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Executive summary:

This paper evaluates the performance of severaveskeand symmetric distributions in
modeling the tail behavior of daily returns andefmasting Value at Risk (VaR). First, we used
some goodness of fit tests to analyze which digtioln best fits the data. The comparisons in
terms of VaR have been carried out examining tleeiracy of the VaR estimate and minimizing
the loss function from the point of view of the wéagor and the firm. The results show that the
skewed distributions outperform the normal and &wtid (ST) distribution in fitting portfolio
returns. Following a two-stageelection process, whereby we initially ensure thatdistributions
provide accurate VaR estimates and tHenusing on the firm’s loss function, we can cadel
that skewed distributions outperform the normal &iddistribution in forecasting VaR. From the
point of viewof the regulator, the superiority of the skewedrthstions related to ST is not so
evident. As the firms are free to choose the VaRlehohey use to forecast VaR, in practice,

skewed distributions will be more frequently used.

Keywords: Value at Risk, Parametric model, Skewness t-Géreda Distribution, GARCH
Model, Risk Management, Loss function.



1. Introduction

A primary tool for financial risk assessment is Malat Risk (VaR). It is defined as the
maximum loss expected of a portfolio of assets aveertain holding period at a given confidence
level (probability). Since the Basel Committee cemB Supervision at the Bank for International
Settlements requires the financial institution teemncapital requirements on the basis of VaR
estimates, allowing them to use internal models faR calculations, this measurement has
become a basic market risk management tool fon&iahinstitutions.

Despite VaR’s conceptual simplicity, its calculaticould be rather complex. Many
approaches have been developed to forecast VaR:pammetric approaches, e.g. Historical
Simulation; semi-parametrics approaches, e.g. Bxr¥alue Theory and the Dynamic quantile
regression CaViar model (Engle and Manganelli (2004nd parametric approaches e.qg.
Riskmetrics (J.P. Morgan (1996)).

The parametric approach is one of the most usefinapcial institutions. This approach
usually assumes that the asset returns follow malodistribution. This assumption simplifies the
computation of VaR considerably. However, it isansistent with the empirical evidence of asset
returns, which finds that the distribution of assstirns is skewed, fat-tailed, and peaked around
the mean (see Bollerslev (1987)). This implies #xdteme events are much more likely to occur
in practice than would be predicted by the symmethinner-tailed normal distribution.
Furthermore, the normality assumption can produaR ¥stimates that are inappropriate measures
of the true risk faced by financial institutions.

Since the ST distribution has fatter tails than tleemal one, this distribution has been
commonly used in finance and risk management, quaatily to model conditional asset returns
(Bollerslev (1987)). The empirical evidence of thistribution performance in estimating VaR is
ambiguous. Some papers show that the ST distribyioforms better than the normal distribution
(see Abad and Benito (2013), Orhan and Koksal (R@fh&d Polanski and Stoja (2010)) while other
papers report that the ST distribution overestisi#ite proportion of exceptions (see Angelidis et
al. (2007) and Guermat and Harris (2002)).

The ST distribution can often account well for thecess kurtosis found in common asset
returns, but this distribution does not captureskewness of the returns. Taking this into account,
one direction for research in risk management ve®lIsearching for other distribution functions
that capture this characteristic. The skewnessestuddistribution (SSD) of Hansen (1994), the
exponential generalized beta of the second kindB@EGof McDonald and Xu (1995), the
generalised error distribution (GED) of Nelson (1R9%he skewness generalised-t distribution
(SGT) of Theodossiou (1998), the skewness erroemgdised distribution (SGED) of Theodossiou
(2001) and the inverse hyperbolic sign (IHS) of nkdn (1949) are the most used in VaR
literature. Some applications of skewness distitimst to forecast the VaR can be found in Chen et
al. (2012), Polanski and Stoja (2010), Bali andodwessiou (2008), Bali et al. (2008), Haas et al.



(2004), Zhang and Cheng (2005), Haas (2009), Aasith Galeano (2007), Xu and Wirjanto
(2010) and Kuester et al. (2006). Chen et al. (R@bEhpared the ability to forecast the VaR of a
normal, ST, SSD and GED. In this comparison the &8® GED distributions provide the best
results. Polanski and Stoja (2010) compared thenalrST, SGT and EGB2 distributions and
found that just the latter two distributions prowidccurate VaR estimates. Bali and Theodossiou
(2008) compared aormal distribution with the SGT distribution antiosved that the SGT
provided a more accurate VaR estimate.

In this paper we carry out a comprehensive comparisf the skewed distributions
aforementioned: SSD, SGT, SGED and IHS. Besideshign comparison we include both the
normal and the ST distribution. The comparativpasformed following two directions. First, we
compare the distributions in statistical terms &tedmine which is the best for fitting financial
returns. Then, we compare the distributions in geohVaR, in order to select which is best for
forecasting VaR.

The main differences with the previous literature as follows: (1) we consider a larger
number of skewed distributions; (2) the comparigorstatistical terms is made using a large
battery of tests: Likelihood ratio, Chi-square (®hof Pearson (1900) and Kolmogorov-Smirnov
(KS) test (Kolmogorov (1933), Smirnov (1939) andddey (1951)); the papers aforementioned
only used the likelihood ratio test; 3) to carryt the comparison in terms of VaR we evaluate the
results on the basis of two criteria: (i) the aeoyrof VaR and (ii) the minimization of two loss
functions which reflect the concerns of the finahcegulator and the firm (Sarma et al. (2003)).

In the next section, we present the methodology tigeestimate the VaR and summarize
the statistical tests and the loss functions thathave used to evaluate the VaR estimates. In
section 3, we present the data. The results otdineparison in statistical terms and in terms of
VaR are presented in sections 4 and 5 respectiVhlylast section includes the main conclusions.

2. Methodology

According to Jorion (2001), VaR measure is defiaasdthe worst expected loss over a
given horizon under normal market conditions ai\eerg level of confidence. The VaR is thus a

conditional quantile of the asset return distribati Let r,, r,, rs,..., 1, be identically distributed
independent random variables representing the diahrreturns. UseF(r) to denote the
cumulative distribution functior (r) = Pr(r, <r |Q,_,), conditionally on the information se,
that is available at time-1. Assume that{r,} follows the stochastic procesg=u+g
whereg =z0;, 2 Diid(O,’]), 4 is the conditional mearg; the conditional standard deviation of
returns. The VaR with a given probabilityl(0,1), denoted by Vaky), is defined as thex

quantile of the probability distribution of finamtireturns:F(VaR(a ))= Pr(f<VaRa) Fa

Under the framework of the parametric techniques (orion (2001)), the conditional VaR

estimate can be calculated\zsR = 4 + G, k,, where 4 represents the conditional mean, which we



assume is zerag, sigma is the conditional standard deviation &pddenotes the corresponding

quantile of the distribution of the standardizetlines at a given confidence leveld. -

Having obtained significant evidence from the Engfel Ng (1993) test on the fact that
good and bad news have a different impact on ciondit volatilities of asset returns, we use the
Exponential GARCH model of Nelson (1991) to estenar, needed for conditional VaR

analysié. Finally, once the variance has been calculated stenate the distributions of the
standardized returns under each of the considesgbdtion functions: normal, ST, SGT, SGED,
SSD and IHS. Table 1 shows the density functiothese skewed distributions.

In the first stage, before the calculation of thaRy we compare the distributions in
statistical terms. To do this, we use a likelihdest (to compare the fit of two models) and two
goodness of fit tests KS and Chi2 (to determinetivdrea sample can be considered as a draw
sample from a given specified distribution). The KSt is based on the maximum difference
between an empirical and a hypothetical cumulatilséribution function. The Chi2 test is based
on the probability distribution function and perfts by grouping the data into bins, calculating the
observed and expected counts for those bins.

In the second stage, we calculate the VaR andhesiccuracyof the VaR estimate under
these distributions. We use four standard testsonufitional and conditional coverage tests, the

Back-Testing criterion and the dynamic quantile.tége have an exception whep, < VaR a)

and then the exception indicator variable)lis equal one (zero in other cases).

Kupiec (1995) shows that thenconditional coverage testas as a null hypothesisa ,

with a likelihood ratio statistici(R, =2| log(a*(1-a)""") logla*( +-a)""*)|), which follows an

asymptotic y*(1) distribution. A similar test for the significancé the deviation ofg from a is

the back-testing criteriorstatistic Z =(Na - Na)/,/ Na(1-a) which follows an asymptotic N (0,1)

distribution. The conditional coverage tes{Christoffersen (1998)) jointly examines if the
percentage of exceptions is statistically equahtexpected one and the serial independence of
l+1. The likelihood ratio statistic of the conditionabverage test is Ly&ELR+LRing, Which is

asymptotically distributeg®(2), and the LRq statistic is the likelihood ratio statistic foreth

hypothesis of serial independence against firsetoldarkov dependence. Finally, the dynamic
guantile test proposed by Engle and Manganelli 4206&xamines if the exception indicator is

uncorrelated with any variable that belongs to itffermation setQ.  , available when the VaR

t-1
was calculated. This is a Wald test of the hypaotheat all slopes are zero in a regression of the

exception indicator variable on a constant, 5 Egs$the VaR.

Additionally, we evaluate the magnitude of the é&sssexperienced. The model that

minimizes the total loss is preferred to the otinedels. For this purpose, we have considered two

! In case of the skewed distributions tkevalue is a function of the skewness and kurtosiamaters.
> The EGARCH models have been estimated below aiSfibdition.



loss functions: the regulator loss function and fine’s loss function. Lopez (1998, 1999)
proposed a loss function, which reflects the wtilitnction of a regulator. In this specificatiohget
magnitude loss function assigns a quadratic spetiin when the observed portfolio losses
exceed the VaR estimate. Thus, we penalize onlynwdre exception occurs according to the
following quadratic specification:
0 otherwise
This loss function gives higher scores when fagueke place and considers the magnitude

of the failure. In addition, the quadratic term @es that large failures are penalized more than

small failures.

But firms use VaR in internal risk management andhis case, there is a conflict between
the goal of safety and the goal of profit maximizat A too high VaR forces the firm to hold too
much capital, imposing the opportunity cost of talpupon the firm. Taking this into account,
Sarma et al. (2003) define the firm’s loss functasfollows:

FLF, ={(VaR- [)2 if {<VaR @)
-BVaR otherwis

[ being the opportunity cost of capital.

3. Data

The data consist of closing daily returns on nimenpgosite indexes from 1/1/2000 to
11/30/2012 (around 3250 observations). The indexes Japanese Nikkei, Hong Kong Hang
Seng, Israeli Tel Aviv (100), Argentine Merval, I 8&P 500 and Dow Jones, UK FTSE100, the
French CAC40 and the Spanish IBEX-35. The data wetected from the Bloomberg database.
The computation of the indexes returng i6 based on the formulazIn(ly)-In(l+.1) wherel; is the

value of the stock market index for period

Figure 1 shows the daily returns and Table 2 pewibasic descriptive statistics of the
data. For each index, the unconditional mean ofydeeturn is very close to zero. The
unconditional standard deviation is especially highMerval (2.14). For the rest of stock index
returns the standard deviation moves between 1®v Ibnes and 1.63 Hang Seng. Going back to
Figure 1, we can see that the range fluctuatiom®feturns is not constant, which means that the

variance of these returns changes over time.

In order to gain some intuition, we adopt the vbtatmeasure proposed by Franses and

van Dijk (2000), wherein the volatility of returrsdefined as:
2
Vo =[r-E(70) 3)

where Q, ; is the information set at tintel. Figure 2 presentg as “volatilities”. The volatility of

the series was high during the early 2000s, esibpeaiathe Merval index. From 2001 to 2002 the



conditional volatility of MERVAL was almost 1 poititigher than the whole period, even greater
than those showed from 2008 to 2009. This cormdpdo the Argentine economic crisis (1999—-
2002) which was the major downturn in Argentinetsremy. The period from 2003 to early
2007 was very quiet. In August 2007 the financiakket tensions started and they were followed
by a global financial and economic crisis leadiagatsignificant rise in the volatility of returns.
This increase was especially important after Auga@@8 coinciding with the fall of Lehman
Brothers. From 2008 to 2009, the volatility of tR&P500, Nikkei and IBEX35, measured by the
standard deviation of returns was 2.42, 2.20, ad0 Pespectively. In the case of S&P500, the
standard deviation was almost 1 point higher thanstandard deviation of the whole period 2000-
2012 (1.57). A similar increase is observed inralexes. In the last two years of the sample, we
observe a period that is more stable than duriaditiancial crisis.

The skewness statistic is negative and signifiéantll the indexes considered except in
the case of the CAC40 and the IBEX35. This meaatttte distribution of those returns is skewed
to the left. When considering the CAC40 and the XB& the skewness statistic is positive,
implying that these distributions are skewed torigat but but jonly in the case of IBEX35 this
statistic is statistically significant at 1% level.

For all the indexes considered, the excess kursiaisstic is very large and significant at
1% level implying that the distributions of thossturns have much thicker tails than the normal
distribution. Similarly, the Jarque-Bera statisicstatistically significant rejecting the assuropti
of normality. These results are in line with thosetained by Bollerslev (1987), Bali and
Theodossiou (2007), and Bali et al (2008), amorterst All of them find evidence that the
empirical distribution of the financial return isyanmetric and exhibits a significantly excess of

kurtosis (fat tails and peakness).

In order to capture the non-normal characteristizserved in our data set, we fit several
skewed distributions: SGT, SGED, SSD and IHS. |a tomparison we also include the normal
and symmetric ST distributions. In Table 3 we pnésthe estimated parameters of these
distributions. This Table provides the estimatesthe mean() and the standard deviatios) (of
log-returns and its standard errors in bracketseXfsected, these estimates are quite similar across
distributions and do not differ much from the simpkrithmetic means and standard deviations of
log-returns presented in Table 2. The unconditionahn is close to zero for all the indexes and
the unconditional standard deviation moves aroubd(ih percentage) except Merval (2.14). As
expected from the previous analysis, the Mervagxnid the most volatile index.

The skewness parameterfor all indexes considered is negative and sicgilt at the 1%
level, which means that the distributions of thesteirns are skewed to the left. This result is in
opposition to the preliminary evidence that sugggest symmetric distribution for CAC40 and a
skewed distribution to the right for IBEX35.

3t began in 1999 with a decrease of the real Gismestic Product (GDP). The crisis caused the délthe
government, default on the country's foreign delilespread unemployment, riots, the rise of alté&raacurrencies
and the end of the peso's fixed exchange ratesttghdollar.



On the other hand, the kurtosis parameteendx, in the case of SGT, the parameter
controls mainly the peakness of the distributioouad the mode, while the parametecontrols
mainly the tails of the distribution (adjusting tteels to the extreme values). The parametbas
the degrees of freedom interpretation as in ST.dlahe series and all distributions considered,
the kurtosis parameters are highly significant. ther SGT, the value afis around 1.5, except for
Nikkei and Tel Aviv which are 1.89 and 1.78 respasty. The value of) is around 4.5 for Nikkei,
Merval, DJ, FTSE and CAC40. For the rest of theekas it is a little bit higher. These estimates
are quite different from those of the normal disition = 2 andn = «), which indicates that this

set of returns is characterized by excess kurtosis.
4. Comparison of the distributions in statistical erms

In this section we want to answer the following sften: Which distribution is the best one

for fitting asset returns?

The above results provide strong support to theothgsis that stock returns are not
normal. As the normal distribution is nested witthe SGT, SGED and SSD distributions we can
use the log-likelihood ratio for testing the nujigothesis of normality against that of SGT, SGED
or SSD. For all the indexes considered, this siaiis quite large and statistically significanttae
1% level, providing evidence against the normdigypothesis (see Table 4). Additional evidence
against the normality hypothesis can be found gufé 3 where we present the histogram and the
density functions of several skewed distributiomsthe Nikkei index. We can see that all of these

distributions provide a better fit than the norrmaés$.

To evaluate which is the most adequate, we pergmweral kinds of tests. First, as the SGT
nets all the distributions considered in this pafesicept IHS), we use the likelihood ratio test to
evaluate which distribution is best for fitting tbata&. Overall, for all the indexes considered, the
likelihood statistics indicate rejection of the SG3Ehe SSD, and the ST in favour of the SGT (see
Table 4). As the IHS is not nested in the SGT itlistron, we cannot conclude that the SGT
distribution is the best. So, to ensure the rolesstrof the results several alternative tests hage b
used: Chi2 and KS tests. Unlike the likelihoodaagst used to compare two distributions, the
Chi2 and the KS tests are used to examine if tketagturns’ empirical distribution follows a
particular theoretical distribution. The theoretidsstributions we have considered are: normal,
ST, SGT, SSD, SGED and IHS. The Chi2 statistic (Fable 4) suggests that the empirical
distributions of the returns considered in thisgrapan be adequately characterized using two of
the distributions we have considered: SGT and Bt8h distributions seem to fit the data well in
8 of the 9 indexes considered. For the Hang SerbAviv and S&P 500 indexes, the SGED
distribution cannot be refused either. On the ottzerd, the ST and the normal distributions do not

fit any index. The KS test provides similar resulé®e Table 4). According to this test, the

* The qualitative results of the remaining indeaes similar. We only represent the results for maex in order to
free space.

® Specifically, it gives fom = o the SGED, fok = 2 the SSD, fok=0 andk = 2 the ST and fok=0, n =co and k = 2
the normal distribution (see Hansen, McDonald ahdodossiou (2001) for a comprehensive survey orskbeved
fat-tailed distributions).



empirical distribution of all the indexes consider@xcept Nikkei) follows a SGT distribution.
The IHS fits the data well in only five of the inds (Merval, CAC40, IBEX35, Tel Aviv and
Nikkei). According to this test, the SSD distritmutifits the data well in four of the considered
indexes (Merval, CAC40, IBEX35 and FTSIE) and tle&ED distribution fits the data well in four
indexes (Nikkei, Merval, IBEX35 and Hang Seng). TE distribution only fits well in three of

the nine indexes while the normal distribution dnesdo well in any index.

Taking into account the results described in thestien, we can conclude that the
symmetric distributions (normal and ST) do noffifiancial returns well. This is in line with the
previous results shown in the above sections. Ambaget of skewed distributions considered in
this paper, the SGT distribution seems to be tis¢ ibditting the data, followed closely by the IHS

distribution.
5 Evaluating the performance in terms of VaR

In this section we compare the normal, the ST dmedskewed distributions in terms of
VaR. The comparison is carried out evaluatingh@ &accuracy of the VaR estimates and (ii) the
losses that VaR produces. For each distributionyseeparametric approaches to forecast the VaR
out-of-the-sample one-step-ahead at 1% and 0.258kdenace level. The analysis period runs
from the first of January 2008 to the end of Decen2009. We choose this period because it is
characterized by a high volatility all over the Wabso that it is known in financial literature det

Financial Global Crisis period. In Figure 1, welilight in black the period analyzed.
5.1 Back Testing

The results of the accuracy test are presentedalole¥ 5 and 6. In Table 5 we show the
results of the accuracy test at 1% confidence level Table 6 reports the results at 0.25%
confidence level. In both tables, we present theegrg#age of exceptions obtained with each
distribution: normal, ST, SSD, SGED, SGT and IHgether with Riskmetric. Below these
percentages, we present the five statistics usebtdhe accuracy of the VaR estimates. When the
null hypothesis thatthe VaR estimate is accuratkas not been rejected by any test, we have

shaded the area (the percentage of exceptions).

In the analyzed period the VaR estimates obtainetkiua normal distribution are very
poor. For almost all the indexes considered, tharpatric approach under a normal distribution
underestimates risk at the 1% and 0.25% confidémels. This result does not depend on the

volatility model we have used to forecast the VEBARCH or MME (Riskmetrics).

At the 1% confidence level, the VaR estimate predithy the skewed distributions and the
ST distribution is quite accurate. At this confiderevel, the SGT and the HIS perform well in
eight of the nine indexes considered, only failinghe IBEX35. The ST, the SSD and the SGED
distributions provide accurate VaR estimates inesewf the 9 cases considered. At the 0.25%
confidence level, all the skewed distributions jdevaccurate VaR estimates in eight of the nine
indexes considered, except the IHS that fails i wases. At this confidence level, the ST



distribution performs well in five of the nine indes considered: Nikkei, S&P500, DJ, CAC40 and
IBEX35. In the case of Merval, Hang Seng and TelvAthis distributions overestimate risk.
Then, at the higher confidence level the evidendavor of the skewed distributions related to the

ST one is more obvious.
5.2 Loss Functions

In this section we evaluate the VaR estimate im$eof the regulator loss function (Table
7) and the firm’s loss function (Table 8). The fesun Table 7 have been multiplied by 1000
given the small value obtained. The data markeldoid type represents the minimum value for
this function in each case.

From the regulator loss function (see Table 7)fine that the parametric approach under a
normal distribution joined to Riskmetrics provideethighest losses while the ST distribution
provides the lowest losses followed by the IHS #mel SGT distributions. Among the skewed
distributions, the SSD gives the worst outcome lincases. According to this result, we can
conclude that from the point of view of the regatathe best distribution is the ST, as this
distribution is the most conservative.

The problem associated with the regulator losstfands that this function does not take
into account the firms’ opportunity cost. So thaeanodel that overestimates the risk, as the ST
distribution does in three of the cases, may besidened the most appropriate. Taking this into
account we calculate the losses from a firm’s pofiview?

In terms of the firm’s loss function (see Table ®&)¢ normal distribution provides the
lowest losses while the ST distribution shows tigihést losses. This result is coherent since it is
well known that the normal distribution underestiesa risk providing the lowest capital
opportunity cost. Since the ST distribution tenal®verestimate risk, the capital opportunity cost
with this distribution is the highest. The magn#sdof losses obtained by all the skewed
distribution are very similar. In terms of this $oinction, the best skewed distribution is the SSD
This distribution obtains the lowest losses in sewé the nine cases. The SGT distribution,
although it is not the best, works out well giviogver losses than the ST does.

On the whole, following this selection processwo tstages, where first we ensure that the
distributions provide accurate VaR estimate and floeusing in the firm’s loss function, we can
conclude that the skewed and fat tail distributiom#tperformed the normal and the ST
distribution. From a point of view of the regulatéhe superiority of the skewed distributions
related to the ST is not so clear.

6. Conclusion

® In order to calculate the firm’s loss function meed to know the cost of capital. For this purpegehave used the
daily data of the interest rate of the Eurosysteoma@tary policy operations for the European indekes.the rest of
the indexes, we took the interest rate of the aparket operations used by the Federal Reservesimtplementation
of its monetary policy.



This paper evaluates the performance of severaveskeand symmetric distributions in
modeling the tail behavior of daily returns andfarecasting VaR. The skewed distributions
considered are: (i) the skewed Studeulistribution of Hansen (1994); (ii) the skewed erro
generalised distribution of Theodossiou (2001)) (ihe skewed generaliséddistribution of
Theodossiou (1998) and (iv) the inverse hyperbslgn of Johnson (1949). The symmetric
distributions are the normal and the Studeortes.

For this study we have used daily returns on noraposite indexes: the Japanese Nikkei,
Hong Kong Hang Seng, Israeli Tel Aviv (100), ArgeetMerval, US S&P 500 and Dow Jones,
UK’s FTSE100, the French CAC40 and the Spanish IEB5XThe sample used for the statistical
analysis runs from January 2000 to the end of Ndexr2012. The analysis period for forecasting
VaR runs from 2008 to 2009, which is known as th&b&@l Financial Crisis period.

From the results presented in the paper, we caoluda that the skewness and fat tail
distributions outperform the normal one in fittifugancial returns and forecasting VaR. Among all
the skewed distributions considered in this papke skewed generaliséddistribution of
Theodossiou (1998) is the best one in fitting del@awvever, in terms of their ability to forecast the
VaR, we do not find significant differences as @ilthem provide accurate VaR estimates for a

high number of indexes and produce similar losses.

Finally, we find evidence in favor of the skewedstdbutions compared to the ST
distribution. In statistical terms, most of theintfie data better than the ST. In terms of value a
risk, the accuracy VaR test indicates that the skkdistributions outperform the ST. On the other
hand, with regards to the loss function, the redeipends on the kind of function we use to
measure the losses. From a point of view of thaeleggr, ST distribution is the best in forecasting
VaR as this distribution provides the more consergd/aR estimate. However, from the point of
view of the firm, the skewed distributions outpenfiothe ST distribution, since the latter
distribution tends to raise the firm’s capital céds companies are free to choose the VaR model

they use to forecast VaR, it is clear that they priéfer the skewed distributions.
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Table 2. Descriptive Statistics

Mean Median Maximum Minimum Std. Dev. Skewness Kurbsis  Jarque Bera
Nikkei -0.022 0.004 13.234 12111 1.568 '?d?(?j’;; “z(fgg;; (3%%?)
Hang Seng  0.008 0.044 13.407 -13.582 1.632 ('g_'gfs?) 1(00-_3(’)8867’;* (g_%%’i)
Tel Aviv 0.024 0.055 9.782 -8.425 1.338 '?6_30141;)* %?gg;’; ( g_%%z)
Merval 0.047 0.090 16.117 -12.952 2.140 '(%'_333; 7(69_3;‘;; (g’_%‘(‘i)
S&P 500  -0.001 0.050 10.957 -9.47 1.354 '?d%gf;; 1(0()'_20%?(’3’;* (&%%)21)
Dow Jones  0.010 0.049 10.089 8.7 1.265 _(()6.15453*; ?6?(7)55 ( 618 )
Fisie100  -0.004 0.025 9.384 -9.266 1.301 '?d%gf;; ?(fgég ((‘)‘i‘)%ﬁ)
CAC40 -0.015 0.019 10.595 -9.472 1.572 (8:8‘312) 7(&3;‘; (5_2%21 )
IBEX35 -0.012 0.060 13.484 -9.5858 1.576 0(3.20242;* 7(-3_20%%’;* ( 3%71)

Note: This table presents the descriptive statisticthe daily percentage returns of Nikkei, Hargneg Tel Aviv
100, Merval, S&P 500, Dow Jones, Ftsie 100, CACaAf IBEX-35. The sample period is from Janudy 2000
to November 38, 2012. The index return is calculated a&sIR0(In(k)-In(l..1)) where | is the index level for period

t. Standard errors of the skewness and exces®siaidre calculated ag6/ n and./24/n respectively. The JB

statistic is distributed as the Chi-square with tegrees of freedom. *, ** denote significancetes 5% and 1%
level respectively.
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Table 3 Maximum likelihood estimates of alternative distribution functions

Nikkei u S.E ¢ S.E A S.E n S.E K SE
SGT 0.000 (0.000) 0.016%* (0.001) -0.047* (0.021) 4.766* (0.282) B (0.078)
SGED 0.000 (0.000) 0.015%* (0.000) -0.041% (0.004) 1.133* (0.033)
SSD 0.000 (0.000) 0.016** (0.000) -0.048* (0.021) 4,442+ (0.236)
IHS 0.000 (0.000) 0.015* (0.000) -0.086 (0.032) 1472 (0.054)
ST 0.000 (0.000) 0.016* (0.001) 4.404%* (0.232)
Normal 0.000 (0.000) 0.016** (0.000)
Hana Senc u S.E c S.E A S.E n S.E K S.E
SGT 0.000 (0.000) 0.016%* (0.001) -0.034* (0.014) 6.328* (0.547) a8+ (0.044)
SGED 0.000 (0.000) 0.016** (0.000) -0.031 (=) 0.977* (0.028)
SSD 0.000 (0.000) 0.017* (0.000) -0.041* (0.018) 3.314% (0.100)
IHS 0.000 (0.000) 0.016** (0.000) -0.067* (0.027) 1.21 (0.033)
ST 0.000 (0.000) 0.017* (0.001) 3.297* (0.100)
Normal 0.000 (0.000) 0.016** (0.000)
Tel Aviv u S.E © SE A SE n SE K SE
SGT 0.000 (0.000) 0.013** (0.001) -0.060** (0.021) 5.247* (0.365) 785%* (0.068)
SGED 0.000 (0.000) 0.013* (0.000)  _g.052+ (0.016) 1.175* (0.035)
SSD 0.000 (0.000) 0.014%+ (0.000)  _0.062* (0.021) 4,381 (0.232)
IHS 0.000 (0.000) 0.013* (0.000)  _g.102% (0.032) 1.463** (0.054)
ST 0.001** (0.000) 0.014** (0.001) 4.331* (0.228)
Normal 0.000 (0.000) 0.013** (0.000)
Merval u S.E ) SE A SE n SE K SE
SGT 0.000 (0.000) 0.022%* (0.001) -0.043* (0.018) 4456 (0.241) BB (0.051)
SGED 0.000 (0.000) 0.021* (0.000)  _0.033* (0.002) 0.998** (0.028)
SSD 0.000 (0.000) 0.023** (0.000)  _0.047* (0.018) 3.083* (0.075)
IHS 0.000 (0.000) 0.022** (0.000) -0.068* (0.027) 1.171% (0.029)
ST 0.001* (0.000) 0.023** (0.001) 3.088** (0.078)
Normal 0.000 (0.000) 0.021* (0.000)
S&P 50( u S.E ) SE A SE n SE K SE
SGT 0.000 (0.000) 0.014** (0.001) -0.064* (0.013) 5.735% (0.430) 2B9** (0.038)
SGED 0.000 (0.000) 0.013** (0.000) -0.062 () 0.902** (0.008)
SSD 0.000 (0.000) 0.016** (0.000)  _0.069** (0.016) 2.760* (0.046)
IHS 0.000 (0.000) 0.014* (0.000)  _g.087* (0.024) 1.079** (0.023)
ST 0.000 (0.000) 0.015* (0.001) 2.770% (0.049)
Normal 0.000 (0.000) 0.014* (0.000)
Dow Jone: u S.E ) SE A SE n SE K SE
SGT 0.000 (0.000) 0.013** (0.001) -0.058* (0.017) 4.496** (0.241) BR4%* (0.051)
SGED 0.000 (0.000)  0.012* (0.000)  -0.057* (0.002) 0.983** (0.027)
SSD 0.000 (0.000) 0.014* (0.000)  _0.059** (0.018) 3.122% (0.078)
IHS 0.000 (0.000) 0.013* (0.000)  _0.088* (0.026) 1.178* (0.029)
ST 0.000 (0.000) 0.014* (0.001) 3.122% (0.080)
Normal 0.000 (0.000) 0.013** (0.000)
Ftsie10( u S.E c S.E A S.E n S.E K SE
SGT 0.000 (0.000) 0.013** (0.001) -0.054* (0.018) 4.273% (0.212) @23%* (0.055)
SGED 0.000 (0.000) 0.013* (0.000)  _0.049% (0.003) 1.015** (0.028)
SSD 0.000 (0.000) 0.014* (0.000)  _0.056** (0.018) 3.237* (0.089)
IHS 0.000 (0.000) 0.013* (0.000)  _0.083* (0.027) 1.208** (0.031)
ST 0.000 (0.000) 0.014* (0.001) 3.231% (0.091)
Normal 0.000 (0.000)  0.013* (0.000)
CAC40 u S.E © SE A SE n SE K SE
SGT 0.000 (0.000) 0.016%* (0.001) -0.062% (0.018) 4.545%* (0.249) @73** (0.059)
SGED 0.000 (0.000) 0.015* (0.000) -0.044* (0.021) 1.065** (0.030)
SSD 0.000 (0.000) 0.016** (0.000)  _0.066" (0.019) 3.540% (0.120)
IHS 0.000 (0.000) 0.016** (0.000)  _0.094* (0.028) 1.277* (0.036)
ST 0.000 (0.000) 0.016** (0.001) 3.533+ (0.122)
Normal 0.000 (0.000)  0.016* (0.000)
IBEX35 u S.E © SE A SE n SE K SE
SGT 0.000 (0.000) 0.016** (0.001) -0.073* (0.017) 7.127% (0.717) 380** (0.045)
SGED 0.000 (0.000)  0.016* (0.000) -0.068 ) 1.050% (0.030)
SSD 0.000 (0.000) 0.017* (0.000)  _0.069* (0.018) 3.548% (0.125)
IHS 0.000 (0.000) 0.016** (0.000)  _g.092* (0.028) 1.270** (0.037)
ST 0.000 (0.000) 0.016** (0.001) 3.584** (0.132)
Normal 0.000 (0.000)  0.016* (0.000)

Note: Parameter estimates of the Normal, SGT, SGEED, IHS and ST. S.E. denotes standard errongafientheses). Nine stock market
returns in the period 1/1/2000-11/30/20126, A andn are the estimated mean, standard deviation, slkesyp@ameter, and tail-tickness
parameterx represents the peakness parametet. (A denotes significance at the 5% (1%) level.
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Table 4. Goodness-of-fit tests

Log-L LR Normal LR SGT Chi2 KS
Nikkei
SGT1 8920.¢ 463.2** -- 5.23¢ (0.022)** 0.031 (0.004
SGED 8897.4 417.2% 46.0** 7.715(0.006) 0.027 (0.021)**
SSD 8920.3 463.0** 0.2 13.448 (0.001) 0.034 (0.001)
IHS 8918.6 -- -- 3.453 (0.063)* 0.029 (0.011)*
ST 8918.2 -- 4.4 20.958 (0.000) 0.029 (0.008)
Normal 8688.8 -- 124.218 (0.000) 0.058 (0.000)
Merval
SGT 8016.¢ 612.6** -- 8.16¢ (0.017)* 0.01¢ (0.197)°
SGED 8003 584.8** 27.8%* 12.318(0.002) 0.027 (0.021)*
SSD 8012.5 603.8** 8.8* 15.9650.003) 0.020 (0.247)*
IHS 8017 -- - 6.005 (0.111)* 0.018 (0.260)*
ST 8010.4 - 13.0** 18.687(0.000) 0.024 (0.053)*
Normal 7710.6 - -- 253.700(0.000) 0.072 (0.000)
S&P 50(
SGT 9777.% 824.2** -- 14.09: (0.001 0.02¢ (0.013)*
SGED 9769.2 807.2** 17.0** 8.761(0.013)** 0.033 (0.002)
SSD 9762.2 793.2** 31.0** 35.861(0.000) 0.038 (0.000)
IHS 9769.2 -- -- 22.316(0.000) 0.035 (0.001)
ST 9757.1 -- 41.2* 33.963(0.000) 0.037 (0.000)
Normal 9365.6 - -- 266.854(0.000) 0.080 (0.000)
Dow Jones
SGT1 9929.7 682.6** -- 6.33% (0.042)** 0.02¢ (0.011)**
SGED 9914.2 651.6** 31.0** 24.553(0.000) 0.032 (0.002)
SSD 9925.1 673.4** 9.2%* 21.875(0.000) 0.034 (0.001)
IHS 9928.4 -- -- 8.647(0.034)** 0.029 (0.007)
ST 9921.6 -- 16..2** 30.360(0.000) 0.030 (0.007)
Normal 9588.4 - -- 256.272(0.000) 0.071 (0.000)
CAC40
SGT1 9297 .« 523.6** -- 3.20¢ (0.201) 0.02¢ (0.067)
SGED 9281 490.8** 32.8* 17.858(0.000) 0.033 (0.002)
SSD 9295.3 519.4** 4.2* 7.248(0.027)** 0.027 (0.018)**
IHS 9297.4 -- -- 2.761(0.430)* 0.022 (0.079)*
ST 9291.1 - 12.6** 38.232(0.000) 0.025 (0.030)**
Normal 9035.6 -- -- 191.314(0.000) 0.064 (0.000)
IBEX35
SGT 9176.¢ 484 2** -- 3.767 (0.052)° 0.027 (0.018)**
SGED 9169.8 470.2** 14.0** 11.509(0.001) 0.028 (0.011)**
SSD 9167.1 464.8** 19.4** 13.293(0.001) 0.028 (0.011)*
IHS 9170.9 -- -- 7.174(0.067)* 0.029 (0.010)**
ST 9162.4 - 28.8** 25.413(0.000) 0.034 (0.001)
Normal 8934.7 - -- 118.562(0.000) 0.065 (0.000)
Hang Sen
SGT 8927.t 649.0** -- 1.54: (0.214)y 0.027 (0.020)**
SGED 8918.4 630.8** 18.2** 5.519(0.063)* 0.029 (0.010)**
SSD 8916.3 626.6** 22.4%* 9.290(0.002) 0.037 (0.000)
IHS 8920.4 -- -- 1.873(0.392)* 0.034 (0.001)
ST 8914.6 -- 25.8** 15.599(0.000) 0.035 (0.001)
Normal 8603 -- -- 23.434(0.000) 0.072 (0.000)
Tel Aviv
SGT1 9358.. 316.8** -- 5.721 (0.057) 0.027 (0.023)**
SGED 9343.6 332.6** 29.2** 4.288(0.039)** 0.034 (0.002)
SSD 9357.3 360.0** 1.8 11.0970.004) 0.029 (0.008)
IHS 9358.6 -- -- 5.878(0.053)* 0.026 (0.024)**
ST 9354 -- 8.4* 33.459(0.000) 0.025 (0.041)**
Normal 9177.3 - -- 106.813(0.000) 0.058 (0.000)
Ftsie10(
SGT1 9851 628.2** -- 3.311 (0.191) 0.02¢ (0.037)**
SGED 9839.1 592.4** 35.8* 10.540(0.005) 0.034 (0.001)
SSD 9854.2 622.6** 5.6* 16.291(0.000) 0.027 (0.018)**
IHS 9857.3 -- -- 4.518(0.211)* 0.027 (0.015)**
ST 9851.2 - 11.6** 25.173(0.000) 0.029 (0.007)
Normal 9542.9 -- -- 203.848(0.000) 0.072 (0.000)

Note: Log-L is the maximum likelihood valu&Ryme iS the LR statistic from testing the null

hypothesis that the daily returns are distributedlarmal against they are distributed as SGT, SGED

SSD. LRggris the LR statistic from testing the null hypothesfsalternative distribution against the

SGT. Chi2 and KS denote Chi-square and Kolmogorour8mitests. Figures in brackets denote p-
value. An.(+) denotes significance at the 5%(1%) level.



Table 5. Accuracy test, 1% level

Nikkei Merval  S&P500 DJ CAC40 _ IBEX35 Hang Tel Aviv___ Ftsie100
VaR_Normal 2.87% 2.24% 3.56% 2.77% 2.34% 2.17% 1.62% 2.64% 3.55%
LRuc 4.970* 2.450 8.770% 4.696* 2.943 2.270 0.700 3997 8.725%
BTC 4.149% 2762  5792*  4003*  3.056*  2640%  1.384 3.653"* 5771
LRno 0.310 0.219 0.579 0.348 0.251 0.212 1.105 0388 7705
LRcc 5.280 2.670 9.349% 5.043 3.193 2.482 1.805 4386 309
DQ 1.969 2.770 0.362 0.578 1.053 2.477 2.906 0.655 1.484
VaR_MME 2.05% 2.85% 2.38% 1.58% 1.17% 1.77% 1.82% 2.23% 2.37%
LRuc 1.808 4.920* 3.027 0.642 0.063 1.079 1.177 2429 003
BTC 2.329+ 4.123=  3.108* 1.319 0.391 1.748 1.836 BT 3.093*
LRno 0.807 0.358 0.254 0.112 0.062 0.141 0.914 0.219 0.253
LRcc 2.615 5.278 3.281 0.754 0.125 1.221 2.092 2.647 3.256
DQ 5.132 3.668 1.331 0.295 2.339 4.004* 2.289 3.758* 2.067
VarR_T 1.64% 0.61% 1.19% 0.99% 1.17% 1.18% 0.61% 0.61% 2.17%
LRuc 0.734 0.379 0.074 0.000 0.063 0.069 0.389 0.385 2.280
BTC 1.420 -0.866 0.425 -0.022 0.391 0.410 -0.877 -0.874 2.647%
LRno 0.089 0.016 0.063 0.044 0.062 0.062 0.016 0.016 0.212
LRcc 0.822 0.395 0.137 0.044 0.125 0.132 0.405 0.401 2.493
DQ 3.652 0.047 2.423 0.253 0.145 9.879*  0.136 0.071 2.406
VaR_SGT 1.84% 1.43% 1.78% 1.39% 1.17% 1.57% 1.01% 1.01% 1.78%
LRuc 1.222 0.345 1.100 0.295 0.063 0.627 0.000 0.000 1.086
BTC 1.874 0.948 1.767 0.872 0.391 1.302 0.027 0.032 1.754
LRno 0.116 0.088 0.142 0.086 0.062 0.111 0.045 0.045 0.142
LRcc 1.338 0.433 1.242 0.381 0.125 0.738 0.045 0.045 1.228
DQ 2.689 0.238 0.940 0.142 0.145 5.068* 3.156 0.185 0.229
VaR_IHS 1.84% 1.43% 1.78% 1.19% 1.17% 1.57% 1.01% 1.01% 1.58%
LRuc 1.222 0.345 1.100 0.074 0.063 0.627 0.000 0.000 0.632
BTC 1.874 0.948 1.767 0.425 0.391 1.302 0.027 0.032 1.308
LRno 0.116 0.088 0.142 0.063 0.062 0.111 0.045 0.045 0.112
LRcc 1.338 0.433 1.242 0.137 0.125 0.738 0.045 0.045 0.743
DQ 2.688 0.237 0.942 0.121 0.145 5.069* 3.153 0.185 0.134
VaR_SSD 1.84% 1.83% 2.18% 1.39% 1.17% 1.57% 1.21% 1.62% 1.97%
LRuc 1.222 1.199 2.301 0.295 0.063 0.627 0.093 0.706 1.639
BTC 1.874 1.855 2,661  0.872 0.391 1.302 0.479 1.390 2.201*
LRno 0.116 0.146 0.213 0.086 0.062 0.111 0.064 0.115 0.175
LRcc 1.338 1.346 2,514 0.380 0.125 0.738 0.158 0.821 1.814
DQ 2.689 1.608 0.928 0.142 0.145 5.067* 2.134 0.254 0.824
VaR_SGED 1.84% 1.43% 1.78% 1.39% 1.17% 1.57% 1.01% 1.22% 1.97%
LRuc 1.222 0.345 1.100 0.295 0.063 0.627 0.000 0.095 1.639
BTC 1.874 0.948 1.767 0.872 0.391 1.302 0.027 0.484 2.201*
LRno 0.116 0.088 0.142 0.086 0.062 0.111 0.045 0.064 0.175
LRcc 1.338 0.433 1.242 0.381 0.125 0.738 0.045 0.160 1.814
DQ 2.689 0.237 0.941 0.142 0.145 5.067* 3.156 0.067 0.825

Note: The statistics are as follows: (i) the undtiodal coverage test (LRuc); (ii) the back-testiogterion
(BTC); (iii) statistics for serial independence (bR); (iv) the Conditional Coverage test (LRcc) awl the
Dynamic Quantile test (DQ). An **, (*) denotes rejon at 1% (5%) level. The shaded cells indichtet the
null hypothesis that the VaR estimate is accusatet rejected by any test.
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Table 6. Accuracy test, 0.25% level

Nikkei Merval S&P 500 Dow Jones CAC40 IBEX35 Hangeng Tel Aviv Ftsie100
Panel A: 2008-09

VaR_Normal 0.82% 0.81% 1.19% 0.59% 0.98% 1.18% 0.61% 0.61% 1.18%
LRuc 1.718 1.703 4.028 0.749 2.698 4.003* 0.782 0.786 4.011*
BTC 2.520* 2.506* 4.222% 1.548 3.292** 4.201* 1.590 1.594 4.209*
LRIND 0.016 0.029 0.063 0.016 0.043 0.062 0.016 0.016 0.063
LRcc 1.734 1.732 4.090 0.764 2.741 4.065 0.798 0.802 4.074
DQ 0.023 0.044 0.080 0.089 0.080 9.833** 0.127 0.071 0.142
VaR_MME 1.23% 1.63% 0.99% 0.40% 0.59% 0.59% 1.42% 0.61% 1.38%
LRuc 4.170* 1.629 2.743 0.159 0.728 0.740 5.570* 0.786 5.439*
BTC 4.333** 6.120** 3.331* 0.657 1.522 1.537 5.194** 1.594 5.098**
LRIND 0.045 0.115 0.044 0.007 0.015 0.016 0.088 0.016 0.085
LRcc 4.215 7.299* 2.787 0.166 0.743 0.755 5.658 0.802 5.525
DQ 3.301 1.100 0.275 0.037 10.336** 10.309** 1.484 0.329 6.901**
VaR_ST 0.20% 0.00% 0.40% 0.20% 0.59% 0.20% 0.00% 0.00% 0.99%
LRuc 0.018 1.068 0.159 0.026 0.728 0.027 1.074 1.072 302.7
BTC -0.199 -1.109 0.657 -0.234 1.522 -0.240 -1.113 -1.112 3.320*
LRIND 0.002 NaN 0.007 0.002 0.015 0.002 NaN NaN 0.043
LRcc 0.020 NaN 0.166 0.027 0.743 0.029 NaN NaN 277
DQ 0.163 NaN 0.038 0.131 0.016 0.034 NaN NaN 0.077
VaR_SGT 0.20% 0.20% 0.59% 0.40% 0.59% 0.20% 0.40% 0.20% 0.99%
LRuc 0.018 0.020 0.749 0.159 0.728 0.027 0.174 0.020 2.730
BTC -0.199 -0.206 1.548 0.657 1.522 -0.240 0.689 -0.210 3.320**
LRIND 0.002 0.002 0.016 0.007 0.015 0.002 0.007 0.002 0.043
LRcc 0.020 0.021 0.764 0.166 0.743 0.029 0.181 0.022 2,774
DQ 0.166 0.102 0.059 0.036 0.015 0.027 0.027 0.013 0.073
VaR IHS 0.20% 0.20% 0.59% 0.40% 0.59% 0.20% 0.00% 0.20% 0.79%
LRuc 0.018 0.020 0.749 0.159 0.728 0.027 1.074 0.020 1.626
BTC -0.199 -0.206 1.548 0.657 1.522 -0.240 -1.113 -0.210 2.430*
LRIND 0.002 0.002 0.016 0.007 0.015 0.002 NaN 0.002 0.028
LRcc 0.020 0.021 0.764 0.166 0.743 0.029 NaN 0.022 1.654
DQ 0.162 0.100 0.061 0.036 0.015 0.027 NaN 0.012 0.068
VaR_SSD 0.20% 0.61% 0.59% 0.40% 0.59% 0.20% 0.40% 0.41% 0.99%
LRuc 0.018 0.792 0.749 0.159 0.728 0.027 0.173 0.175 2.730
BTC -0.199 1.602 1.548 0.657 1.522 -0.240 0.689 0.692 3.319*
LRIND 0.002 0.016 0.016 0.007 0.015 0.002 0.007 0.007 0.043
LRcc 0.020 0.808 0.764 0.166 0.743 0.029 0.181 0.182 2.774
DQ 0.169 0.050 0.058 0.036 0.015 0.024 0.025 0.043 0.072
VaR_SGED 0.20% 0.41% 0.59% 0.40% 0.59% 0.20% 0.40% 0.20% 0.99%
LRuc 0.018 0.178 0.749 0.159 0.728 0.027 0.174 0.020 2.730
BTC -0.199 0.698 1.548 0.657 1.522 -0.240 0.689 -0.210 3.320*
LRIND 0.002 0.007 0.016 0.007 0.015 0.002 0.007 0.002 0.043
LRcc 0.020 0.185 0.764 0.166 0.743 0.029 0.181 0.022 2.774
DQ 0.169 0.135 0.058 0.036 0.015 0.024 0.027 0.012 0.073

Note: The statistics are as follows: (i) the undtiodal coverage test (LRuc); (ii) the back-testiagterion
(BTC); (iii) statistics for serial independence (bR); (iv) the Conditional Coverage test (LRcc) awl the
Dynamic Quantile test (DQ). An **, (*) denotes rejon at 1% (5%) level. The shaded cells indichtet the
null hypothesis that the VaR estimate is accumatet rejected by any test.
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Table 7. Magnitude of the regulatory loss function

level NORMAL MME ST SGT IHS SSD SGED
. . 1.00% 0.00338 0.00860 0.00134 0.00186 0.00176 0.00212 0.00186
Nikkei 0.25% 0.00065 0.00397 0.00004 0.00015 0.00008 0.00020 0.00015
1.00% 0.00667 0.00833 0.00053 0.00256 0.00244 0.00340 0.00251
Merval 0.25% 0.00191 0.00307 0.00000 0.00013 0.00009 0.00039 0.00022
1.00% 0.00617 0.00343 0.00337 0.00352 0.00362 0.00393 0.00349
S&P 500 0.25% 0.00293 0.00145 0.00121 0.00133 0.00130 0.00167 0.00137
1.00% 0.00220 0.00078 0.00056 0.00073 0.00065 0.00080 0.00067
Dow Jones
0.25% 0.00044 0.00012 0.00003 0.00004 0.00003 0.00008 0.00006
1.00% 0.00568 0.00602 0.00462 0.00445  0.00427 0.00445 0.00443
CACA40 0.25% 0.00282 0.00375 0.00185 0.00158  0.00148 0.00175 0.00178
1.00% 0.00554 0.00742 0.00308 0.00355 0.00336 0.00366 0.00350
IBEX3S 0.25% 0.00274 0.00516 0.00152 0.00161 0.00158 0.00186 0.00182
1.00% 0.00333 0.00581 0.00048 0.00124 0.00127 0.00165 0.00125
Hang Seng 0.25% 0.00062 0.00128 0.00000 0.00001 0.00000 0.00006 0.00001
. 1.00% 0.00150 0.00270 0.00024 0.00060 0.00054 0.00069 0.00062
Tel Aviv 0.25% 0.00030 0.00153 0.00000 0.00000 0.00000 0.00004 0.00003
) 1.00% 0.00376 0.00399 0.00254 0.00227  0.00205 0.00228 0.00228
Fisie100 0.25% 0.00126 0.00131 0.00056 0.00036  0.00029 0.00047 0.00048

Note: This table reports the average of the losstfan of each VaR model in both confidence lev&lse average we
multiplied by 1,000. Boldface figures denote thaimium value for the average of the loss functianefach index.

Table 8. Magnitude of the firm’s loss function

level NORMAL MME ST SGT IHS SSD SGED
Nikkei 1.00% 0.00054 0.00056 0.00062 0.00059 0.00059 0.00058 0.00059
0.25% 0.00066 0.00068 0.00080 0.00076 0.00077 0.00074 0.00075
Merval 1.00% 0.00056 0.00052 0.00079 0.00065 0.00066 0.00062 0.00066
0.25% 0.00068 0.00063 0.00112 0.00090 0.00092 0.00081 0.00085
S&P 500 1.00% 0.00044 0.00046 0.00052 0.00051 0.00050 0.00049 0.00051
0.25% 0.00054 0.00056 0.00066 0.00065 0.00065 0.00062 0.00064
1.00% 0.00040 0.00044 0.00048 0.00046 0.00047 0.00045 0.00046
Dow Jones
0.25% 0.00050 0.00054 0.00062 0.00060 0.00061 0.00058 0.00059
CAC40 1.00% 0.00111 0.00120 0.00121 0.00122 0.00123 0.00122 0.00122
0.25% 0.00136 0.00144 0.00150 0.00153 0.00154 0.00150  0.00150
IBEX35 1.00% 0.00109 0.00118 0.00132 0.00125 0.00127 0.00124 0.00125
0.25% 0.00132 0.00144 0.00173 0.00167 0.00168 0.00158 0.00159
1.00% 0.00062 0.00067 0.00080 0.00072 0.00071 0.00069 0.00071
Hang Seng
0.25% 0.00077 0.00081 0.00107 0.00092 0.00096 0.00089 0.00092
Tel Aviv 1.00% 0.00040 0.00041 0.00052 0.00046 0.00047 0.00045 0.00046
0.25% 0.00050 0.00051 0.00069 0.00062 0.00062 0.00058 0.00059
. 1.00% 0.00099 0.00110 0.00108 0.00111 0.00113 0.00110 0.00110
Ftsiel00
0.25% 0.00122 0.00133 0.00135 0.00140 0.00143 0.00137 0.00136

Note: This table reports the average of the losst

figures denote the minimum value for the averagégefoss function for each index.

fan of each VaR model in both confidence levBlsldface
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Figure 1. Stock index returns
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This figure illustrates the daily evolution of rets of nine indexes (Nikkei, Merval, S&P 500, Downds Industrial Average, CAC40,
IBEX35, Hang Seng, Telaviv and Ftsie-100.) from Zam@&° 2000 to November 30 2012. Source: Bloomberg.

Figure 2. Volatility of the returns
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Note: This figure illustrates the conditional vdliat of daily returns. The volatility was estimateising the approach proposed by Franses
and van Dijk (1999). Sample runs from Janudfy2800 to November 39 2012. Source: Bloomberg.

20



Figure 3. Histograms, Normal versus other skewed diributions
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Note: These figures illustrate the histograms, Narmhistribution (blue line) versus the rest of ddesed

distributions (red line). The data used in the beaare those obtained from the Nikkei Index andsdraple runs

from January 3, 2000 to November 30, 2012.
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