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1ABBREVIATIONS 

 

DMPC, dimyristoylphosphatidylcholine; DMPG, dimyristoylphosphatidylglycerol; 

DMSO, dymethylsulfoxide; DPH, 1,6-dyphenyl-1,3,5-hexatriene; eNOS, endothelial nitric 

oxide synthase; NMT, N-myristoyltransferase; CNO, nitric oxide; PC, egg 

phosphatidylcholine, PG, egg phosphatidylglycerol; TFE, trifluoroethanol; TMA-DPH, 1-

(4-(trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene. 
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ABSTRACT 

 Endothelial Nitric Oxide Synthase (eNOS) is unique among the NOS isoforms in its 

being dually acylated by the fatty acids myristate and palmitate. Due to its N-terminus 

consensus sequence, eNOS becomes cotranslationally myristoylated through an amide 

bond between the first Gly residue and myristic acid. Interestingly, this protein can also 

become transiently palmitoylated through the formation of two thioester bonds at cysteine 

residues 15 and 26. Protein palmitoylation of previously myristoylated protein results in the 

membrane association of eNOS in caveolin-enriched domains. In this work we have 

synthesized the first 28 amino acids of eNOS i) non-acylated, ii) singly myristoylated, iii) 

doubly palmitoylated and iv) dually myristoylated and palmitoylated. The effect of 

acylation on the conformation of the peptides has been studied by means of circular 

dichroism and fluorescence properties of a Trp residue which has been included at position 

29. Acylation with either myristic or palmitic acid confers the peptide strech the ability to 

adopt extended conformations. Subsequently, we have studied the interaction of these four 

peptides with liposomes of defined composition by means of circular dichroism and 

fluorescence spectroscopy and their degree of insertion within lipid vesicles measuring the 

polarization of diphenyl-hexatriene (DPH) and tetramethyl ammonium diphenyl-hexatriene 

(TMA-DPH)-labeled liposomes. The acylated peptides were able to insert deeply into the 

hydrophobic core of both neutral and acidic phospholipids. Finally, our data suggest that 

palmitoylation of previously myristoylated sequences could be responsible of the partition 

into lipids rafts observed for this type of acylated proteins.   
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INTRODUCTION 

Protein acylation by myristic and palmitic acid is a wide occurring process which is 

involved in membrane binding as well as in cellular signaling (1). Myristoylation is a 

cotranslational and irreversible process that adds a myristic acid through an amide bond on 

the N-terminal glycine residue of the protein within a specific consensus sequence. The 

enzyme responsible for myristoylation is the N-myristoyl transferase (NMT)1 that catalyzes 

transfer of myristate from myristoyl-CoA to suitable peptide and protein substrates. To 

date, nearly twenty NMTs from fungal and mammalian sources have been identified (2-4). 

On the other hand, palmitoylation is a reversible and post-translational process. S-acylation 

occurs on cysteine residues through a thioester linkage in a wide variety of sequence 

contexts (5). This attachment is more labile than the amide linkage and facilitates the 

interaction of the acylated protein with membranes (6). Recently, it has been discovered the 

molecular identity of protein acyltransferases that modify palmitoylated proteins (5). Two 

yeast palmitoyl-acyl transferases for intracellular proteins have been identified, Erf2/Erf4 

and Akr1 that palmitoylate Ras2 and yeast casein kinase 2 respectively (7, 8). Erf2 and 

Akr1 share a common domain, the Asp-His-His-Cys (DHHC) within a cysteine riche 

domain. The finding that these unrelated proteins share a common protein domain that is 

essential for protein acyltransferases activity has lead to the identification of a functional 

ortholog of the yeast Ras palmitoylransferase, the complex DHHC9/GCP16 (9). 

Nevertheless, non-enzymatic palmitoylation in vitro has also been demonstrated as the 

palmitoylation of a myristoylated peptide with the N-terminal sequence of the p62Yes 
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protein tyrosine kinase (10), the myristoylated Giα protein (11), the 25-kDa synaptosomal 

protein (SNAP-25) (12) and small peptides of the β2-adrenergic receptor (13). By using 

artificial sequences we have obtained data which support the non-enzymatic protein 

palmitoylation within mammalian cells (14). 

The dually acylated eNOS  enzyme produces the endothelium derived nitric oxide (CNO) 

which is an important signaling molecule involved in many biological processes such as the 

regulation of blood pressure, platelet aggregation and the maintenance of the vascular tone 

both in veins and arteries. Diminished CNO production has been implicated in the 

pathogenesis of a variety of vascular disorders including atherosclerosis and pulmonary 

hypertension (15-17). The synthesis of endothelium derived CNO is a calcium and 

calmodulin-dependent process. This enzyme is dually acylated by myristic acid on the N-

terminal glycine and by palmitic acid on two cysteine residues: Cys15 and Cys26 (18-20). 

Myristoylation of eNOS is required for the subcellular location (20, 21), the efficient 

production of CNO (22) and subsequent palmitoylation (19), but it does not seem that 

myristoylation of eNOS alone could be responsible for the association of eNOS with 

membranes (23). Both myristoylation and palmitoylation are required to target eNOS to 

specialized membrane microdomains named caveolae where it is associated with caveolin 

at low cellular calcium concentrations (23, 24). The association of eNOS to caveolin leads 

to an inhibition of eNOS activity (23). The cellular stimulation with agonists that increase 

the intracellular concentration of Ca2+ promotes the binding of calmodulin to eNOS and 

relieves the inhibition of eNOS enzyme by caveolin (18).  
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 In this work we have synthesized four peptides corresponding to the first 28 amino 

acids of eNOS with different degree of acylation: non-acylated, singly myristoylated on 

amino-terminal Gly, doubly palmitoylated on the two cysteine residues and dually 

myristoylated and palmitoylated peptides. At the carboxyl-end, we have added a tryptophan 

residue in order to monitor the fluorescence properties of each peptide. Subsequently, we 

have studied the structural properties of these four peptides and their interaction with 

liposomes of defined composition. 

 

EXPERIMENTAL PROCEDURES 

 

Materials. Egg phosphatidylcholine (PC), egg phosphatidylglycerol (PG), 

dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), 

cholesterol and sphingomyelin were provided by Avanti Polar Lipids. 1,6-dyphenyl-1,3,5-

hexatriene (DPH) and 1-(4-(trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-

DPH) were purchased from Molecular Probes. All other reagents were from Merck. 

 

Synthesis of peptides. Synthesis was carried out on an automated multiple peptide 

synthesizer (AMS 422, Abimed) using a solid-phase procedure and a standard Fmoc 

chemistry in a base of 25 µmol. It was used a N-α-Fmoc-DMP resin [4-(2=, 4=-

dimethoxyphenyl-Fmoc-aminomethyl)phenoxy resin (Novabiochem) with Fmoc-protected 

amino acids activated in situ with PyBop (benzotriazole-1-yl-oxi-tris-

pyrrolidinophosphonium hexafluorophosphate) in the presence of N-methylmorpholine and 

20% piperidine/dimethylformamide for deprotection. The protecting side-chain groups 
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were as follows: Asn and Gln (Trt), Glu (OtBu), Ser (tBu), Lys and Trp (Boc) and Cys 

(Acm). Peptides were cleaved from the resin with 82.5 % triflluoroacetic containing 5% 

phenol, 5 % water, 5 % thioanisole, 2.5 % ethane dithiol as scavengers (25), precipitated 

and washed with cold mehyl tert-buyl ether, water-extracted, lyophilized and purified by 

reverse-phase HPLC using a SuperPac7 Pep-S C2/C18 column (Pharmacia). Two different 

systems were used to purify the peptides. The non-acylated and myristoylated peptides 

were dissolved in  5% Acetonitrile in 0.1% trifluoroacetic acid (TFA) and a gradient of 

acetonitrile/0.1% TFA from 5 to 60% in 35 min and from 60 to 100% in 5 min was 

employed to elute them at a flow rate of 1 ml/min. In the case of palmitoylated and dually 

acylated peptides, ethanol (60%, v/v) in 0.1% TFA served as initial mobile phase, and 

peptides were eluted with a 5-100% linear gradient of propan-2-ol/0.1%TFA, in 35 min at 

0.7 ml/min. The absorbance at 214 nm was monitored continuously and relevant peaks 

were collected manually, pooled and lyophilized. The purified peptides were characterized 

by amino acid analysis, performed on a Beckman 6300 amino acid analyzer, PAGE 

electrophoresis, HPLC and fast atom bombardment mass spectrometry using a Bruker mod. 

Reflex III mass spectrometer. Due to the low solubility of peptides in aqueous buffers, a 5-

10 mg/ml stock solution of the peptide in trifluoroethanol (TFE) or dimethylsulfoxide 

(DMSO) was used in the various assays described in this work and kept a -20 oC between 

uses. The final organic solvent concentration was always kept under 2% (v/v).  

 

Acylation of peptides. Myristoylation and palmitoylation of peptides were performed on 

the synthesis resin. The myristic acid was activated with diciclohexylcarbodimide that 

renders the asymmetric anhydride and added in excess to the peptide attached to the resin. 
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This causes the formation of the amide bond. Once the peptide was myristoylated, it was 

cleaved from the resin. The palmitoylation was carried out according to the protocol of 

Beeckman et al. (26). After the synthesis, the protected peptide-resin was washed with 

dimethylformamide (DMF) and the side chains of cysteine residues were liberated with 0.1 

M mercury acetate in DMF. After completion of the reaction the resin was washed 

copiously with DMF. Then, the sulfhidryl groups were reduced with β-

mercaptoethanol/DMF (9:1) for three hours. Free SH groups were palmitoylated on the 

resin by coupling using 8 eq. of PyBop, 8 eq. of palmitic acid, 16 eq. of 

diisopropylethylamide (DIEA) in DMF, for 16 hours at 37 oC. Then, the peptide was 

cleaved from the resin. 

 

Vesicle preparation. In all cases a lipid film was obtained by drying a chloroform 

solution of the lipid under a current of nitrogen; this film was kept under vacuum for 5 

hours. The phospholipid was resuspended at a concentration of 1 mg/ml in medium buffer 

(5 mM Tris, pH 7.0, 100 mM NaCl, 5 mM MES, 5 mM sodium citrate, 1 mM EDTA) or 20 

mM sodium phosphate buffer, pH 7.0 for 1 hour at 37 oC and eventually vortexed. This 

suspension was sonicated in a bath sonicator (Branson 1200), and was subsequently 

subjected to at least 15 cycles of extrusion in a Liposofasttm-Basic apparatus (Avestin) with 

100 nm polycarbonate filters (Avestin). A 0.14 mM final phospholipid concentration was 

used in all the experiments. 

 

Circular dichroism measurements. Circular dichroism spectra were obtained on a Jasco 

J-715 spectropolarimeter using a 0.1 cm pathlength cuvette at 25 EC. The peptide 
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concentration employed was 80 µM. The buffer used was 20 mM sodium phosphate, pH 

7.0 or TFE. A minimum of four spectra was accumulated for each sample and the 

contribution of the buffer was always subtracted. The resultant spectra were smoothed 

using J-715 Noise Reduction software. The values of mean residue molar ellipticity [Θ]MRW 

were calculated on the basis of 100 as the average molecular mass per residue and they are 

reported in terms of degree x cm2 x dmol-1. The spectra in the presence of lipid vesicles were 

recorded after incubating for 1 h at 37 oC. To minimize the effect of light scattering on the 

shape and magnitude of the spectrum, lipid-peptide mixtures were sonicated before the spectra 

were recorded. 

 

Fluorescence measurements. Fluorescence studies were carried out on a SLM Aminco 

8000C spectrofluorimeter, fitted with a 450 W xenon arc and equipped with Glan 

Thompson polarizers. A 0.2x1 cm quartz cuvette was used. The buffer used was medium 

buffer, pH 7.0. The peptide concentration was 3 µM and the lipid concentration was 0.14 

mM. The temperature in the cuvette was maintained by a Polystat Hubber circulating water 

bath. Excitation was performed at 275 nm, and the emission spectra were recorded over the 

range 285-450 nm. The contribution of the buffer was always subtracted. 

 

Fluorescence polarization. Two different probes were employed in the depolarization 

experiments: 1,6-dyphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylammoniumphenyl)-

6-phenyl-1,3,5-hexatriene (TMA-DPH). The former was dissolved in tetrahydrofuran and 

added to the lipid chloroform solution at a 1:500 molar ratio, and the latter was dissolved in 

methanol and added to the lipid chloroform solution at a 1:100 molar ratio. The lipid was 
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hydrated in medium buffer at a concentration of 1 mg/ml. The sample was divided into 0.5 

ml aliquots, each of them at 0.14 mM lipid concentration. DMSO was added to one of these 

aliquots (control) and peptide from a concentrated DMSO stock solution was added to the 

others (0.4, 1.4 and 4 µM final concentration). The samples were measured in 0.2x1 cm 

fluorescence cuvettes. The temperature in the cuvette was maintained by a Polystat Hubber 

circulating water bath. Excitation was performed at 365 nm and the emission wavelength 

was 425 nm. 

 

RESULTS 

 

Solid-phase synthesis and acylation of peptides. Following the methods described under 

Experimental Procedures, four peptides of 29 amino acids corresponding to the amino-

terminal region of eNOS have been obtained: non-acylated peptide (eNOS), myristoylated 

peptide (myr-eNOS), doubly palmitoylated peptide (eNOS-pal) and dually myristoylated 

and palmitoylated peptide (myr-eNOS-pal) (Table 1). All peptides were purified by 

reverse-phase HPLC. eNOS and myr-eNOS were dissolved in 0.1% TFA/5% acetonitrile 

and separated  with a gradient of acetonitrile. The increased hidrophobicity of eNOS-pal 

and myr-eNOS-pal made necessary to dissolve them in 0.1% TFA/60% ethanol and use a 

gradient of 5-100 % propan-2-ol to separate them. Figure 1 shows representative HPLC 

profiles of purified peptides. All the peptides eluted as single peaks. Incorporation of the 

myristic acid to the eNOS sequence considerably increased the elution time (from 21.7 to 

25.2 min). The presence of two palmitic acids rendered a peptide which eluted at almost 
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85% propan-2-ol while the additional myristic acid present in myr-eNOS-pal made the 

peptide to elute at 100% propan-2-ol. The identity of the peptides was confirmed by amino 

acid analysis and mass spectrometry. Table 2 shows the molecular mass obtained by mass 

spectrometry. The experimental data are virtually identical to the values calculated from the 

amino acid sequence. 

 

CD spectra of peptides. The conformation of the peptides was determined by circular 

dichroism. Figure 2 shows the far-UV circular dichroism spectra of non-acylated and 

acylated peptides in aqueous buffer and in the presence of an organic solvent, TFE. In 

aqueous solutions, eNOS showed a CD spectrum characteristic of a non-ordered structure 

with a minimum centered near 200 nm and a shoulder at 220 nm. However, the acylated 

peptides showed a shift of the minimum to higher wavelength, showing spectra with a 

minimum at 220 nm. In spite of the differences in the magnitude of the spectra of acylated 

peptides the spectral features are different from the non-acylated and are those of extended 

structures. The increased population of ordered conformations upon introduction of 

myristoyl and palmitoyl groups should be the result of the hydrophobic environment 

provided by the acyl chains. TFE has been used to identify the propensity of a polypeptide 

sequence to adopt ordered structures. When all four peptides are dissolved in 100 % TFE 

their spectra showed a maximum at 190 nm and two minima at 205 and 220 nm, with molar 

ellipticity values ranging from -13700 for myr-eNOS-pal to -15500 deg cm2 dmol-1 for 

eNOS (Figure 2). These are characteristics of peptides adopting a α-helical conformation.  
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Interaction of the peptides with phospholipid vesicles. To explore the ability of the 

peptides to interact with model membranes of different composition two different 

approaches have been used: fluorescence emission spectra of peptides in presence of lipid 

vesicles and fluorescence depolarization of two probes embedded in the bilayer to monitor 

changes in the transition properties of the phospholipids. 

 The peptides have been designed to contain a tryptophan residue at position 29 

which would serve as a fluorescent probe to monitor the interaction with lipid vesicles. One 

end of the molecule was chosen because of the minimal induced conformational 

perturbation and the C-terminal one because the N-terminal Gly had to be myristoylated. 

The fluorescence emission spectra of eNOS and acylated peptide alone or in presence of 

PC and PG vesicles are depicted in Figure 3. The position of the maximum of the emission 

spectra of eNOS peptide (354 nm) in medium buffer was indicative of a highly exposed 

environment of the tryptophan residue (27). Acylation with myristic acid did not modify 

the position of the maximum but the palmitate induced a significant decrease (347.5-349 

nm). Moreover, the acyl chains caused a decrease in the quantum yield of tryptophan in 

such a way that independently of the fatty acid content the fluorescence intensity was 

reduced to 50% of the original value (Figure 3B-D, solid lines). 

 When PC vesicles were added to eNOS peptide a slight decrease of the fluorescence 

intensity was observed without modifying the position of the maximum while the presence 

of PG vesicles also reduced slightly the fluorescence intensity but shifted the position of the 

maximum of the spectrum of eNOS to a lower wavelength (349 nm) (Figure 3A). The 

fluorescence properties of acylated peptides were modified upon interaction with neutral 
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and acidic phospholipids vesicles. The Trp residue occupied a more hydrophobic 

environment as a consequence of the interaction as evidenced by the blue shift of the 

fluorescence maximum (from 355-349 to 348-341 nm). On the other hand, the fluorescence 

intensity increased upon interaction being the increase much higher in the presence of PG 

than of PC. In fact, the fluorescence intensity at the maximum of the spectrum of myr-

eNOS-pal in the presence of PG is almost double of that of the parent peptide, eNOS. Thus, 

the fluorescence quenching which appears as a consequence of acylation completely 

disappears upon interaction with negatively charged phospholipids. This would be 

indicative of a conformational change which moves further away the Trp from the side 

chains responsible of the quenching.  

 The effect of eNOS and acylated peptides on the thermotropic behavior of synthetic 

phospholipids was assessed by fluorescence depolarization of DPH and its polar derivative 

TMA-DPH incorporated into the bilayer. The peptides were allowed to interact with 

DMPC and DMPG vesicles for 1 hour at 37 oC. The two fluorescent probes were employed 

in the assays so that the fluidity of both the inner and the outer part of the bilayer could be 

monitored. DPH is assumed to be aligned with the phospholipid acyl chains giving 

information of the hydrophobic core of the bilayer (28, 29), whereas TMA-DPH has a 

shallower location due to the anchoring of its non-fluorescent polar moiety to the 

lipid/water interface and interacts with both the phospholipid polar head groups and the 

fatty acyl chain region, probably as far down as C8-C10 (30, 31). 

 The addition of acylated peptides to PG and PC vesicles modified the phase 

transition curves mainly decreasing the fluidity of the bilayers above the transition 
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temperature. Thus, the amplitude of the phase transition was considerably reduced without 

significantly affecting the gel-to-liquid crystalline transition temperature. In order to 

compare the effect of the peptides on the thermotropic behavior of DMPC and DMPG 

phospholipids, the changes in the amplitude of the thermal transition (∆P) at increasing 

peptide concentrations for DPH- and TMA-DPH-labeled phospholipids were plotted 

(Figure 4). It can be observed that eNOS peptide did not produce any effect on the 

transition of neutral phospholipids independently of the probe used or the peptide 

concentration employed (Figure 4A,C) and only a small decrease of the ∆P value was 

observed when a 4 µM concentration was added to DPH-labeled DMPG vesicles,  affecting 

the phospholipids acyl chain in its fluid state. However, the acylated peptides decreased the 

amplitude of the thermal transition in a concentration dependent manner. At 4 µM peptide 

the transition of DPH-labeled DMPC vesicles is almost completely abolished when 

myristoylated, palmitoylated and dually acylated peptides were present (Figure 4A). When 

acidic vesicles were used, only myr-eNOS-pal cancelled the transition at the maximum 

concentration employed although the other two peptides also affect the microviscosity 

above the transition temperature, being higher the effect of eNOS-pal than that of myr-

eNOS. When TMA-DPH was used to monitor less deep domains similar results were 

obtained except that only the dually acylated peptide was able to cancel the transition and 

that the myr-eNOS induced more significant changes than eNOS-pal in TMA-DPH-labeled 

DMPC vesicles (Figure 4C). Control experiments carried out in the presence of equivalent 

concentrations of the free fatty acid (myristic or palmitic acid) indicated that all the effects 

should be due to the amino acid moiety of the acylated peptide since the acyl chain did not 
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modify either the order parameter nor the transition temperature (data not shown). Then, 

the presence of any fatty acids allows the peptide to interact with hydrophobic domains of 

the bilayer. 

 The effect of the peptides on the thermal transition of more complex vesicles was 

also studied. Figure 5 shows the fluorescence depolarization profiles of DPH-labeled 

DMPC vesicles containing 10 % of both cholesterol and sphingomyelin, two lipids present 

in the lipid composition of caveolae, alone and in the presence of 0.14 µM and 1.4 µM 

peptide concentrations. The thermal transition of the vesicles in the absence of peptide is 

less steep than that of pure DMPC because of the presence of cholesterol. The addition of 

cholesterol to a pure phospholipid bilayer abolishes the normal sharp thermal transition 

between gel and liquid crystalline (lc) phases, giving the membrane properties intermediate 

between two phases (32). Below the Tm, cholesterol weakens the packing of the headgroup 

increasing the fluidity of the ordered gel phase while above the Tm the reduction in freedom 

of acyl chains causes the membrane to condense with a concomitant decrease in fluidity 

(33). At 0.4 µM peptide concentration only myr-eNOS-pal diminished the transition 

amplitude affecting the acyl chain mobility both below and above the transition 

temperature. While myr-eNOS and eNOS-pal reduce the transition amplitude by 30% 

affecting only the acyl chains in the fluid state the dually acylated peptide almost 

completely cancelled the transition at 1.4 µM.  

 

CD of mixtures peptide-phospholipid. The CD spectra of the peptides in the presence of 

lipid vesicles of both acidic and neutral phospholipids are shown in Figure 6. The spectra 
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shown are those obtained at a protein:lipid ratio of 1:10 although it was observed a gradual 

change of the spectrum from the one in the absence of added phospholipids vesicles to the 

one at that protein:lipid ratio. Increasing the lipid concentration did not modify the 

spectrum any further. When challenged by either DMPG or DMPC vesicles the peptides 

underwent conformational changes as indicated by the CD spectra. The largest change 

corresponded to eNOS peptide. From an existing non ordered conformation the peptide 

adopted an extended conformation, featured by a minimum at 213 nm, in the presence of 

DMPG. However, the presence of DMPC did not modify the shape of eNOS peptide 

spectrum and only a decrease of the molar ellipticity values was observed (from -5070 at 

199 nm to -12200 deg cm2 dmol-1 at 201 nm). This fact could be due to the presence of less 

aggregated structures on the surface of the bilayer (34). 

 The extended conformation induced by acylation, characterized by a spectrum with 

a minimum at 216-218 nm is modified somehow as a consequence of the interaction with 

acidic phospholipids since a small shift of the position of the minimum and a decrease in 

the ellipticity value were observed. The spectra of acylated peptides in presence of DMPG 

vesicles were similar with a minimum at 214-219 nm and ellipticity values ranging -10700 

for myr-eNOS, -11200 for eNOS-pal and -12800 deg cm2 dmol-1 for myr-eNOS-pal (Figure 

6). The interaction of acylated peptides with neutral phospholipids modified the CD 

spectrum to a smaller extent. In the presence of DMPC vesicles, the CD spectra of 

myristoylated, palmitoylated or dually acylated peptides exhibited a minimum centered at 

218-222 nm and molar ellipticity values ranging from -5800 to -6900 deg cm2 dmol-1 

(Figure 6).  
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DISCUSSION 

 

Covalent attachment of fatty acids to proteins is a common form of protein modification 

which has been shown to influence both structure and interaction with membranes. To shed 

some light on the membrane-perturbing properties of acylated proteins we have synthesized 

a 28 amino acids peptide corresponding to the N-terminal region of endothelial nitric oxide 

synthase, eNOS. Two targeting signals seem to be contained within the eNOS sequence. To 

begin with, the N-terminus end of the protein, which is irreversibly myristoylated, can 

become reversibly palmitoylated at positions 15 and 26, in a process known to be involved 

in caveolar translocation. On the other hand, mutagenesis data seem to indicate that 

residues 350-358 of eNOS directly interact with caveolin-1 within endothelial cells hence 

modulating its enzymatic activity (35). In vivo, the subcellular localization of the 1203 

amino acid eNOS is dictated by its N-terminus end. In fact, constructs of the first 35 (20) or 

55 amino acids (14) of eNOS are sufficient to determinate a subcellular distribution similar 

to the wild-type protein. We might, therefore, infer that all the information necessary for 

the subcellular targeting of eNOS might be contained within these first 30 residues. With 

that in mind, we have analysed the structural and functional properties of the isolated N-

terminus end of eNOS in order to inspect if its translocation to sphingomyelin-cholesterol 

enriched caveolar subdomains can be attributed to the acylation state. Consequently, in our 

system, the effect of the caveolin-1-eNOS direct interaction does not contribute to the 

peptide-lipid interactions that we observed, allowing us to study each effect in isolation. 
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From the original sequence we have obtained three additional peptides with different 

degree of acylation: myristoylated, doubly palmitoylated and dually myristoylated and 

palmitoylated. The four peptides are highly pure as demonstrated by HPLC, amino acid 

analysis and mass spectrometry. 

From a structural point of view it has been previously shown both that palmitoyl groups 

increase (36) and decrease (37) the helical content of pulmonary surfactant protein-C. CD 

spectra show that the peptide corresponding to the N-terminal sequence of eNOS owns a 

great conformational flexibility being able to adopt different secondary structures when 

challenged by different types of environment. Thus, eNOS peptide has a non-ordered 

conformation in phosphate buffer. When the peptide is dissolved in TFE, a solvent which 

can induce stable conformations in peptides which are unstructured in solution (38), it 

adopts mainly a helical conformation. However, acylation itself, either myristic and/or 

palmitic, confers the peptide the ability to adopt extended conformations, indicated by the 

fact that the CD spectrum of all acylated peptides has a minimum at 220 nm characteristic 

of β-sheet. On the other hand, the fact that eNOS and acylated peptides show different 

fluorescence emission maxima could suggest that acylation causes peptide aggregation or 

micelle formation (39) although the conformational changes observed by CD spectra could 

also be responsible for the more hydrophobic environment of the Trp residue. Although N-

terminally truncated eNOS have been crystallized and their atomic structure obtained, none 

of them contain the sequence stretch described in this work. We have demonstrated herein 

that the myristoylated N-terminal amino-acid peptide of eNOS adopts a β-strand 

conformation in solution. This observation strongly suggests, although it does not confirm, 
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that this extended conformation might adopt a β-strand that could associate with the N-

terminal β-sheet lariat observed in the truncated three-dimensional structure obtained from 

crystallographic data (40). 

 With respect to the role of acylation on the interaction with membranes, there are 

controversial examples in the literature. Thus, it has been shown that the N-terminal 

segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with 

phospholipids bilayers in the absence of acylation (41). However, palmitoylation of 

peptides derived from the cysteine-rich domain of SNAP-23 is essential for membrane 

association (42). In several other cases a lipid moiety represents an additional binding 

energy necessary to achieve stable interactions (for a review see 43). 

 In the cellular cytoplasm, only two of the four peptide species that we describe in 

this work are present, that is myr-eNOS and myr-eNOS-palm. According to the circular 

dichroism data, both of them are able to display very similar secondary structures both in 

solution and in association with vesicles composed of DMPC or DMPG. However, both of 

them display distinct degree of perturbation of the lipidic moiety according to our 

fluorescence spectra and fluorescence depolarization measurements. Fluorescence 

polarization studies show that the polypeptide sequence corresponding to the N-terminal 

region of eNOS is able to interact with model membranes composed of acidic 

phospholipids although the reduction of the transition amplitude is much smaller than that 

induced by any of the acylated peptides and only is observed at the highest concentration 

assayed. Probably the effect is promoted by the net charge that this amino acid sequence 

possesses, +2. As a consequence of this ionic interaction the peptide adopts a β-sheet like 
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structure. However, the behavior observed for the acylated peptides is that of an integral 

membrane protein which strongly restricts the mobility of the phospholipids acyl chains, 

suggesting the insertion of the peptide into the membrane. At a peptide concentration of 4 

µM, myr-eNOS-pal completely abrogated the thermal transition which indicates that the 

peptide interacts with the hydrophobic portion of the bilayer, preventing part of the 

phospholipids molecules from undergoing the transition characteristics of pure 

phospholipids species (44). Since equivalent amounts of the corresponding free fatty acid 

had no effect on the thermotropic behavior of the phospholipids it seems reasonable to 

conclude that the effect of acylated peptides are due to the insertion of the peptide into the 

hydrophobic core of bilayer probably mediated by the interactions between the fatty acid 

moiety of the peptide and the acyl chains of the phospholipids. The fact that acylated 

peptides are able to insert into bilayers of both neutral and acidic phospholipids point out 

that hydrophobic interactions are more important than ionic ones in eliciting the effects 

observed for these peptides. 

 The interaction of the peptides with phospholipids vesicles brings about 

conformational changes as indicated by fluorescence spectroscopy and circular dichroism. 

The largest change takes place when eNOS interacts with acidic phospholipids since from a 

non-ordered structure the peptide adopts spectroscopic features of extended conformations. 

The changes are higher upon interaction with acidic than with neutral phospholipids 

although in both cases the spectral features of an extended conformation are maintained. 

Then, it seems clear that there exists a high tendency of the N-terminus of eNOS to 

associate with acidic phospholipids. Remarkably, negatively charged phospholipids such as 
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phosphatidylserine and phosphatidylglycerol are known to inhibit eNOS activity through its 

binding to the calmodulin-binding amphipathic helix that interconnects both domains (45). 

Hence, the N-terminus end of eNOS might target the protein to membrane areas enriched in 

negatively charged phospholipids, where the reported inhibition might exist. When the 

intracellular calcium levels are raised, and calmodulin binding to eNOS activated the 

electron transfer and CNO synthesis, this inhibitory association with phospholipids might be 

lost (45). 

 Finally, another role of lipid modification is to promote membrane targeting. It is a 

general trend that a single lipophilic modification is not sufficient to target a protein to a 

specific membrane and two lipid moieties are necessary (43). Specifically, myristate and 

palmitate are necessary and sufficient to promote targeting to rafts (46, 47). In the case of 

eNOS it has been shown that palmitoylation only takes place in protein molecules which 

have been previously myristoylated (14). Since this protein is regulated through a 

palmitoylation-depalmitoylation cycle, it would be transiently associated with cholesterol-

sphingolipid-enriched subdomains present in the cellular membrane (48, 49). 

 It is remarkable that in pure PC liposomes, the myr-eNOS peptide and the myr-

eNOS-pal peptide display similar membrane-perturbing properties at a 1.4 µM peptide 

concentration (Fig. 4A). Interestingly, when we introduce cholesterol/sphingomyelin at low 

levels (Fig. 5A or B) the perturbation exerted by the tri-acylated peptide becomes much 

more profound. This observation clearly states that palmitoylation per se of previously 

myristoylated sequences introduces a strong tendency to partition into l0 lipid domains, 

characteristic of lipid rafts. Moreover, since the amino acid sequence of all the peptides is 
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the same and only myr-eNOS-pal seems to specifically interact with rafts, the hydrophobic 

interactions of both myristic and palmitic acids should be responsible of the targeting 

specificity. However, it has been recently shown that short sequences such as Gly-Cys 

bearing only palmitoyl group both at the N-terminal and at the side chain of Cys can 

associate with raft domains (50). This would mean that the amino acid sequence also play a 

role in determining their association with a lipid bilayer. Since no proteins are incorporated 

into our vesicles, it can be inferred that partitioning of eNOS protein in particular and 

dually acylated proteins in general into rafts is due to the association of their acylated 

sequences with lipid rafts without requiring protein-protein interactions. 
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TABLES 

 

Table 1. Synthesized peptides corresponding to the N-terminal sequence of eNOSa.

Peptide Sequence 

eNOS GNLKSVGQEPGPPCGLGLGLGLGLCGKQW 

myr-eNOS myr-GNLKSVGQEPGPPCGLGLGLGLGLCGKQW 

eNOS-pal GNLKSVGQEPGPPC(pal)GLGLGLGLGLC(pal)GKQW 

myr-eNOS-pal myr-GNLKSVGQEPGPPC(pal)GLGLGLGLGLC(pal)GKQW 

 
a myr, myristic acyl chain; pal, palmitic acyl chain. The tryptophan residue added is 

showed in bold. 

 

Table 2. Molecular mass of synthesized peptides of the N-terminal sequence of eNOS. 

 

Peptide Calculated mass a (Da) m/z (Da) 

eNOS 2836.3 2834.2 

myr-eNOS 3046.5 3046.2 

eNOS-pal 3312.7 3310.6 

myr-eNOS-pal 3522.9 3520.7 

 
a The mass of peptides was calculated from the amino acid sequence of peptides and taking 
into account molecular mass of myristic acid (228.21) and palmitic acid (256.24). 
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LEGENDS 

 

FIGURE 1. HPLC elution profile of reverse phase purified peptides. (A) eNOS; (B) myr-

eNOS; (C) eNOS-pal; (D) myr-eNOS-pal. Peptides were purified by a 5-100% acetonitrile 

gradient (A, B) or a 5-100% Propan-2-ol linear gradient (C, D). The elution times are 

indicate. 

 

FIGURE 2. Far-UV circular dichroism spectra of eNOS and its acylated peptides alone or in 

the presence of TFE. (A) eNOS; (B) myr-eNOS; (C) eNOS-pal; (D) myr-eNOS-pal. (!) 20 

mM sodium phosphate, pH 7.0; (○) 100% TFE. The peptide concentration was 80 µM. These 

spectra are representative of those obtained for three different preparations. 

 

FIGURE 3. Fluorescence emission spectra of eNOS and its acylated peptides in the presence 

of lipid vesicles. (A) eNOS; (B) myr-eNOS; (C) eNOS-pal; (D) myr-eNOS-pal. Medium 

buffer (solid line); PC vesicles (short-dashed line); PG vesicles (long-dashed line). Emission 

spectra were obtained upon excitation at 275 nm. The protein concentration was 3 µM and 

lipid concentration was 0.14 mM. The buffer employed was medium buffer, pH 7.0.  

 

FIGURE 4.  Changes in the amplitude of the thermal transition (∆P) of DPH (A, B) and TMA-

DPH (C, D)-labeled DMPC (A, C) and DMPG (B, D) vesicles with increasing peptide 
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concentration. ( ) eNOS; (∆) myr-eNOS; ( ) eNOS-pal; ( ) myr-eNOS-pal. ∆P value is 

defined as the difference between the fluorescence polarization values measured at 10 and 45 

oC. The phospholipid concentration was 0.14 mM. 

 

FIGURE 5. Fluorescence polarization of DPH-labeled DMPC-10% Cho-10% SM vesicles. 

( ) vesicles alone; ( ) eNOS; (–) myr-eNOS; ( ) eNOS-pal; ( ) myr-eNOS-pal. The 

phospholipid concentration was 0.14 mM and the peptide concentrations were 0.4 µM (A) and 

1.4 µM (B).  

 

FIGURE 6. Far-UV circular dichroism spectra of eNOS and its acylated peptides in the 

presence of DMPC or DMPG vesicles. (A) eNOS; (B) myr-eNOS; (C) eNOS-pal; (D) myr-

eNOS-pal. ( ) peptide alone; (–) DMPG vesicles; ( ) DMPC vesicles. The peptide 

concentrations was 80 µM. The peptide:lipid ratio was 1:10. The buffer employed was 20 

mM sodium phosphate, pH 7.0. These spectra are representative of these obtained for three 

different preparations. 



FIGURE 1 

10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40

0

20

40

60

80

100

10 20 30 40 50
0

20

40

60

80

100

A B

C D

A
ce

to
ni

tri
le

 (%
)

P
ro

pa
n-

2-
ol

 (%
)

A214

A214

Time (min) Time (min)

 

 

 

 

 

 

 

 

FIGURE 2 

 

-16

-8

0

8

16

-16

-8

0

8

16

Wavelength (nm)

200 220 240

[Θ
] M

R
W

 x
 1

0-3
 (d

eg
re

e 
x 

cm
2  x

 d
m

ol
-1

)

-16

-8

0

8

16

200 220 240

-16

-8

0

8

16

A B

DC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38



FIGURE 3 

0

20

40

60

80

100

0

20

40

60

80

100

320 360 400 440

0

20

40

60

80

100

320 360 400 440

0

20

40

60

80

100

A

C D

B

Wavelength (nm)

R
el

at
iv

e 
Fl

uo
re

sc
en

ce

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 

 
∆P

0.10

0.20

0.30

0.40

[PEPTIDE] (µM)
0 1 2 3 4

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4

A B

C D

 

 

 

 

 

 

 

 

 

 

 

 

 39



FIGURE 5 
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