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Abstract: This paper studies a singular perturbation result for a class of generalized diffusive logistic equa-
tions, dLu = uh(u, x), under non-classicalmixed boundary conditions,Bu = 0 on ∂Ω.Most of the precursors
of this result dealtwithDirichlet boundary conditions and self-adjoint secondorder elliptic operators. Toover-
come the new technical difficulties originated by the generality of the new setting, we have characterized the
regularity of ∂Ω through the regularity of the associated conormal projections and conormal distances. This
seems to be a new result of a huge relevance on its own. It actually complements some classical findings of
Serrin, Gilbarg and Trudinger, Krantz and Parks, Foote, and Li and Nirenberg concerning the regularity of the
inner distance function to the boundary.
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1 Introduction
The main goal of this paper is to analyze the limiting behavior as d ↓ 0 of the positive solutions of

{
dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of ℝN , N ≥ 1, d > 0 is a positive constant, and the differential operator L is
uniformly elliptic in Ω and has the form

L = −div(A∇ ⋅ ) + b∇ + c, (1.2)

with A ∈Msym
N (C

1(Ω̄)), b ∈M1×N(C(Ω̄)) and c ∈ C(Ω̄). Given any Banach space X and two integers n,m ≥ 1,
Mn×m(X) stands for the vector space of the matrices with n rows and m columns with entries in X. Naturally,
we setMn(X) :=Mn×n(X), andM

sym
n (X) denotes the subset of symmetric matrices.

Except in Section2, ∂Ω is assumed to be an (N − 1)-dimensionalmanifold of classC2 consisting of finitely
many (connected) components

Γ jD, 1 ≤ j ≤ nD, ΓkR, 1 ≤ k ≤ nR,
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for some integers nD, nR ≥ 1, and we denote by

ΓD :=
nD
⋃
j=1

Γ jD, ΓR :=
nR
⋃
j=1

Γ jR,

the Dirichlet and Robin portions of ∂Ω = ΓD ∪ ΓR. It should be noted that either ΓD or ΓR might be empty.
Associated with this decomposition of ∂Ω, arises in a rather natural way the boundary operatorB defined by

Bu =
{{
{{
{

Du := u on ΓD,

Ru := ∂u
∂ν + βu on ΓR,

for every u ∈ W2,p(Ω), p > N,

where β ∈ C(∂Ω), n stands for the outward normal vector field along ∂Ω, and ν := An is the conormal vector
field associated to L.

As far as concerns the nonlinearity of (1.1), the function h(u, x) is assumed to satisfy the following:
(H1) h : ℝ × Ω̄ → ℝ is of class C1 in u ≥ 0 and continuous in x ∈ Ω̄.
(H2) ∂uh(u, x) < 0 for all u > 0 and x ∈ Ω̄.
In addition, throughout this paper, we will impose that, for some d > 0,
(H3) there exists a positive constant M > 0 such that h(M, x) < dc(x) for all x ∈ Ω̄.
In particular, we eventually can assume (H3) with d = 0, i.e., that
(H4) there exists a positive constant M > 0 such that h(M, x) < 0 for all x ∈ Ω̄.

Note that (H4) implies (H3) for sufficiently small d > 0, regardless the sign of c(x). A prototypic example
of admissible h, for which (1.1) becomes a generalized diffusive logistic equation, is given by

h(u, x) = ℓ(x) − a(x)f(u), u ∈ ℝ, x ∈ Ω̄,

where ℓ ∈ C(Ω̄) can change of sign, a ∈ C(Ω̄) and f ∈ C1(ℝ) satisfy minΩ̄ a > 0, f(0) = 0, f 󸀠(u) > 0 for all u > 0
and limu↑∞ f(u) = +∞. For this choice, it is easily seen that (H1) and (H2) hold. As far as concerns (H3), note
that, for every d > 0,

h(M, x) = ℓ(x) − a(x)f(M) ≤ max
Ω̄
ℓ − f(M)min

Ω̄
a < dmin

Ω̄
c, x ∈ Ω̄,

provided M = M(d) > 0 is sufficiently large, because f(M) ↑ ∞ as M ↑ ∞. Thus, (H3) holds for all d > 0.
Moreover, by taking a sufficiently large M > 0 so that f(M) > maxΩ̄ ℓ/minΩ̄ a, it is clear that (H4) also holds.

Under the general conditions (H1), (H2) and (H4), it is easily seen that themaximal non-negative solution
of the non-spatial equation uh(u, x) = 0,

Θh(x) :=
{
{
{

0 if h(ξ, x) < 0 for all ξ > 0,
ξ if ξ > 0 exists such that h(ξ, x) = 0,

is continuous in Ω̄. Actually, for every x ∈ Ω̄, Θh(x) is the unique non-negative linearly stable, or linearly
neutrally stable, steady state of the ordinary differential equation

u󸀠(t) = u(t)h(u(t), x), t ≥ 0,

which is throughout referred as the kineticmodel associated to (1.1).
According to the next theorem, which is the main existence result of this paper, for sufficiently small

d > 0, (1.1) possesses, at most, one positive solution. Throughout this paper, for any given V ∈ C(Ω̄), we will
denote by σ1[dL + V;B, Ω] the principal eigenvalue of the linear eigenvalue problem

{
dLφ + V(x)φ = σφ in Ω,
Bφ = 0 on ∂Ω,

i.e., its lowest real eigenvalue. According to [31, Theorem 7.7], it is algebraically simple and it provides us
with the unique eigenvalue that is associated with a positive (principal) eigenfunction.
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Theorem 1.1. Assume that h(u, x) satisfies (H1), (H2) and (H3) for some d > 0. Then problem (1.1) has a
positive solution u ∈ ⋂p>N W2,p(Ω) if and only if

σ1[dL − h(0, ⋅ );B, Ω] < 0.

Moreover, it is unique if it exists.

Note that it complements [19, Lemma 3.4]. The main goal of this paper is to establish the next singular
perturbation result, where θ{d,h} stands for the maximal non-negative solution of (1.1).

Theorem 1.2. Assume that h satisfies (H1), (H2) and (H4), and let Γ+R denote the union of the components of
ΓR, where Θh is everywhere positive. Then, for any compact subset K of Ω ∪ Γ+R ∪ Θ

−1
h (0),

lim
d↓0

θ{d,h} = Θh uniformly in K.

In other words, the maximal non-negative solution of (1.1) approximates Θh as d ↓ 0 uniformly on compact
subsets of Ω ∪ Γ+R ∪ Θ

−1
h (0).

To the best of our knowledge, the most pioneering version of this result goes back to [5], where the
singular perturbation problem

{
−d∆u = u(1 − a(x)u2) in Ω,
u = 0, on ∂Ω,

(1.3)

with Ω and a(x) of class C∞ and minΩ̄ a > 0, was analyzed in dimension N ≤ 3. Precisely, in [5], Berger and
Fraenkel established that for sufficiently small d > 0, problem (1.3) possesses a unique smooth positive solu-
tion ud(x), which converges to 1/√a(x) as d ↓ 0, outside a boundary layer of width O(√d). Moreover, a global
continuation of ud in d was performed up to the critical value of the diffusion, where ud bifurcates from
u = 0. The main technical tool of [5] relies on the method of matched asymptotic expansions, applied to
approximate the positive solution. The global existence of the positive solution was derived from some clas-
sical results in critical point theory. An abstract version of this singular perturbation result for autonomous
equations was given by the same authors in [6]. Two years later, De Villiers [10] sharpened these findings
up to cover a general class of C∞ functions, g(u, x), instead of u − a(x)u3. Almost simultaneously, Fife [16],
and Fife and Greenlee [17] extended these results to a general class of nonhomogeneous Dirichlet boundary
value problems, including

{
−d div(A(x, d)∇u) = g(u, x, d) in Ω,
u = 0 on ∂Ω,

(1.4)

with Ω, A(x, d) and g(u, x, d) of class C∞ and such that, for every x ∈ Ω̄, the equation g(u, x, 0) = 0 has a
solution u0(x), forwhich ∂ug(u0(x), x, 0) < 0. Thisnegativity entails the linearized stability of the equilibrium
solution u0(x) of the associated kinetic model

u󸀠(t) = g(u(t), x, 0), t ≥ 0, (1.5)

for all x ∈ Ω̄. Much like in [5], the singular perturbations results of [16, 17] are based on a bound for the
inverse of the linearization about the formal solution constructed with the matched asymptotic expansion.
Fife and Greenlee [17] also analyzed the more general case when g(u, x, 0) = 0 possesses two C∞-curves of
solutions, u0,1(x) and u0,2(x), x ∈ Ω̄, which are linearly stable as steady-state solutions of (1.5) and separated
away from each other.

Essentially, all these monographs adapted the former asymptotic expansion methods developed in the
context of ODEs by the Russian School (e.g., see [7, 40]) to a PDE’s framework. Naturally, working with ODEs
many of the underlying technicalities can be easily overcome.

The first papers where some intrinsic techniques of the theory of PDEs, like themethod of sub and super-
solutions, were used to obtain singular perturbation results were those of Howes [22–24]. As a result, the
previous restrictive regularity assumptions were relaxed. Precisely, Howes [23] considered a general class of
problems, including (1.4) with A = I and g(u, x, d) = g(u, x) of class Cm for sufficiently large m ≥ 1. Essen-
tially, assuming that Ω is sufficiently smooth and that, for every x ∈ Ω̄, g(u0(x), x) = 0 for some smooth u0(x)
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which is linearly stable as an equilibrium of (1.5), Howes found some sufficient conditions for the existence
of a classical solution ud of (1.4) such that

lim
d↓0

ud = u0 uniformly on compact subsets of Ω.

Almost simultaneously, Howes [22] extended these results to cover the following very special class of Robin
problems:

{{
{{
{

−d∆u = g(u, x) in Ω,
∂u
∂ν (x) + β(x)u(x) = 0 on ∂Ω,

(1.6)

where β ≥ 0 on ∂Ω and β ∈ C2,μ(∂Ω) for some μ ∈ (0, 1). As a consequence, e.g., of [22, Theorem 2.1], Howes
could infer in [22, Example 2.2] that in the special case when g(u) = u − u3, u0,± ≡ ±1 are I0-stable zeroes of
g(u, x) = 0, because g󸀠(±1) = −2 < 0, and therefore (1.6) has two solutions ud,±(x), such that

lim
d↓0

ud,±(x) = ±1 uniformly in Ω̄.

In these papers, the regularity of the support domain Ω is imposed through the existence of a function
F ∈ C2,μ(ℝN ;ℝ) such that |∇F(x)| = 1 for all x ∈ ∂Ω and

Ω = {x ∈ ℝN : F(x) < 0}, ∂Ω = F−1(0). (1.7)

Incidentally, in the papers of Howes the problem of ascertaining whether, or not, a function F satisfying (1.7)
exists, with the required regularity, remained open. Except for some pioneering results of Oleı̆nik [35–37] for
linear problems with transport terms, [22] seems to be the first paper dealing with the singular perturbation
problem for a semilinear equation under Neumann or (classical) Robin boundary conditions with β ≥ 0. The
singular perturbation results of Howes for essential nonlinearities involving transport terms, like those of
[22, Sections 3 and 4] and [24], remain outside the general scope of this paper.

Some time later, these pioneering findings were slightly, and occasionally substantially, improved by
Angenent [4], De Santi [11], Clément and Sweers [9], and Kelley and Ko [26], among many others, who
dealt with the singular perturbation problem under Dirichlet boundary conditions through some comparison
techniques based on the synthesis of Amann [1, 2], Sattinger [38] and Matano [33].

As shown by the simplest examples of truly spatially heterogeneous semilinear elliptic equations in the
context of population dynamics, themost serious shortcoming of the classical singular perturbation theory is
caused by the fact that the curves, u0,j(x), 1 ≤ j ≤ q, q = 1, 2, solving the equation g(u, x) = 0 must preserve
their stability character for all x ∈ Ω̄, regarded as steady-state solutions of (1.5). For example, even in the
simplest case situation when g(u, x) inherits a logistic structure,

g(u, x) = ℓ(x)u − a(x)u2

for some functions ℓ, a ∈ C(Ω̄) such that ℓ(x) changes sign in Ω and minΩ̄ a > 0, most of the assumptions
imposed in the previous references fail to be true. Indeed, although u0,1(x) ≡ 0 and u0,2(x) := ℓ(x)/a(x),
x ∈ Ω̄,might provideuswith two smooth curves of g(u, x) = 0 for sufficiently smooth ℓ(x) and a(x), it becomes
apparent from ∂ug(u, x) = ℓ(x) − 2a(x)u that
∙ u0,1(x) = 0 is linearly stable, as a steady-state solution of (1.5) if and only if ℓ(x) < 0,
∙ u0,2(x) = ℓ(x)/a(x) is linearly stable if and only if ℓ(x) > 0.

Therefore, the curves u0,i(x), i = 1, 2, cannot satisfy the requirements of the previous references, because
they have a different stability character if ℓ(x) ̸= 0. Even considering the ‘mixed interlaced branches’ con-
structed from u0,1(x) and u0,2(x) through

ũ0,1(x) := max{u0,1(x), u0,2(x)}, ũ0,2(x) := min{u0,1(x), u0,2(x)}, x ∈ Ω̄,

it is apparent that ũ0,1(x) is linearly stable if and only if ℓ(x) ̸= 0, and hence the classical theory cannot be
applied neither, because the linearized stability fails at ℓ−1(0) and, in general, these curves are far from

Brought to you by | Universidad Complutense Madrid 



S. Fernández-Rincón and J. López-Gómez, Singular Perturbations | 5

Figure 1: Plots of u 󳨃→ g(u, xi) := ℓ(xi)u − a(xi)u2, i ∈ {1, 2, 3}, for a function ℓ ∈ C(Ω̄) that changes sign in Ω with ℓ(x1) > 0,
ℓ(x2) = 0 and ℓ(x3) < 0. In the central case, (B), u = 0 must be a double zero of g( ⋅ , x2). In each of these plots we have
superimposed the 1-dimensional dynamics of (1.5) on the horizontal axis.

smooth. In these degenerate situations, not previously considered in the specialized literature, Furter and
López-Gómez [20] established that the unique positive solution ud of

{
−d∆u = u(ℓ(x) − a(x)u) in Ω,
u = 0 on ∂Ω,

satisfies
lim
d↓0

ud = ℓ+/a = max{0, ℓ/a} = ũ0,1 uniformly on compact subsets of Ω

(see [20, Theorem 3.5]), which suggests the validity of the next general principle in the context of (1.1):

Principle of Singular Perturbation (PSP). If for every x ∈ Ω̄, the associated kinetic problem pos-
sesses a unique linearly stable, or linearly neutrally stable, non-negative steady-state solution Θ(x),
which is somewhere positive in Ω, then, for sufficiently small d > 0, the associated parabolic prob-
lem possesses a unique positive steady-state solution θd. Moreover, limd↓0 θd = Θ uniformly on any
compact subset of Ω, where Θ(x) is continuous.

This is widely confirmed by Theorems 1.1 and 1.2. The same principle was already shown to hold under
homogeneous Neumann boundary conditions by Hutson et al. [25, Lemma 2.4], as well as in the context of
competitive systems (see [25, Theorem 4.1] and [13, Theorem 1], [15, Theorem 1.2], [14, Theorem 4.1] for
some special cases when L = −∆ or b = 0).

A problem of a different nature was studied by Nakashima, Ni and Su [34] for the special case when
L = −∆ and g(u, x) = a(x)f(u), for the appropriate choices of the functions a(x) and f(u), under Neumann
boundary conditions. In such case, the steady-state solutions of (1.5) are spatially homogeneous, though
their linearized stabilities, regarded as equilibria of (1.5), vary with the location of x in Ω̄ according to the
sign of a(x). In spite of these differences, it turns out that this model also satisfies the Principle of Singular
Perturbation formulated above (see [34, Theorem 1.3]).

Our Theorem 1.2 provides us with an extremely general version of all previous existing singular pertur-
bation results for Kolmogorov nonlinearities of the form g(u, x) = uh(u, x), where h(u, x) satisfies (H1), (H2)
and (H4). Actually, it is the first general result available for secondorder uniformly elliptic operators,L, under
general mixed boundary conditions of non-classical type. As the general linear existence theory developed
in [31, Section 4.6] is only available for operators of the form (1.2), in this paper the principal part of L is
required to be in divergence form. Nevertheless, even imposing this restriction, Theorem 1.2 is substantially
sharper than most of the previous singular perturbation results for the generalized logistic equation.

The proof of Theorem 1.2 is based on themethod of sub and supersolutions, which relies on the theorem
of characterization of the StrongMaximumPrinciple of López-Gómez andMolina-Meyer [30, 32], andAmann
and López-Gómez [3]. A comparison argument provides uswith a global uniform supersolution of (1.1) on Ω̄,
while the construction of the appropriate local subsolutions, combined with a compactness argument, pro-
vides us with the necessary lower estimates to get Theorem 1.2. The main technical difficulties that we must
overcome in the proof of Theorem 1.2 come from the following facts:
(I) The principal eigenfunctions associated toL in interior balls do not enjoy the nice symmetry properties

of the principal eigenfunctions of −∆, which take the maximum on the center of these balls. This dif-
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ficulty is overcome through a technical device introduced in [29], which facilitates the construction of
local subsolutions in the general non-autonomous case.

(II) A more subtle difficulty relies on the construction of a global supersolution of (1.1) sufficiently close
to Θh, which is far from obvious when dealing with general mixed boundary conditions. As no previous
singular perturbation result is available under mixed boundary conditions, these difficulties have been
overcomed for the first time here.

(III) In our general setting, the coefficient function β(x) can change sign. Thus, we must perform a prelim-
inary change of variables for transforming (1.1) into an equivalent problem of the same nature with
β ≥ 0.

The resolution of the technical difficulties sketched in (II) and (III) relies on the next theorem, which
might be of independent interest in differential geometry.

Theorem 1.3. Assume thatΩ is an open subdomain of ℝN such that ∂Ω is a topological (N − 1)-manifold. Then,
for every integer r ≥ 2, the next assertions are equivalent:
(a) ∂Ω is of class Cr.
(b) ∂Ω admits an outward vector field ν ∈ Cr−1(∂Ω;ℝN) and, for each of these vector fields, there exists an open

subset U of ℝN , with ∂Ω ⊂ U, and a function Πν ∈ Cr−1(U; ∂Ω) such that
(i) Πν(x) = x for all x ∈ ∂Ω,
(ii) Πν(x − λν(Πν(x))) = Πν(x) for every x ∈ U and λ ∈ ℝ such that x − λν(Πν(x)) ∈ U. Thus,

∂Πν
∂ν(Πν(x))

(x) = 0 for all x ∈ U.

Moreover, the function dν : U→ ℝ defined by

dν(x) :=
{
{
{

|x − Πν(x)|/|ν(Πν(x))| if x ∈ U ∩ Ω,
−|x − Πν(x)|/|ν(Πν(x))| if x ∈ U \ Ω,

(1.8)

is of class Cr.
(c) Property (b) holds for some outward vector field ν ∈ Cr−1(∂Ω;ℝN).
(d) ∂Ω admits an outward vector field ν ∈ Cr−1(∂Ω;ℝN) and, for each of these vector fields, there exists an open

subset U of ℝN , with ∂Ω ⊂ U, and a function ψ ∈ Cr(U;ℝ) such that ψ(x) < 0 for all x ∈ Ω ∩ U, ψ(x) > 0
for all x ∈ U \ Ω̄ and

min
x∈∂Ω

∂ψ
∂ν (x) > 0.

(e) Property (d) holds for some outward vector field ν ∈ Cr−1(∂Ω;ℝN).
(f) There exist an open subset U of ℝN , with ∂Ω ⊂ U, and a function Ψ ∈ Cr(U;ℝ) such that Ω = {x ∈ U :

Ψ(x) < 0}, ∂Ω = Ψ−1(0), and |∇Ψ(x)| = 1 for all x ∈ ∂Ω.

A vector field ν on ∂Ω is said to be an outward vector field if there exists ε0 > 0 such that

x + εν(x) ∈ ℝN \ Ω̄ and x − εν(x) ∈ Ω

for all x ∈ ∂Ω and 0 < ε < ε0. The function Πν, whose existence is established by part (b), will be throughout
called the projection onto the boundary along the vector field ν, or simply coprojectionwhen ν is the conormal
vector field. Naturally, the distance to the boundary along ν, or conormal distance, is defined through

distν(x, ∂Ω) :=
|x − Πν(x)|
|ν(Πν(x))|

, x ∈ U,

where | ⋅ | stands for the Euclidean norm in ℝN . According to Theorem 1.3, ∂Ω is of class Cr if and only if for
some outward vector field ν ∈ Cr−1, the function distν is of class Cr in U \ ∂Ω. In part (d), the function ψ is
given essentially by −distν in U ∩ Ω. Note that, by the continuity of ψ on U, ψ(x) = 0 for all x ∈ ∂Ω.

According to [31, Lemma 2.1], using a partition of the unity of class Cr, or a cut-off function, the function
ψ(x) in part (d), as well as Ψ in part (f), can be assumed to be globally defined in a neighborhood of Ω̄, or even
inℝN , and in such caseψ(x) < 0 (resp. Ψ(x) < 0) for all x ∈ Ω andψ(x) > 0 (resp. Ψ(x) > 0) for all x ∈ ℝN \ Ω̄.
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Note that (f) is the condition used in some of the classical papers discussed above, with F := Ψ. It is
astonishing that, in spite of the equivalence between (a) and (f), yet the existence of Ψ of class Cr satisfying
(f) is far from adopted in the specialized literature as the most natural, and simple, definition for a bounded
domain of classCr. Indeed, the usual definition in themost paradigmatic textbooks, like [21] or [12], involves
local charts at any point of the boundary, instead of theminimal requirements of (e). Theorem 1.3might help
to clarify all these – always very delicate – regularity issues, though, as pointed out to the authors by the
reviewer: “It is legitimate to ask why a smooth domain is not defined through a smooth embedding. But it
seems tome that to define a differential structure on amanifold you need the concept of local chart and atlas.
So you cannot escape from the definition with local charts”.

Nevertheless, to the best of our knowledge, the existence of the conormal projection and the conormal
distance constructed in Theorem 1.3, as well as the proof of the fact that they inherit the regularity of ∂Ω,
seem completely new findings. Astonishingly, the Math. Sci. Net. of the Amer. Math. Soc. was unable to cap-
ture any entry with the words conormal distance, or conormal projection, though a huge list was given with
conormal. Thus, Theorem 1.3 might be introducing these concepts into the debate of the characterization of
the regularity of ∂Ω in terms of the regularity of the associated distance function. Note that C2 is the minimal
regularity of ∂Ω, required to guarantee that the distance function through the ‘nearest point’ is well defined
(see [27, Example 4]).

Actually, although Gilbarg and Trudinger [21, Lemma 14.16] show that the distance function to the
boundary, dist(x, ∂Ω), is of class Cr, r ≥ 2, if ∂Ω is of class Cr, and this result was later sharpened up
to cover the case r = 1 by Krantz and Parks [27], even the problem of establishing the regularity of ∂Ω
from the regularity of dist(x, ∂Ω) remains open. These results actually sharpened a pioneering finding of
Serrin [39], which established the Cr−1-regularity of dist(x, ∂Ω) from the Cr-regularity of ∂Ω. Some time
later, Foote [18] generalized some of the results of [27] by establishing that, for every compact submanifold
M of class Ck, k ≥ 2, there exists a neighborhood U such that the distance function d(x,M) is Ck in U \M.
Under these assumptions, the fact that M has a neighborhood U with the unique nearest point property, as
well as the fact that the projection map Π: U → M is Ck−1, relies on the tubular neighborhood theorem with
the added observation that Π factors through the map that creates the neighborhood. More recently, almost
twenty years later, Li and Nirenberg [28] established that if Ω is a domain in a smooth complete Finsler
manifold, and G stands for the largest open subset of Ω with the nearest point property in the Finsler metric,
then the distance function from ∂Ω is in C

k,a
loc (G ∪ ∂Ω), k ≥ 2 and 0 < a ≤ 1, if ∂Ω is of class Ck,a. But no

converse result, within the vain of the characterization provided by Theorem 1.3, seems to be available in
the literature.

This paper is distributed as follows. Section 2 proves Theorem 1.3, Section 3 uses Theorem 1.3 to reduce
the general case when β changes sign to the classical case when β ≥ 0. This simplifies substantially the
underlying analysis and, in particular, the proof of Theorem1.2. Section 4 establishes some importantmono-
tonicity properties of the associated principal eigenvalues with respect to the domain and the potential,
Section 5 proves Theorem 1.1 and derives from it some important monotonicity properties, and Section 6
delivers the proof of Theorem 1.2.

2 Proof of Theorem 1.3
It suffices to prove the following implications: (a) implies (b), (b) implies (c), (d) and (f), (c), or (d), or (f),
implies (e), and (e) implies (a). First, we will prove that (a) implies (b). Note that the normal vector field is of
class Cr−1 as soon as ∂Ω is of class Cr. Now, consider a field ν satisfying the requirements of part (b). For each
ε > 0, let us denote by Qν ∈ Cr−1((−ε, ε) × ∂Ω;ℝN) the function defined by

Qν : (−ε, ε) × ∂Ω → Uε := ImQν ⊂ ℝN , (s, x) 󳨃→ x − sν(x),

which establishes a bijection over its image for sufficiently small ε > 0. Moreover, shortening ε > 0, if neces-
sary, Q−1ν also is of class Cr−1-regularity. Indeed, the proof of the injectivity proceeds by contradiction.
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ℎmin(Θmin + 1)

−�ℎmin(Θmin − 𝜀𝜀/4)�2

𝑔𝑔(𝛿𝛿,𝑚𝑚)

{0} × ∂Ω 

(𝐴𝐴𝐴𝐴)(𝑥𝑥)

Ω

∂Ω

𝒰𝒰

𝑥𝑥 − 𝑠𝑠(𝐴𝐴𝐴𝐴)(𝑥𝑥)
𝑥𝑥

(𝐴𝐴𝐴𝐴)(𝑥𝑥)
𝑥𝑥

(−𝑠𝑠0, 𝑠𝑠0) × 𝜕𝜕Ω

𝑄𝑄𝝂𝝂

𝑄𝑄𝝂𝝂−1 

(𝑠𝑠,𝑥𝑥) 

(−𝜀𝜀, 𝜀𝜀) × ∂Ω 

(0,𝑥𝑥) 

∂Ω 

𝑄𝑄𝝂𝝂(𝑠𝑠, 𝑥𝑥) 

𝝂𝝂(𝑥𝑥) 
𝑥𝑥 

𝒰𝒰ε 

𝑄𝑄𝝂𝝂−1(𝑦𝑦) 

(𝔡𝔡𝝂𝝂(𝑦𝑦),Π𝝂𝝂(𝑦𝑦)) 

𝑦𝑦 𝑥𝑥
Π𝝂𝝂(𝑦𝑦) 

𝝂𝝂(𝑦𝑦) 
Ω 

𝑄𝑄𝝂𝝂({𝜀𝜀} × 𝜕𝜕𝜕𝜕) 

𝑄𝑄𝝂𝝂({−𝜀𝜀} × 𝜕𝜕𝜕𝜕) 

Figure 2: Scheme for the realization of Qν and Q−1ν and their relationships with the projection Πν and the distance function dν.

Suppose that Qν is not injective for sufficiently small ε > 0. Then there exist {s1n}n≥1, {s2n}n≥1 ⊂ ℝ, with
s1n → 0 and s2n → 0 as n ↑ ∞, and {x1n}n≥1, {x2n}n≥1 ⊂ ∂Ω, such that

(s1n , x1n) ̸= (s2n , x2n) and Qν(s1n , x1n) = Qν(s2n , x2n) for all n ≥ 1.

In other words,

x1n − s1nν(x1n) = x2n − s2nν(x2n) for all n ≥ 1. (2.1)

Moreover, without lost of generality, we can assume that s1ns2n > 0 for all n ≥ 1. Otherwise, since ν is an
outward vector field, for sufficiently large n ≥ 1, we have that

x1n − s1nν(x1n) = x2n − s2nν(x2n)

should lie, simultaneously, in Ω and inℝN \ Ω̄, which is impossible.
Suppose x1n = x2n for some n ≥ 1. Then, since ν(x1n) ̸= 0, (2.1) implies that s1n = s2n, which cannot hold.

Hence, x1n ̸= x2n for all n ≥ 1. Since ∂Ω is compact, along some subsequences of {x1n} and {x2n}, relabeled by n,
we have that

lim
n→∞

x jn = x
j
∞, j = 1, 2,

for some x1∞, x2∞ ∈ ∂Ω. Subsequently, we are renaming by {s1n}n≥1, {s2n}n≥1, {x1n}n≥1 and {x2n}n≥1 the new sub-
sequences. Letting n ↑ ∞ in (2.1) yields x1∞ = x2∞ =: x∞. Now, for each j = 1, 2, we consider the sequence
{ς jn}n≥1 defined through

ς jn := sin|ν(x
j
n)|, n ≥ 1.

Then, by the continuity of ν, the new sequences still satisfy

lim
n→∞

ς1n = lim
n→∞

ς2n = 0, (2.2)

and, setting ξ := ν/|ν| for the unitary outward vector field, (2.1) can be equivalently expressed as

x1n − x2n = ς1nξ(x1n) − ς2nξ(x2n) = (ς1n − ς2n)ξ(x1n) + ς2n(ξ(x1n) − ξ(x2n)) (2.3)

for all n ≥ 1. On the other hand, since x1n ̸= x2n, we have that

x1n − x2n
|x1n − x2n|

∈ 𝕊N−1 ⊂ ℝN for all n ≥ 1,

where𝕊N−1 stands for the (N − 1)-dimensional sphere.As the sphere is compact,we canextract subsequences
of {ς1n}n≥1, {ς2n}n≥1, {x1n}n≥1 and {x2n}n≥1, again labeled by n, such that

τ∞ := lim
n→∞

x1n − x2n
|x1n − x2n|

∈ Tx∞∂Ω,
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where Tx∞∂Ω stands for the tangent hyperplane of ∂Ω at x∞. Note that |τ∞| = 1. Moreover, by construction,
we have that

|ς jn| = |x
j
n − Qν(s

j
n , x

j
n)|, Qν(s1n , x1n) = Qν(s2n , x2n), j = 1, 2, n ≥ 1.

Thus, since s1ns2n > 0 for all n ≥ 1, the triangular inequality yields

|ς1n − ς2n| =
󵄨󵄨󵄨󵄨|ς

1
n| − |ς2n|

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨|x

1
n − Qν(s1n , x1n)| − |x2n − Qν(s2n , x2n)|

󵄨󵄨󵄨󵄨 ≤ |x
1
n − x2n|

for all n ≥ 1. Consequently, by the Bolzano–Weierstrass theorem, there exist η ∈ [−1, 1] and subsequences
of {ς1n}n≥1, {ς2n}n≥1, {x1n}n≥1 and {x2n}n≥1, relabeled by n, such that

lim
n→∞

ς1n − ς2n
|x1n − x2n|

= η. (2.4)

Now we will show that, as a consequence of the regularity of ξ , the limit

lim
n→∞

ξ(x1n) − ξ(x2n)
|x1n − x2n|

is well defined in ℝN . Indeed, since ∂Ω is a Cr-manifold, there exist δ > 0 and a local chart of ∂Ω on a
neighborhood of x∞, Φ ∈ Cr(Bδ(0);ℝN)with Φ(0) = x∞. Subsequently, we set y jn := Φ−1(x

j
n) for j = 1, 2 and

sufficiently large n ≥ 1. By the continuity of Φ−1,

lim
n→∞

y jn = 0, j = 1, 2.

Since x1n ̸= x2n and Φ is a local diffeomorphism, y1n ̸= y2n and hence

y1n − y2n
|y1n − y2n|

∈ 𝕊N−2, n ≥ n0.

Thus, by compactness, we can extract subsequences, relabeled by n, such that

τ̃∞ := lim
n→∞

y1n − y2n
|y1n − y2n|

∈ 𝕊N−2. (2.5)

Then, for every φ ∈ C1(Bδ(0);ℝN), we have that

lim
n→∞

φ(y1n) − φ(y2n)
|y1n − y2n|

= Dφ(0)τ̃∞ =
∂φ
∂τ̃∞
(0).

Indeed,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ(y1n) − φ(y2n)
|y1n − y2n|

−Dφ(0)τ̃∞
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ(y2n + (y1n − y2n)) − φ(y2n)

|y1n − y2n|
−Dφ(0)τ̃∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
|y1n − y2n|

1

∫
0

Dφ(y2n + t(y1n − y2n))(y1n − y2n) dt −
1

∫
0

Dφ(0)τ̃∞ dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

(Dφ(y2n + t(y1n − y2n))
y1n − y2n
|y1n − y2n|

−Dφ(0)τ̃∞) dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Dφ(y2n + t(y1n − y2n))(

y1n − y2n
|y1n − y2n|

− τ̃∞)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt

+
1

∫
0

󵄨󵄨󵄨󵄨(Dφ(y
2
n + t(y1n − y2n)) −Dφ(0))τ̃∞

󵄨󵄨󵄨󵄨 dt,

which, thanks to (2.5) and the uniform continuity ofDφ in Bδ/2(0), converges to 0 as n ↑ ∞. Hence, by the
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regularity of ν, and so of ξ , we have that

lim
n→∞

ξ(x1n) − ξ(x2n)
|x1n − x2n|

= lim
n→∞
(ξ ∘ Φ)(y1n) − (ξ ∘ Φ)(y2n)
|Φ(y1n) − Φ(y2n)|

= lim
n→∞

|y1n − y2n|
|Φ(y1n) − Φ(y2n)|

(ξ ∘ Φ)(y1n) − (ξ ∘ Φ)(y2n)
|y1n − y2n|

=
1

|DΦ(0)τ̃∞|
D(ξ ∘ Φ)(0)τ̃∞ ∈ ℝN . (2.6)

Therefore, thanks to (2.2), (2.4) and (2.6), dividing by |x1n − x2n| in (2.3) and letting n ↑ +∞ yields

τ∞ = ηξ(x∞) = η
ν(x∞)
|ν(x∞)|

.

Since τ∞ ∈ 𝕊N−1, taking norms in both sides provides us with |η| = 1. However, since τ∞ ∈ Tx∞∂Ω and ξ is
an outward unit vector field along ∂Ω, we have that

⟨τ∞, n(x∞)⟩ = 0 and ⟨ξ(x∞), n(x∞)⟩ > 0,

respectively,which implies η = 0, driving to a contradiction. Thus, there exists ε > 0 such thatQν : (−ε, ε)→Uε
is bijective. Note that Qν inherits the regularity of ν. So, it is of class Cr−1((−ε, ε) × ∂Ω;Uε), and Qν(0, x) = x
for all x ∈ ∂Ω.

It remains to show the regularity of Q−1ν : Uε → (−ε, ε) × ∂Ω for sufficiently small ε > 0. This is a conse-
quence of the inverse function theorem. By continuity and compactness, it suffices to establish that DQν is
non-degenerate on {0} × ∂Ω. Indeed, since ∂Ω is a class Cr manifold, for each x ∈ ∂Ω, there exist δx > 0 and a
homeomorphism onto its image Φx ∈ Cr(Bδx (0) ⊂ ℝN−1;ℝN), with Φx(0) = x and Φx(Bδx (0)) ⊂ ∂Ω. Actually,
Φx parameterizes ∂Ω in a neighborhood of x. Consider the function Q̃ν : (−ε, ε) × Bδx (0) → Uε defined by

Q̃ν(s, y) := Qν(s, Φx(y)) = Φx(y) − sν(Φx(y)).

Then, for every s ∈ (−ε, ε) and y ∈ Bδx (0),DQν(s, Φx(y)) is represented by

DQ̃ν(s, y) = [−ν(Φx(y)), DΦx(y) − sD(ν ∘ Φx)(y)].

In particular,
DQ̃ν(0, y) = [−ν(Φx(y)), DΦx(y)].

Since Φx is a local chart of a Cr (N − 1)-dimensional manifold, rankDΦx(y) = N − 1 for all y ∈ Bδx (0), and
hence it generates the tangent space at Φx(y). Thus, since ν(Φx(y)) is a non-tangential vector field, it becomes
apparent that

rankDQ̃ν(0, y) = N.

Consequently, DQ̃ν(0, y) is an isomorphism. Therefore, Qν establishes a Cr−1-diffeomorphism onto its
image for sufficiently small ε > 0. In order to complete the proof of (a) implies (b), it remains to construct
the projection Πν and show that the function dν defined in (1.8) is of class Cr. Let P1 : ℝ × ∂Ω → ℝ and
P2 : ℝ × ∂Ω → ∂Ω denote the projections on the first and the second component, respectively, i.e.,

P1 : ℝ × ∂Ω → ℝ, (s, x) 󳨃→ s,
P2 : ℝ × ∂Ω → ∂Ω, (s, x) 󳨃→ x.

Obviously, P1 and P2 are of class C∞ and, by construction, it is easily seen that the map

Πν := P2 ∘ Q−1ν : Uε → ∂Ω ⊂ ℝN

satisfies all the requirements of part (b). Indeed, Πν also is of class Cr−1, as Q−1ν and P2. Moreover, for every
x ∈ ∂Ω, we have that

Πν(x) = P2 ∘ Q−1ν (x) = P2(0, x) = x.
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Since Qν is a diffeomorphism, for every x ∈ Uε, there exists s ∈ (−ε, ε) such that

x = Qν(s, Πν(x)) = Πν(x) − sν(Πν(x)).

Hence, if λ ∈ ℝ satisfies x − λν(Πν(x)) ∈ Uε, we find that

Πν(x − λν(Πν(x))) = Πν(Πν(x) − sν(Πν(x)) − λν(Πν(x))) = P2 ∘ Q−1ν (Qν(s + λ, Πν(x))) = Πν(x).

In particular, this entails that ∂Πν
∂ν(Πν(x)) (x) = 0 for all x ∈ Uε. By the definition of Qν, dν = P1 ∘ Q−1ν , and so it is

of class Cr−1(Uε). Moreover, for every x ∈ Uε,

x = Πν(x) − dν(x)ν(Πν(x)).

Thus,
dν(x) =

1
|ν(Πν(x))|2

⟨Πν(x) − x, ν(Πν(x))⟩,

and hence, combining the Leibniz rule with the properties of the projection Πν, we find that, for every x ∈ Uε,

Ddν(x) = −
2⟨ν(Πν(x)),D(ν ∘ Πν)(x))⟩

|ν(Πν(x))|4
⟨Πν(x) − x, ν(Πν(x))⟩

+
1

|ν(Πν(x))|2
(⟨DΠν(x) − Id, ν(Πν(x))⟩ + ⟨Πν(x) − x,D(ν ∘ Πν)(x)⟩)

=
1

|ν(Πν(x))|2
(⟨DΠν(x), ν(Πν(x))⟩ − dν(x)⟨ν(Πν(x)),D(ν ∘ Πν)(x)⟩ − ⟨Id, ν(Πν(x))⟩)

=
1

|ν(Πν(x))|2
(

∂Πν
∂ν(Πν(x))

(x) − dν(x)
∂(ν ∘ Πν)
∂ν(Πν(x))

(x) − ν(Πν(x)))

= −
ν(Πν(x))
|ν(Πν(x))|2

,

because Πν and ν ∘ Πν are constant along each direction ν(Πν(x)). Therefore, Ddν ∈ Cr−1, which entails
dν ∈ Cr and ends the proof of (a) implies (b).

The fact that part (b) implies part (c) is immediate. Next,wewill prove that (b) implies (d) and (f). Suppose
(b) and consider any outward vector field ν ∈ Cr−1. Then ν̃ := ν/|ν| ∈ Cr−1. Let U, Πν̃ and dν̃ denote, respec-
tively, the open set, the projection and the ‘regularized distance’ (1.8) provided by part (b). Then the function
ψν : U→ ℝ defined by ψν := −dν̃ satisfies

∇ψν(x) = Dψν(x) = −Ddν̃ = ν̃(Πν̃(x))

for all x ∈ U. In particular, ∇ψν(x) = ν̃(x) for every x ∈ ∂Ω, and hence

∂ψν
∂ν (x) = ⟨∇ψν(x), ν(x)⟩ = ⟨ν̃(x), ν(x)⟩ = |ν(x)| > 0,

which ends the proof of (b) implies (d). Actually, since |∇ψν(x)| = |ν̃(x)| = 1 for all x ∈ ∂Ω, Ψ := ψν satisfies
the requirements of part (f).

The fact that (d) implies (e) is trivial, and the proof of (c) implies (e) follows the same patterns as the proof
of (b) implies (d). The fact that (f) implies (e) follows from the fact that ν(x) := ∇Ψ(x) is an outward vector
field of class Cr−1 satisfying

∂Ψ
∂ν (x) = |∇Ψ(x)|

2 = 1 > 0

for all x ∈ ∂Ω. Thus, part (e) holds by choosing ψ := Ψ.
It remains to prove that (e) implies (a). By the properties of the function ψ guaranteed by part (e), it is

apparent that ∂Ω := ψ−1(0). Let us consider x0 ∈ ∂Ω and ν(x0), and let {ej}N−1j=1 be an orthonormal basis of
span [ν(x0)]⊥ inℝN . Subsequently, for every δ > 0, we denote by Fδ : (−δ, δ) × (−δ, δ)N−1 → ℝN the C∞ map
defined through

Fδ(z, y) := x0 + zν(x0) +
N−1
∑
j=1

yjej , y = (y1, . . . , yN−1).

Brought to you by | Universidad Complutense Madrid 



12 | S. Fernández-Rincón and J. López-Gómez, Singular Perturbations

This map establishes a diffeomorphism onto its image, which is an open neighborhood of x0 denoted byWδ.
Note that Fδ(0, 0) = x0. Choose δ > 0 such thatWδ ⊂ U, whereU is the open neighborhood of ∂Ω guaranteed
by part (c). Lastly, consider the function

Gδ := ψ ∘ Fδ ∈ Cr((−δ, δ)N ;ℝ).

Obviously, Gδ(0, 0) = 0. Moreover,

∂Gδ
∂z
(0, 0) = [Dψ(x0)](

∂Fδ
∂z
(0, 0)) = Dψ(x0)(ν(x0)) =

∂ψ
∂ν (x0) > 0.

Thus, according to the implicit function theorem, there exists δ0 > 0 and ζ ∈ Cr((−δ0, δ0)N−1;ℝ) such that

G−1δ0 (0) = {(ζ(y), y) ∈ ℝ
N : y ∈ (−δ0, δ0)N−1}.

In particular, the function (−δ0, δ0)N−1 ∋ y 󳨃→ Fδ0 (ζ(y), y) provides us with a class Cr parametrization of
∂Ω ∩Wδ0 . Since x0 was arbitrary, ∂Ω is an (N − 1)-manifold of class Cr. This ends the proof of Theorem 1.3.

A further (deeper) analysis of the role played by the regularity of the outward vector field reveals the
validity of the next result.

Corollary 2.1. If ∂Ω is an (N − 1)-dimensional manifold of class Cr, r ≥ 1, and ν ∈ Ck(∂Ω;ℝN), k ≥ 1, is an
outward vector field, then there exist an open subsetU ofℝN , with ∂Ω ⊂ U, and a function Πν ∈ Cmin{r,k}(U; ∂Ω)
satisfying the requirements of Πν in the statement of Theorem 1.3 (b). In particular, the function dν : U→ ℝ
defined in (1.8) is of class Cmin{r,k+1}.

3 A Canonical Transformation
As a byproduct of Theorem 1.3, the next result holds. It allows transforming the original problem into a
problem with β ≥ 0. So, without lost of generality, we can assume that β ≥ 0 for the remaining of this paper.

Theorem 3.1. Assume that ∂Ω is of class C2. Then there exists E ∈ C2(Ω̄), with E(x) > 0 for all x ∈ Ω̄, such that
(1.1) can be equivalently expressed as

{
dLEw = hE(w, x) in Ω,
BEw = 0 in ∂Ω,

where
(i) hE(w, x) = 1

E(x)h(E(x)w, x) for all w ≥ 0 and x ∈ Ω̄,
(ii) LE = −div(A∇⋅ ) + bE∇ + cE, with

bE := b − 2A
∇E
E
∈M1×N(C(Ω̄)), cE :=

LE
E
∈ C(Ω̄),

(iii) BE = D on ΓD andBE = ∂
∂ν + βE on ΓR, with βE :=

BE
E ≥ 0.

Moreover, hE satisfies (H1), (H2) and (H4) if h does too.

Proof. First, let us consider an arbitrary E ∈ C2(Ω̄) such that E(x) > 0 for all x ∈ Ω̄. Suppose that u is a non-
negative solution of (1.1). Then w := u/E satisfies

Lu = L(Ew) = −div(A∇(Ew)) + b∇(Ew) + cEw
= −div(EA∇w) − div(wA∇E) + Eb∇w + wb∇E + wcE
= −∇EA∇w − E div(A∇w) − ∇wA∇E − w div(A∇E) + Eb∇w + wb∇E + wcE
= −E div(A∇w) + Eb∇w − ∇EA∇w − ∇wA∇E + w(−div(A∇E) + b∇E + cE).

By the symmetry of A, we have that ∇wA∇E = ∇EA∇w, and thus

Lu = E(−div(A∇w) + (b − 2A∇EE )∇w +
LE
E
w) = ELEw in Ω.
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Hence,
dLEw =

1
E
dLu = 1

E
h(u, ⋅ ) = 1

E
h(Ew, ⋅ ) = hE(w, ⋅ ) in Ω.

As for the boundary, we find thatBEw(x) = w(x) = u(x)/E(x) = 0 for all x ∈ ΓD, whereas

0 = Bu(x) = B(Ew)(x) = ∂(Ew)
∂ν (x) + β(x)E(x)w(x)

= E(x)∂w
∂ν (x) + (

∂E
∂ν (x) + β(x)E(x))w(x) = E(x)BEw(x)

for all x ∈ ΓR. In order to choose E such that βE ≥ 0, note that, according to Theorem1.3 and the remarks after
it, there exist an open setU, Ω̄ ⊂ U ⊂ ℝN , and a function ψ ∈ C2(U) such that ψ(x) < 0 for all x ∈ Ω, ψ(x) = 0
for all x ∈ ∂Ω and minΓR

∂ψ
∂ν > 0. Consider

E := exp(μψ),

with μ > 0 to be determined. Then, for each x ∈ ΓR, E(x) = 1, and hence

βE(x) =
BE(x)
E(x)
= β(x) + 1

E(x)
∂E
∂ν (x) = β(x) + μ

∂E
∂ν (x).

Thus, since minΓR
∂ψ
∂ν > 0, it becomes apparent that βE ≥ 0 on ΓR for sufficiently large μ > 0.

Now, let us analyze the properties of hE. The regularity required for (H1) is a byproduct of the regularity
of both h and E. On the other hand, for every u > 0 and x ∈ Ω̄, we have that

∂hE
∂w
=

∂
∂w (

1
E(x)

h(E(x)w, x)) = 1
E(x)

E(x)∂h
∂u
(E(x)w, x) = ∂h

∂u
(E(x)w, x) < 0.

Hence, hE satisfies (H2). To conclude, since h satisfies (H4), there exists M > 0 such that maxΩ̄ h(M, ⋅ ) < 0.
Therefore, setting

ME :=
M

minΩ̄ E
> 0

and taking into account that h is decreasing in u by (H2), we conclude that, for every x ∈ Ω̄,

hE(ME , x) =
1
E(x)

h(MEE(x), x) =
1
E(x)

h(E(x) M
minΩ̄ E

, x) ≤ 1
E(x)

h(M, x) < 0,

which ends the proof.

Remark 3.2. It should be noted that one can achieve βE(x) > 0 for all x ∈ ΓR by choosing a sufficiently large
μ > 0 in the previous proof.

4 Monotonicity Properties of the Principal Eigenvalue
Throughout this section, for every d > 0 and V ∈ C(Ω̄), we will denote by

Σ(d, V) := σ1[dL + V;B, Ω]

the principal eigenvalue of [dL + V;B, Ω] in W2,∞
B (Ω) := ⋂p>N W

2,p
B (Ω), The next result collects the main

properties of Σ(d, V). It extends [14, Theorem 2.1] to deal with general differential operators, L, not nec-
essarily self-adjoint. Part (a) provides us with the monotony of the principal eigenvalue with respect to the
potential.

Theorem 4.1. Σ(d, V) has the following properties:
(a) For every d > 0, the map Σ(d, ⋅ ) : C(Ω̄) → ℝ is strictly increasing, i.e., Σ(d, V1) < Σ(d, V2) if V1, V2 ∈ C(Ω̄)

with V1 ⪇ V2.
(b) For every V ∈ C(Ω̄),

Σ(0, V) := lim
d→0

Σ(d, V) = min
Ω̄
V.
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Proof. Let φ1 ≫ 0 denote the (unique) principal eigenfunction associated to σ1[dL + V1;B, Ω] such that
‖φ1‖∞ = 1. Then

{
(dL + V2 − σ1[dL + V1;B, Ω])φ1 ⪈ (dL + V1 − σ1[dL + V1;B, Ω])φ1 = 0 in Ω,
Bφ1 = 0 on ∂Ω.

Therefore, the function φ1 provides us with a positive strict supersolution of the differential operator
dL + V2 − σ1[dL + V1;B, Ω] subject to the boundary operator B on ∂Ω, and hence, thanks to the theorem
of characterization provided by [31, Theorem 7.10], its principal eigenvalue must be positive. Thus,

σ1[dL + V2;B, Ω] − σ1[dL + V1;B, Ω] = σ1[dL + V2 − σ1[dL + V1;B, Ω];B, Ω] > 0,

which ends the proof of part (a).
For the convergence in part (b), we first note that, thanks to part (a),

σ1[dL + V;B, Ω] ≥ dσ1[L;B, Ω] +min
Ω̄
V.

Thus,
lim inf
d→0

σ1[dL + V;B, Ω] ≥ min
Ω̄
V.

Now, arguing by contradiction, suppose that

lim sup
d→0

σ1[dL + V;B, Ω] > min
Ω̄
V.

Then there exist ε > 0 and a sequence {dn}n≥1 ⊂ (0, +∞), with limn→∞ dn = 0, such that, for every n ≥ 1,

σ1[dnL + V;B, Ω] > min
Ω̄
V + ε.

Equivalently,
σ1[dnL + V −min

Ω̄
V − ε;B, Ω] > 0,

and hence, by [31, Theorem 7.10], for every n ≥ 1, the problem [dnL + V −minΩ̄ V − ε;B, Ω] admits a strict
supersolution φn ≫ 0, i.e.,

{
{
{

(dnL + V −min
Ω̄
V − ε)φn ≥ 0 in Ω,

Bφn ≥ 0 on ∂Ω,

with some of these inequalities strict. Let x0 ∈ Ω̄ be such that V(x0) = minΩ̄ V. By continuity, there exists
ρ > 0 such that

V(x) < min
Ω̄
V + ε2

for all x ∈ Bρ(x0) ∩ Ω̄. In particular, this estimate holds in an open ball B ⊂ Bρ(x0) ∩ Ω. Thus, for every n ≥ 1,
we have that

{
{
{

(dnL −
ε
2)φn ⪈ 0 in B,

φn > 0 on ∂B.

Consequently, thanks again to [31, Theorem 7.10], we find that

σ1[dnL −
ε
2;D, B] > 0,

which contradicts the fact that

lim
n→∞

σ1[dnL −
ε
2; D, B] = lim

n→∞
dnσ1[L; D, Ω] −

ε
2 = −

ε
2 .

This contradiction ends the proof.
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For establishing themonotonicity of the principal eigenvaluewith respect to the underlying domain, we need
to introduce some notations.

Definition 4.2. Let Ω0 be a subdomain of class C2 of Ω andB0 a boundary operator on ∂Ω0. We will say that
(B0, Ω0) is comparable with (B, Ω), andwrite (B0, Ω0) ⪯ (B, Ω), when the following conditions are satisfied:
(i) Each component Γ of ∂Ω0 is either a component of ∂Ω, or Γ ⊂ Ω.
(ii) The boundary operatorB0 satisfies

B0 :=
{
{
{

D on ∂Ω0 ∩ Ω,
B̃ on ∂Ω0 ∩ ∂Ω,

where for every component Γ of ∂Ω0 ∩ ∂Ω, either B̃ = D on Γ, or Γ ⊂ ΓR and there is β0 ∈ C(∂Ω0) with
β0 ≥ β such that

B̃ =
∂
∂ν + β0 on Γ.

We will write (B0, Ω0) ≺ (B, Ω) if, in addition, (B0, Ω0) ̸= (B, Ω).

It should be noted that, according to [8, Theorem 9.1], the Dirichlet boundary operator on each component
of ∂Ω can be approximated by letting minΓ β ↑ ∞. Thus, the larger β0, the closer are B0 and D. The next
monotonicity result sharpens [14, Lemma 2.2].

Lemma 4.3. Let Ω0 be a subdomain of class C2 of Ω andB0 a boundary operator on ∂Ω0. If (B0, Ω0) ≺ (B, Ω),
then

σ1[dL + V;B, Ω] < σ1[dL + V;B0, Ω0] for every d > 0 and V ∈ C(Ω̄).

Proof. Letφ ≫ 0be theprincipal eigenfunction associated to σ1[dL + V;B, Ω], normalized so that ‖φ‖∞ = 1.
Then, according to Definition 4.2, as long as (B0, Ω0) ≺ (B, Ω), there exist a component Γ ̸= 0 of ∂Ω for which
some of the following alternatives hold:
∙ Γ ⊂ Ω andB0φ = φ > 0 on Γ. Actually, this occurs if Ω0 is a proper subdomain of Ω.
∙ Γ ⊂ ΓR andB0φ = φ on Γ. Then, since φ(x) > 0 for all x ∈ ΓR, we have thatB0φ > 0 on Γ.
∙ Γ ⊂ ΓR andB0 = ∂

∂ν + β0, with β0 ⪈ β on Γ. Then, since φ(x) > 0 for all x ∈ ΓR, we find that

B0φ =
∂φ
∂ν + β0φ ⪈

∂φ
∂ν + βφ = Bφ = 0 on Γ.

Hence, φ satisfies

{
(dL + V − σ1[dL + V;B, Ω])φ = 0 in Ω0,
B0φ ⪈ 0 on ∂Ω0.

In particular, φ is a positive strict supersolution of [dL + V − σ1[dL + V;B, Ω];B0, Ω0]. Therefore, we can
conclude from [31, Theorem 7.10] that

σ1[dL + V;B0, Ω0] − σ1[dL + V;B, Ω] = σ1[dL + V − σ1[dL + V;B, Ω];B0, Ω0] > 0,

which ends the proof.

5 The Generalized Diffusive Logistic Equation
We begin this section by proving Theorem 1.1, which characterizes the existence and establishes the unique-
ness of the positive solution of (1.1) in terms of the linearized instability of u = 0 as a steady-state solution of
its parabolic counterpart. As pointed out in Section 3, without lost of generality, we can assume that β ≥ 0.
Moreover, h(u, x) is supposed to satisfy (H1), (H2) and (H3) for some d > 0.

Proof of Theorem 1.1. As a consequence of (H2) and (H3), and since β can be assumed to be non-negative,
ū := κ ≥ M > 0 is a supersolution of (1.1). Now, suppose that σ1[dL − h(0, ⋅ );B, Ω] < 0 and let ϕ ≫ 0 be any
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associated eigenfunction. We claim that
̄
u := εϕ is a subsolution of (1.1) for sufficiently small ε > 0. Since

B(εϕ) = εBϕ = 0 on ∂Ω, it suffices to show that

dL(εϕ) ≤ εϕh(εϕ, ⋅ ) in Ω.

By the choice of ϕ, we have that

dL(εϕ) = ε(σ1[dL − h(0, ⋅ );B, Ω]ϕ + h(0, ⋅ )ϕ) in Ω.

Hence, dividing by εϕ, we should make sure that

σ1[dL − h(0, ⋅ );B, Ω] ≤ h(εϕ, ⋅ ) − h(0, ⋅ ) in Ω. (5.1)

Since h is uniformly continuous on [0, 1] × Ω̄ and εϕ converges to 0 uniformly in Ω̄ as ε ↓ 0, we find that

lim
ε→0
‖h(εϕ, ⋅ ) − h(0, ⋅ )‖∞ = 0.

Thus, condition (5.1) holds for sufficiently small ε, and hence
̄
u := εϕ is a subsolution of (1.1). Since ε can

be shortened up to get εϕ ≤ κ, (1.1) possesses a (strong) positive solution u such that εϕ ≤ u ≤ κ.
Next, we will show that σ1[dL − h(0, ⋅ );B, Ω] < 0 is necessary for the existence of a positive solutions.

Indeed, if (1.1) admits a positive solution u, then σ1[dL − h(u, ⋅ );B, Ω] = 0, by the uniqueness of the prin-
cipal eigenvalue. Thus, by (H2), it follows from Theorem 4.1 (a) that

σ1[dL − h(0, ⋅ );B, Ω] < σ1[dL − h(u, ⋅ );B, Ω] = 0.

As for establishing the uniqueness, assume that u1, u2 ∈ ⋂p>N W2,p(Ω) are two positive solutions of (1.1). In
particular, u1, u2 ≫ 0. Thanks to the first part of the proof, we already know that (1.1) admits a subsolution

̄
u = εϕ and a supersolution ū = κ > M such that

̄
u ≤ u1, u2 ≤ ū.

This can be easily obtained by shortening ε > 0 and enlarging κ as much as necessary. For these choices,
thanks to [1, Theorem 3], problem (1.1) admits two strong solutions, u∗, u∗ ∈ ⋂p>N W2,p(Ω), which are the
minimal and maximal solutions of (1.1), respectively, in the order interval [

̄
u, ū]. In particular, we have that

̄
u ≤ u∗ ≤ u1, u2 ≤ u∗ ≤ ū

and, since u1 ̸= u2, necessarily u∗ < u∗. Since they are solutions of (1.1), we already know that

σ1[dL − h(u∗, ⋅ );B, Ω] = σ1[dL − h(u∗, ⋅ );B, Ω] = 0, (5.2)

and, thanks to (H2),
h(u∗, ⋅ ) ⪈ h(u∗, ⋅ ) in Ω.

Thus, by Theorem 4.1 (a),

σ1[dL − h(u∗, ⋅ );B, Ω] < σ1[dL − h(u∗, ⋅ );B, Ω],

which contradicts (5.2). Therefore, u1 = u2. This ends the proof.

By linearizing (1.1) at u = 0, it is easily seen that u = 0 is linearly unstable if and only if

σ1[dL − h(0, ⋅ );B, Ω] < 0,

while it is linearly stable, or linearly neutrally stable, in any other case.
Throughout the rest of this paper,wewill denote by θL,B,Ω

{d,h} themaximal non-negative solutionof (1.1). By
Theorem1.1, θL,B,Ω

{d,h} = 0 if σ1[dL − h(0, ⋅ );B, Ω] ≥ 0,while θ
L,B,Ω
{d,h} ≫ 0 if σ1[dL − h(0, ⋅ );B, Ω] < 0. Should

not exist any ambiguity, we will simply set

θ{d,h} := θL,B,Ω
{d,h} ,

or, alternatively, omit some of these indexes. As a byproduct of Theorems 4.1 (b) and 1.1, the positiveness
of θ{d,h} can be characterized for small d > 0 in terms of the sign of maxΩ̄ h(0, ⋅ ), as established by the next
result.
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Corollary 5.1. Suppose that h(u, x) satisfies (H3) for sufficiently small d > 0. Then the following hold:
(a) If maxΩ̄ h(0, ⋅ ) < 0, then a maximal d0 ∈ (0, +∞] exists such that θ{d,h} = 0 for d ∈ (0, d0).
(b) If maxΩ̄ h(0, ⋅ ) > 0, then a maximal d0 ∈ (0, +∞] exists such that θ{d,h} ≫ 0 for d ∈ (0, d0).

In the intermediate case when maxΩ̄ h(0, ⋅ ) = 0, Theorem 4.1 (b) implies that

lim
d↓0

σ1[dL − h(0, ⋅ );B, Ω] = min
Ω̄
(−h(0, ⋅ )) = −max

Ω̄
h(0, ⋅ ) = 0.

Thus, the sign of the principal eigenvalue σ1[dL − h(0, ⋅ );B, Ω] for sufficiently small d > 0might depend on
the nature of the coefficients of L as well as on the boundary operator B, or even the geometry and the size
of Ω. Indeed, if L = −∆ is the Laplace operator and we assume that ΓR = 0, i.e., B is the Dirichlet operator D
and h(0, ⋅ ) = 0, then

σ1[−d∆;D, Ω] = dσ1[−∆;D, Ω] > 0

for all d > 0 and hence, by Theorem 1.1, θ{d,h} = 0 for all d > 0. But if we assume thatL = −∆ − 1, h(0, ⋅ ) = 0,
ΓD = 0 and β ≡ 0 on ΓR = ∂Ω, i.e.,B is the Neumann operator R0, then

σ1[d(−∆ − 1); R0, Ω] = dσ1[−∆; R0, Ω] − d = −d < 0

for all d > 0. Therefore, due to Theorem 1.1, θ{d,h} ≫ 0 for all d > 0. Finally, note that, according to a cele-
brated variational inequality of Faber and Krahn (see, e.g., [31, Proposition 8.6]), the sign of

σ1[d(−∆ − 1); D, Ω] = d (σ1[−∆;D, Ω] − 1)

depends on the Lebesgue measure of Ω. Indeed, for sufficiently small |Ω|, σ1[−∆;D, Ω] > 1, and hence
θ{d,h} = 0 for all d > 0, while, for sufficiently large |Ω|, σ1[−∆;D, Ω] < 1, and therefore θ{d,h} ≫ 0 for all
d > 0.

The following result provides us with a substantial sharpening of [14, Lemma 2.5].

Lemma 5.2. Suppose that h(u, x) satisfies (H3) for some d > 0. Let Ω0 be a subdomain of class C2 of Ω,
B0 a boundary operator on ∂Ω0 such that, according to Definition 4.2, (B0, Ω0) ⪯ (B, Ω), and suppose
h0 ∈ C(ℝ × Ω̄0) satisfies (H1), (H2), (H3) and h0 ≤ h in [0, +∞) × Ω̄0. Then

θL,B0 ,Ω0
{d,h0} ≤ θ

L,B,Ω
{d,h} in Ω0.

If, in addition, (B0, Ω0) ≺ (B, Ω), or h0(u, ⋅ ) ̸= h(u, ⋅ ) in Ω0 for all u ≥ 0, then

θL,B0 ,Ω0
{d,h0} ≪ θ

L,B,Ω
{d,h} in Ω0

provided θL,B,Ω
{d,h} > 0.

Proof. For the sake of simplicity, throughout this proof we will denote

θ := θL,B,Ω
{ν,h} , θ0 := θL,B0 ,Ω0

{ν,h0} .

By Theorem 4.1 (a) and Lemma 4.3, we have that

σ1[dL − h(0, ⋅ );B, Ω] ≤ σ1[dL − h0(0, ⋅ );B0, Ω0].

Thus, due to Theorem 1.1,

θ = θ0 = 0 if σ1[dL − h(0, ⋅ );B, Ω] ≥ 0,
θ ≫ θ0 = 0 if σ1[dL − h(0, ⋅ );B, Ω] < 0 ≤ σ1[dL − h0(0, ⋅ );B0, Ω0].

Hence, it remains to study the case when

σ1[dL − h0(0, ⋅ );B0, Ω0] ≤ σ1[dL − h(0, ⋅ );B, Ω] < 0.
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Then, by Theorem 1.1, θ, θ0 ≫ 0. Subsequently, we will consider the function f ∈ C(Ω̄0) defined, for each
x ∈ Ω̄0, by

f(x) :=
{{{
{{{
{

θ(x)h0(θ(x), x) − θ0(x)h0(θ0(x), x)
θ(x) − θ0(x)

if θ(x) ̸= θ0(x),

h0(θ0(x), x) + θ0(x)
∂
∂u
h0(θ0(x), x) if θ(x) = θ0(x).

By definition, θ − θ0 satisfies

dL(θ − θ0) = θh(θ, ⋅ ) − θ0h0(θ0, ⋅ ) ≥ θh0(θ, ⋅ ) − θ0h0(θ0, ⋅ ) = (θ − θ0)f in Ω0,

with strict inequality if h(u, ⋅ ) ⪈ h0(u, ⋅ ) in Ω0 for every u > 0. Moreover, since (B0, Ω0) ⪯ (B, Ω), we have
that

B0(θ − θ0) = B0θ ≥ 0 on ∂Ω0,

with strict inequality if (B0, Ω0) ≺ (B, Ω). Thus, θ − θ0 is a supersolution of

{
(dL − f )u = 0 in Ω0,
B0u = 0 on ∂Ω0,

and, actually, it is a strict supersolution if (B0, Ω0) ≺ (B, Ω), or h0(u, ⋅ ) ̸= h(u, ⋅ ) in Ω0 for all u ≥ 0. We claim
that σ1[dL − f;B0, Ω0] > 0. Thanks to [31, Theorem7.10], this entails that θ − θ0 ≥ 0 in Ω0 and that, actually,
θ ≫ θ0 if it is strict, and so concluding the proof.

To prove σ1[dL − f;B0, Ω0] > 0, we can argue as follows. Let x ∈ Ω̄0 be such that θ(x) = θ0(x). Then, by
definition, and thanks to (H2),

f(x) = h0(θ0(x), x) + θ0(x)
∂h0
∂u
(θ0(x), x) ≤ h0(θ0(x), x),

with strict inequality if θ0(x) > 0, while if x ∈ Ω̄0, with θ(x) ̸= θ0(x), then

f(x) = θ(x)h0(θ(x), x) − θ0(x)h0(θ0(x), x)
θ(x) − θ0(x)

= h0(θ0(x), x) + θ(x)
h0(θ(x), x) − h0(θ0(x), x)

θ(x) − θ0(x)
≤ h0(θ0(x), x),

with strict inequality if θ(x) > 0. Note that θ(x) > 0 and θ0(x) > 0 for all x ∈ Ω0, and hence both inequalities
are strict for all x ∈ Ω0. Therefore,

f ⪇ h0(θ0, ⋅ ) in Ω̄0,

and hence, owing to Theorem 4.1 (a),

σ1[dL − f;B0, Ω0] > σ1[dL − h0(θ0, ⋅ );B0, Ω0] = 0,

which ends the proof.

6 Proof of Theorem 1.2
Throughout this section, we assume that h satisfies (H1), (H2) and (H4). Hence, (H3) holds for sufficiently
small d > 0. The precise range of d where this occurs is unimportant for the proof, and so it is not specified.
It should be remembered that the function

Θh(x) :=
{
{
{

0 if h(ξ, x) < 0 for all ξ > 0,
ξ if there exists ξ > 0 such that h(ξ, x) = 0,

(6.1)

is well defined for all x ∈ Ω̄ and it is continuous in Ω̄. Let Γ+R denote the union of the components of ΓR where
Θh is everywhere positive. This section gives the proof of Theorem 1.2.
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Remark 6.1. For every x ∈ Ω̄, Θh(x) provides us with the unique non-negative linearly stable, or linearly
neutrally stable, steady-state solution of the associated kinetic model

{
u󸀠(t) = u(t)h(u(t), x), t ∈ [0, +∞),
u(0) = u0 ≥ 0.

Note that

Θh(x) = 0 if h−1( ⋅ , x)(0) = 0,
Θh(x) = max{0, h−1( ⋅ , x)(0)} if h−1( ⋅ , x)(0) ̸= 0.

Remark 6.2. The condition (H4) is necessary for the continuity of Θh on Ω̄, as the following simple example
shows:

{
d(−∆u + u) = u(−x2 + e−u) in Ω = (−1, 1),
Bu = 0 on ∂Ω = {−1, 1},

where h(u, x) = −x2 + e−u for all x ∈ (−1, 1) and u ∈ ℝ. According to (6.1), it becomes apparent that

Θh(x) = − log x2, x ∈ [−1, 1] \ {0},

which is discontinuous, and unbounded, at x = 0. It turns out that in this example the function h(u, x)
satisfies (H1), (H2) and (H3) for sufficiently small d > 0, however, it does not satisfies (H4). Therefore, con-
dition (H4) is the minimal necessary condition required to guarantee the continuity of Θh(x).

The proof of Theorem 1.2 follows after a series of results of a technical nature, some of them of great interest
on their own. The first one is a consequence of Theorem 1.3 in the special case r = 2.

Lemma 6.3. Let ξ1, ξ2 ∈ C(Ω̄) be such that ξ1(x) < ξ2(x) for all x ∈ Ω̄. Then the following hold:
(a) There exists Φ ∈ C2(Ω̄) such that ξ1 ≤ Φ ≤ ξ2 in Ω̄ and RΦ(x) > 0 for all x ∈ ΓR.
(b) There exists Φ ∈ C2(Ω̄) such that ξ1 ≤ Φ ≤ ξ2 in Ω̄ and RΦ(x) < 0 for all x ∈ ΓR.

Proof. By Theorem 1.3 applied to the conormal vector field, there exist an open neighborhoodU ⊂ ℝN of ∂Ω,
a function ψ ∈ C2(U;ℝ) and a constant τ > 0 such that ψ(x) < 0 for all x ∈ U ∩ Ω, ψ(x) = 0 for each x ∈ ∂Ω
and

∂ψ
∂ν (x) ≥ τ for all x ∈ ∂Ω. (6.2)

Let ε > 0 be such that
ε < min

Ω̄
(ξ2 − ξ1).

Then
ξ1(x) +

ε
2 < ξ2(x) −

ε
2 for all x ∈ Ω̄,

and hence there exists ϕ ∈ C∞(Ω̄) such that

ξ1(x) +
ε
2 < ϕ(x) < ξ2(x) −

ε
2 for all x ∈ Ω̄.

Consider, for each M ∈ ℝ, the map ϕM ∈ C2(U ∩ Ω̄) defined by

ϕM(x) := ϕ(x) − 1 + eMψ(x), x ∈ U ∩ Ω̄.

By the continuity of ϕM, and the fact that ϕM(x) = ϕ(x) for all x ∈ ∂Ω, we can reduceU to some open setUM,
with ∂Ω ⊂ UM ⊂ U, so that

ξ1(x) +
ε
2 < ϕM(x) < ξ2(x) −

ε
2 for all x ∈ UM ∩ Ω̄.

On the other hand, since ψ(x) = 0 for all x ∈ ∂Ω, it becomes apparent that, for every x ∈ ΓR,

RϕM(x) = Rϕ(x) + R(eMψ(x) − 1)

= Rϕ(x) +MeMψ(x) ∂ψ
∂ν (x) + β(x)(e

Mψ(x) − 1)

= Rϕ(x) +M∂ψ
∂ν (x).
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According to (6.2), for sufficiently large M > 0, one can get RϕM(x) > 0 for all x ∈ ΓR. So, in order to get
part (a), it suffices to choose Φ equal toϕM in a neighborhood of ∂Ω. Similarly, by choosingM < 0 sufficiently
large, part (b) can be easily accomplished.

In eachof these cases, oncewehavefixed the appropriateM, it remains to takeΦ as any smooth extension
of ϕM from a neighborhood V of ∂Ω, with V ⊂ UM, to Ω̄ in such a way that ξ1(x) < Φ(x) < ξ2(x) for all x ∈ Ω̄.
This can be accomplished through an appropriate cutoff function of class C∞.

Remark 6.4. Note that if ξ1 ≥ 0 in Ω̄, then the function Φ provided by Lemma 6.3 (a) satisfiesBΦ ≥ 0 on ∂Ω,
whereas if ξ2 ≤ 0 in Ω̄, then the function Φ provided by Lemma 6.3 (b) verifiesBΦ ≤ 0 on ∂Ω.

The next result provides us with a global uniform estimate in Ω̄, when d ∼ 0, for the non-negative solutions
of (1.1).

Lemma 6.5. For every ε > 0, there exists d0 = d0(ε) > 0 such that θ{d,h} ≤ Θh + ε in Ω̄ for all d ∈ (0, d0).

Proof. Subsequently, we suppose that d has been chosen sufficiently small so that (H3) holds. For a given
ε > 0, set

ξ1 := Θh +
ε
2 > 0, ξ2 := Θh + ε.

By Lemma 6.3 (a) and Remark 6.4, there exists Φ ∈ C2(Ω̄) such that

0 < Θh +
ε
2 ≤ Φ ≤ Θh + ε in Ω̄ and BΦ ≥ 0 on ∂Ω.

In particular, Φ(x) > Θh(x) for all x ∈ Ω̄. Thus, since h(Θh(x), x) ≤ 0 for all x ∈ Ω̄ and, owing to (H2), it is
strictly decreasing in the first variable, we find that

h(Φ(x), x) < 0 for all x ∈ Ω̄.

Hence, setting

d0 :=
maxx∈Ω̄(Φ(x)h(Φ(x), x))
min{0, minx∈Ω̄ LΦ(x)} ∈ (0, +∞],

it becomes apparent that, for every d < d0,

Φ(x)h(Φ(x), x) ≤ max
x∈Ω̄
(Φ(x)h(Φ(x), x)) ≤ dmin

x∈Ω̄
LΦ(x) ≤ dLΦ(x) in Ω̄.

Note that this estimate holds true for all d > 0 if minx∈Ω̄ LΦ(x) ≥ 0, because, by construction,

Φh(Φ, ⋅ ) < 0 in Ω̄.

This explains why we are setting d0 = +∞ when minx∈Ω̄ LΦ(x) ≥ 0. On the other hand, when we have
minx∈Ω̄ LΦ(x) < 0, the value of d0 becomes

d0 :=
maxx∈Ω̄(Φ(x)h(Φ(x), x))

minx∈Ω̄ LΦ(x) =
−maxx∈Ω̄(Φ(x)h(Φ(x), x))
−minx∈Ω̄ LΦ(x) > 0.

Thus,
−dmin

x∈Ω̄
LΦ(x) < −max

x∈Ω̄
(Φ(x)h(Φ(x), x))

for all d < d0, or, equivalently,
max
x∈Ω̄
(Φ(x)h(Φ(x), x)) < dmin

x∈Ω̄
LΦ(x),

which also shows the previous estimate in this case.
Consequently, Φ provides us with a positive supersolution of (1.1). Consider the function f ∈ C(Ω̄)

defined, for each x ∈ Ω̄, by

f(x) :=
{{{
{{{
{

Φ(x)h(Φ(x), x) − θ{d,h}(x)h(θ{d,h}(x), x)
Φ(x) − θ{d,h}(x)

if Φ(x) ̸= θ{d,h}(x),

h(Φ(x), x) + Φ(x)∂h
∂u
(Φ(x), x) if Φ(x) = θ{d,h}(x).
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Therefore, the function Φ − θ{d,h} is a supersolution of

{
(dL − f )u = 0 in Ω,
Bu = 0 on ∂Ω.

Now, either θ{d,h} ≡ 0, which ends the proof, or

θ{d,h} ≫ 0, σ1[dL − h(θ{d,h}, ⋅ );B, Ω] = 0.

In the latter case, it is easily seen that (H2) implies f ⪇ h(θ{d,h}, ⋅ ) in Ω̄. Thus, for every d ∈ (0, d0), it follows
from Theorem 4.1 (a) that

σ1[dL − f;B, Ω] > σ1[dL − h(θ{d,h}, ⋅ );B, Ω] = 0.

By [31, Theorem 7.10], we may infer that, for every 0 < d < d0,

θ{d,h}(x) ≤ Φ(x) ≤ Θh(x) + ε for all x ∈ Ω̄.

The proof is complete.

The following result provides us with Theorem 1.2 in the special case when ΓR = 0.

Proposition 6.6. For any compact subset K of Ω ∪ Θ−1h (0), we have that

lim
d↓0

θΩ{d,h} = Θh uniformly in K.

Proof. Fix ε > 0. By Lemma 6.5, there exists d0 = d0(ε) > 0 such that

θ{d,h} ≤ Θh + ε for all x ∈ K ⊂ Ω̄, d ∈ (0, d0).

In order to get a lower estimate, we will first assume h(u, x) to be autonomous, i.e., h(u, x) = h(u) for all
(u, x) ∈ ℝ × Ω̄. In such a case, Θh is a non-negative constant. Since θ{d,h} is non negative, it is obvious that
θ{d,h} > Θh − ε in Ω̄ for all d > 0 if Θh = 0. Thus, the following estimate holds:

Θh − ε ≤ θ{d,h} ≤ Θh + ε for all x ∈ K ⊂ Ω̄, d ∈ (0, d0).

In order to get the lower estimate when Θh is a positive constant (necessarily, h(0) > 0, h(Θh) = 0 and K ⊂ Ω,
because Θ−1h (0) = 0), we consider ε̃ ∈ (0, min{2Θh , ε}), x0 ∈ K, and ρ > 0 be such that ρ < dist(K, ∂Ω). For
these choices, B̄ρ(x0) ⊂ Ω. Let φ ≫ 0 be the principal eigenfunction associated to σ1[L; D, Bρ(x0)] normal-
ized so that ‖φ‖∞ = 1/2, and define the function ϕ ∈ ⋂p>N W2,p(Bρ(x0)) through

ϕ :=
{
{
{

φ in B̄ρ(x0) \ B̄ρ/2(x0),
φ̃ in B̄ρ/2(x0),

where φ̃ is any sufficiently smooth function chosen so that ϕ(x) > 0 for all x ∈ Bρ(x0), ϕ(x0) = 1 and
‖ϕ‖∞ = 1. Set

Φ := (Θh −
ε̃
2)ϕ in B̄ρ(x0).

Then, by construction, DΦ = 0 on ∂Bρ(x0) and

0 < Φ(x) ≤ Θh −
ε̃
2 for all x ∈ Bρ(x0),

since Θh is a constant greater than ε̃/2 and ‖ϕ‖∞ = 1. Thus, taking into account that, owing to (H2), h(u) is
strictly decreasing in u > 0, it is apparent that

h(Φ(x)) ≥ h(Θh −
ε̃
2) > h(Θh) = 0 for all x ∈ B̄ρ(x0),

Brought to you by | Universidad Complutense Madrid 



22 | S. Fernández-Rincón and J. López-Gómez, Singular Perturbations

and hence
min

x∈B̄ρ(x0)
h(Φ(x)) ≥ h(Θh −

ε̃
2) > 0.

On the other hand, the function LΦ/Φ is continuous in B̄ρ(x0) because Φ(x) > 0 for all x ∈ Bρ(x0) and

LΦ(x)/Φ(x) = σ1[L; D, Bρ(x0)] ∈ ℝ for all x ∈ ∂Bρ(x0).

Although unnecessary, ρ(x0) can be shortened so that σ1[L; D, Bρ(x0)] > 0, because, due to the Faber–Krahn
inequality, limρ→0 σ1[L; D, Bρ(x0)] = +∞ (see, e.g., [31, Proposition 8.6]). Thus, setting

0 < dx0 <
minB̄ρ(x0) h(Φ)

maxB̄ρ(x0)|LΦ/Φ|
,

we have that, for every d ∈ (0, dx0 ),

d max
B̄ρ(x0)
|LΦ/Φ| ⪇ h(Φ) in B̄ρ(x0),

and so
dLΦ = dΦLΦ/Φ ≤ dΦ max

B̄ρ(x0)
|LΦ/Φ| ⪇ Φh(Φ) in B̄ρ(x0).

Therefore, Φ provides us with a strict subsolution of

{
dLu = uh(u) in Bρ(x0),
u = 0 on ∂Bρ(x0).

Equivalently, θD,Bρ(x0){d,h} − Φ is a strict supersolution of

{
(dL − f )u = 0 in Bρ(x0),
u = 0 on ∂Bρ(x0),

where f ∈ C(B̄ρ(x0)) stands for the function defined, for every x ∈ B̄ρ(x0), by

f(x) :=
{{{{
{{{{
{

θD,Bρ(x0){d,h} (x)h(θ
D,Bρ(x0)
{d,h} (x)) − Φ(x)h(Φ(x))

θD,Bρ(x0){d,h} (x) − Φ(x)
if Φ(x) ̸= θD,Bρ(x0){d,h} (x),

h(Φ(x)) + Φ(x)h󸀠(Φ(x)) if Φ(x) = θD,Bρ(x0){d,h} (x).

Moreover, thanks to (H2), f ⪇ h(θD,Bρ(x0){d,h} ) in B̄ρ(x0) and thus, by the monotonicity of the principal eigenvalue
with respect to the potential established by Theorem 4.1 (a), it becomes apparent that

σ1[dL − f; D, Bρ(x0)] > σ1[dL − h(θ
D,Bρ(x0)
{d,h} ); D, Bρ(x0)] = 0.

Note that h(0) > 0, and hence, owing to Corollary 5.1 (b), θD,Bρ(x0){d,h} ≫ 0 for sufficiently small d > 0. Conse-
quently, by [31, Theorem 7.10], we find that, for every d ∈ (0, dx0 ),

Φ(x) < θD,Bρ(x0){d,h} (x) for all x ∈ Bρ(x0). (6.3)

Moreover, by Lemma 5.2,
θD,Bρ(x0){d,h} ≤ θ

B,Ω
{d,h} in Bρ(x0). (6.4)

On the other hand, since Φ ∈ C(B̄ρ(x0)) and Φ(x0) = Θh − ε̃/2, there exist ρx0 ∈ (0, ρ) such that

Φ(x) ≥ Θh − ε̃ > Θh − ε for all x ∈ Bρx0 (x0). (6.5)

According to (6.3)–(6.5), we find that

θB,Ω
{d,h} > Θh − ε in Bρx0 (x0) for all d ∈ (0, dx0 ).
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As K is compact, we can extract x1, . . . , xn ∈ K such that K ⊂ ⋃ni=1 Bρxi (xi), and hence for every d < mini dxi ,
d > 0, the estimate θB,Ω

{d,h} ≥ Θh − ε holds in K. This ends the proof when h is independent of x.
Subsequently, we will assume that h(u, x) is a general function satisfying (H1), (H2) and (H4). Then, for

sufficiently small d > 0, it is obvious that

θB,Ω
{d,h}(x) ≥ 0 ≥ Θh(x) − ε for all x ∈ Θ−1h ([0, ε]).

As this provides us with a satisfactory lower estimate in K ∩ Θ−1h ([0, ε]), in order to extend it to K, it remains
to show that there exists d1 > 0 such that, for every d ∈ (0, d1),

θB,Ω
{d,h}(x) ≥ Θh(x) − ε for all x ∈ K0 := K ∩ Θ−1h ([ε, maxΩ̄Θh]) ⊂ Ω.

Should K0 be empty, the proof is complete. So, suppose that K0 is nonempty and pick x0 ∈ K0 and ρ > 0 such
that

B̄ρ(x0) ⊂ Ω ∩ Θ−1h (
ε
2 , +∞).

By construction, Θh(x) > ε/2 > 0 for all x ∈ B̄ρ(x0) and hence, owing to (H2),

min
B̄ρ(x0)

h(0, ⋅ ) > 0 and min
B̄ρ(x0)

Θh >
ε
2 > 0.

Actually, by continuity, ρ > 0 can be shortened, if necessary, so that

min
B̄ρ(x0)

Θh ≥ Θh(x) −
ε
2 for all x ∈ B̄ρ(x0). (6.6)

The rest of the proof consists in reducing ourselves to the previous case, by establishing the existence of an
autonomous function H(u) satisfying (H1), (H2), (H4), and such that

H(u) ≤ h(u, x) for all u ≥ 0, x ∈ B̄ρ(x0), (6.7)

and
min

x∈B̄ρ(x0)
Θh(x) −

ε
4 ≤ ΘH ≤ min

x∈B̄ρ(x0)
Θh(x). (6.8)

The most natural candidate function for a (globally defined inℝ) H(u) is

hmin(u) :=
{
{
{

minx∈B̄ρ(x0) h(u, x) if u ≥ 0,
minx∈B̄ρ(x0) h(0, x) − u if u < 0.

Obviously, hmin ∈ C(ℝ) and it is strictly decreasing, though, in general, it is not of class C1(ℝ). Thus, in order
to construct H(u) satisfying (6.7), (6.8), (H1), (H2) and (H4), we begin by considering the function

G(u) := min{−δ, 4ε hmin(u +
ε
4)} < 0, u ∈ ℝ,

with sufficiently small δ > 0, to be chosen later, and then we take, for every u ∈ ℝ,

H(u) :=
u

∫
Θmin− ε4

G(s) ds, where Θmin ≡ min
x∈B̄ρ(x0)

Θh(x).

Since G is a continuous function, H is a function of class C1(ℝ), and hence (H1) holds. Moreover, by defini-
tion, H󸀠(u) = G(u) < 0 for all u ∈ ℝ. Thus, (H2) holds. Furthermore, since H(Θmin − ε4 ) = 0, (H4) also holds,
because H(u) < 0 for all u > Θmin − ε4 . Actually, (6.8) holds too, since ΘH = Θmin − ε4 , by definition (see (6.1)
if necessary). It remains to shorten δ, if necessary, to get (6.7). Suppose u ≤ Θmin − ε4 . Then u +

ε
4 ≤ Θmin, and

hence hmin(u + ε4 ) ≥ 0 and G(u) = −δ, which implies

H(u) = −δ(u − Θmin +
ε
4).

Brought to you by | Universidad Complutense Madrid 



24 | S. Fernández-Rincón and J. López-Gómez, Singular Perturbations

Thus, for sufficiently small δ,
H(0) = δ(Θmin −

ε
4) < hmin(Θmin −

ε
4),

and therefore
H(u) ≤ H(0) < hmin(Θmin −

ε
4) ≤ hmin(u)

for all u ∈ [0, Θmin − ε4 ]. So, (6.7) holds in this interval. When u ∈ (Θmin − ε4 , Θmin), by construction,

H(u) =
u

∫
Θmin− ε4

G(s) ds < 0 < hmin(u),

and hence (6.7) holds in [0, Θmin). Finally, when u ≥ Θmin, we find that

G(u) = min{−δ, 4ε hmin(u +
ε
4)} ≤

4
ε
hmin(u +

ε
4) < 0

and, consequently,

H(u) =
u

∫
Θmin− ε4

G(s) ds ≤ 4
ε

u

∫
Θmin− ε4

hmin(s +
ε
4) ds =

4
ε

u+ ε4

∫
Θmin

hmin(t) dt

≤
4
ε

u+ ε4

∫
u

hmin(t) dt <
4
ε

u+ ε4

∫
u

hmin(u) dt = hmin(u),

which shows (6.7).
By Lemma 5.2, for sufficiently small d > 0, the following estimate holds:

θD,Bρ(x0){d,H} ≤ θ
B,Ω
{d,h} in Bρ(x0). (6.9)

By the first part of the proof, since H(u) does not depend on x ∈ Ω, there exists dx0 ,ε > 0 such that

ΘH −
ε
4 ≤ θ

D,Bρ(x0)
{d,H} in B̄ρ/2(x0) for all d ∈ (0, dx0 ,ε). (6.10)

Combining (6.6), (6.8), (6.9) and (6.10) yields

Θh − ε ≤ min
B̄ρ(x0)

Θh −
ε
2 ≤ ΘH −

ε
4 ≤ θ

D,Bρ(x0)
{d,H} ≤ θ

B,Ω
{d,h} in Bρ/2(x0)

for all d ∈ (0, dx0 ,ε). Lastly, since K0 is compact, there exist x1, . . . , xn ∈ K0 such that K0 ⊂ ⋃ni=1 Bρi/2(xi).
Therefore,

Θh − ε ≤ θB,Ω
{d,h} in K0 for all d < d0 := min

1≤i≤n
dxi ,ε ,

which ends the proof.

We already have all the necessary tools to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Since h satisfies (H2), Θh ≡ 0 if maxΩ̄ h(0, ⋅ ) ≤ 0. Should it be the case, the result is a
direct consequence from Proposition 6.6. So, subsequently, we assume that

max
Ω̄
h(0, ⋅ ) > 0.

Then, by Corollary 5.1 (b), θ{d,h} ≫ 0 for sufficiently small d > 0.
Thanks to Proposition 6.6, Theorem 1.2 holds on any compact subset of Ω ∪ Θ−1h (0). Hence, it remains

to prove the theorem on a neighborhood of Γ+R. Let γ be a component of Γ+R. By the definition of Γ+R, we have
that Θh(x) > 0 for all x ∈ γ. By the continuity of Θh, there exists ρ > 0 such that

ε0 := min
Ω̄γ,ρ

Θh > 0, where Ωγ,ρ ≡ {x ∈ Ω : dist(x, γ) < ρ}.
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Pick ε ∈ (0, ε0). By the proof of Theorem 1.3, we can shorten ρ, if necessary, so that

{x ∈ Ω : dist(x, γ) = ρ} = ∂Ωγ,ρ ∩ Ω

is diffeomorphic to γ, and so of class C2. Hence, Ωγ,ρ is an open subdomain of Ω with boundary of class C2,
consisting of two components ∂Ωγ,ρ ∩ Ω and γ for sufficiently small ρ > 0.

Subsequently, we consider the compact subset of Ω

Kγ,ρ := {x ∈ Ω : ρ/2 ≤ dist(x, γ) ≤ ρ}.

By Proposition 6.6, there exists dρ > 0 such that

Θh −
ε
2 ≤ θ{d,h} in Kγ,ρ for all d < dρ . (6.11)

By applying Lemma 6.3 (a) and Remark 6.4 with the choices

ξ1(x) := Θh(x) − ε (≥ ε0 − ε > 0)

and
ξ2(x) := Θh(x) −

3ε
4 < Θh(x), x ∈ Ω̄γ,ρ/2,

there exists Φ ∈ C2(Ω̄γ,ρ/2) such that

Θh − ε ≤ Φ ≤ Θh −
3ε
4 in Ωγ,ρ/2 and RΦ ≤ 0 on γ. (6.12)

In particular, since ∂Ωγ,ρ/2 ∩ Ω ⊂ Kγ,ρ, we may infer from (6.11) and (6.12) that

θ{d,h} ≥ Θh −
ε
2 = Θh −

3ε
4 +

ε
4 ≥ Φ +

ε
4 on ∂Ωγ,ρ/2 ∩ Ω for all d < dρ . (6.13)

Moreover, by (H2), since Φ(x) < Θh(x) for all x ∈ Ω̄γ,ρ/2, we have that

min
x∈Ω̄γ,ρ/2

h(Φ(x), x) > min
x∈Ω̄γ,ρ/2

h(Θh(x), x) = 0.

Thus, shortening dρ, if necessary, so that

dρ <
minx∈Ω̄γ,ρ/2 Φ(x)h(Φ(x), x)
max{0, maxΩ̄γ,ρ/2 LΦ}

,

we are driven to
dLΦ ≤ Φh(Φ, ⋅ ) in Ωγ,ρ/2 for all d < dρ .

Let us denote by f ∈ C(Ω̄γ,ρ/2) the function defined, for every x ∈ Ω̄γ,ρ/2, through

f(x) :=
{{{
{{{
{

θ{d,h}(x)h(θ{d,h}(x), x) − Φ(x)h(Φ(x), x)
θ{d,h}(x) − Φ(x)

if θ{d,h}(x) ̸= Φ(x),

h(Φ(x), x) + Φ(x)∂h
∂u
(Φ(x), x) if θ{d,h}(x) ̸= Φ(x).

Then, for every d < dρ, taking into account (6.13), the function w := θ{d,h} − Φ satisfies

{{{{
{{{{
{

(dL − f )w ≥ 0 in Ωγ,ρ/2,
Bw = Rw > 0 on γ,

w ≥ ε4 > 0 on ∂Ωγ,ρ/2 ∩ Ω.

Therefore, w provides us with a strict supersolution of [dL − f;B0, Ωγ,ρ/2], where

B0 := {
B on γ,
D on ∂Ωγ,ρ/2 \ γ.
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Since, owing to (H2), h is strictly decreasing in the first variable, f ⪇ h(θ{d,h}, ⋅ ) in Ωγ,ρ/2. Moreover,we already
know that θ{d,h} ≫ 0 for sufficiently small d > 0. Thus, it follows from Theorem 4.1 (a) and Lemma 4.3 that

σ1[dL − f;B0, Ωγ,ρ/2] > σ1[dL − h(θ{d,h}, ⋅ );B0, Ωγ,ρ/2]
> σ1[dL − h(θ{d,h}, ⋅ );B, Ω] = 0

for sufficiently small d > 0. Therefore, due to [31, Theorem7.10], and taking into account (6.12),we conclude
that

θ{d,h} ≫ Φ ≥ Θh − ε in Ωγ,ρ/2 for sufficiently small d > 0.

The proof is complete.
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