platform. The reader not interested in these technical details may skip this content without
prejudicing the comprehension of the following sections. Some final remarks on the proposal
are presented in section 4. In section 5, we discuss possible applications of the described scheme,
focusing on relativistic theories and topological insulators, and trying to give a list of the most
interesting phenomena that could be explored. Finally, we present our conclusions in section 6.

2. The setup and the idea

We consider the following atomic 3D optical potential:

V (x)= −V0

∑
j∈{1,2,3}

[cos2(qx j)+ ξ cos2(2qx j)], (1)

8 The Kavli Institute for Theoretical Physics program ‘Beyond Standard Optical Lattices’ (http://www.
kitp.ucsb.edu/activities/dbdetails?acro=boptilatt10).

New Journal of Physics 14 (2012) 015007 (http://www.njp.org/)

http://www.{penalty -@M }kitp.ucsb.edu/activities/dbdetails?acro=boptilatt10
http://www.{penalty -@M }kitp.ucsb.edu/activities/dbdetails?acro=boptilatt10
http://www.njp.org/


4

Figure 1. Optical superlattice potential of equation (1) in the 2D case, with
parameters V0 = 10Er and ξ = 1. Left: the potential is characterized by a square
geometry of main minima; in the middle of each link an intermediate minimum
is also present. Right: if the lattice is deep enough, the spectrum of the system
features two energy bands whose Wannier functions are localized in the main
minima and in the secondary minima, as plotted in the figure.

where x = (x1, x2, x3), q = 2π/λL (λL is the wavelength of the laser), and where V0, ξ > 0
represent the potential amplitudes. The low-energy structure of this potential is a cubic array
of the main minima separated by ‘secondary’ minima located in the middle of each lattice
link (see figure 1). We note that additional higher-order minima are also present, but will
not play any role in the phenomena discussed in this paper. Due to the specific form of the
potential in equation (1), the Hamiltonian can be divided into three independent terms, each one
depending on one of the three couples of conjugate operators, {xi , pi}i∈1,2,3. Consequently, the
Bloch functions of the nth band with energy En(p) can be written as ψn,p(x)=

∏
j ψn,p j (x j). In

order to discuss the effects occurring on the scale of one lattice site, Wannier functions can be
introduced for each band

wn,R(x)=
1

V

∫
e−iR·pψn,p(x) dp = wn,R1(x1) wn,R2(x2) wn,R3(x3).

Like Bloch functions, Wannier functions belonging to different bands form an orthonormal
basis, and one can thus expand the Hamiltonian in such a basis. Since the Wannier functions
are not eigenstates of the Hamiltonian, this expansion leads to a Hubbard model describing the
tunneling of atoms between neighboring sites, together with a local on-site interaction coming
from the scattering of the cold gas [42].

This setup can be used for the simulation of a lattice field theory, where the field operators
are identified with the atomic creation–annihilation operators in the Wannier basis of the lowest-
energy band (i.e. the states localized in the main minima of the lattice). Conversely, higher-
energy bands provide auxiliary levels that shall be used as a resource to tailor the tunneling
processes. The main result of this paper is the claim that a complicated though not unfeasible
combination of current technologies leads us to the realization of the following Hamiltonian:

Hsys =

∑
rν

∑
ττ ′

tνc
†
r+ντ ′[Uν]τ ′τcrτ +

∑
r

∑
ττ ′

�c†
rτ ′[3]τ ′τcrτ + h.c. (2)

Here, we are considering a multi-species fermionic scenario with many hyperfine levels of
the same atom: c†

rτ (crτ ) creates (annihilates) a fermion with hyperfine spin τ localized in the
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Figure 2. Sketch of the atomic structure of 40K: from the electronic structure (L is
the electronic angular momentum) to the fine structure (J = L + S, where S is the
electronic spin) to the hyperfine structure (F = J + I, where I is the nuclear spin).
The latter is drawn in the specific case of an external magnetic field present. The
last box shows the optical spin-independent potential which traps equally all the
hyperfine levels.

main minima of the superlattice at r = m1a1 + m2a2 + m3a3, where m j ∈ {1 · · · L j}, L j stands
for the number of lattice sites along the x j -axis, and a j is the lattice spacing in the j th direction.
The parameter tν stands for the strength of the laser-assisted tunneling in the ν̂ direction, with
ν ∈ {a1, a2, a3}, which shall be described below. The operators Uν describe the tunneling from r
to r + ν and are a common feature of lattice gauge theories. We have included an on-site Raman
term3, of strength�, that induces a certain transition between the hyperfine states. Note that we
use Gaussian units and h̄ = 1. We describe some interesting applications of a quantum simulator
based on the Hamiltonian (2) in section 5. In particular, we focus on the relevant phenomena
for non-interacting theories, which can be realized either with dilute systems or by employing
Feshbach resonances (see, e.g., [6, 7]).

Let us note that the control of homogeneous tunneling for a single-species atomic gas is
straightforward, and would not even require the superlattice (ξ = 0) [43]. Moving to a many-
species case, one runs into the problem that a general hopping operator also entails terms
flipping the atomic hyperfine spin (simply referred to as spin in the following), which are not
easily engineered. Here, we propose to realize such couplings by combining Raman transfers
and a bi-chromatic superlattice (ξ 6= 0 in equation (1)). The proposal can be applied to all the
alkalis notwithstanding their bosonic or fermionic nature. In the following, however, we shall
focus on the fermionic scenario, which is best explained with the following practical example.

Let us consider an ultra-cold cloud of non-interacting 40K atoms in the presence of a
magnetic field of intensity B. Such a field lifts the spin degeneracy within the two atomic
hyperfine manifolds of the ground state, F = 9/2 and F = 7/2, according to the following
relations (see also figure 2):

E9/2,mF = +gF µB B mF, E7/2,mF =1HF − gF µB B mF, (3)

where mF is the projection of the hyperfine spin along the quantization axis defined by the
magnetic field, µB is the Bohr magneton, gF is the hyperfine Landé factor and1HF stands for the
hyperfine splitting. These hyperfine levels are all trapped into the same spin-independent optical
potential (1). Depending on the lattice theory we want to simulate, we select a subset of these
hyperfine levels described theoretically by creation–annihilation operators in the lattice sites.
We then identify such fields with the components of the lattice field theory to be simulated. This
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Figure 3. Sketch of laser-assisted tunneling induced in the presence of a
superlattice. Two physical hyperfine states belonging to the F = 9/2 manifold
are connected via Raman couplings with the intermediate level of an auxiliary
state belonging to the F = 7/2 manifold. If the coupling is detuned enough,
the F = 7/2 level can be adiabatically eliminated: no population is left there
and an effective coupling is engineered between neighboring sites. Left: scheme
for a spin-preserving (i.e. diagonal) hopping. Right: scheme for a spin-flipping
hopping.

leads us to divide the hyperfine levels into two subsets: the subset of ‘physically meaningful’
states, which belong to the hyperfine manifold F = 9/2, and the usually larger subset of
auxiliary levels that shall be used to assist the tunneling and create the desired hopping operator.

Regarding the hopping operator in equation (2), we address each of its matrix elements
[Uν]τ ′τ separately. Given a matrix element (i.e. once we have identified the initial and final
hyperfine levels to be connected by the assisted tunneling), we choose an auxiliary level
belonging to the hyperfine manifold F = 7/2 trapped in the middle of the link. These levels
provide intermediate ‘bus’ states that shall be used as a resource to assist the tunneling as
follows. The couplings between the atoms in the main sites, R1, and the ‘bus’ states, R2, are
realized via optical two-photon Raman processes transferring a net momentum qt . They have
a mathematical expression proportional to the overlap integral of the initial and final Wannier
functions:

∫
w∗

n2,R2
(x)eiqt ·xwn1,R1

(x) dx. This integral is not zero because of the term eiqt ·x, which
is of course relevant only if 2π/|qt | is of the order of the lattice spacing. Since this regime
cannot be achieved with microwave transitions, one is motivated to employ two-photon Raman
transitions. Interestingly enough, it is possible to eliminate adiabatically the intermediate level
and obtain an effective four-photon coupling between neighboring sites (see figure 3). We stress
that different matrix elements can be engineered at the same time thanks to the magnetic-field
splitting of the hyperfine levels (3): the involved atomic transitions become non-degenerate and
can be individually addressed with different Raman couplings. Furthermore, the use of coherent
laser light for the Raman transitions entails the additional advantage of being able to deal with
complex phases and thus to realize complex gauge structures at will. The realization of the non-
diagonal matrix elements requires the lattice to be slightly staggered, a technique discussed also
in [16]. The on-site term3 in equation (2) can be performed with standard technology based on
microwave transitions, or Raman transitions carrying negligible momentum. Furthermore, these
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Table 1. Numerical values of a possible 3D optical bi-chromatic superlattice (1)
for 40K used in section 3 for numerical simulations. We characterize the
properties of the two energy bands, which exhibit Wannier functions localized,
respectively, in the main and secondary minima, by listing the energy expectation
value 〈Ei〉 of the most localized Wannier function and the bandwidth 1Ei .
Finally, we argue that atoms trapped in optical lattices show a hierarchy of
typical energies which can be actively exploited to engineer non-trivial hopping
operators.

λL ∼738 nm Er =
h2

2 mλL
9.17 kHz

V0 10Er ξ 1
〈E1〉 −13.909 × 3Er 〈E2〉 (−13.909 × 2)–6.364Er

1E1 0.024Er 1E2 0.995Er

1E1 216.7 Hz 1E2 9120.1 Hz
1HF 1.286 GHz gF µB 0.22 × 1.34 MHz G−1

〈E2 − E1〉 69.160 kHz Staggering 10 kHz

terms can also be exploited to correct spurious on-site couplings which may be induced by the
laser scheme. Summarizing, this proposal tries to exploit a hierarchy of energies characterizing
atomic gases in optical lattices in order to assist the tunneling between neighboring sites with
controlled adiabatic eliminations (see table 1).

We stress here that the proposal does not exploit any selection rule on the polarization
properties of the light, but rather relies only on energy-based selection rules, i.e. on the detuned
atomic transitions induced by the magnetic field. Even though in low-dimensional setups the
specific experimental implementation could benefit from polarization selection rules, they are
not necessary and there is no fundamental limitation to the extension of the setup to more
dimensions.

3. Realization of spin-dependent hopping operators

In this technical section, we theoretically and numerically confirm the qualitative scheme
presented above. We study two simple but important cases: the realization of diagonal and non-
diagonal hopping operators for a two-species atomic gas. These can be considered as the main
building blocks needed to realize any tunneling operator even in situations with more than two
atomic species. In order to make this paper self-contained, we reproduce in this section some
of the results presented in [41]. The discussion there was limited to the realization of a Raman-
assisted diagonal tunneling. In this work, we extend it to a regime where one can control a non-
diagonal hopping, which turns out to be the key ingredient for the versatility of our quantum
simulator.

3.1. Coupling between different hyperfine manifolds

The most fundamental ingredient of this proposal is the possibility of using Raman processes to
induce controlled atomic transitions between different hyperfine states of the electronic ground
state L = 0 (L is the total electronic angular momentum). These transitions are realized with two
lasers via adiabatic elimination of the electronically excited manifold L = 1. In the following,
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Figure 4. The ‘6-level model’ used to model the spin-preserving (diagonal)
hopping of F = 9/2,mF = 9/2. The auxiliary state F = 7/2,mF = 7/2 has been
chosen. The center-of-mass quantum number is k. Energies are not to scale;
the orders of magnitude of the parameters are the following: d ∼ 10–100 kHz,
δ ∼ 100–300 kHz and1∼ 1–10 GHz. We propose to adiabatically eliminate the
upper manifold and to study the dynamics of the lowest one with an effective
Hamiltonian Hpert (8).

we address the atomic levels as |L , α, k〉, with α labeling the hyperfine degrees of freedom (see
also figure 2 for some insights into the internal structure of 40K), and k the quantum numbers
of the center-of-mass wavefunction (in our case, the Wannier functions of the optical potential).
As discussed in [41], the induced Raman coupling between the states |0, α, k〉 and |0, α′, k ′

〉 can
be written as follows:

�̃α′k′;αk(t)= Sk′k �α′α e−iωt . (4)

This expression clearly factorizes the following contributions:

• the time dependence of the effective coupling and its effective frequency, which is the
difference between the frequencies of the two lasers ω = ω1 −ω2;

• the dependence on the center-of-mass degrees of freedom, Sk′k = 〈k ′
|e−i(p2−p1)·x|k〉, where

p1 and p2 are the momenta of the two lasers;

• the dependence on the initial and final internal states and on the polarization properties of
light,�α′α, which is a function of the dipole matrix elements between the initial (final) state
and the excited levels.

Next, we specify (4) to the superlattice setup of section 2, i.e. we will consider Raman transitions
in the presence of lattices characterized by a Wannier function trapped in the middle of each link.

3.2. Developing an effective ‘6-level model’

Let us address the simulation of a theory characterized by two-component fields. Following
the discussion of section 2, we take two states of the F = 9/2 manifold of 40K, for instance
|9/2; mF = 7/2〉 and |9/2; mF = 9/2〉, and map them into the theory to be simulated. Here and
in the following subsections, we discuss the laser-assisted hopping in the diagonal case (mF

preserved while hopping) and the non-diagonal case (mF flipped while hopping).
For the diagonal case, we develop the ‘6-level model’ depicted in figure 4. We consider

one physically meaningful state, say |F = 9/2,mF = 9/2〉, and one auxiliary state, say |F =

7/2,mF = 7/2〉. Moreover, we consider different Wannier states for each of them, two localized
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in main sites (k = 1 and 3) and one in the intermediate link (k = 2). The model includes
the effects of undesired couplings and additional levels, and its limitations, together with the
approximations on which it relies, will be discussed at the end of the paragraph. We can identify
the states with the short notation |F, k〉 rather than with the longer previous one |0α k〉. Below,
we give an analytical estimate of the population transfer rate, whereas in the next subsections
we present the numerical time evolution for physically interesting cases.

The model is parameterized by six relevant couplings between the different Wannier
functions Sk′k (see figure 4) whose properties are listed below. We exploit the existence of
theorems which guarantee the possibility, in our case, of considering three real and exponentially
localized Wannier functions w j(x), j ∈ {1, 2, 3} [44]. We write the parameters Sk′k factorizing
out the space dependence of the coupling eiqt ·x j , where x j is the position of the point around
which the Wannier function w j(x) is localized,

Sk′k = eiqt ·xk

∫
w∗

k′(x − xk′ + xk)e
iqt ·xwk(x)dx, (5)

S1,1 = S3,3 6= S2,2, S1,3, S3,1 ∼ 0. (6)

The parameters S1,1 and S2,2 describe two on-site couplings, whereas S1,2 is the coupling
between a main site and an intermediately trapped state (see figure 4). The last relation states that
couplings between neighboring main sites are negligible. The relation between the other four
overlap factors depends on the particular experimental situation. In this case, we are interested
in the simplest scenario where a single Raman transition induces all these couplings, which
leads us to

S1,2 = S2,1 = e2iqt ·x1eiqt ·(x3−x1)S∗

3,2 = e2iqt ·x1eiqt ·(x3−x1)S∗

2,3.

In order to make this scheme simpler, we assume that qt = 2qL and thus eiqt ·(x2−x1) = 1. As
we will argue below, transferring a momentum that does not fulfill this requirement is not a
problem since the resulting phase can be gauged away. The phase 2qt · x1 can also be put to
zero for the moment, since its role only becomes important when one needs to give a phase to
different matrix elements. In the following, we will also consider situations where the coupling
between the lattice sites 2 and 3 could be induced by lasers propagating in the opposite direction,
where S1,2 = S2,1 = S3,2 = S2,3. Taking these considerations into account, the Hamiltonian reads
as follows (see figure 4 for the definitions of δ, 1 and ω):

H = d |9/2, 2〉〈9/2, 2| + (1+ d)|7/2, 2〉〈7/2, 2| +1(|7/2, 1〉〈7/2, 1| + |7/2, 3〉〈7/2, 3|)

+�e−iωt [S1,2 (|7/2, 2〉〈9/2, 1| + |7/2, 1〉〈9/2, 2|)

+S∗

1,2 (|7/2, 2〉〈9/2, 3| + |7/2, 3〉〈9/2, 2|)

+S1,1 (|7/2, 1〉〈9/2, 1| + |7/2, 3〉〈9/2, 3|)

+S2,2|7/2, 2〉〈9/2, 2|] + h.c. (7)

Once we apply the unitary transformation

0(t)= exp[i d (|9/2, 2〉〈9/2, 2| + |7/2, 2〉〈7/2, 2|) t],

the three levels |9/2, k〉 become degenerate. In the case the three inequalities
|Si, j�|/(δ− d)� 1 are fulfilled, it is possible to use second-order perturbation theory in
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order to develop an effective Hamiltonian describing the dynamics within the sub-manifold we
are interested in, namely

Hpert/�
2
= −

(
|S1,1|

2

δ− d
+

|S1,2|
2

δ

)
[|9/2, 1〉〈9/2, 1| + |9/2, 3〉〈9/2, 3|]

−

(
|S2,2|

2

δ− d
+ 2

|S1,2|
2

δ− 2d

)
|9/2, 2〉〈9/2, 2| −

S 2
1,2

δ
|9/2, 3〉〈9/2, 1| + h.c.

−

[
S∗

1,2 S1,1

2

(
1

δ− d
+

1

δ− 2d

)
eidt +

S∗

2,2 S1,2

2

(
1

δ− d
+

1

δ

)
eidt

]
× [|9/2, 2〉〈9/2, 1| + |9/2, 2〉〈9/2, 3|] + h.c. (8)

Remarkably enough, this Hamiltonian leads to the desired transfer rate of population from level
|9/2, 1〉 to |9/2, 3〉, and vice versa. The main contribution is the direct coupling

−J (1)13 ei2φ
= −

|S1,2|
2�2

δ
ei2φ, φ = arg S1,2. (9)

A second contribution, which in our system will prove to be non-negligible, comes from a sort
of ‘adiabatic elimination’ of the level |9/2, 2〉, namely

−J (2)13 = −
〈9/2, 3|Hpert|9/2, 2〉 〈9/2, 2|Hpert|9/2, 1〉

〈9/2, 2|Hpert|9/2, 2〉 − 〈9/2, 1|Hpert|9/2, 1〉 + d
. (10)

Accordingly, we have derived the desired effective Hamiltonian where the Raman lasers assist
the hopping of the physically meaningful F = 9/2 levels, after the auxiliary F = 7/2 bus states
have been adiabatically eliminated. In the following sections, we shall address the range of
validity of the approximations leading to this Hamiltonian, and compare it with the exact
numerical investigation of the initial Hamiltonian (7).

We want to stress here that even if the integrals in the definition (5) of the Skk′ can be
complex numbers, this does not have any physical influence on this proposal. Indeed, even if
the effective coupling between neighboring main sites −J was complex, its spatially uniform
phase can be gauged away with a space-dependent unitary transformation (even in the case of
periodic boundary conditions). Conversely, the non-uniform phase coming from the eiqt ·xk factor,
which arises when qt is not parallel to the direction of the hopping it assists, cannot be gauged
away even in the presence of open boundary conditions. Such a phase, which is not related
to the fact that the integrals in (5) are complex, can be used to simulate an external uniform
magnetic field [15, 16]. Finally, we stress that in our setup, where the tunneling along each axis
is induced by lasers propagating parallel to the axis itself, both complex phases can be gauged
away. In order to simulate a magnetic field, therefore, one should move slightly away from this
configuration and engineer a Raman coupling whose effective transmitted momentum does not
run parallel to the links of the lattice. We will not consider this situation in this paper because
the models of interest in section 5 do not require such a space-dependent phase.

3.3. Range of validity of the ‘6-level model’

The presented ‘6-level model’ strongly relies on two approximations:

(i) considering the bands of the lattice as being flat,

(ii) neglecting delocalized higher-energy free states.
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If these approximations are not justified for a given experimental configuration, spurious
population transfers to next-neighboring sites would arise.

The approximation (i) is required to fulfill the core idea of the proposal, namely the
adiabatic elimination of the intermediate level. This is demonstrated with a model which
considers only a subset of the Hilbert space spanned by the real eigenstates of the Hamiltonian
(Bloch functions), considering just three of their linear combinations (the Wannier functions
wk=1(x), w2(x) and w3(x)). This is equivalent to approximating the dispersion laws of the band
as flat, neglecting thus possible curvature effects, and is legitimized as long as the width of the
band is much smaller than the detuning of the transition δ− d. In the case that the degeneracy
of the Bloch functions cannot be assumed, all the Bloch functions should be considered in order
to quantitatively estimate the spurious effects cited above. In general, this issue sets a trade-off
for the relative depth ξ of the secondary lattice in (1): on the one hand, a shallow lattice (ξ < 1)
is desirable because the Wannier function of the intermediate minimum wk=2(x) is not strongly
localized and laser-induced transitions are favored (|S1,2| ∼ |S1,1|). On the other, the more the
wavefunction is delocalized, the more the band bends, eventually becoming parabolic at k = 0
with a bandwidth comparable to the detuning. In our numerical simulations we consider ξ = 1,
which is a reasonable compromise.

Regarding the issue (ii), higher-energy bands could become important in the presence of
intense Raman transitions � and large detunings δ− d, which couple them to the lowest-band
states. The presented analytical and numerical studies do not take into account these effects
since they consider only three Wannier functions and effectively only two bands, even though
including bands with localized Wannier functions would just imply a renormalization of the
numerical coefficients Sk,k′ . A different problem is the case of high-energy strongly parabolic
bands whose Wannier functions are not strongly localized. The effect of such states is not
considered by our model, which is that of spreading population among many next- and further-
neighboring main sites. From an experimental point of view, we expect a trade-off to arise
between a large detuning regime, allowing powerful lasers and strong effective couplings with
noisy spurious population transfers, and a small detuning one, with clean but small couplings.

3.4. Diagonal hopping operator

We now explicitly study the possibility of realizing a diagonal tunneling operator. We
numerically simulate the Hamiltonian (7) with a simple Runge–Kutta algorithm. We did
not include in the simulation hyperfine states different from |F = 9/2,mF = 9/2〉 and |F =

7/2,mF = 7/2〉 because they are strongly detuned from those we are considering. However, for
completeness, we include the presence of a second Raman coupling, which would be needed to
induce the hopping of |F = 9/2; mF = 7/2〉, and check that it is unimportant.

We show in figure 5 the numerical results. The realistic parameters used in this simulation
are listed in table 2. The population is coherently transferred between two neighboring levels
and only a negligible fraction is lost in auxiliary states. Regarding the validity of the ‘6-level
model’, for the lattice considered here, the bandwidths of the two bands are 0.2 and 9.1 kHz,
respectively, which should be compared with the considered detuning of 300 kHz. In these and
the following simulations, the employed numerical values have only illustrative purpose and
other regimes could be considered.

To estimate the accuracy of the assisted hopping operator, we compute the fidelity
of generating a particular target spin state at site k = 3 in the internal state {Ft ,mF,t},
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Figure 5. Left: sketch of the scheme proposed for the realization of a diagonal
hopping operator (energies are not to scale). Raman coupling 1 (2) connects the
|F = 9/2,mF = 9/2〉 (|F = 9/2,mF = 7/2〉) state to its auxiliary state. Detuning
allows independent control of the hopping rates. Right: exact time evolution of
the ‘6-level model’ (7), showing the coherent population transfer between sites
1 and 3 of the spin state |F = 9/2,mF = 9/2〉. The parameters used are listed
in table 2. The inset shows the maximal populations of the six considered levels
labeled |F, k〉 as in (7) and shows that only a small fraction of the population is
lost in auxiliary levels.

i.e. |ψt〉 = |3, Ft ,mF,t〉, for an atom that is initially populating the site k = 1 in the internal
state {Fi ,mF,i}, i.e. |ψi〉|1, Fi ,mF,i〉. Such fidelity can be quantified defining

F2
= max

τ
|〈ψt |ψ(τ)〉|

2, (11)

with |ψ(τ)〉 being the time evolved state, which is the amplitude of the oscillations between
the sites between which the hopping operator acts. For the presented simulation the fidelity of
the stimulated hopping process is F2 > 97%. Therefore, these results confirm the plausibility
of our scheme to induce laser-assisted tunneling between the atoms sitting in the main minima
of the optical lattice. To make the simulation toolbox richer, we now address the possibility of
controlling a spin-dependent hopping process.

3.5. Non-diagonal hopping operator

In order to study the realization of the non-diagonal hopping operator, we consider an enlarged
12-level model, which is a generalization of the previous one taking into account more hyperfine
states. We want now to transfer population between the manifolds |F = 9/2,mF = 9/2〉 and
|F = 9/2,mF = 7/2〉 and consider as auxiliary states |F = 7/2,mF = 7/2〉 and |F = 7/2,
mF = 5/2〉.
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Table 2. Parameters used for the numerical simulation of the diagonal hopping
in subsection 3.4. We list the numerical values of all the main parameters
characterizing the atomic transitions and the Raman couplings. The first Raman
coupling induces the hopping of F = 9/2, mF = 9/2, whereas the second one
addresses F = 9/2, mF = 7/2 (such states were, however, not considered in the
simulation).

Level: |F,mF, k〉 Energy Parameters

|9/2; 9/2; 1〉 gFµB BmF 1HF 1.285 GHz
|9/2; 9/2; 2〉 gFµB BmF + d µF B 40 MHz
|9/2; 9/2; 3〉 gFµB BmF d 69.160 kHz
|7/2; 7/2; 1〉 1HF − gFµB BmF S1,1 0.46
|7/2; 7/2; 2〉 1HF − gFµB BmF + d S1,2 0.07 + i0.13
|7/2; 7/2; 3〉 1HF − gFµB BmF S2,2 0.16

Raman coupling � ω

1 49.5 kHz E|7/2;7/2;2〉 − E|9/2;9/2;1〉 − 300 kHz
2 49.5 kHz E|7/2;5/2;2〉 − E|9/2;7/2;2〉 − 300 kHz

J (1)13 J (2)13 Estimated T Numerical T

176 Hz 17 Hz 0.018 s 0.017 s

A big issue that must be solved to engineer such a hopping is the appearance of undesired
spin-flipping terms induced by the laser (see figure 6). In this paper, we consider the possibility
of staggering the lattice with an additional optical field in order to lift the degeneracy between
the different sites of the optical lattice, in the same manner as [16]. Such staggering can be done
also in three dimensions since the cubic lattice is bipartite, and we consider staggering values
of 10–15 kHz.

Figure 7 sketches the experimental scheme we have in mind and shows the exact time
evolution of the population transfer between the two levels of F = 9/2 in two neighboring sites.
Interestingly enough, we show a flip of the Zeeman spin during the tunneling process and thus
obtain the promised spin-dependent hopping operator. The parameters of the simulation can be
found in table 3. The fidelity of the simulated hopping process is F2 > 88%. A meaningful
estimate is made difficult here by the fast oscillations appearing on top of the slow Rabi
oscillations; we give here a lower bound, given by the lower envelope of the curve.

In comparison with figure 5, the Rabi oscillations of figure 7 present additional fast
oscillations of small amplitude and also do not reach perfect state transfer. The reason can be
found in the inset of figure 7, which shows that a fraction of the population has been transferred
to the states |F = 9/2; mF = 7/2; 1〉 and |F = 9/2; 9/2; 3〉. This is the result of the on-site spin-
flipping transitions, which have to be avoided using the lattice staggering. The fact that they are
not completely suppressed means that the simulation uses parameters which are not optimal;
in particular, the system would benefit from larger staggering values. Finally, we also mention
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Figure 6. Left: the realization of a spin-flipping hopping operator suffers from
the problem that undesired on-site spin-flipping processes could spontaneously
arise. Right: the solution to this problem comes from the introduction of a
staggered lattice. The on-site spin-flipping process is detuned from the atomic
transition and its contribution is negligible with respect to the hopping process,
which is resonant with the atomic transition.

that the lattice staggering introduces an asymmetry between the two sites. As a consequence,
the different ac-Stark shifts of the levels with k = 1 and k = 3 due to the Raman beams must be
taken into account when selecting the laser frequencies. We note that these corrections turn out
to be crucial for achieving an optimal population transfer.

We have demonstrated that the Raman-assisted tunneling scheme leads to both diagonal
and non-diagonal tunneling events. Note that the achieved fidelities above F2 > 88% highlight
the accuracy of our scheme, and show that only energy-based selection rules, together with
lattice staggering, suffice to allow the desired tunneling.

4. From a spin-dependent hopping operator to a quantum simulator

In the previous section, we discussed how the superlattice geometry could be used to create
non-trivial hopping operators on each link. Here we want to assemble these ingredients and
discuss how to use them to engineer a quantum simulator in arbitrary dimensions, considering
the advantages and disadvantages of the proposal.

First of all, we stress that the lasers needed to engineer the hopping along one direction
must transfer momentum along that same direction (see equation (6)). Therefore, just by
controlling the beam propagation directions, we can tailor different tunneling operators along
each axis. This is an important feature which will be largely exploited in the proposals listed
in section 5 (see, e.g., tables 5 and 6, which list the different hopping operators that must be
engineered for each particular model of interest). This kind of directionality selection rule
is also responsible for avoiding the population of higher-order minima which do not lie on
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Figure 7. Left: sketch of the scheme proposed for the realization of a non-
diagonal hopping operator (energies are not to scale). Raman couplings 1, 2
and 3 connect the |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 states to the
auxiliary states. Detuning allows independent control of the hopping rates. Right:
exact time evolution of the ‘12-level model’ introduced in subsection 3.5 and
generalizing (7). We show the coherent population transfer between sites 1 and 3
of the spin state |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉. The parameters
used are listed in table 2. The inset shows the maximal populations of the
12 considered levels labeled |F,mF, k〉 and shows that only a fraction of the
population is lost in auxiliary levels.

the edges of the unit lattice cell. Since they are not connected to the main minima by a line
parallel to a Cartesian axis, we do not consider any momentum transfer along this direction,
and thus the formal orthogonality of the Wannier functions localized in those minima is never
lifted.

Due to the very general formulation of the superlattice potential, the setup is well suited
also to work in two and one dimensions. Moreover, in 1D it is possible to use polarization
selection rules to selectively couple different atomic levels. As a short-term goal, it would be
very interesting to understand what is the most interesting physics that could be simulated in a
1D system, where the presence of more symmetries could lower the experimental intricacies.
We partially address this question in section 5, where we argue that several 1D topological
phases can be realized. In the 3D (2D) case, only energy-based selection rules are reliable;
the discussion in section 3 already showed that these are enough. Let us stress that if the spin
quantization axis B̂, given by the external magnetic field, is not chosen along a highly symmetric
axis of the lattice, even a Raman coupling polarized with respect to its propagation axis, i.e. one
of the axes of the lattice, can contain all the polarizations in the basis of B̂. As sketched in
figure 8, the polarization matching the addressed transition will drive it, whereas the other ones,
being detuned, will have negligible effect.
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Table 3. Parameters used for the numerical simulation of the non-diagonal
hopping in subsection 3.5. We list the numerical values of the main parameters
characterizing atomic transitions and Raman couplings. The reported frequencies
of the Raman couplings are approximate because some additional tuning is
needed to compensate for the different Stark shifts for states with k = 1 and k = 3
arising due to Raman dressing in the presence of staggering. Perfect matching of
the atomic transition becomes difficult and imperfections are responsible for the
non-clean population transfer in figure 7. Larger staggering values would help.

Level: |F,mF, k〉 Energy Parameters

|9/2; 9/2; 1〉, |9/2; 7/2; 1〉 gFµB BmF 1HF 1.285 GHz
|9/2; 9/2; 2〉, |9/2; 7/2; 2〉 gFµB BmF + d µF B 40 MHz
|9/2; 9/2; 3〉, |9/2; 7/2; 3〉 gFµB BmF + 15 kHz d 69.160 kHz
|7/2; 7/2; 1〉, |7/2; 5/2; 1〉 1HF − gFµB BmF S1,1 0.46
|7/2; 7/2; 2〉, |7/2; 5/2; 1〉 1HF − gFµB BmF + d S1,2 0.07 + i0.13
|7/2; 7/2; 3〉, |7/2; 5/2; 1〉 1HF − gFµB BmF + 15 kHz S2,2 0.16

Raman coupling � ω

1 49.5 kHz ∼ E|7/2;7/2;2〉 − E|9/2;9/2;1〉 − 300 kHz
2 49.5 kHz ∼ E|7/2;5/2;2〉 − E|9/2;7/2;1〉 − 300 kHz
3 49.5 kHz ∼ E|7/2;7/2;2〉 − E|9/2;7/2;3〉 − 300 kHz

Figure 8. Energy selection rule. The scheme does not rely on any polarization
selection rule and therefore does not face any fundamental problem once
considered in two and three dimensions. If the Raman coupling is not polarized
with respect to the quantization axis of the hyperfine levels, all the polarizations
are present, even though with different intensities. The first and second Raman
couplings therefore drive an effective population transfer between two states with
different hyperfine spins even without engineering polarized couplings; energy
detuning is enough.

Unfortunately, energy-based selection rules do not prevent, in the case of spin-flipping
operators, spurious on-site spin-flipping couplings. We proposed to solve this issue by
staggering the optical lattice, i.e. lifting the degeneracy of the lattice sites of some tens of kHz
(see also the discussion in [16]). One should also mention that the diagonal hopping operators

New Journal of Physics 14 (2012) 015007 (http://www.njp.org/)

http://www.njp.org/


17

can still be engineered in the presence of such staggering, with the only additional issue of using
two Raman couplings (as in the non-diagonal case) to match the energy difference between sites.

Regarding the form of the staggering potential, we propose to use a separable one:
Vst1(x)= V (x)− V2

∑
i cos2

(qxi

2

)
. The separability of the potential Vst1 allows us to apply

the developed theory and in particular the directionality selection rule. The absolute value
of the energy differences between neighboring sites is ∼V2, which is what we studied in
subsection 3.5. A calculation performed using equation (5) shows that given the propagation
direction of the Raman couplings, the effective hopping does not depend on whether the initial
site was the staggered one or not. Alternatively, we also considered explicitly the case of a
2D lattice staggered by a non-separable potential: Vst2(x)= V (x)− V2 cos2

(qx1+qx2+qx3

2

)
, which

may be of some experimental relevance. The corresponding 2D and 3D Wannier functions are
no longer a product of 1D ones and a Raman coupling can induce hopping in the direction
transverse to its propagation. We computed numerically the band structure and Bloch functions
of the staggered 2D system for the proposed lattice parameters. The wavefunctions differ from
those of the case V2 = 0.0 by less than 1% of the averaged maxima of the wavefunctions. This
leads us to the conclusion that they can be nicely approximated by product wavefunctions, to
which the directionality selection rule applies. Spurious couplings in the orthogonal directions
introduce noise which is negligible with respect to the fidelity of the non-diagonal hopping
discussed in section 3.5.

Each of the matrix elements of the hopping operators is realized via an effective four-
photon process. This means that the spin of the atom can be flipped at most |1mF| = 4: a
careful analysis is needed in case one is interested in simulating a theory with more than four
fields, because some hopping matrix elements might be non-engineerable.

Finally, the description given in this proposal is essentially at the single-particle level where
no many-body effects have been used. As a consequence, the proposal works for both bosons
and fermions, which is a valuable result.

Before concluding, we would like to mention some possible technical issues which should
be addressed before running an experiment. Firstly, in the absence of an efficient taming of
the atomic interactions, which has been assumed throughout the whole paper, the gas could be
collisionally unstable; spin exchange and dipolar relaxation could indeed populate non-physical
states or even lead to losses. A quantification of such effects strongly depends on the chosen
atomic system and is therefore beyond the scope of this paper. Such an estimate would also
identify the regime of controlled interactions in which the quantum simulator would explore
interacting relativistic field theories and interacting topological insulators (section 5). We leave
this topic for future work.

Secondly, in the previous sections we always assumed the possibility of realizing the
needed Raman coupling, this technique being currently under development in cold-atom
laboratories. We mention here the lifetime issue that one would face in the presence of
transitions that are not sufficiently detuned from the excited states. This issue also requires
accurate system-dependent quantification before setting up an experiment and is beyond the
scope of this paper.

This concludes the part of the paper devoted to a description of the experimental setup. We
believe we have provided relevant results supporting the initial claim that it is indeed possible
to realize a system whose low-energy structure is described by Hamiltonian (2).
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5. Applications of the quantum simulator

In this section, we would like to discuss the use of the described setup as a quantum simulator.
We will address a range of lattice field theories for relativistic fermions [45], and explore
exotic phases of matter known as topological insulators [46]. In general, the task of a purpose-
based quantum simulator is to realize a system described by an effective Hamiltonian Heff

that reproduces faithfully the properties of the model to be simulated. In our case, this model
corresponds to relativistic lattice fermions Hrel or topological insulators Htop. The resource
to accomplish such a task is the microscopic control over the superlattice setup, which we
have argued previously to be described by the Hamiltonian (2), rewritten here for reading
convenience,

Hsys =

∑
rν

∑
ττ ′

tνc
†
r+ντ ′[Uν]τ ′τcrτ +

∑
r

∑
ττ ′

�c†
rτ ′[3]τ ′τcrτ + h.c.

The main objective in the following subsections is to control and manipulate

(i) the optical lattice dimension D,

(ii) the tunneling strengths tν ,

(iii) the spin-dependent hopping operators Uν ,

(iv) the on-site Raman transitions �,3,

such that the Hamiltonian of equation (2) simulates the desired physics, namely

Hsys({tν,Urν,3,�}) → Heff ≈ Hrel, Htop.

From a condensed-matter perspective, exotic phases are frequently associated with strongly
correlated regimes and many-body interactions. There are, however, distinguished exceptions
to this paradigm, such as graphene [47] and topological insulators [46], where quadratic
fermionic Hamiltonians contain a wealth of non-trivial phenomena. In the case of graphene, a
2D layer of graphite, the low-energy carriers can be described by emerging relativistic fermions
without mass. On the other hand, topological insulators are exotic holographic phases with
an insulating bulk, and a peculiar boundary that hosts robust conducting modes protected by
topology arguments. In both cases, the transport properties of the material differ significantly
from the standard solid-state theory. The following subsections are an analytical review of many
interesting phenomena which could be simulated with our quantum simulator. The discussion
provides for every model the specific values for the parameters of Hamiltonian (2) to be
engineered and we hope with this effort to provide a tool for bridging the gap between two
different communities, experimental atomic physics and theoretical condensed matter physics.

5.1. The zoo of relativistic lattice fermions

The properties of a relativistic spin-1/2 fermion with mass m are described by the Dirac
Hamiltonian [48]

H =

∫
dr9(r)† HDI9(r), HDI = cα · p + mc2β, (12)

where αν, β are the so-called Dirac matrices fulfilling a Clifford algebra, {αν, αµ} = 2δνµ,
{αν, β} = 0, and c stands for the speed of light. Here, 9(r) is the ND-component fermionic
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Table 4. Quantum simulator of naive Dirac fermions. Each translationally
invariant hopping operator Uν is expressed in terms of Pauli matrices {σx , σy, σz},
and a set of dimensionless fluxes {φ1, φ2, φ3}. We also list a particular
representation of the Dirac matrices αν, β for different spatial dimensions d,
together with the important symmetries of the Hamiltonian that depend on
0. These hopping operators are to be realized using the recipies provided in
section 3. The directionality selection rule discussed in section 4 allows the
realization of different hopping operators for the different hopping directions.

D Ua1 Ua2 Ua3 αx αy αz β 0

1 eiφ1σx σx σz iβαx

2 eiφ1σx eiφ2σy σx σy σz iσy

3 eiφ1σz⊗σx eiφ2σz⊗σy eiφ3σz⊗σz σz ⊗ σx σz ⊗ σy σz ⊗ σz σx ⊗ I2 −iαxαyαz

field operator, where ND = 2 for one and two spatial dimensions, and ND = 4 for three
spatial dimensions. Our objective now is to construct an effective Hamiltonian starting from
equation (2) that closely resembles the relativistic field theory in equation (12). The underlying
setup consists of a gas of ultracold 40K atoms, which is a non-relativistic system; nonetheless we
can design it as a quantum simulator of relativistic particles by exploiting the quantum statistics
and a peculiar engineerable Fermi surface.

5.1.1. Naive massless or massive Dirac fermions. The idea is to engineer translationally
invariant hopping operators, Uν = eiφν Aν , according to the SU(ND) group, where ND has been
defined above. For the particular choices specified in table 4, one finds that the Hamiltonian in
equation (2) in momentum space becomes

H =

∑
k∈BZ

9
†
k

(∑
ν

2tν cosφν cos kνI+ 2tν sinφν sin kναν

)
9k, (13)

where 9k is a multi-component Fermi operator that contains the different ND hyperfine levels
involved in the simulation, and k is defined within the first Brillouin zone BZ. One readily
observes that there are certain regimes, the so-called π -flux phases φν = π/2, where the energy
spectrum develops ND = 2D degeneracy points Kd where the energy bands touch ε(Kd)= 0.
Around these points Kd = (dxπ, dyπ, dzπ), where dν ∈ {0, 1} is a binary variable, the low-
energy excitations of the 40K Fermi gas are described by the effective Hamiltonian

Heff =

∑
d

∑
pd

9†(pd) H d
DI9(pd), H d

DI(pd)= cαd
· pd, (14)

where pd = k − Kd represents the momentum around the degeneracy points, (αd)ν = (−1)dναν
are the Dirac matrices listed in table and c = 2tx = 2ty = 2tz is the Fermi velocity that plays the
role of an effective speed of light. Therefore, the Fermi surface of the half-filled gas consists of
a set of isolated points, the so-called Dirac points, and the low-energy excitations around those
points behave according to the Hamiltonian of massless Dirac fermions in equation (14).

Let us note that we obtain an even number of relativistic-fermion species, each located
around a different Dirac point (i.e. N1 = 2 for one dimension, N2 = 4 for two dimensions and
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N3 = 8 for three dimensions). This doubling of fermionic species is a well-known phenomenon
in lattice gauge theories [45], where the fermions in equation (14) would correspond to the
so-called naive Dirac fermions [49]. As predicted by the Nielsen–Ninomiya theorem [50], this
doubling cannot be avoided without breaking an underlying symmetry:

• for D odd {H d
DI, 01} = 0 is an involution known as chiral symmetry,

• for D even 0
†
2

[
H d

DI(−pd)
]∗
02 = H d

DI(pd) is an antiunitary symmetry known as time
reversal (see table 4).

According to these results, we have a quantum simulator of massless Dirac fermions in
any spatial dimension D = 1, 2, 3. In D = 1, 2, they coincide with the Weyl fermions, whereas
in D = 3 they contain a couple of Weyl fermions with opposed helicities. Note that this scheme
can also be extended to simulate exotic Weyl fermions of any arbitrary spin s [51]. In addition,
our quantum simulator also allows us to make these fermions massive, thus reaching the desired
Hamiltonian in equation (12). The idea is to control the on-site Raman transitions such that
3= β listed in table 4. In such a case, the Rabi frequency plays the role of the mass mc2

= 2�,
and the effective Hamiltonian in equation (14) becomes

H d
DI(pd)= cαd

· pd + mc2β. (15)

Therefore, this quantum simulator can explore both the non-relativistic and the ultra-relativistic
limits of the theory.

5.1.2. The Wilson and Kaplan fermions. From a lattice gauge theory perspective, the
additional fermions around Kd 6= 0 are spurious doublers that modify the physics at long
wavelengths. A partial solution is to give the doublers a very large mass mKdc2, so that they
effectively decouple from the low-energy physics of the Dirac fermion at Kd = 0, namely
mKd � mK0 . We must find a way of engineering a momentum-dependent mass that differs from
the global on-site Raman mass discussed above. By combining the laser-assisted tunneling listed
in table 4, with the additional terms Ũν = ieiϕνβ [29], the momentum-space Hamiltonian H in
equation (13) becomes H + H̃ , where

H̃ =

∑
k∈BZ

9
†
k

(∑
ν

2t̃ν cosϕν sin kνI− 2t̃ν sinϕν cos kνβ

)
9k, (16)

where t̃ν are the additional laser-assisted tunneling strengths. Once more, for the π -flux phases
ϕν = π/2, the effective Hamiltonian in equation (12) is modified to

H d
DI(pd)= cαd

· pd + mKdc2β, mKd = m −

∑
ν

(−1)dνmν, (17)

where mνc2
= 2t̃ν . Let us emphasize that our quantum simulator provides complete control over

the different masses, since m depends on the on-site Raman transition strengths, whereas mν

depends on the assisted-hopping strength and thus on the laser power. In particular, when
these parameters fulfill

∑
ν mν = m (i.e. mx = m for D = 1, mx + m y = m for D = 2 and

mx + m y + mz = m for D = 3), we obtain a single massless Dirac fermion at Kd = 0, whereas
the remaining doublers have been boosted to much higher energies. We thus achieve a quantum
simulator of the so-called Wilson fermions of any spatial dimension D = 1, 2, 3 [52].

We note that this decoupling between a single massless Dirac fermion and its doublers is
not in conflict with the Nielsen–Ninomiya theorem since the introduced mass terms explicitly
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break the aforementioned symmetries. This is particularly important in odd dimensions, where
the theory does not preserve chiral symmetry, a fundamental concept in the standard model
classifying right/left-handed particles 019 = ±9. To preserve such symmetries, the concept
of Kaplan fermions arises [53], namely massless Dirac fermions bound to a lower-dimensional
domain wall located at r∗

⊥
where the Wilson mass gets inverted mKd = −|m| + 2|m|θ(r⊥ − r∗

⊥
).

Since we have complete experimental access to the parameters of the Wilson mass, it is also
possible to tune them such that

∑
ν mν > m and thus the mass mKd < 0 gets inverted, and one

gets a lower-dimensional massless fermion bound to the region where this mass inversion takes
place.

Let us close this subsection by underlining the versatility of our setup as a quantum
simulator of a diverse set of relativistic lattice fermions. Not only can we implement massless
Dirac fermions of any dimensionality, thus exploring their connection to Weyl fermions, but
also we can control their mass. This leads us to the concept of massive Dirac fermions, and the
notorious Wilson and Kaplan fermions dealing with the fermion doubling problem. Interestingly
enough, the physics behind these high-energy particles is intimately related to materials known
as topological insulators [46], which are the subject of the following subsection. In fact, it
is always possible to find a Kaplan-fermion representative within each class of topological
insulators [54].

5.2. A toolbox for topological insulators

Topological insulators correspond to fermionic gapped phases of matter that are insulating in the
bulk but allow robust transport along the boundaries [46]. This robustness is due to the existence
of gapless edge excitations which are protected against disorder by topological arguments (i.e.
they avoid Anderson localization [55] and thus transport charge even in the presence of strong
disorder). The paradigmatic example of a topological insulator is the integer quantum Hall
effect (IQHE) [46, 56], a 2D electron gas subjected to a strong magnetic field that displays
a robust quantization of the transverse conductivity σxy = n e2/h, where n ∈ Z is related to the
topological invariant known as the Chern number [57]. In this case, chiral electrons bound to the
1D edges of the sample avoid back-scattering processes and are thus immune to disorder [58].
Remarkably enough, the IQHE is only one instance of a large list of topological insulating
phases. Each class can be characterized by a set of discrete fundamental symmetries [59] and a
certain topological invariant; see table 5. Note that we have excluded the topological superfluids
from this table, since their quantum simulation would require a pairing mechanism and thus
goes beyond the scope of this work [60, 61]. We now discuss how our quantum simulator can
reproduce the properties of many of these fascinating phases of matter following two possible
strategies.

5.2.1. Bottom-up approach. In this case, one designs the ultracold-atom Hamiltonian so that it
simulates a particular model belonging to the desired class of topological insulators. Therefore,
a different experiment would be required for each class-oriented simulator. Two representative,
yet reasonably simple examples are the Su–Schrieffer–Hegger model of polyacetylene [62],
which is related to the D = 1 BDI topological insulator or the π -flux phase of the fermionic
Creutz ladder [63], which is related to the D = 1 AIII topological insulator. The former can
be simulated by using a one-component Fermi gas in a 1D dimerized optical superlattice, thus
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Table 5. Periodic table of topological insulators. The underlying quadratic
Hamiltonians H =

∑
αβ 9

†
αHαβ9β + h.c., where α, β represent the lattice sites

and the internal states of the fermion, can be classified according to the
fundamental symmetries of time-reversal T , charge conjugation C and a
combination of both S = T C. The values T = 0, C = 0, S = 0 are assigned
to Hamiltonians that break the symmetry, whereas T = ±1, C = ±1, S = 1
correspond to symmetry-preserving Hamiltonians, where T 2

= ±1, C2
= ±1,

S2
= +1. There are six possible combinations for non-interacting fermionic

Hamiltonians (and another four for pairing fermionic Hamiltonians), which lead
to the classes listed in the first column. For each dimension d, there are three
possible topological insulators among all these classes, and they are classified
according to the integer Z or binary Z2 nature of a certain topological invariant.
In the column labeled QS, we list the particular instances that can be simulated
with our superlattice-based quantum simulator.

Class Name T C S d = 1 QS d = 2 QS d = 3 QS

A Unitary 0 0 0 0 Z Yes 0
AIII Chiral unitary 0 0 1 Z Yes 0 Z Yes
AI Orthogonal +1 0 0 0 0 0
BDI Chiral orthogonal +1 +1 1 Z ? 0 0
AII Symplectic −1 0 0 0 Z2 Yes Z2 Yes
CII Chiral symplectic −1 −1 1 2Z Yes 0 Z2 Yes

obtaining

HBDI =

∑
n

(t − δ)c†
2n−1c2n + (t + δ)c†

2nc2n−1 + h.c., (18)

where δ quantifies the different tunneling strengths between superlattice sites [36]. On the other
hand, the Creutz ladder is described by

HAIII =

∑
n

K e−iθa†
n+1an + K eiθb†

n+1bn + K b†
n+1an + K a†

n+1bn + Ma†
nbn + h.c., (19)

where K ,M are tunneling strengths and θ is a magnetic flux piercing the ladder. This requires
two Zeeman sublevels to be assigned to the fermion species an, bn and a 1D laser-assisted
tunneling Ua1 = diag{e−iθ , eiθ

}, Ũa1 = iσx , together with the Raman on-site operator of strength
M [64].

It is possible to continue this approach, proceeding thus to higher dimensions and
different topological classes. Prominent examples would be the honeycomb time-reversal
breaking Haldane model [65, 66] for the D = 2 topological insulator in class A or the time-
reversal Kane–Mele model in the honeycomb lattice in class AII [67] or other optical-lattice
geometries [26, 68, 69]. Rather than following this route, we shall explore a different approach
that is better suited to the superlattice-based simulator introduced above. Indeed, we shall argue
that this quantum simulator allows the reproduction of most of the topological phases in table.

5.2.2. Dimensional-reduction approach. In this case, the starting point is the quantum
simulator of D-dimensional Kaplan fermions in equation (17). Depending on the particular
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Table 6. Quantum simulator of topological insulators. We list different
realizations of Wilson-fermion Hamiltonians in equation (20) that directly lead
to several classes of topological insulators. Each class, characterized by the
discrete symmetries T , C,S, where T 2

=2T2
∗

T = ±1 and C2
=2C2

∗

C = ±1.
In addition, each class has a Wilson-fermion representative with a particular
choice of the Clifford algebra αν, β that depends on the dimensionality D and
the corresponding symmetries. We also highlight the topological insulators that
can be obtained by dimensional reduction from a parent Hamiltonian, such as
AII, D = 3 ↪→ AII, D = 2, or A, D = 2 ↪→ AIII, D = 1. We also list the unitary
matrices 2T,2C involved in the definition of the discrete symmetries.

Class D αx αy αz β 2T 2C T C S

CII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σz ⊗ I2 iI⊗ σy iσx ⊗ σy −1 −1 1
AIII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σy ⊗ I2 iI⊗ σy iσx ⊗ σy 0 0 1
AII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σx ⊗ I2 iI⊗ σy iσx ⊗ σy −1 0 0
↪→ AII 2 σz ⊗ σx σz ⊗ σy σx ⊗ I2 iI⊗ σy iσx ⊗ σy −1 0 0
A 2 σx σy σz I iσx 0 0 0
↪→ AIII 1 σx σz I iσx 0 0 1
CII 1 σz ⊗ σx σz ⊗ I2 iI⊗ σy iσx ⊗ σy −1 −1 1

choice of Dirac matrices, the inverted-mass regime will correspond to a different class of
topological insulators. In addition, in some situations, a dimensional reduction [54] that amounts
to an increase of the optical-lattice depth in one direction, connects us to a different lower-
dimensional class. We rewrite the full Hamiltonian

Heff =

∑
d,pd

9†(pd)H
d
DI9(pd), H d

DI(pd)= cαd
· pd + mKdc2β, (20)

where the Wilson mass is mKd = m −
∑

ν(−1)dνmν and where the Dirac matrices αd
ν , β will be

selected so that the T , C,S symmetries are explicitly broken or preserved. This translationally
invariant Hamiltonian preserves these symmetries when the following conditions are met:

T : 2
†
T

[
H d

DI(−pd)
]∗
2T = +H d

DI(pd), (21)

C : 2
†
C

[
H d

DI(−pd)
]∗
2C = −H d

DI(pd), (22)

S :
[
2

†
T

]∗

2
†
C H d

DI(pd)2C2
∗

T = −H d
DI(pd), (23)

where2T,2C are some unitary matrices. In table 6, we list the symmetry properties of different
Kaplan-fermion Hamiltonians. It is important to note that these symmetries might correspond to
the exact symmetries in nature (e.g. when considering the hyperfine levels {|F,mF〉, |F,−mF〉},
the time-reversal symmetry given by θT = iσy exactly corresponds to time-reversal symmetry in
nature). Conversely, these symmetries might otherwise correspond to the algebraic properties of
the effective Hamiltonian. Let us emphasize, however, that as far as the disorder respects such
symmetries, the robustness of the edge excitations is guaranteed. It would be of the greatest
interest to design disorder breaking or preserving such symmetries, generalizing the studies on
Anderson localization [6, 7].
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In table 6, we have listed the different topological insulators that can be simulated with
our scheme. As shown in [29] for the particular case of 3D AII insulators, the laser parameters
can be controlled so that an odd number of Wilson masses are inverted. This mass inversion
occurs through a gap-closing point and thus a quantum phase transition between a normal
band insulator and a topological one occurs. This new phase is characterized by an odd
number of massless fermionic excitations (i.e. massless Dirac fermions) bound to the boundaries
of the system, and protected by a topological invariant. In the 3D case, this corresponds
to an axion term that modifies the response of the system according to the so-called axion
electrodynamics [70]. Remarkably, table 6 contains all of the relevant information to explore
the exotic properties of different topological insulators in a superlattice-based experiment with
ultracold atoms.

6. Conclusions

In this paper, we have presented a concrete proposal for the realization of laser-assisted
tunneling in a spin-independent optical lattice trapping a multi-spin atomic gas. Remarkably
enough, it is possible to tailor a wide range of spin-flipping hopping operators, which opens
an interesting route to push the experiments beyond the standard superfluid–Mott insulator
transition. The scheme we have presented combines bi-chromatic lattices and Raman transfers,
to adiabatically eliminate the states trapped in the middle of each lattice link. These states act
as simple spectators that assist the tunneling of atoms between the main minima of the optical
lattice. This mechanism is clearly supported by our numerical simulations of the time evolution
of the atomic population between the different optical-lattice sites. Even though we focus on
fermionic 40K, we stress that the ingredients of this proposal do not rely on the atomic statistics
and could thus be used for all the alkalis.

We believe that such a device could have important applications in the quantum simulation
of non-interacting lattice field theories, which are characterized, in their discrete version, by on-
site and nearest-neighbor hopping Hamiltonians. Once the fields of the theory to be simulated
are mapped into the atomic hyperfine states, the desired operators correspond to population
transfers between such levels. The former can be realized by standard microwaves, whereas the
latter might be tailored with the laser-assisted schemes described here.

Even though interactions are at the heart of a plethora of interesting effects, non-interacting
fermionic theories already encompass a number of phenomena whose experimental realization
would be of the greatest interest. In the second part of the paper, we analyzed interesting
physical models that could benefit from our proposal. In particular, we focused on relativistic
field theories and showed that there is a zoo of relativistic lattice fermions that can be addressed
with this platform. In addition, we presented a toolbox to design particular assisted tunneling
processes that lead us to the physics of topological insulators. Remarkably enough, this quantum
simulator turns out to be extremely versatile, since most of the phases of the periodic table of
topological insulators can be addressed.

Finally, let us comment on the possible combination of this proposal with the control
of interactions already achieved in cold-atom gases. This might eventually boost experiments
into regimes where classical numerical simulations fail, which we leave as an outlook for
future work. In particular, the problem of robustness of topological orders (classified for non-
interacting theories) with respect to interactions is one of the most important challenges of the
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modern condensed matter [71]. We believe that a direct combination of our setup with Feshbach
resonances will provide important insights into this unsolved question.
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