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1. Introduction and main results

During the last years there have been many interactions between quantum informa-
tion and the fields of operator algebras and operator spaces/systems. To mention a few 
examples, free probability has been successfully applied in the study of quantum channel 
capacities [3,4], operator systems and operator algebras techniques have been recently 
used to study synchronous games [13,20,24] and operator spaces have been key to solve 
several problems on nonlocal games and Bell inequalities [22]. In fact, these connections 
also go in the converse direction, as it is shown by the new proofs of Grothendieck’s The-
orem for operator spaces based on the use of the Embezzlement state [30], the proof of 
new embeddings between noncommutative Lp-spaces [17] and certain operator algebras 
[11] by using some classical protocols in quantum information and, probably the most 
notable example, the recent resolution of the famous Connes Embedding Problem by 
using techniques from quantum computer sciences [14].

The main goal of this paper is to study the relation between certain norms defined 
on linear maps from a general operator space X to the dual of a C∗-algebra A∗. This 
problem has a clear mathematical motivation, since some fundamental results such as 
the noncommutative versions of Grothendieck’s Theorem, can be read in similar terms. 
However, in the spirit of the previous paragraph, in the second part of the paper we 
explain that this problem, when restricted to the case where both X and A are matrix 
algebras, is equivalent to the study of certain values of the so-called quantum XOR 
games, hence stressing the close connection between pure mathematical problems and 
some questions motivated by quantum information theory.

In order to state our main results we need to introduce some elements. Let us recall 
that an operator space X is a closed subspace of B(H) [8,28]. For any such subspace 
the operator norm on B(H) automatically induces a sequence of matrix norms ‖ · ‖d on 
Md(X), d ≥ 1, via the inclusions Md(X) ⊆ Md(B(H)) � B(H⊕d). In this way, given 
a linear map T : X → Y between two operator spaces X and Y , we say that T is 
completely bounded if

‖T‖cb := sup
d

‖11 ⊗ T : Md(X) → Md(Y )‖ < ∞.

The study of operator spaces was initiated in [32] and can be understood as a noncom-
mutative version of Banach space theory. Since then, an important line of research has 
been devoted to developing the “Grothendieck’s program” for operator spaces (see for 
instance [7,10,16,29,35]). A crucial definition in the local theory of Banach spaces is that 
of absolutely p-summing maps, as those linear maps between Banach spaces T : X → Y

such that

πp(T ) := ‖11 ⊗ T : �p ⊗ε X → �p(Y )‖ < ∞.
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Motivated by the great relevance of these maps [6], in [27] Pisier introduced and studied a 
noncommutative analogue in the context of operator spaces. Given a linear map between 
operator spaces T : X → Y , we say that T is completely p-summing if

π0
p(T ) := ‖11 ⊗ T : Sp ⊗min X → Sp(Y )‖ < ∞.

Note that the previous definition requires the highly nontrivial concept of noncommuta-
tive vector-valued Lp-spaces, which was also developed in [27].

However, the noncommutative context admits some other generalizations of p-
summing maps. Here, we will deal with the (p, cb)-summing maps, introduced by the 
first author in [15] (see also [19]) and which can be understood as an intermediate defi-
nition between the one for Banach spaces and the one for operator spaces above. Given 
an operator space X and a Banach space Y , a linear map T : X → Y is said to be 
(p, cb)-summing if

πp, cb(T ) := ‖11 ⊗ T : �p ⊗min X → �p(Y )‖ < ∞.

It is clear from the previous definitions that for every linear map T : X → Y between 
operator spaces, the inequality max{‖T‖cb, πp, cb(T )} ≤ π0

p(T ) holds. However, there is 
no general relation between the quantities ‖T‖cb and πp, cb(T ). That is, one can find 
examples of linear maps and operator spaces for which ‖T‖cb < ∞ and πp, cb(T ) = ∞
and also for which ‖T‖cb = ∞ and πp, cb(T ) < ∞.

In this work we study the relation between ‖T‖cb and π1, cb(T ) for maps T defined 
from a general operator space X to the dual of a C∗-algebra A∗. Our main result is as 
follows.

Theorem 1.1. There exists a universal constant K such that for any linear map T : X →
A∗, where X is an operator space and A is a C∗-algebra, we have

‖T‖cb ≤ Kπ1,cb(T ).

In order to prove Theorem 1.1 we will need to study the quantity ΓR∩C (the factor-
izable “norm” through the operator space R ∩ C) and prove that it fits very well in our 
context. Once this is done, Theorem 1.1 will follow as an application of the noncommuta-
tive Little Grothendieck’s Theorem. In fact, we will prove a stronger result than the one 
stated above, namely ΓR∩C(T ) ≤ Kπ1,cb(T ), where the constant K can be taken equal 
to 2

√
2. It is worth mentioning that one cannot expect to have a converse inequality in 

Theorem 1.1; not even in the commutative case. That is, there exist maps T : �∞ → �∗∞
for which ‖T‖cb < ∞ and π1, cb(T ) = ∞ (see Section 4 for details). Let us also men-
tion that we do not know if the constant K in Theorem 1.1 can be taken equal to one. 
However, we stress that the techniques used in the present work lead irremediably to 
K > 1.
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Theorem 1.1 can be read in the context of quantum XOR games [31] when X = A =
Mn is the C∗-algebra of n ×n complex matrices. Quantum XOR games are collaborative 
games where a referee asks some (quantum) questions to a couple of players, usually 
called Alice and Bob, who must answer with outputs a, b ∈ {±1}. According to the 
questions and the parity of the answers, ab, the players win or lose the game. It turns 
out that these games can be identified with selfadjoint matrices G ∈ Mnm such that 
‖G‖Snm

1 ≤ 1, where Snm
1 denotes the corresponding 1-Schatten class (see Section 4 for 

details). Moreover, the largest possible winning probability of the game depending on 
the type of strategies performed by the players can be expressed by means of some 
norms on Ĝ : Mn → Mm, where Ĝ is the linear map associated to the matrix G ∈ Mnm

according to the algebraic identification Mnm = L(Mn → Mm). In this context, if we 
denote by β∗(G) the largest bias1 of the game G when the players are allowed to perform 
entangled strategies, it is known that β∗(G) = ‖Ĝ : Mn → Sm

1 ‖cb (see Section 4). On 
the other hand, if we denote by βowc(G) the largest bias of the game when the players 
are allowed to send one-way classical communication as part of their strategies, we will 
show in Section 4 that βowc(G) ≈ π1,cb(Ĝ : Mn → Sm

1 ), where ≈ means equivalence up 
to a universal constant. Hence, Theorem 1.1 above leads to the following consequence.

Corollary 1.2. Let G be a quantum XOR games. Then,

β∗(G) ≤ K ′βowc(G)

for a certain universal constant K ′.

One of the main goals of quantum information theory is to find scenarios where 
quantum entanglement is “much more powerful” than classical resources. When working 
with classical XOR games [2] (see also [22]), it is very easy to see that the one-way 
communication of classical information is as powerful as possible. That is, those games 
can always be won with probability one if the players can use classical communication 
as part of their strategy. On the contrary, as a consequence of the classical Grothendieck 
theorem, entanglement is a quite limited resource to play classical XOR games, providing 
only small advantages over classical strategies. The situation changes dramatically for 
quantum XOR games. Within this more general family of games there exist instances 
for which the use of entanglement allows to attain biases which are unboundedly larger 
than the best bias that players sharing only classical randomness can achieve [31]. On the 
other hand, since the questions now are quantum states, classical communication is not 
enough to win with certainty. In fact, there exist quantum XOR games for which sharing 
one-way classical communication does not provide any advantage at all (see Section 4
for further clarification on the previous statements). This new phenomenology motivates 

1 For some reasons that will become clear in Section 4, when working with XOR games one usually works 
with the bias β = 2Pwin − 1 rather than with the winning probability Pwin.
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us to ask whether there exist quantum XOR games for which quantum entanglement 
allows Alice and Bob to answer much more successfully than using one-way classical 
communication. Corollary 1.2 says that this is not the case. Hence, one needs to consider 
more involved tasks than winning quantum XOR games in order to find examples for 
which quantum entanglement is much better than sending classical information.

The structure of the paper is as follows. In Section 2 we introduce some notation and 
basic results that will be used along the paper. Section 3 will be devoted to proving 
Theorem 1.1. Finally, in Section 4 we will introduce quantum XOR games and we will 
explain and prove how different values of these games can be written in terms of norms 
on linear maps between some operator spaces. As a consequence of this mathematical 
formulation for the different values of quantum XOR games we will see how Corollary 1.2
can be obtained from Theorem 1.1.

2. Preliminaries and some basic results

In this section we introduce some tools and well known results that we will use later. 
We assume the reader to be familiar with the basic elements of Banach spaces [33] and 
operator spaces [28].

2.1. Absolutely p-summing maps and completely p-summing maps

Given a linear map T : X → Y between two Banach spaces and 1 ≤ p < ∞, we say 
that T is absolutely p-summing if

πp(T ) := ‖id⊗ T : �p ⊗ε X → �p(X)‖ < ∞, (2.1)

where here �p ⊗ε X denotes the (complete) injective tensor product and �p(X) is the 
corresponding vector valued Lp-space. It is not difficult to see that πp is a norm on 
the set of all absolutely p-summing maps. The factorization theorem for these maps [6, 
Theorem 2.13] states that T : X → Y is absolutely p-summing if and only if there exist 
a regular Borel probability measure μ on the unit ball of the dual space of X∗, BX∗ , a 
closed subspace Ep ⊆ Lp(BX∗ , μ) and a linear map u : Ep → Y with ‖u‖ = πp(T ) such 
that the following diagram commutes:

C(BX∗) i
Lp(μ)

j(X)

⊂

i|j(X)
Ep

⊂

u

X

j

T
Y

Here, j : X ↪→ C(BX∗) is the canonical embedding and i : C(BX∗) → Lp(BX∗ , μ) is the 
identity map.
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Motivated by the great relevance of absolutely p-summing maps in the local theory of 
Banach spaces, in [27] Pisier developed the theory of completely p-summing maps in the 
context of operator spaces. Given a linear map T : X → Y between two operator spaces 
and 1 ≤ p < ∞, we say that T is completely p-summing if

π0
p(T ) := ‖id⊗ T : Sp ⊗min X → Sp(X)‖ < ∞,

where here Sp ⊗min X denotes the minimal tensor product in the category of operator 
spaces and Sp(X) is the corresponding non-commutative vector valued Lp-space.

It is interesting to note that completely p-summing maps satisfy a factorization theo-
rem analogous to the one for absolutely p-summing maps. However, in order to explain 
that result we need to recall some definitions about ultraproducts of Banach spaces and 
operator spaces. We refer to [12] for a detailed exposition on ultraproducts of Banach 
spaces and to [28, Section 2.8] for the operator space case. Given a family of Banach 
spaces (Xi)i∈I and a nontrivial ultrafilter U on the set I, denote by � the set of elements 
(xi)i∈I with xi ∈ Xi for every i and such that supi ‖xi‖ < ∞. We equip this space 
with the norm ‖x‖ = supi ‖xi‖. Let us now denote by νU the subspace of � given by 
the elements x such that limU ‖xi‖ = 0. The quotient �/νU is a Banach space called 
ultraproduct of the family (Xi)i∈I and denoted by 

∏
Xi/U . Note that if [x] is the equiv-

alence class associated to an element (xi)i, then ‖[x]‖ = limU ‖xi‖. If in addition Xi is 
endowed with an operator space structure for every i, we can endow the space 

∏
Xi/U

with a natural operator space structure by defining Mn(
∏

Xi/U) =
∏

Mn(Xi)/U for 
every n ∈ N. It can be seen that given a family of bounded (resp. completely bounded) 
maps Ti : Xi → Yi for every i, one can define a linear map T̂ :

∏
Xi/U →

∏
Yi/U by 

T̂ ([(xi)i]) = [(Ti(xi))i] which satisfies ‖T̂‖ ≤ supi ‖Ti‖ (resp. ‖T̂‖cb ≤ supi ‖Ti‖cb). It is 
also interesting to mention that ultraproducts respect isometries and quotients both in 
the Banach space category and in the operator space category.

The factorization theorem for completely p-summing maps [27, Remark 5.7] states 
that given a linear map T : X → Y between operator spaces, such that X ⊂ B(H), 
there exist an ultrafilter U over an index set I, families (ai)i, (bi)i in the unit sphere 
of S2p(H), a closed (operator) space Ep ⊆

∏
Sp/U and a linear map u : Ep → Y with 

‖u‖cb = π0
p(T ) such that the following diagram commutes:

∏
B(H)/U M ∏

Sp/U

j(X)

⊂

M|j(X)
Ep

⊂

u

X

j

T
Y

Here, j : X ↪→
∏

B(H)/U is the complete isometry defined as j(x) = [(x)i∈I ] and 
M :

∏
B(H)/U →

∏
Sp/U is the linear map defined by the family (Mi)i, where Mi :
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B(H) → Sp(H) is defined as Mi(x) = aixbi for every i ∈ I. In the previous picture, 
Ep = M(j(X)).

As mentioned in the Introduction, one can define an intermediate notion between 
absolutely p-summing and completely p-summing maps. Indeed, given an operator spaces 
X and a Banach space Y , a linear map T : X → Y is said to be (p, cb)-summing (see 
[15], [19]) if

πp, cb(T ) := ‖11 ⊗ T : �p ⊗min X → �p(Y )‖ < ∞. (2.2)

Remark 2.1. It was observed by Pisier [27, Remark 5.11] that T : X → Y is (p, cb)-
summing if and only if it verifies a similar factorization theorem to the one for completely 
p-summing maps but where, in this case, ‖u‖ = πp, cb(T ).

Given a complex Hilbert space H, the operator space structures defined by the iso-
metric identifications

H � B(H,C) and H � B(C, H) (2.3)

are the row and column operator space structures on H, denoted by RH and CH , re-
spectively. When the underlying Hilbert space is H = �2, we use the simpler notation 
R and C. Moreover, we can also define the RH ∩ CH operator space structure on H by 
means of the embedding

j : RH ∩ CH → RH ⊕∞ CH , (2.4)

defined as j(x) = (x, x). Finally, the RH + CH operator space structure on H can be 
defined so that RH +CH = (RH ∩CH)∗ completely isometrically. The following stability 
properties under ultraproducts will play a role later on:

Remark 2.2. It is well known that, at the Banach space level, the ultraproduct of a family 
of Hilbert spaces (Hi)i, Ĥ =

∏
Hi/U , is a Hilbert space. Furthermore, according to the 

definition of RH and CH and the comments above, it is not difficult to see that
∏

RHi
/U = RĤ and

∏
CHi

/U = CĤ .

Moreover, the properties of the ultraproducts together with the definition of RH ∩ CH

via the embedding (2.4) ensure that
∏

(RHi
∩ CHi

)/U = RĤ ∩ CĤ .

In fact, this stability under ultraproducts is a property of any homogeneous Hilbertian 
operator space (as, e.g., RH , CH or RH ∩CH). See [26, Lemma 3.1 and remarks in page 
82].
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2.2. Little Grothendieck’s theorem

Although most maps between Banach spaces are not p-summing for any p, a famous 
result, called little Grothendieck’s theorem, asserts that every linear map T : C(K) →
L2(μ), where K is a compact space and μ is any measure verifies that π2(T ) ≤ KLG‖T‖. 
Here, KLG =

√
π/2 in the real case and KLG = 2/

√
π in the complex case.

There is also a noncommutative version of this result, which was first proved in [25]
and later in [9] (with an improvement in the constant). This result is usually referred to 
as non-commutative little Grothendieck’s theorem.2

Theorem 2.1. Let A be a C∗-algebra and H be a Hilbert space. Then, for any bounded 
linear map T : A → H there exist states f1 and f2 on A such that

‖T (x)‖ ≤ ‖T‖
(
f1(x∗x) + f2(xx∗)

) 1
2 (2.5)

for every x ∈ A.

Although the following corollary is folklore, we have not found any proof in the liter-
ature. Since it will be crucial for us, we give some hints about its proof.

Corollary 2.2. Let A be a C∗-algebra and H be a Hilbert space. Then, any bounded linear 
map T : A → H satisfies that

‖T : A → RH + CH‖cb ≤ 2‖T‖.

Proof. The key idea is to use the non-commutative little Grothendieck theorem to de-
compose T into two maps T = T1 + T2 such that

max{‖T1 : A → RH‖cb, ‖T2 : A → CH‖cb} ≤ ‖T : A → H‖. (2.6)

With this at hand, the statement is obtained noticing that:

‖T : A → RH + CH‖cb ≤ ‖T1‖cb + ‖T2‖cb ≤ 2‖T‖.

Therefore, the main part of the proof consists on constructing T1 and T2 with the 
claimed properties. For that, observe that the states f1 and f2 from Theorem 2.1
define pre-inner products 〈x, y〉1 := f1(xy∗), 〈x, y〉2 := f2(x∗y), for any x, y ∈ A, 
which naturally induce Hilbert spaces H1, H2 in the standard way (Hi = A/Ni, where 
Ni = {x ∈ A : 〈x, x〉i = 0}).

2 In order to see that this result generalizes the classical little Grothendieck’s theorem one must use the 
domination theorem for 2-summing maps [6, Theorem 2.13]. We omit this result here because we will not 
use it.
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Given that, we consider the Hilbert space H1 ⊕2 H2 and the injections:

j1 : A −→ H1 ⊕2 H2 , j2 : A −→ H1 ⊕2 H2
x �→ [x] ⊕ 0 x �→ 0 ⊕ [x]

.

Let us now consider the Hilbert space V defined by the closure of the linear subspace 
E = {[x] ⊕ [x] : x ∈ A} ⊂ H1 ⊕2 H2 and let us define the map

T̃ : E −→ H

[x] ⊕ [x] �→ T (x)
.

Using Equation (2.5) one can see that T̃ is a well defined linear map satisfying ‖T̃‖ ≤
‖T‖. In particular, it can be extended to V with the same norm.

Now, by defining the linear maps

Ti : A ji−→ H1 ⊕2 H2
p−→ V

T̃−→ H for i = 1, 2,

where p : H1⊕2H2 → V is the orthogonal projection onto the subspace V , one can easily 
check that T (x) = T1(x) + T2(x) and, moreover, ‖T1(x)‖H ≤ f1(xx∗) 1

2 and ‖T2(x)‖H ≤
f2(x∗x) 1

2 for every x ∈ A. These last estimates imply Equation (2.6). �
3. Main result

In this section we will prove our main result, that we state again for convenience.

Theorem 3.1. There exists a universal constant K such that for any linear map T : X →
A∗, where X is an operator space and A is a C∗-algebra, we have

‖T‖cb ≤ Kπ1,cb(T ).

Before proving the result, let us make some comments.
It follows from the proof of Theorem 3.1 that the constant K can be taken equal 

2
√

2. We did not attempt any optimization in terms of this constant. However, our proof 
inevitably leads to a constant strictly larger than one. Whether one can get K = 1 in the 
previous statement seems an interesting problem (see Section 4 for a related problem in 
quantum information).

The fact that the image of T is in the dual of a C∗-algebra is crucial in Theorem 3.1, 
since one can find examples of (operator) spaces X, Y for which ‖T : X → Y ‖cb can 
be arbitrary larger than π1,cb(T : X → Y ). Indeed, this can be shown, for instance, 
by considering X = CLn, the operator space associated to the Clifford algebra with 
n generators [28, Section 9.3], and Y = max(�n2 ). With this choice, we have π1,cb(id :
CLn → �n2 ) ≤ 2 [15, Proposition 4.3.2] and ‖id : CLn → max(�n2 )‖cb ≥

√
n [28, Theorem 

10.4].
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Finally, recall that while it is known [27, Corollary 5.5] that

π0
1(T ) = ‖id⊗ T : S1 ⊗min X → S1(Y )‖ = ‖id⊗ T : S1 ⊗min X → S1(Y )‖cb,

π1,cb(T ) = ‖id ⊗ T : �1 ⊗min X → �1(Y )‖ does not coincide in general with ‖id ⊗ T :
�1⊗minX → �1(Y )‖cb. Indeed, it follows from [17] that ‖id ⊗T : �1⊗minX → �1(X)‖cb =
π0

1(T ) and there are known examples showing that π0
1(T ) can be much larger than 

π1,cb(T ) for maps T : B(H) → S1(H).
In order to prove Theorem 3.1, let us first define, for a given linear map T : X → Y

between operator spaces, the quantity

ΓR∩C(T ) := inf{‖a : X → R ∩ C‖cb‖b : R ∩ C → Y ‖cb : T = b ◦ a}, (3.1)

where we understand ΓR∩C(T ) = ∞ if there does not exist any such factorization of 
T . This quantity has been previously studied by different authors (see for instance [26, 
Section 8] and [15, Section 4.2]). While it is not clear whether Equation (3.1) defines a 
norm, it is known to be equivalent to a norm.

The following result will be key in the proof of Theorem 3.1.

Proposition 3.2. Let H be a complex Hilbert space, a and b be elements in the unit ball 
of S2(H) and Ma,b : B(H) → S1(H) be the linear map defined as Ma,b(x) = axb for 
every x ∈ B(H). Then, ΓR∩C(Ma,b) ≤ K for a universal constant K. Moreover, K can 
be taken 2

√
2.

We thank the reviewer very much for providing us with the following proof, which 
simplified considerably (and slightly improved the constant K) a previous one by the 
authors, based on the theory of weights introduced by Pisier in [26].

Proof. Let us first notice that, for every x ∈ B(H), we have

‖Ma,b(x)‖S1(H) ≤ min{‖ax‖S2(H), ‖xb‖S2(H)}.

Hence, for any decomposition x = x1 + x2, x1, x2 ∈ B(H), we have

‖Ma,b(x)‖S1(H) ≤ ‖Ma,b(x1)‖S1(H) + ‖Ma,b(x2)‖S1(H) ≤ ‖ax1‖S2(H) + ‖x2b‖S2(H),

from where one easily obtains

‖Ma,b(x)‖S1(H) ≤
√

2 inf
x=x1+x2

(
‖ax1‖2

S2(H) + ‖x2b‖2
S2(H)

) 1
2
.

Now, in order to give an explicit factorization of the operator Ma,b through a Hilbert 
space, let us consider the linear subspace V = {(ay, −yb) : y ∈ B(H)} of S2(H) ⊕2S2(H)
and the Hilbert space obtained by considering the corresponding quotient space:
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H0 = S2(H) ⊕2 S2(H)/V .

Then, note that for every x ∈ B(H) the norm of the equivalence class [(ax, 0)] is given 
by:

‖[(ax, 0)]‖H0 = inf
z∈V

‖(ax, 0) − z‖S2(H)⊕2S2(H) = inf
y∈B(H)

‖(ax, 0) − (ay,−yb)‖S2(H)⊕2S2(H)

= inf
y∈B(H)

‖(a(x− y), yb)‖S2(H)⊕2S2(H)

= inf
x=x1+x2

(
‖ax1‖2

S2(H) + ‖x2b‖2
S2(H)

) 1
2
,

where the last equality follows trivially by identifying x1 = x − y, x2 = y.
Therefore, we conclude that

‖Ma,b(x)‖S1(H) ≤
√

2‖[(ax, 0)]‖

for every x ∈ B(H).
Let us now define the map T1 : B(H) → H0 given by

T1(x) = [(ax, 0)] for every x ∈ B(H).

It is clear that T1 is a well defined linear map (note that T1 is nothing else than the map 
x �→ (ax, 0), composed with the quotient map) satisfying that

‖Ma,b(x)‖S1(H) ≤
√

2‖T1(x)‖H0 for every x ∈ B(H). (3.2)

In order to obtain a second map, we consider the linear subspace H̃0 = {T1(x) : x ∈
B(H)} of H0 and define T2 : H̃0 → S1(H) by

T2(T1(x)) = Ma,b(x) for every x ∈ B(H).

Now, Equation (3.2) guarantees that T2 is well defined and, moreover, one easily checks 
that it is a linear map. Furthermore, by using again Equation (3.2) one easily concludes 
that ‖T2‖ ≤

√
2. This allows us to extend T2 to another linear map (that we will call T2

again) from the closure of the space H̃0, that we denote H, to S1(H) such that ‖T2‖ ≤
√

2
and Ma,b = T2 ◦ T1. Hence, we have found an explicit factorization of Ma,b through a 
Hilbert space H. In order to conclude the proof, we need to study the completely bounded 
norm of T1 and T2.

We will start proving that ‖T1 : B(H) → RH ∩ CH‖cb ≤ 1. To this end, let us first 
recall the well known result ([26, Proposition 5.11])

‖T1 : B(H) → RH‖cb = ‖id⊗ T1 : R⊗min B(H) → �2(H)‖,
‖T1 : B(H) → CH‖cb = ‖id⊗ T1 : C ⊗min B(H) → �2(H)‖.
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Now, given z =
∑

i ei ⊗ xi ∈ R⊗min B(H), we have

‖(id⊗ T1)(z)‖�2(H) =
(∑

i

‖T1(xi)‖2
H

) 1
2 =

(∑
i

‖[(axi, 0)]‖2
H0

) 1
2 ≤

(∑
i

‖axi‖2
S2(H)

) 1
2

=
(
tr
[
a
(∑

i

xix
∗
i

)
a∗
]) 1

2 ≤
∥∥∥∑

i

xix
∗
i

∥∥∥ 1
2
,

from where we conclude that ‖T1 : B(H) → RH‖cb ≤ 1.
Using that ‖[(ax, 0)]‖H0 ≤ ‖xb‖S2(H) for every x ∈ B(H), we can analogously prove 

that ‖T1 : B(H) → CH‖cb ≤ 1. According to the definition of RH ∩ CH (see Equation 
(2.4)), we obtain that ‖T1 : B(H) → RH ∩ CH‖cb ≤ 1.

Finally, Corollary 2.2 in its dual form, guarantees that

‖T2 : RH ∩ CH → S1(H)‖cb ≤ 2‖T2 : H → S1(H)‖ ≤ 2
√

2.

This concludes the proof. �
Remark 3.1. The proof of Proposition 3.2 shows, in particular, that given a complex 
Hilbert space H, a and b elements in the unit ball of S2(H) and the linear map Ma,b :
B(H) → S1(H) defined as Ma,b(x) = axb for every x ∈ B(H), there exists a Hilbert 
space H and linear maps T1 : B(H) → H and T2 : H → S1(H) such that Ma,b = T2 ◦T1, 
‖T1 : B(H) → RH ∩ CH‖cb ≤ 1 and ‖T2 : H → S1(H)‖ ≤

√
2.

We are now ready to prove our main result.

Proof of Theorem 3.1. By homogeneity it suffices to show that for every linear map 
T : X → A∗ such that π1,cb(T ) ≤ 1, we have ‖T‖cb ≤ K. To this end, assume that 
ι : X ↪→ B(H) is a complete isometry and let us invoke the factorization theorem for 
(1, cb)-summing maps (see Remark 2.1) to conclude the existence of an ultrafilter U over 
an index set I, families (ai)i, (bi)i in the unit ball of S2(H), a closed (operator) space 
E1 ⊆

∏
S1/U and a linear map u : E1 → A∗ with ‖u‖ = π1,cb(T ) ≤ 1 such that the 

following diagram commutes:

∏
B(H)/U M ∏

S1/U

j(X)

⊂

M|j(X)
E1

⊂

u

X

j

T
A∗

Here, j : X ↪→
∏

B(H)/U is a complete isometry and M :
∏

B(H)/U →
∏

S1/U
is the linear map defined by the family (Mi)i, where Mi : B(H) → S1(H) is given by 
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Mi(x) = aixbi for every i ∈ I. In order to simplify notation let us denote B̂ =
∏

B(H)/U , 
Ŝ1 =

∏
S1/U and M̃ = M|j(X). We will show that the previous factorization implies 

that T factorizes through R ∩ C with completely bounded maps. Hence, T must be 
completely bounded.

In first place, according to Remark 3.1, for every i ∈ I there exists a Hilbert space Hi

and linear maps T1,i : B(H) → Hi and T2,i : Hi → S1(H) such that Mai,bi = T2,i ◦ T1,i, 
‖T1,i : B(H) → RHi

∩CHi
‖cb ≤ 1 and ‖T2,i : Hi → S1(H)‖ ≤

√
2. Then, one can deduce 

from Remark 2.2 and the properties about ultraproducts explained in Section 2.1 the 
existence of another Hilbert space Ĥ and linear maps α : B̂ → Ĥ and β : Ĥ → Ŝ1 such 
that M = β◦α, ‖α : B̂ → RĤ∩CĤ‖cb ≤ 1, and ‖β : Ĥ → Ŝ1‖ ≤

√
2. Moreover, a similar 

factorization can be obtained for M̃. Indeed, to see this let us define H̃ = α(j(X)) ⊂ Ĥ. 
In virtue of the homogeneity of RĤ ∩ CĤ, H̃ inherits the same R ∩ C operator space 
structure. Then, by denoting α̃ = α|j(X) : j(X) → H̃ and β̃ = β|H̃ : H̃ → E1, it is clear 
that M̃ = β̃ ◦ α̃, ‖α̃ : j(X) → RH̃ ∩ CH̃‖cb ≤ 1 and ‖β̃ : H̃ → E1‖ ≤

√
2.

Therefore, we obtain a decomposition T = (u ◦ β̃) ◦ (α̃ ◦ j) such that

‖T : X → A∗‖cb ≤ ‖α̃ ◦ j : X → RH̃ ∩ CH̃‖cb‖u ◦ β̃ : RH̃ ∩ CH̃ → A∗‖cb
≤ 2‖α̃ : j(X) → RH̃ ∩ CH̃‖cb‖β̃ : H̃ → E1‖‖u : E1 → A∗‖
≤ 2

√
2,

where in the second inequality we have used that ‖j : X → j(X)‖cb ≤ 1 and Corollary 2.2
(in its dual form) to write

‖u ◦ β̃ : RH̃ ∩ CH̃ → A∗‖cb ≤ 2‖u ◦ β̃ : H̃ → A∗‖ ≤ 2‖β̃ : H̃ → E1‖‖u : E1 → A∗‖,

and in the third inequality we have used that u is a contraction.
This concludes the proof. �

Remark 3.2. Note that we have actually proved that any linear map T : X → A∗, where 
X is an operator space and A is a C∗-algebra, satisfies

‖T‖cb ≤ ΓR∩C(T ) ≤ 2
√

2π1,cb(T ).

4. Quantum XOR games via tensor norms

A bipartite quantum XOR game is described by means of a family of bipartite quantum 
states (ρx)Nx=1, a family of signs c = (cx)Nx=1 ∈ {−1, 1}N and a probability distribution 
p = (px)x on {1, · · · , N}. Here, a bipartite quantum state ρ is just a positive semidefinite 
operator acting on the tensor product of two finite dimensional complex Hilbert spaces, 
HA ⊗HB , with trace one. Note that ρ is an element of the unit ball of S1(HA ⊗HB).

In order to understand the game, we can think of two (spatially separated) players, 
Alice and Bob, and a referee. The game starts with the referee choosing one of the states 
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ρx according to the probability distribution p. Then, the referee sends register HA to 
Alice and register HB to Bob (this can be understood as some quantum questions). After 
receiving the states, Alice and Bob must answer an output, a = ±1 in the case of Alice 
and b = ±1 in the case of Bob. Then, the players win the game if ab = cx. These games 
were first considered in [31] as a natural generalization of classical XOR games, which 
have a great relevance in both quantum information and computer science. As we will 
see below, the relevant information of the game is encoded in the operator

G =
N∑

x=1
cxpxρx, (4.1)

which is a selfadjoint operator acting on HA ⊗HB such that ‖G‖S1(HA⊗HB) ≤ 1.
In the following we will denote by Mk (resp. M sa

k ) the complex (real) vector space 
of k × k (selfadjoint) matrices. This space, endowed with the trace and operator norms 
will be denoted by Sk

1 (Sk,sa
1 ) and Sk

∞ (Sk,sa
∞ ), respectively. In the rest of this section we 

will identify HA = Cn and HB = Cm. In this case, according to the previous paragraph, 
a quantum XOR game G can be identified with an element in BSnm,sa

1
, the unit ball of 

Snm,sa
1 .
When playing a quantum XOR game, Alice and Bob generate their answers by means 

of some operation (a quantum channel, see e.g. [21]) on the system received from the 
referee. We call such an operation a strategy. Formally, a strategy for Alice and Bob can 
be expressed by a linear map P : M sa

nm → R4 such that, for any given state ρ, it assigns 
a probability distribution over the set of possible answers:

P(ρ) = P (a, b|ρ)a,b=±1.

Note that, for a fixed strategy, it is very easy to write the probability of winning the 
game:

Pwin(G;P) =
∑

x:cx=1
px

(
P (1, 1|ρx) + P (−1,−1|ρx)

)

+
∑

x:cx=−1
px

(
P (1,−1|ρx) + P (−1, 1|ρx)

)
.

It is also easy to see that if Alice and Bob answer randomly (somehow the most naive 
strategy), that is, P (a, b|ρx) = 1

4 for every a, b = ±1 and every ρx, then Pwin(G; P) = 1
2 . 

Hence, when working with XOR games, it is very common to study the so-called bias of 
the game, β(G; P) = 2(Pwin(G; P) − 1/2) or, equivalently,

Pwin(G;P) − Plose(G;P) =
N∑

x=1
pxcx

∑
a,b=±1

abP (a, b|ρx).
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We see that, in order to compute the bias, the only relevant part of the strategies are 
the correlations. That is, given a strategy P and a state ρ, if we define the correlation

γP(ρ) =
∑

a,b=±1

abP (a, b|ρ),

we have

β(G;P) =
N∑

x=1
pxcxγP(ρx).

As the reader may guess, the winning probability of the game (and so its bias) will 
strongly depend on the form of the strategies under consideration. The strategies con-
sidered in a given context will be determined by the resources allowed to Alice and Bob 
to play the game. One extreme case is that where the players are allowed to perform 
any global quantum measurement. This case can be understood as if both players were 
located at the same place so that they can act as a single person with access to both 
registers HA and HB. In this case, a strategy will be given by a family of positive semidef-
inite operators (Ea,b)a,b=−1,1 acting on Cn ⊗Cm verifying that 

∑
a,b=−1,1 Ea,b = 1 1Mnm

and such that

P (a, b|ρ) = tr(Ea,bρ) for every a, b = ±1.

It is very easy to see that the supremum of the bias of the game G ∈ Snm,sa
1 when the 

players are restricted to these kinds of strategies is given by

βowq(G) = sup{tr(XG) : X ∈ BSnm,sa
∞ } = ‖G‖Snm

1 ,

where G was defined in Equation (4.1). The sub-index owq stands for one-way quantum 
communication. This is justified by the observation that the quantity above coincides 
with the bias achieved by strategies in which Alice is allowed to send quantum informa-
tion to Bob (or the other way around). Indeed, in that case Alice can send her question 
to Bob so that he has access to the whole bipartite state.

In this section we will be interested in the identification between the elements G ∈
Sn,sa

1 ⊗ Sm,sa
1 ⊂ Sn

1 ⊗ Sm
1 and the linear maps Ĝ : Sn

∞ → Sm
1 , where we recall that, 

given G, we define Ĝ(x) = (tr ⊗ 1 1Mm
)
(
G(xT ⊗ 1 1Mm

)
)
. Note that we must see G as an 

element in the complex space Sn
1 ⊗Sm

1 in order to work with operator spaces. With this 
identification in mind, it is well known that

‖G‖Snm
1 = πo

1(Ĝ : Sn
∞ → Sm

1 ).

Indeed, for every linear map Ĝ : Sn
∞ → Sm

1 the completely 1-summing norm coincides 
with the completely nuclear norm [7, Corollary 15.5.4] and the fact that the operator 
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spaces are finite dimensional guarantees that the nuclear norm of Ĝ is exactly the same 
as ‖G‖Snm

1 .
Another extreme set of strategies (somehow, at the opposite side, because they are 

the most limited ones) are those where Alice and Bob must answer independently. These 
strategies are usually called product or unentangled strategies [31]. In this case there 
exist operators Ea acting on Cn and Fb acting on Cm, for a, b = ±1 such that they are 
positive semidefinite, verify E1 + E−1 = 1 1Mn

, F1 + F−1 = 1 1Mm
and

P (a, b|ρ) = tr(Ea ⊗ Fbρ) for any a, b = ±1 and ρ.

It is easy to see that the supremum of the bias of the game G when the players are 
restricted to these kinds of strategies is given by

β(G) = sup{tr(A⊗BG) : A ∈ BSn,sa
∞ , B ∈ BSm,sa

∞ }.

In particular, the “norm expression” of this quantity has the form

β(G) = ‖G‖Sn,sa
1 ⊗εS

m,sa
1

.

One can also show [31, Claim 4.7] that

β(G) ≤ ‖G‖Sn
1 ⊗εSm

1 = ‖Ĝ : Sn
∞ → Sm

1 ‖ ≤
√

2β(G).

There are many more possible strategies one can consider in the study of quantum 
XOR games. A very important family of strategies are the so-called entangled strategies, 
in which the players are allowed to use a bipartite quantum state. This situation has 
been deeply studied and it leads to the expression

β∗(G) = sup{tr
(
(A⊗B)(G⊗ ρA′B′

)
},

where in this case the supremum runs over all possible complex Hilbert spaces HA′, HB′ , 
bipartite quantum states ρA′B′ acting on HA′⊗HB′ and selfadjoint contractive operators 
A and B acting on Cn ⊗HA′ and Cm ⊗HB′ , respectively. In this case, the norm to be 
considered in Sn

1 ⊗Sm
1 is the minimal norm (in the category of operator spaces) and one 

can show [31, Claim 4.14] that

β∗(G) = ‖G‖Sn
1 ⊗minSm

1 = ‖Ĝ : Sn
∞ → Sm

1 ‖cb. (4.2)

Notice that, in contrast with the case of the unentangled bias β(G), what [31, Claim 
4.14] proves is that there is no need for any selfadjoint restriction on the norm. This 
follows from G being self adjoint by means of a standard expansion trick.

In light of the previous paragraphs, we see that the bias of the game G according to 
different type of strategies can be expressed by means of different norms of G as a linear 
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map from Sn
1 to Sm

1 . This is the way in which we aim to understand the bias of G when 
the players are restricted to sending classical communication from Alice to Bob. The 
study of this set of strategies is the main goal of this section.

Denoting by βowc(G) the bias of G when the players are restricted to the use of 
one-way classical communication (from Alice to Bob), we will show:

Proposition 4.1. Given a quantum XOR game G ∈ Sn,sa
1 ⊗ Sm,sa

1 ⊂ Sn
1 ⊗ Sm

1 , we have

βowc(G) ≤ π1,cb(Ĝ : Sn
∞ → Sm

1 ) ≤ 4βowc(G).

In order to prove the previous proposition we must study the correlations obtained 
from the strategies we are considering. Let us assume that Alice can send c bits of 
classical information (so, 2c classical messages) to Bob as a part of their strategy. Hence, 
after receiving her part of the system from the referee, Alice will have to produce two 
different data: the message to be sent to Bob and the output a to be sent to the referee. 
This can be modelled by a family of positive semidefinite operators Ea,k acting on Cn, 
where a = ±1, k = 1, · · · , 2c, and such that 

∑
a,k Ea,k = 1 1Mn

. Indeed, given a state ρ
acting on Cn, the probability that Alice outputs the pair (a, k) upon the reception of 
ρ is given by tr(Ea,kρ). On the other hand, after this first stage Bob will have access 
to his part of the state ρx as well as the message received from Alice, and he will have 
to output b = ±1. Hence, Bob’s action is modelled by a family of positive semidefinite 
operators Fb,k acting on Cm, where b = ±1, k = 1, · · · , 2c, and such that 

∑
b Fb,k = 1 1Mm

for every k (that is, Bob can perform a measurement according to the message received 
from Alice). In this way, the strategy will be given by

P (a, b|ρ) =
2c∑
k=1

tr(Ea,k ⊗ Fb,kρ) for any a, b = ±1 and ρ.

It can be seen that the supremum of the bias of G over all possible strategies of this 
form is given by

βowc(G) = sup
{ 2c∑

k=1

tr ((Ak ⊗Bk)G) : Ak = E1,k −E−1,k, Bk = F1,k − F−1,k

}
, (4.3)

where here the supremum is taken over families of operators {Ea,k}a,k and {Fb,k}b,k as 
above.

In Proposition 4.1 we will relate the bias βowc(G) with the π1,cb-norm (defined in 
Equation (2.2)) of the corresponding map Ĝ. It is easy to see that this norm can be 
equivalently written as

π1,cb(Ĝ : Sn
∞ → Sm

1 ) = sup
d

∥∥∥11 ⊗ Ĝ : �d1 ⊗min Sn
∞ → �d1(Sm

1 )
∥∥∥ . (4.4)
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Let us write this norm in more detail. For each natural number d in the above supre-
mum we have:

∥∥∥11 ⊗ Ĝ : �d1 ⊗min Sn
∞ → �d1(Sm

1 )
∥∥∥

= sup
{∥∥∥(11 ⊗ Ĝ)

( d∑
k=1

ek ⊗Ak

)∥∥∥
�d1(Sm

1 )
:

d∑
k=1

ek ⊗Ak ∈ B�d1⊗minSn
∞

}

= sup
{

d∑
k=1

tr
(
G(AT

k ⊗Bk)
)

:
∑d

k=1 ek ⊗Ak ∈ B�d1⊗minSn
∞
,∑d

i=1 ek ⊗Bk ∈ B�d∞(Sm
∞

)

}
. (4.5)

Note that the transpose in Ak doesn’t play any role in Equation (4.5) because the 
supremum is taken over all x =

∑d
k=1 ek ⊗ Ak with ‖x‖�d1⊗minSm

∞
≤ 1. Replacing Ak by 

AT
k doesn’t change the norm of x, so we can ignore it.
As a final preamble before proving Proposition 4.1, we need to recall the following 

decomposition theorem due to Wittstock [34]. We use the statement appearing in [28, 
Corollary 1.9].

Theorem 4.2. Let A be a C∗-algebra and H be a Hilbert space. Then, for any completely 
bounded map u : A → B(H) there exist completely positive maps uk : A → B(H) for 
k = 1, . . . , 4, such that u = (u1 − u2) + i(u3 − u4) and3

max{‖u1 + u2‖cb, ‖u3 + u4‖cb} ≤ ‖u‖cb.

In particular, if ‖u‖cb ≤ 1, (u1 + u2)(1 1A) ≤ 1 1B(H) and (u3 + u4)(1 1A) ≤ 1 1B(H).

Proof of Proposition 4.1. Let us first show that βowc(G) ≤ π1,cb(Ĝ : Sn
∞ → Sm

1 ). To do 
so, let us consider operators Ak = E1,k −E−1,k and Bk = F1,k − F−1,k for every k such 
that the E’s and the F ’s are positive semidefinite, 

∑
a,k Ea,k = 1 1Mn

and 
∑

b Fb,k = 1 1Mm

for every k. Let us show that
∥∥∥∑

k

ek ⊗Ak

∥∥∥
�2

c
1 ⊗minSn

∞
≤ 1 and ‖Bk‖Sm

∞ ≤ 1 for every k. (4.6)

The second bound in Equation (4.6) is very easy from the definition of Bk and the fact 
that F1,k and F−1,k are positive semidefinite verifying F1,k + F−1,k = 1 1Mm

for every k. 
In order to see the first bound in (4.6), note that

∥∥∥∑
k

ek ⊗Ak

∥∥∥
�2

c
1 ⊗minSn

∞
= ‖Â : �2

c

∞ → Sn
∞‖cb,

3 For this part of the statement, see the last line in the proof of [28, Corollary 1.9].
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where Â is the linear map defined by Â(ek) = Ak for every k. Now, if we consider the 
linear maps û± : �2c

∞ → Sn
∞ defined by û±(ek) = E±1,k, respectively, they verify that 

Â = û+−û−, both maps û+ and û− are completely positive4 and û++û− is a unital map. 
Then, using Stinespring’s dilation theorem [23, Theorem 4.1] on the maps û+ and û− one 
can check that Â is indeed completely contractive. This proves the desired implication.

Let us now show that π1,cb(Ĝ : Sn
∞ → Sm

1 ) ≤ 4βowc(G). According to the equations 
(4.4) and (4.5), given ε > 0 there exist d ∈ N, x =

∑d
k=1 ei ⊗Ak with ‖x‖�d1⊗minSn

∞
≤ 1

and ‖Bk‖Sm
∞ ≤ 1 for every k such that

π1,cb(Ĝ) ≤
d∑

k=1

tr(G(Ak ⊗Bk)) + ε.

Next, we construct a strategy from these elements in order to bound βowc(G). On 
the one hand, we write Bk = B1

k + iB2
k, with Bj

k ∈ Sm,sa
∞ , and ‖Bj

k‖ ≤ 1 for j = 1, 2. 
On the other hand, if we realize x as a completely contractive map x̂ : �d∞ → Sn

∞, we 
can apply Theorem 4.2 to obtain completely positive maps ui : �d∞ → Sn

∞ such that 
x̂ = (u1 − u2) + i(u3 − u4) and

max{‖u1 + u2‖cb, ‖u3 + u4‖cb} ≤ ‖x̂‖cb ≤ 1.

Moreover, (u1+u2)(1 1�d∞) ≤ 1 1Mn
and (u3+u4)(1 1�d∞) ≤ 1 1Mn

. Let us define E1,k = u1(ek), 
E−1,k = u2(ek), Ẽ1,k = u3(ek) and Ẽ−1,k = u4(ek) for every k = 1, · · · , d. Note that, ∑

a,k Ea,k ≤ 1 1Mn
and 

∑
a,k Ẽa,k ≤ 1 1Mn

. In order to sum up to one, we artificially define 
E1,0 = 1 1Mn

−
∑

a,k Ea,k, E−1,0 = 0, Ẽ1,0 = 1 1Mn
−

∑
a,k Ẽa,k, Ẽ−1,0 = 0. Then, if we 

set Ck = E1,k − E−1,k and C̃k = Ẽ1,k − Ẽ−1,k for k = 0, 1, · · · , d, we obtain a couple 
of families {Ck}k and {C̃k}k as in the Equation (4.3). Notice that, by construction, 
Ak = Ck + iC̃k for k = 1, · · · , d.

Hence, we can write

∣∣∣ d∑
k=1

tr(G(Ak ⊗Bk))
∣∣∣ ≤ 2 sup

{∣∣∣ d∑
k=1

tr(G(Ak ⊗Dk))
∣∣∣ : Dk ∈ BSm,sa

∞

}

≤ 2 sup
{∣∣∣ d∑

k=0

tr(G(Ck ⊗Dk))
∣∣∣ : Dk ∈ BSm,sa

∞

}

+ 2 sup
{∣∣∣ d∑

k=0

tr(G(C̃k ⊗Dk))
∣∣∣ : Dk ∈ BSm,sa

∞

}

≤ 4βowc(G).

4 Since A = �2
c

∞ is a commutative C∗-algebra, positive maps are automatically completely positive maps.
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With this, we have proved that π1,cb(Ĝ) ≤ 4βowc(G) + ε for every ε > 0, from where 
we immediately conclude that π1,cb(Ĝ) ≤ 4βowc(G), as we wanted. �

Proposition 4.1 complements the clean connection between the different values of 
quantum XOR games and certain norms on the corresponding linear maps associated 
to these games. This connection, implicitly initiated in [31] (see also [18], where the 
1-summing norm was used to study classical XOR games with communication and [5], 
where the authors analyzed some properties of rank-one quantum games by studying 
some tensor norms on Sn

1 ⊗ Sm
1 ), allows us to reformulate the chain of inequalities

β(G) ≤
{

β∗(G)
βowc(G)

}
≤ βowq(G),

which is trivial from a physical point of view, as

‖Ĝ : Sn
∞ → Sm

1 ‖ ≤
{

‖Ĝ : Sn
∞ → Sm

1 ‖cb
π1,cb(Ĝ : Sn

∞ → Sm
1 )

}
≤ πo

1(Ĝ : Sn
∞ → Sm

1 ).

This establishes a clear hierarchy on the relative power of different resources when 
playing quantum XOR games. However, this hierarchy does not say anything about the 
comparison between players sharing entanglement (but no communication) and players 
with one-way classical communication (but no entanglement). That is, the comparison 
between the norms ‖ · ‖cb and π1,cb(·).

As a first approach to understand the previous relation, we can restrict to operators 
acting on the diagonals of Sn

∞ and Sm
1 ; that is, Ĝ : �n∞ → �m1 (or equivalently G ∈ �n1⊗�m1 ). 

We have5

π1,cb(Ĝ : �n∞ → �m1 ) = πo
1(Ĝ : �n∞ → �m1 ). (4.7)

Read in the context of quantum XOR games, the previous equation says that one-way 
classical communication allows the players to achieve the same bias as if they were 
performing a global measurement. This observation easily implies that for these kinds of 
maps

‖Ĝ : �n∞ → �m1 ‖cb ≤ π1,cb(Ĝ : �n∞ → �m1 ). (4.8)

Moreover, there exist maps for which

π1,cb(Ĝ : �n∞ → �m1 )
‖Ĝ : �n∞ → �m1 ‖cb

≥ C
√

min{n,m} (4.9)

5 It is well-known that for these kinds of maps π1(Ĝ) = π1,cb(Ĝ) = πo
1(Ĝ). That is, the three notions of 

1-summing maps coincide.
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for a universal constant C.
This last inequality is not surprising once we know that the classical Grothendieck’s 

Theorem implies

‖Ĝ : �n∞ → �m1 ‖cb ≤ KG‖Ĝ : �n∞ → �m1 ‖. (4.10)

Hence, Equation (4.9) follows from the well known estimate ‖id : �n1 ⊗ε �
m
1 → �nm1 ‖ ≥

C
√

min{n,m}.
In fact, restricting to real tensors G ∈ �n1 ⊗ �m1 (that is, selfadjoint operators) corre-

sponds to considering classical XOR games [22]. In this sense, the previous comments 
are not new at all. Equation (4.8) means that for classical XOR games strategies using 
classical communication are always better than entangled strategies and, in some cases, 
can actually be much better, cf. Equation (4.9). Moreover, Equation (4.10) tells us that 
for classical XOR games entangled strategies are very limited (in fact comparable to 
product strategies), something we already mentioned in the introduction.

One could wonder if something similar happens for general quantum XOR games 
or, on the contrary, in the setting of quantum XOR games one can find examples for 
which quantum entanglement is much more useful than classical information. Note that 
Equation (4.9) immediately implies the existence of maps Ĝ : Sn

∞ → Sm
1 for which 

π1,cb(Ĝ)/‖Ĝ‖cb ≥ C
√

min{n,m}. However, Equation (4.7) does not extend from �1 to 
S1 and, therefore, Equation (4.8) might not hold in this more general case. In fact, 
such an extension of Equation (4.7) is manifestly false. A very simple counterexample is 
provided by the transpose map τ : Sn

∞ → Sn
1 , for which πo

1(τ)/π1,cb(τ) = n. Indeed, it 
is very easy to see that πo

1(τ) = n2 while π1,cb(τ) = ‖τ‖ = n. Furthermore, the equality 
π1,cb(τ) = ‖τ‖ can be reinterpreted in terms of quantum XOR games as an example 
for which classical one-way communication does not provide any advantage at all over 
product strategies. Together with the result that there exist quantum XOR games for 
which entangled strategies attain a bias unboundedly larger than the one achieved by 
product strategies [31, Theorem 1.2], this points out to the possibility that games G
for which ‖Ĝ‖cb/π1,cb(Ĝ) is arbitrarily large might exist. Contrary to this intuition, 
Theorem 3.1 applied to X = Sn

∞ and A = Sm
∞ implies that this is not the case.

Corollary 4.3. There exists a universal constant C such that for every quantum XOR 
game G

β∗(G) ≤ Cβowc(G).

Proof. According to Equation (4.2) and Proposition 4.1,

β∗(G)
βowc(G) ≤ 4 ‖Ĝ : Sn

∞ → Sm
1 ‖cb

π1,cb(Ĝ : Sn
∞ → Sm

1 )
≤ 4K,

where K is the constant appearing in Theorem 3.1. �
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Let us mention here that we do not know if C can be taken equal to one in Corol-
lary 4.3. Hence, it could still happen that quantum entanglement is strictly better than 
sending classical information in some instances.

To finish we make a comment about strategies that mix entanglement and one-way 
classical communication. From the quantum information point of view, it is well known 
that the access to both entanglement and one-way classical communication allows Alice 
to send one-way quantum communication to Bob (thanks to the quantum teleportation 
protocol [1]). So we recover the value βowq(G). From the mathematical point of view, 
this argument can be understood by showing that the corresponding bias of the game 
coincides, up to a constant, with the norm

‖Ĝ : �1 ⊗min Sn
∞ → �1(Sm

1 )‖cb.

As we explained in the comments right below Theorem 3.1, this norm equals πo
1(Ĝ) =

‖Ĝ‖Snm
1 .
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