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a b s t r a c t

CafeOBJ is a language for specifying and verifying a wide variety of software and/or hardware systems.
Traditionally, verification has been carried out via proof scores, which consist of reducing goal-
related terms in user-defined modules. Although proof scores are semi-formal (the specifier is partially
responsible for soundness), their flexibility makes them a useful approach to verification.

For the last years, we have developed different formal tools around the CafeInMaude interpreter,
a CafeOBJ interpreter implemented in Maude. Besides supporting proof scores, we implemented a
theorem prover, a proof script generator from proof scores, and the first stages of a proof script
generator and fixer-upper. In this paper, we present (i) an improved and detailed version of our
proof script generator and fixer-upper and (ii) a reimplementation of the CafeInMaude interpreter,
which supports, among others, parallel execution, an improved tool integration, and an interactive
user interface. The benchmarks used to evaluate the tools confirm the usefulness of the approach.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

CafeOBJ (Futatsugi and Diaconescu, 1998; Sawada et al., 2015)
s a language for writing formal specifications for a wide variety
f software and/or hardware systems, and verifying properties
f them. CafeOBJ implements equational logic by rewriting and
an be used as a powerful platform for proving properties of sys-
ems. CafeOBJ provides several features to ease the specification
f systems, including a flexible mix-fix syntax, a powerful and
lear typing system with ordered sorts, parameterized modules
nd views for instantiating the parameters, module expressions,
perators for defining terms, equations for defining the (possibly
onditional) equalities between terms, and (possibly conditional)
ransitions for specifying how a system evolves, among others.
quations and transitions can be understood as oriented from left
o right, so they can be executed. In this paper we are interested
n the equational part of CafeOBJ, which is used to specify the
ehavior of systems and observe it by means of equations. These
quations stand for simplification rules that return the value of
he relevant elements of the system in each step.

✩ Editor: Earl Barr.
✩ Research partially supported by JSPS KAKENHI Grant Number 26240008,
he MINECO Spanish project ProCode-UCM (PID2019-108528RB-C22), and by
omunidad de Madrid as part of the program BLOQUES-CM (S2018/TCS-4339)
o-funded by EIE Funds of the European Union.
∗ Corresponding author.

E-mail addresses: ariesco@fdi.ucm.es (A. Riesco), ogata@jaist.ac.jp
K. Ogata).
ttps://doi.org/10.1016/j.jss.2022.111302
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
Regarding verification, specifiers can write proof scores (Futat-
sugi et al., 2012) also in CafeOBJ and perform proofs by executing
these proof scores. Proof scores consist of reduction commands,
standing for the (sub)goals we want to prove. These reduction
commands are just terms standing for a property of the system
in a particular state. We consider that the property holds if it is
reduced to true by using equations as simplification rules. These
reduction commands are introduced into user-defined modules
(called open-close environments, because they ‘‘open’’ a previous
module and add new information, which is lost once all com-
mands have been executed and hence the environment becomes
‘‘closed’’), including basically the constants required to instantiate
the properties and the case splittings required for that (sub)goal.
Proof scores are a very powerful verification technique because
they allow specifiers to use all the features available in the
language itself. However, they have the drawback of being semi-
formal: the user is responsible for analyzing all possible cases and
using sound case splittings and premises.

This semi-formal nature of proof scores led us to start the
CafeInMaude project.1 We first implemented the CafeInMaude
interpreter (Riesco et al., 2016), a CafeOBJ interpreter imple-
mented in Maude. This interpreter supported the same modules
(including proof scores) as the standard CafeOBJ interpreter and
showed a better performance, so in practice it allowed us to
prove properties for a wider range of systems than the standard
CafeOBJ interpreter, implemented in LISP. This new interpreter

1 https://github.com/ariesco/CafeInMaude.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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id not add formality to proof scores, but was used as the start-
ng point for the CafeInMaude Proof Assistant (CiMPA) and the
afeInMaude Proof Generator (CiMPG) (Riesco and Ogata, 2018).
iMPA provides a formal approach to theorem proving, but rules
ut the flexibility given by proof scores. On the other hand,
iMPG takes a proof score and generates (when possible) a CiMPA
roof script. In this way, users could check whether their proof
cores were correct while enjoying the flexibility of proof scores.
s a weak point, CiMPG was only able to find the complete
iMPA script when the proof score was correct; otherwise, CiMPG
ust pointed out where the error was, without helping the user
ny further. The CafeInMaude Proof Generator & Fixer-Upper
CiMPG+F) (Riesco and Ogata, 2020) was proposed to solve this
roblem. CiMPG+F chooses possible case splittings guided by
he current subgoal and follows a depth-first strategy to try to
utomatically discharge it. It is also worth noting that all these
ools were static, in the sense that proof scores and CiMPA,
iMPG, and CiMPG+F commands must be given inside open-
lose environments and no interaction from the user was possible
utside them. This limitation in the interaction affected also the
unctionality for loading modules, which could not be done from
aude but from Java.
Maude (Clavel et al., 2007) is a specification language based on

ewriting logic. CafeOBJ and Maude are sister languages, descen-
ants of OBJ. Although Maude does not support proof scores, and
ence it cannot be used with the proof methodology in this paper,
hey share most of the syntax and the execution mechanism. For
his reason, it makes sense to choose Maude as implementation
anguage for our CafeOBJ interpreter. Moreover, taking advantage
f the fact that rewriting logic is reflective (Clavel and Meseguer,
002), Maude provides a powerful meta-level where Maude mod-
les can be used as data. Using this feature, the CafeInMaude
ools analyze the modules, reason about the current subgoals,
nd relate modules in proof scores with nodes in the proof tree.
ull Maude (Clavel et al., 2007, Part II) is an extension of Maude
ritten in Maude itself that provides a richer syntax, includ-

ng new module types and commands not available in standard
aude (called Core Maude). Furthermore, it extends the Loop
ode module, which provides an I/O loop for interacting with

he user. Full Maude uses the meta-level extensively: it has an ex-
licit module database and provides several features for parsing
odules, so it has been historically used as basis for many other
pplications requiring module manipulation. In particular, the
afeInMaude applications described above extended Full Maude.
The release of Maude 3 in December 2019 (Clavel et al.,

020) included several interesting features, including an exter-
al rewriting command for interacting with external objects,
uch as files (including the standard input and output) and
eta-interpreters (complete Maude instances that interact via
essage-passing as a standard Maude terminal). Meta-

nterpreters were improved with the release of Maude 3.1 in
ctober 2020, including support for execution in different pro-
esses, making possible the design of concurrent computation in
single computer. The new version of the CafeInMaude tool set

akes advantage of external objects in several ways. Regarding
ser interaction, we use them for I/O with the user, both via text
iles and the standard I/O stream. Regarding the tool architecture,
meta-interpreter is used as database, where user modules are

ntroduced. Moreover, a coordinator-worker architecture can be
sed to parallelize the computations required by CiMPG and
iMPG+F.
Summarizing, in this paper we present the following contri-

utions:

1 The parsing process, the module database, and the in-
put/output functionalities have been completely reimple-

mented to work with Maude 3.1. In particular:

2

(a) The current version of CafeInMaude implements its
own parsing functions and stores the resulting mod-
ules in its own database (implemented as a meta-
interpreter).

(b) The current version uses external objects to process
text files, preprocessing them in Maude itself. Like-
wise, it can generate a text file with the current
proof, so it is possible to continue with the proof
later, or just store it when finished.

(c) The current version of the tool is interactive. This
feature makes dealing with subgoals with several
case splittings easier, while trying different proof
strategies is simpler and faster.

(d) We use meta-interpreters for parallelizing CiMPG
and CiMPG+F computations. Although we provide
a single strategy for parallelizing the subgoals, the
benchmarks suggest interesting lines of future work
for this feature.

2 We fully integrate CiMPG and CiMPG+F. Although previous
versions of CiMPG used CiMPG+F when the proof score was
incomplete, the inference of the initial goal was different
for both tools and different commands were required to
start them. We found this integration very useful in large
proofs, where some recursive cases can be generated au-
tomatically but others require the user to provide extra
information.

3 We implemented new commands:

(a) A ‘‘help’’ command that displays the case splittings
considered by CiMPG+F for a given subgoal. As we
discussed in Riesco and Ogata (2020), for really large
systems/proofs it is not realistic to generate the
proof in a completely automatic way and some as-
sistance is required from the user. Making the tools
interactive allows us to show the user some in-
formation that was being used internally before,
guiding him/her towards the most convenient case
splittings. In turn, the user employs his/her expert
knowledge to choose the most appropriate among
all the possibilities.

(b) A ‘‘proven’’ command, which allows users to use pre-
viously proven lemmas in the current theorem. It can
be used for two different purposes: (i) to simplify the
current proof, which is especially useful when gen-
erating whole proofs but can be also helpful when
proving interactively, as independent proofs are eas-
ier to handle; and (ii) to analyze whether a lemma
is really required: in some cases the user might
think that introducing a new lemma is required to
discharge the current goal, but proving it beforehand
is a waste of time if it does not really help with the
proof.

(c) Commands for dealing with the new functionalities:
setting the path for storing text files, saving files,
specifying the numbers of cores available for con-
current computations, and launching both CiMPG
and CiMPG without enclosing it in an open-close
environment.

4 We give a more detailed description of an improved version
of the algorithm used by CiMPG+F, including heuristics
that were not present in Riesco and Ogata (2020). We also
describe how to discharge goals.

5 We present new benchmarks: in addition to analyzing new
protocols, all previous benchmarks have been re-executed
using the new parallelization features. The obtained results
suggest that the combination of tools is required for large

specifications and point out possible improvements.
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The rest of the paper is organized as follows: Section 2 briefly
resents CafeOBJ, proof scores, CiMPA, and CiMPG using a run-
ing example. Section 3 details the architecture of the system,
mphasizing how CiMPG+F works, while Section 4 illustrates how
o use the different tools. Section 5 presents the benchmarks used
o analyze the tools. Finally, Section 6 discusses the related work
nd Section 7 concludes and presents some lines of ongoing work.
he tool and several case studies are available at Riesco (2022a).
he running example is available at Riesco (2022b).

. Preliminaries

In this section we introduce CafeOBJ and the different tools im-
lemented in CafeInMaude by means of a running example. Then,
e illustrate how the different CafeInMaude tools can be used to
erify it. All the details regarding the running example, including
omplete proofs and CiMPA, CiMPG, and CiMPG+F commands are
vailable at Riesco (2022b).2

.1. CafeOBJ

CafeOBJ (Futatsugi and Diaconescu, 1998; Sawada et al., 2015)
mplements order-sorted equational logic by rewriting. It sup-
orts the definition of datatypes by means of sorts and sub-
ort relations, constructors for these datatypes, and functions
hose behavior are specified by means of equations. We use the
eedham–Schroeder–Löwe Public-Key protocol (NSLPK) (Lowe,
995), a variant of the Needham–Schroeder Public-Key protocol
NSPK) (Needham and Schroeder, 1978), as running example.
ecause it is a public-key protocol, we assume all actors (called
rincipals) have a pair of public (used to encrypt) and private
used to decrypt) keys; we will use syntax encp(m) to indicate
hat a message m is encrypted using the public key of principal
. Then, the protocol is used for verifying the identities of two
rincipals, p and q, using the following messages:

1. p uses the public key of q to send it a nonce (a random
number) and its own identifier, that is, p

encq(np,p)
−−−−−→ q, with

np the nonce generated by p.
2. q authenticates itself by using its private key to decrypt the

message and uses p’s public key to generate a new message
that contains the nonce sent by p, a new nonce generated
by q (nq), and q identifier. That is, we have q

encp(np,nq,q)
−−−−−−−→ p.

3. Similarly, p replies decrypting nq and sending it back en-

crypted with q’s public key, that is, p
encq(nq)
−−−−→ q.

We will assume that there is an intruder that can eavesdrop
and fake messages, but cannot decrypt messages encoded with
other principals’ public key. We want to prove the nonce secrecy
property, that is, the intruder cannot access the nonces generated
by the rest of principals. We will first specify the system in
CafeOBJ and then state the required properties to verify it.

Principals are specified in the PRIN module, where the mod*
syntax indicates that it has loose semantics, that is, many different
implementations (models) for the sorts and operators in the
specification satisfy the given axioms (Astesiano et al., 1999).
Intuitively, modules with loose semantics pose the minimum
requirements a specification must fulfill, although these specifica-
tions may also include more information (e.g. sorts or operators).
In this case, we require the existence of a sort Prin for principals

2 Note that two properties of NSLPK (nonce secrecy property and authenti-
ation property) have been verified in CiMPA and CiMPG in Mon et al. (2021).
n the current paper we use CiMPG+F instead of the previous versions of the
ool, focusing on the nonce secrecy property. The proof in Mon et al. (2021) is
iscussed in the benchmarks.
3

and a distinguished constructor (note the constr attribute in
he operator definition,with keyword op, empty arity, and result
sort Prin) intr, standing for the intruder. This means that,
independently of how principals are defined (which is irrelevant
for us and will not play any role in the verification process),
acceptable implementations (models) are required to include this
sort and this constructor.

mod* PRIN {
[Prin]
op intr : -> Prin {constr}

}

Similarly, the module RAND defines random numbers, which
re built by using the constructors seed and next. We use equa-
ions to state equality between constructed terms by using the
=_ operator, where underscores are placeholders. This operator
s defined for all CafeOBJ sorts by default with a single equation,
tating that syntactically equal terms are equal, while the speci-
ier is in charge of defining the rest of the cases. In this case note
hat we first indicate that terms built with different constructors
ust be different. Then, we indicate that an element built with
ext cannot be equal to its argument and, finally, indicate that
wo terms built with next are equal if their arguments are equal.
ote that these equations use variables previously defined by
sing the keyword vars and the corresponding sort:

mod* RAND {
[Rand]
op seed : -> Rand {constr}
op next : Rand -> Rand {constr}
vars R1 R2 : Rand
eq (seed = next(R1)) = false .
eq (R1 = next(R1)) = false .
eq (next(R1) = next(R2)) = (R1 = R2) .

}

Next, the module NONCE is used to define nonces. Note that
it is defined with syntax mod!, which indicates that it has tight
semantics, that is, it has a single model (the initial model), which
is unique up to isomorphism (Astesiano et al., 1999). Intuitively,
we are indicating that the details are closed and the imple-
mentation must be a model of the specification. This module
imports the modules above by using the keyword pr, which
stands for protecting and indicates that the imported modules
cannot introduce new constructors nor identify terms that were
previously different. In this case, we import a summation module
by using the _+_ operator, which creates a new module including
the information in its summands. Then, it defines the Nonce sort,
with constructor n, which receives the principal that created it,
the principal that should receive it, and a random number; and
the projection functions p1, p2, and r. These functions are defined
by means of equations, as well as the equality for nonces. This
equality states that two nonces are equal if all their components
are equal:

mod! NONCE {
pr(PRIN + RAND)
[Nonce]
op n : Prin Prin Rand -> Nonce {constr}
ops p1 p2 : Nonce -> Prin
op r : Nonce -> Rand
vars P1 P2 P12 P22 : Prin
vars R1 R2 : Rand
eq p1(n(P1,P2,R1)) = P1 .
eq p2(n(P1,P2,R1)) = P2 .
eq r(n(P1,P2,R1)) = R1 .
eq (n(P1,P2,R1) = n(P12,P22,R2)) = (P1 = P12 and P2 = P22 and R1 = R2) .

}
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The module CIPHER defines the sort Cipher for the dif-
erent messages, with subsorts (note the < keyword) Cipher1,
ipher2, and Cipher3 for each particular message (built with
he enc1, enc2, and enc3 constructors, respectively). It also
efines projection functions for the different arguments of these
essages (the corresponding equations, defined as shown in the
odule above, are avoided for simplicity), generalizing with the
ipher sort when possible:

od! CIPHER {
pr(NONCE)
[Cipher1 Cipher2 Cipher3 < Cipher]
op enc1 : Prin Nonce Prin -> Cipher1 {constr}
op enc2 : Prin Nonce Nonce Prin -> Cipher2 {constr}
op enc3 : Prin Nonce -> Cipher3 {constr}
op k : Cipher -> Prin
op n1 : Cipher -> Nonce
op n2 : Cipher2 -> Nonce
op p1 : Cipher1 -> Prin
op p2 : Cipher2 -> Prin
...

The parameterized module BAG defines a set of elements (de-
ined with the constructors empty and empty syntax for union
f sets; note that this operator is defined as associative and
ommutative by means of the assoc and comm attributes, respec-
ively). It assumes the existence of the Elt sort in the parameter
(which is written as Elt.M), fulfilling the requirements from

he predefined TRIV theory (which just defines this sort). It also
efines the function _\in_ for checking whether a set contains an
lement, defined by means of equations distinguishing whether
e have the empty set, a singleton, or a larger set:

od! BAG (M :: TRIV) {
[Elt.M < Bag]
op empty : -> Bag {constr}
op __ : Bag Bag -> Bag {constr assoc comm}
op _\in_ : Elt.M Bag -> Bool

vars X Y : Elt.M
var S : Bag.

eq X \in empty = false .
eq X \in Y = (X = Y) .
eq X \in (Y S) = (X = Y) or (X \in S) .

We define the views TRIV2NONCE and TRIV2CIPHER for in-
tantiating the set of nonces (NonceBag) and the set of mes-
ages (Network). Note that views are just maps that ensure that
odules satisfy the requirements posed by theories:

iew TRIV2NONCE from TRIV to NONCE {sort Elt -> Nonce}
iew TRIV2CIPHER from TRIV to CIPHER {sort Elt -> Cipher}

od! NONCE-BAG {pr(BAG(M <= TRIV2NONCE) * {sort Bag -> NonceBag})}
od! NETWORK {pr(BAG(M <= TRIV2CIPHER) * {sort Bag -> Network})}

Finally, we define in the NSLPK module the protocol above. It
s defined as an observational transition system (OTS), so we will
efine the sort for the System (Sys), which will be built by means
f the possible transitions. Then, we will use observer functions
or collecting the value of the elements of interest. We first define
he module, which imports the ones above, and the main sort,
ys:
4

od* NSLPK {
pr(NONCE-BAG + NETWORK)
[Sys]

The possible transitions for Sys are init for the initial state,
end1, send2, and send3 for sending the messages exchanged
y non-intruder principals and fake1, fake2, and fake3 for the
ame messages when exchanged by the intruder. In this way, Sys
s inductively defined:

op init : -> Sys {constr}

op send1 : Sys Prin Prin -> Sys {constr}
op send2 : Sys Prin Prin Nonce -> Sys {constr}
op send3 : Sys Prin Prin Nonce Nonce -> Sys {constr}
op fake1 : Sys Prin Prin Nonce -> Sys {constr}
op fake2 : Sys Prin Prin Nonce Nonce -> Sys {constr}
op fake3 : Sys Prin Nonce -> Sys {constr}

The state of the system cannot be directly accessed. Instead,
e can obtain information about it by observing the value of

ts components via functions. These observer functions are rand
or obtaining the random number that has never been used and
ill be used next, nw for collecting the set of messages in the
ystem, and nonces for gathering the nonces in the system that
he intruder can see:

op rand : Sys -> Rand
op nw : Sys -> Network
op nonces : Sys -> NonceBag

For the initial state, the random number that will be used is
he seed, while the bags are empty:

eq rand(init) = seed .
eq nw(init) = empty .
eq nonces(init) = empty .

Next, we analyze the send1 case (we assume variables of the
ppropriate sorts have been defined beforehand). Because send-
ng the message enc1 requires generating a nonce, the random
umber to be used is the next to the one in the rest of the system.
ikewise, we find the enc1 message in the network and, if the
essage is received by the intruder, then it can be decrypted with

ts own private key and added to the nonces set:

eq rand(send1(S,P1,P2)) = next(rand(S)) .
eq nw(send1(S,P1,P2)) = (enc1(P2,n(P1,P2,rand(S)),P1) nw(S)) .
eq nonces(send1(S,P1,P2))
= if P2 = intr then (n(P1,P2,rand(S)) nonces(S)) else nonces(S) fi .

The transition send2 requires an effective condition c-send2
o be defined. Effective conditions are used to check whether the
ransition can be applied; while the previous transitions can be
lways applied, this one requires an enc1 message to be in the
etwork addressed to the appropriate principal:

op c-send2 : Sys Prin Prin Nonce -> Bool
eq c-send2(S,P1,P2,N1) = enc1(P1,N1,P2) \in nw(S) .

When this condition holds, we need to generate the next
andom number, we find the corresponding enc2 message in the
etwork, and, if we are dealing with the intruder, we add the
once to the nonces set. Note the use of the keyword ceq for

conditional equations:
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ceq rand(send2(S,P1,P2,N1)) = next(rand(S))
if c-send2(S,P1,P2,N1) .

ceq nw(send2(S,P1,P2,N1)) = (enc2(P2,N1,n(P1,P2,rand(S)),P1) nw(S))
if c-send2(S,P1,P2,N1) .
ceq nonces(send2(S,P1,P2,N1))
= if P2 = intr then (N1 n(P1,P2,rand(S)) nonces(S)) else nonces(S) fi
if c-send2(S,P1,P2,N1) .

Otherwise, the transition is skipped:

ceq send2(S,P1,P2,N1) = S
if not c-send2(S,P1,P2,N1) .

The observations for the rest of the transitions are defined in
similar way; we refer to the repository for more information.
inally, we define three inductive properties the system should
erify: inv1 is the nonce secrecy property, which states that
he intruder only sees nonces generated or received by it. inv2
indicates that, if a given enc1message is in the network, then the
nonce was generated/received by the intruder or it can be found
in the nonces set. Similarly, inv3 states the same property for
enc2 messages:

op inv1 : Sys Nonce -> Bool
eq inv1(S,N1) = ((N1 \in nonces(S)) implies

(p1(N1) = intr or p2(N1) = intr)) .
op inv2 : Sys Nonce Prin -> Bool
eq inv2(S,N1,Q1)

= ((enc1(Q1,N1,intr) \in nw(S))
implies (p1(N1) = intr or p2(N1) = intr or N1 \in nonces(S))) .

op inv3 : Sys Nonce Nonce Prin -> Bool
eq inv3(S,N1,N2,Q1)

= ((enc2(Q1,N1,N2,intr) \in nw(S))
implies (p1(N2) = intr or p2(N2) = intr or N2 \in nonces(S))) .

}

In the next sections we will present different ways to verify
these properties. We will focus on the main property, inv1,
for the send2 transition, which allows us to introduce different
features of our tools.

2.2. Verifying with proof scores

We use proof scores to verify the properties as follows. First,
we create an open-close environment extending the NSLPK mod-
ule. We use an :id(nslpk) label to indicate that it is part
of the nslpk proof; this label, used for the verification of the
three properties above, will be used by CiMPG later. Note in the
open-close environment below how we define fresh constants for
using them in the equations and in the reduction command. In
turn, the equations stand for case-splittings; in this case we have
three equations providing extra information about the constants
above: the message enc1(p1,m,p2) is in the network, p2 is
the intruder, and n1 has the form n(p1,p2,rand(s)). Finally,
the reduction command (which is reduced to true) uses the
induction hypothesis as premise for discharging a subgoal of the
recursive casethat we are dealing with, send2:

open NSLPK .
:id(nslpk)
-- fresh constants
op s : -> Sys .
op n1 : -> Nonce .
ops p1 p2 : -> Prin .
op m : -> Nonce .
-- assumptions
5

eq enc1(p1,m,p2) \in nw(s) = true .
eq intr = p2 .
eq n1 = n(p1,p2,rand(s)) .

red inv1(s,n1) implies inv1(send2(s,p1,p2,m),n1) .
close

We say that proof scores are semi-formal because CafeOBJ
does not check whether: (i) the equations standing for case
splittings are valid (see Futatsugi et al. (2012), Gâinâ et al. (2012)
for the technical details); (ii) the premises used in the reduc-
tion command correspond to the induction hypotheses; and (iii)
all the open-close environments for the corresponding case are
present. In fact, we need three more open-close environments
for discharging this subgoal; if any of them would be missing no
notification would be generated by the system. Note, however,
that they are defined in a very simple way, just using CafeOBJ
syntax, which greatly eases the verification process.

2.3. Verifying with CiMPA

In contrast to proof scores, a proof assistant as CiMPA provides
a strict syntax but ensures the soundness of the verification
process. CiMPA supports (i) goals stated as Boolean equations;
(ii) simultaneous induction; (iii) application of the theorem of
constants; (iv) case splittings by constructors (in particular by
true/false when dealing with Boolean terms like equalities) and
special splittings for associative sequences with unit element; (v)
implication with the induction hypotheses; and (vi) discharging
goals by means of reduction. See Riesco and Ogata (2018) for
details.

For verifying the properties with CiMPA we would state the
three equations standing for the goal; note that the equations
have a label for identifying them and they use the :nonexec
attribute, so they cannot be used for execution. Then, we apply si-
multaneous induction (si) on the variable S:Sys. This command
builds terms using the constructors for the sort Sys (possibly
creating fresh constants). Then, it substitutes, in all goals, the
variable S:Sys by each one of these terms, hence creating as
many new goals as constructors defined for the sort (seven in this
case). Because we are interested in the sixth goal, corresponding
to send2 (recursive cases appear in alphabetic order), we use the
command :sel(6) to select it. Finally, we apply the theorem of
constants (tc):

open NSLPK .
:goal{eq [nslpk :nonexec] : inv1(S:Sys, N:Nonce) = true .

eq [nslpk1 :nonexec] : inv2(S:Sys, N:Nonce, P:Prin) = true .
eq [nslpk2 :nonexec] : inv3(S:Sys, N:Nonce, N0:Nonce, P:Prin)

= true .
}
:ind on (S:Sys)
:apply(si)

:sel(6)
:apply(tc)

In particular, the theorem of constants (Goguen, 2021) sub-
stitutes variables by fresh constants and separates the equations
in the goal, allowing us to prove each of them separately. The
current goal is

inv1(send2(S#Sys, P#Prin, P0#Prin, N#Nonce), n1@Nonce)

where constants generated when applying induction use the
postfix #Sort, while the ones generated by the theorem of con-
stant have the postfix @Sort. Note that we are trying to prove
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the property inv1 (the nonce secrecy property) for the send2
message (the second message exchanged by non-intruders). We
would then proceed by defining and applying the same case
splittings defined in the open-close environment above, but using
these constants:

:def csb1 = :ctf [enc1(P#Prin, N#Nonce, P0#Prin) \in nw(S#Sys) .]
:apply(csb1)
:def csb2 = :ctf {eq intr = P0#Prin .}
:apply(csb2)
:def csb3 = :ctf {eq N@Nonce = n(P#Prin, P0#Prin, rand(S#Sys)) .}
:apply(csb3)

And, finally, we would discharge the subgoal by using impli-
cation with the corresponding induction hypothesis (with label
nslpk when we defined the goal) with a particular substitution:

:imp [nslpk] by {N:Nonce <- N@Nonce ;}
:apply (rd)

In this case, CiMPA ensures that all cases are generated and
the premise in the implication is an induction hypothesis. Once
these commands have been loaded, it shows the next subgoal to
be discharged, corresponding to the false case of the last case
splitting. However, we are forced to use a strict syntax and to deal
with difficult constant names (in the sense that they are not self-
explaining and are built with characters such as @ and #), which
ight be difficult for a human user.

.4. Verifying with CiMPG

The proof in Section 2.3 can be automatically generated using
iMPG from the proof scores in Section 2.2 using CiMPG as
ollows:

pen NSLPK .
:proof(nslpk)
lose

where the :proof(nslpk) command indicates that only
roof scores with the :id(nslpk) label must be used. The basic
dea when using CiMPG is that each open-close environment
rom a proof score corresponds to a leaf of the CiMPA proof tree.
ence, it is possible to reproduce the proof if the equations in the
roof score correspond to the case splittings supported by CiMPA,
resented in the previous section.
6

It is important to note that all the commands used in the
ools in this section are enclosed in open-close environments.
oreover, the CiMPA script will not be completely generated if
ny open-close environment is missing or incorrect, leaving an
pen subgoal in the proof.

. The CafeInMaude tool set

We present in this section the new architecture of CafeIn-
aude. This new architecture, described in Section 3.1, involves
xternal objects, which allowed us to make the tool interactive,
ead, write, and process text files, and improve the performance
f the tool. Then, in Section 3.2 we explain how we extended
he ideas in Riesco and Ogata (2020) for fixing incomplete proof
cores and illustrate it using our running example.

.1. CafeInMaude architecture

We summarize in Fig. 1 the architecture of CafeInMaude.
t makes extensive use of Maude 3’s new features, in partic-
lar external objects and meta-interpreters as remarkable case
f external objects (Clavel et al., 2020). Meta-interpreters are
omplete Maude instances and are able to mimic all the function-
lity available in a standard Maude terminal via message-passing
sing meta-level syntax. That is, it is possible to send them
essages asking for introducing and showing modules, reduc-

ng/rewriting terms, etc. Each of these messages has the corre-
ponding counterpart, informing about the result of the operation
different messages may distinguish success/failure states). Meta-
nterpreters were extended in Maude 3.1 to support creation in
ifferent processes, which allows developers to parallelize tasks
n a single computer. It is worth noting that the introduction
f meta-interpreters (which can be used as module database)
nd external rewriting via standard I/O made the Loop Mode
eprecated. Among the current limitations of the external objects
e highlight the blocking nature of the message for reading from
he standard input, which prevents specifiers from using com-
lex combinations of interactive applications and concurrency
ia meta-interpreters. To the best of our knowledge, this is the
argest Maude application using these features thus far. Hence,
he ideas in this section are presented in a general way, so they
an be applied to other applications.
The main idea when working with external objects is that

e deal with a multi-set of objects and messages. The system
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volves either when (i) one object receives and processes a mes-
age, possibly generating new messages or (ii) when an object
erforms a computation and generates new messages. Following
hese ideas, the main actor in our architecture is the CafeInMaude
bject, which keeps a set of attributes storing context informa-
ion. Although the complete list of attributes is too long for a
omplete enumeration, it is worth mentioning that it contains the
urrent state, the default module (updated when a new module
s introduced), the current proof tree, the current proof script, the
pen-close environments introduced thus far, and the number of
ores the user wants to use for concurrent computation.
The CafeInMaude object interacts with the user via the stan-

ard input/output and text files (both built-in external objects).
t is important to note that currently waiting for input from the
ser in the standard input blocks the rest of actions,3 so input is
nly required when all inner actions have been completed. Once
command (either from the standard input or from a text file)

s received by the CafeInMaude object, it is parsed according to
he grammar and, if correct, it will be executed. CafeInMaude
rovides the following commands:

• Commands concerning only the current state, like setting
the number of cores to be used, setting the path for storing
the current proof, reading/writing a file (once the file is
parsed the input it contains will be processed indepen-
dently). These ‘‘basic’’ commands just update the internal
state of the CafeInMaude object and output some informa-
tion.

• Parsing CafeOBJ input (modules, views, etc.). In this case
the parsing process is performed in two steps. The first
step extracts the information that only depends of the term
being parsed (e.g. module name, parameters, imports, and
sorts). Once this information is obtained we use the module
database in the left of the figure, which is a meta-interpreter
in charge of storing CafeOBJ modules and views, to obtain
a module extended with the information from the impor-
tations. This extended module will be used in the second
step, which is in charge of solving subsorts, operators, and
equations declarations.
This step is required because we need to parse terms pos-
sibly using syntax defined in the imported modules or in
the parameters, which is stored in the database. Note that
these two parsing steps are the Maude 3 counterpart of Full
Maude (Clavel et al., 2007, Part II) and would be required by
any interactive Maude specification keeping its own module
database.

• CiMPA commands. These commands just use the corre-
sponding CiMPA functions to update the proof tree and
output the corresponding information.

• CiMPG and CiMPG+F commands. These commands involve
heavy computation in general, so they are implemented to
work concurrently following a coordinator-worker schema.
Hence, these commands must be easily split and the results
easily combined. CafeInMaude currently supports a com-
mand for generating a CiMPA script from scratch, possibly
using open-close environments to guide the generation of
the script. In this case the goal and the variable for induc-
tion are inferred (or given by the user in some cases) and
simultaneous induction (Dybjer, 1994) applied.
Each recursive case is independent from the rest (because
they correspond to different constructors), so they are a
perfect choice for distributing to the workers. Hence, we

3 As explained in the conclusions, this restriction has been solved in the last
lpha release of Maude. Because this feature is still experimental, in this section
e only discuss the stable features.
 t

7

create a list of tasks, as shown in the upper-right corner of
the figure. Each task is composed of an identifier (its index in
the proof tree), which will be used when finished to obtain
the final proof, the proof tree restricted to that subgoal, and
the open-close environments related to the subgoal. This list
of tasks is connected with a set of meta-interpreters (top of
the figure, middle). An idle meta-interpreter will take the
first available task in the list and start it, updating its state
to indicate it cannot admit new tasks. Once finished, it will
send a message to the CafeInMaude object and become idle
again, so it can start the next task (if any). Combining the
results just consists of introducing the :sel(N) command
from CiMPA, with N the identifier of the task, which selects
the goal N as current one, and then concatenating the com-
puted proof. Note that we must rename case splittings using
the corresponding identifier to avoid clashes with other con-
current computation. Splitting and combining tasks is not
that difficult, and thus, we use the coordinator to perform
worker tasks as well.

Even though we presented the intuition about how tasks are
distributed above, it is worth discussing the details of the sys-
tem. First, note that the proof consists of the list of open goals
identifiers and the proof tree, where each node contains a node
identifier, a set of equations (the goals), and a module (the initial
module possibly enriched with fresh constants, the induction
hypotheses, and case splittings). The list of open goals is modified
when different actions are applied to the tree and the proof
is finished when it becomes empty. Fig. 2 (bottom) presents
the CafeInMaude object containing a proof script (which would
contain the goal and the induction command), the proof tree
that we would obtain after applying induction, and the open-
close environments introduced into the system. Note that the tree
consists of the root and n children, each of them corresponding
to one recursive case. We have colored the nodes to indicate that
they are part of the list of open goals to simplify the presentation.
Then, each task in the tasks list (top-right corner of the figure) is
generated by creating a term with the function generateProof
(from CiMPG) at the top and the proof tree and the open-close
environments restricted to each particular case, as arguments.4
This restriction removes all subgoals, except for the selected one,
from the list of open goals, so the proof will be generated only
for one recursive case. Finally, each task has an identifier, which
corresponds to the index of the recursive case being proven.
The meta-interpreters, represented in the top-left corner of the
figure, are stored as a set of pairs containing the meta-interpreter
identifier and its state (either idle or busy). As soon as a meta-
interpreter is available (state idle) and there is at least one task
in the list the following happens: (i) a message is sent to the
meta-interpreter, asking it to complete the task; (ii) the state of
the meta-interpreter becomes busy; and (iii) the task is removed
from the list. Once the task is finished the meta-interpreter an-
swers with another message including a proof script starting with
the :sel(i) command. Note that it might be the case that the
proof is not successful. In this case there is no error message:
instead, the script will contain a :postpone command indicating
that some subgoals could not be discharged. This means that the
proof script will not be complete and the user will be in charge of
finishing the postponed subgoals. This proof script is appended to
the current proof in the CafeInMaude object, possibly renaming
case splitting to avoid name clashes.

4 Note that the proof tree already contains the module and the goals. As we
ill explain in the next section, some extra parameters are required but we skip
hem here for the sake of simplicity.
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Fig. 2. Interaction between CafeInMaude, the tasks list, and the meta-interpreters. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Although we will present in Section 4 the CafeInMaude com-
mands, the basic, non-interactive methodology of CiMPA and
CiMPG has been already presented in Riesco and Ogata (2018).
The main novelties in CiMPA are its interactive nature and a new
command that suggests possible case splittings to the user; on the
other hand, CiMPG is interactive, concurrent, and shares the same
command with CiMPG+F, so proofs can be partially generated
and partially inferred from proof scores. Its concurrent execution
improves the previous version of CiMPG not only because it
is concurrent, also thanks to the splitting process: picking the
open-close environments corresponding to the subgoal before-
hand speeds-up the later operations, because the search space
becomes much smaller. Regarding CiMPG+F, besides using the
same command as CiMPG we have improved its behavior and
included new decision procedures and heuristics, as explained in
the next section.

3.2. CiMPG+F

In Riesco and Ogata (2020) we presented the main idea un-
derlying CiMPG+F: it consists of a bounded depth-first algorithm
where we check whether the current subgoal can be reduced to
true (possibly using the induction hypotheses as premises) or,
otherwise, the possible case-splittings are extracted from the cur-
rent subgoal. Then, they are applied and, for each one, recursion is
used to try to discharge the subgoal in the new context. If terms
for case splittings are extracted, it also indicates which type of
case splitting should be applied, considering the ones supported
by CiMPA: by true-false for Boolean terms, by constructors, and
special case splittings for associative sequences. Because back-
tracking algorithms are very expensive, using heuristics to im-
prove its performance in practice is a very important issue. We
present here some of these heuristics, as well as decision pro-
cedures for lists for improving the generation of case splittings.
Finally, we show that using the induction hypotheses is useful
not just when trying to discharge the subgoal but also when
generating case splittings.

Fig. 3 presents CiMPG+F algorithm. Note that it requires, be-
sides the current goal and the corresponding module, three pa-
rameters: the bound d in the depth of the search tree; the number
of implications i; and the free variables v that can be taken into
onsideration when trying to discharge the goal. Note that choos-
ng the appropriate configuration for these parameters heavily
ffects the performance of the tool. Right now we compute the
est values experimentally. Our experience indicates that i and v
8

can be low (1 or 2), because it is unlikely to use many different
implications when discharging goals, while d must be higher
(around 7 for medium examples). The result p is a sequence
of CiMPA commands. The algorithm applies induction if required
(line 2) and then calls genProof (lines 5–30), which is in charge
of the backtracking algorithm. genProof first applies the theorem
of constants (line 6) if the goal contains variables. The theorem
of constants is also applied if the goal consists of more than
one subgoals, even if there are no variables, in order to prove
each of them separately. Then, we use the auxiliary function
discharge (line 8), explained below, to check whether no more
case splittings are required and the subgoal can be discharged by
using implications and reduction. If it is not the case and we can
still explore more levels (that is, d is greater than 0), then we
compute a list of candidates for case splitting and try to use them
to discharge the subgoal (lines 9–26). We first compute the can-
didates for case splitting (cs) related to the current goal (line 10)
and prioritize them (line 11). The generate function, explained
below, generates case splittings related to those terms that, if
reduced, would force the goal to be further reduced, progressively
approaching it to true. In turn, the prioritize function takes into
account that case splittings related to associative sequences work
better in practice than case splittings by constructors, which work
better than case splittings by true-false, so it orders the list of
case splittings following this idea. Then, we compute the case
splittings generated when using implication with the hypotheses
in the same way (lines 12–16) and append them to the case
splittings generated previously (line 17). It is important to note
that the order of the composition in line 17 matters, because in
practice case splittings obtained from the current goal are more
often required than those generated when using the hypotheses.
Note that we also remove potential repetitions before concate-
nating. Then, the loop in lines 18–25 applies, using CiMPA, the
corresponding case splitting and recursively continues the search.
Because applying case splitting generates in general several new
modules where the goal needs to be discharged, we need an
extra loop (lines 21–23) to discharge each of them. The original
goal is discharged if all of them are discharged as well (line
24). Finally, in line 27 we indicate that if we have reached the
maximum depth allowed by the d parameter or no case splitting
allowed us to discharge the subgoal then a :postpone command
is generated, which indicates that the proof for this subgoal is
skipped (and, in practice, left for the user). Note that we cannot
ensure the proof will be generated, independently of the value
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f the parameters, because it is possible that the case splitting
equired for discharging a goal is not generated by CiMPG+F or
ven supported by CiMPA. In this sense, CiMPG+F is not complete.
Fig. 4 presents the discharge function, used to check whether

he current goal can be discharged by using implications and
eduction. It receives the current module and goal, the bounds
and v, and the current proof and returns a pair where the
irst element indicates if the goal was discharged. If this first
lement is true then the second element of the pair contains
he proof extended with the required commands to discharge it.
therwise it contains an empty proof, in order to make sure it
ill not be used. The main function (lines 1–11) checks whether
he goal can be directly reduced to true. If it is the case, it returns
rue and the current proof extended with a single reduction
ommand (line 2). Otherwise, we use the induction hypothesis
orresponding to the current property, trivially instantiating the
ree variables with the same fresh constants as the goal (line
). If this new term is reduced to true we finish, returning the
mplication and the reduction commands. It is worth noting that
his implication is always used, independently of the bound i.
e took this decision because this implication is often required

nd very cheap to compute (free variables are easily bound), so
he i bound is used to check whether we should continue trying
he rest of hypotheses. In that case (line 9) we call the auxiliary
9

unction $discharge; otherwise (line 8) we return false and an
mpty list, so we make sure the returned sequence will not be
sed.
The function $discharge (lines 12–32) traverses all the hy-

otheses in the module (lines 13–30). For each possible im-
lication, it computes (line 14) a preliminary substitution us-
ng a pre-instantiation. This method helps us to bind free vari-
bles by reducing the term and looking for terms of the form
(. . . , var j, . . .) = c(. . . , tj, . . .), with c a constructor symbol, var j
variable at position j, and tj a term built with constructors

nd fresh constants at position j. If found, we would generate
he substitution var j ↦→ tj. Although it is possible that not
ll variables are bound using pre-instantiations, we have found
xperimentally that this method greatly reduces the number of
ree variables. Because otherwise we need to compute all possible
nstantiations (explained below), reducing the state space greatly
peeds up the performance of the tool for large examples. The
unction continues by checking (line 15) if the number of free
ariables remaining in the term is less than or equal to v. In
hat case, we continue by generating all possible instances of the
ubgoal by assigning fresh constants or constructors (arguments
f non-constant constructors are fresh constants and constant
onstructors; otherwise, we would find non-termination prob-
ems) to these variables. If any of these terms can be reduced
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o true (line 17) then the process finishes and the correspond-
ng proof, combining the substitution from the pre-instantiation
nd the substitution from the instantiation, is returned (lines
8–19). Otherwise, if we have not reached the bound i (line 21),
hen we recursively call $discharge to apply more hypotheses.
inally, if we traverse all hypotheses and the subgoal could not be
ischarged, the function returns false (line 31). This indicates
hat the current subgoal (and hence the whole goal) cannot be
ischarged.
Finally, Fig. 5 shows how the case splittings are generated by

he generate function (lines 1–23). It starts by initializing the
ariables cs (the list of case splittings, line 2) and candidates (the
et of equalities that are candidates for case splitting, line 3).
hen, we reduce the current goal and extract the equalities (lines
–5), which are stored in equals. We traverse these equalities
lines 6–14) to check whether their terms are completely reduced
r there exists at least one equation whose lefthand side matches
hem, given a substitution θ . If there exists such an equation, then
the term was not reduced because the equation is conditional and
10
some condition does not hold, possibly because case splittings
for making it true are missing. Then, we remove the current
equality from the set and introduce the first condition that does
not hold (which must be an equality) into equals. Because of
quational axioms such associativity and commutativity many
ifferent matchings can be found. In this step we introduce into
quals all the possible instantiations (loop in lines 7–10). Likewise,
e introduce matchings with all possible equations. Note also
hat this checking is performed for the two terms in the equality,
lthough the algorithm only shows one of the loops for simplicity.
f such an equation does not exist, then this equality is a candidate
or case splitting and it is stored in candidates.

Once all equalities have been checked, we traverse the
andidates (lines 15–19) to decide the case splittings that will
e generated. Note that we assume an order in the equalities to
nsure that the specification, once the case splitting is added, is
erminating. This order is automatically computed by CiMPG+F
y considering, intuitively, that constant terms are smaller than
on-constant terms, and that function symbols are greater than
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Fig. 5. generate and subterms functions.
resh constants, which are greater than constructors. In line 16 we
ndicate that if the right hand side is only built with constructors
we assume that if both terms are built only with constructors
he term would be reduced, so the lefthand side must contain
unction symbols and/or fresh constants) then we compute the
ase splittings for the lefthand side with the auxiliary function
ubterms, explained below. Otherwise (line 17), if the equality is
etween associative sequences with identity, checked by seqEq,
e use specific decision procedures by using decProc. These pro-
edures are not general, but a series of rules to identify particular
ases and simplify the equalities (if an equality does not fit into
ny rule then the subterms function is used). As an example of
hese rules, if we have the equality s1 e1 e2 s2 = s3 e3 (note
he empty syntax for concatenation of lists), for e1, e2, and e3
articular elements and s1, s2, and s3 sequences (associative and
ith unit element) then CiMPG+F suggests s1 e1 = s3, assuming
hat in the next step e2 = e3 can be suggested (and s2 will work
s unit element). Note that not all combinations will be tried:
or the time being, we only included those matchings that are
ore often used in our proof scores. Once more examples are
eveloped we plan to analyze the impact of not including these
11
solutions and will consider if they must be added. In other case
(line 18), CiMPG+F suggests case splitting by true-false for the
equality (indicated with the keyword eq) and uses the subterms
function in both sides of the equality.

The subterms function (lines 23–31) traverses all the subterms
of the given term (including the whole term) and first checks
whether the type of the (sub)term is an associative sequence
with identity. In that case (line 26) case splitting for sequences
is returned (note the seq keyword). Otherwise, case splitting by
constructors is returned using the keyword term.

Soundness of the approach. The soundness of the approach
relies on the correctness of the inference rules used by CiMPA (Ri-
esco and Ogata, 2018). These inference rules are the ones for
constructor-based logics (see e.g. Gâinâ et al. (2012, 2013)). It is
easy to see that discharging a goal by means of reduction and
implications and applying induction and the theorem of constants
are guaranteed to be correct in this context. Regarding case split-
tings, the algorithms in this section look for the most appropriate
terms for case splitting, taking into account how they are built to
choose the adequate type. Intuitively, they are correct because we
select case splitting by true-false for Boolean terms, by associative
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equences once we check the constructors for the term build an
ssociative sequence with identity, and by terms otherwise. Once
he terms and the type of case splitting are decided, it is in charge
f CiMPA to develop the proof following the appropriate inference
ules. Hence, the correctness of the approach is not modified by
iMPG+F.

.2.1. Illustrating the CiMPG+F algorithm
We use the example from the previous section to illustrate

ow CiMPG+F works. We will use d = 6, i = 1, and v = 2
for the bounds in the algorithms above. Assume we want to
discharge the send2 recursive case for the inv1 property, as we
have discussed above. More specifically, the goal has the form
inv1(send2(s, p1, p2, m), n1) (we assume the arguments
have been defined as constants of the appropriate types). We
would first use discharge to check whether it can be directly
discharged, which is not the case, but it is reduced to:

true xor n1 \in nonces(send2(s, p1, p2, m)) xor
n1 \in nonces(send2(s, p1, p2, m)) and intr = p1(n1) xor
n1 \in nonces(send2(s, p1, p2, m)) and intr = p2(n1) xor
n1 \in nonces(send2(s, p1, p2, m)) and intr = p1(n1) and
intr = p2(n1) : Bool

Similarly, it is not reduced to true by using implication
(inv1(s, n1) implies inv1(send2(s, p1, p2, m), n1),
where we trivially use the same constant as the goal, n1, to
instantiate the induction hypothesis, inv1(s, N:Nonce)).

Because i = 1 it is possible to use $discharge, but it will not
find a way to reduce the goal to true using the rest of hypothe-
ses. For example, it would use the inv2(s,N1:Nonce,Q1:Prin)
hypothesis. Although pre-instantiation cannot bind any variable,
because we have v = 2 we can compute all possible instanti-
ations of the variables and try to reduce the goal. Although not
exhaustive, some of the instantiations that CiMPG+F considers
are:

inv2(s,m,p1) inv2(s,m,p2) inv2(s,m,intr)
inv2(s,n1,p1) inv2(s,n1,p2) inv2(s,n1,intr)
inv2(s, n(p1,p1, seed), p1) inv2(s, n(p1,p1, seed), p2)
inv2(s, n(p1,p1, seed), intr) inv2(s, n(p2,p2, seed), p1)
inv2(s, n(p2,p2, seed), p2) inv2(s, n(p2,p2, seed), intr)

Note that the variables have been first instantiated with the
fresh constants available from the goal, then with constant con-
structors (such as intr and seed), and then with non-constant
constructors such as n, which can only receive constant values.
Even trying all these possible instantiations the goal cannot be
discharged. Although we could try using recursively more impli-
cations we had i = 1, so we stop here and this case fails. Finally,
the inv3(s,N1:Nonce,N2:Nonce,Q1:Prin) case is easier, be-
cause pre-instantiation does not work and hence the number of
free variables is greater than v and not even tried.

Because the goal cannot be discharged using only implica-
tions and reduction we use generate to compute all the possi-
ble case splittings. The initial value for equals contains n1 \in
nonces(send2(s, p1, p2, m)) (we assume Boolean terms
remove the = true part for simplicity), intr = p1(n1), and
intr = p2(n1). The terms intr = p1(n1), and intr = p2(n1)
cannot be further reduced, but for nonces(send2(s, p1, p2,
m)) we have the following equation from Section 2.1:

ceq nonces(send2(S,P1,P2,N1))
= (if P2 = intr then (N1 n(P1,P2,rand(S)) nonces(S))

else nonces(S) fi)
if c-send2(S,P1,P2,N1) .
12
The term matches the lefthand side of the equation with the
substitution S ↦→ s, P1 ↦→ p1, P2 ↦→ p2, N1 ↦→ m but it was not
reduced, so it means the effective condition does not hold. We re-
duce c-send2(s,p1,p2,m) and add the result (see Section 2.1),
enc1(p1,m,p2) \in nw(s) (we omit the = true part again), to
equals. Note that there are no equations for reducing this term,
so the candidates variable from the generate algorithm contains
{enc1(p1,m,p2) \in nw(s) = true, intr = p1(n1), intr =
p2(n1)} once all equalities have been traversed.

When traversing this set, we notice that intr and true
are constructors, so case splittings are generated for p1(n1),
p2(n1), enc1(p1,m,p2) \in nw(s). Because they are not as-
sociative sequences with identity, this last step is easy: we get
the pairs (p1(n1), term), (p2(n1), term), (enc1(p1,m,p2) \in
nw(s), term), and (nw(s), term), where the keyword term
indicates that all case splittings are by constructors on those
terms. Note that we include nw(s) because it is a term with a
function symbol at the top but it is not an associative sequence
with identity. If the id: attribute, used for stating identity, were
used in the specification in Section 2.1, then case splitting for
sequences would be suggested. Likewise enc1(p1,m,p2) is not
included because enc1 is a constructor. Also note that we showed
in Section 2.2 that (enc1(p1,m,p2) \in nw(s), term) is the first
plitting required to discharge the goal. If chosen, the algorithm
ould continue finding the appropriate case splittings until the
ubgoal is discharged.
However, the case splittings above are not the only ones con-

idered by CiMPG+F. Although we know that in this case they will
ot be required (and in fact the case splittings above will be pri-
ritized, as explained in the previous section), CiMPG+F also com-
utes possible case splittings when using the rest of the hypothe-
es for implication. In our case, we would use inv2(s,N,Q)
nd inv3(s,N1,N2,Q), with N, N1, and N2 variables of sort
once and Q a variable of sort Prin, as hypotheses. The steps
xplained above would be repeated with the terms obtained
hen reducing the corresponding implications. These terms are
oo big for presentation and we cannot display them here, but
t is worth mentioning that among the equalities we find n1
in nonces(s) (for n1 the variable from inv1), so new case
plittings from this implication would be (n1 \in nonces(s),
erm) and (nonces(s), term). We will see more details about

these case splittings in the next section.

4. Using the tools

We present in this section how to use the new CafeInMaude
tool set to prove the properties on NSLPK presented in Sec-
tion 2.1. We would start the tool launching Maude and loading
the cafeInMaude.maude file, available in Riesco (2022a):

$ maude -allow-files src/cafeInMaude.maude

Note that we need the -allow-files option for allowing
Maude to read and write text files. Once loaded, the prompt
will show CafeInMaude> and all CafeInMaude commands will
be accepted. In particular, we use the load command to load
ext files. In our case we load the NSLPK specification (Riesco,
022b). Optionally, we can also load a (possibly partial) proof
core, although in this case this step is not required and hence
e do not show it:

afeInMaude> load nslpk.cafe .

Then, we set the number of cores we want our computer to
se (e.g. four), so four meta-interpreters are created with state
dle, and specify the path for writing text files:
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afeInMaude> set-cores 4 .
afeInMaude> set-output nslpk-proof.cafe .

We distinguish in the next sections between automatic infer-
nce and interactive sessions.

.1. Automatic inference

In this section we assume the user is interested in auto-
atically generating the proof for inv1 from Section 2.1. First,
ecause he/she knows that inv2 and inv3 might be required,
hey are added as follows:

afeInMaude> :proven(inv2(S:Sys, N1:Nonce, Q:Prin))
afeInMaude> :proven(inv3(S:Sys, N1:Nonce, N2:Nonce, Q:Prin))

hich indicates that these properties can be used as premises
hen requiring induction hypotheses (the user is in charge of
roving them in a separate session). Then, the user must intro-
uce the goal to be proven. Although it can be inferred when a
roof score is given, because in this case we assume only partial
nformation is given (if any), we need to introduce:

pen NSLPK .
:id(nslpk)

op n1 : -> Nonce .

red inv1(S:Sys, n1) .
lose

Implicitly, this open-close environment indicates that induc-
ion must be performed on S:Sys, because it is the only variable
n the environment. Notice that the :id label has the same name
s the environments shown in Section 2.2, so they can be used
ogether. It is also important, for the induction hypothesis, to
se the same variable name in both the goal and the proven
ommands. Once this environment has been loaded it is enough
o execute the following command to start the generation of the
roof:

afeInMaude> :infer-proof nslpk .

Note that an equivalent command was introduced into an
pen-close environment in the previous version of the tool. When
iMPG+F receives this command it stops the interaction with the
ser and takes all the open-close environments with the nslpk

label, applies induction, and generates seven recursive cases, one
for each constructor of the sort Sys in alphabetical order (fake1,
fake2, fake3, init, send1, send2, and send3). Hence, seven
tasks, including the open-close environments related to them (if
any, as explained in Section 3.1), are generated. It is important to
remember that the open-close environments in each task are only
those related to the particular recursive case, so if we consider
some case is particularly complex we can give extra information
about it, without writing the environments for the rest of cases.

Because four cores can be used, the first four tasks are started;
as tasks are finished they are reported to the CafeInMaude object
and the first of the remaining ones is started until the proof
is completely finished. For example, in our case the first task
that is finished is the fourth one, corresponding to init, which
just starts with :sel(4) to indicate that it corresponds to the
fourth recursive case and then requires reduction (:apply(rd))
to discharge the goal. Finishing this task allows the fifth case,
send1, to start. Hence, note that tasks are finished in a different
order to the one they started. Once the task list is empty and all
meta-interpreters are idle the following message is shown
13
Execution finished.

and the interaction with the user is restarted. Then, it is
enough to use the following command to store the proof in the
text file introduced above:

CafeInMaude> :save-proof .

It is important to remember that this script might not be com-
plete, in the sense that some subgoals could not be discharged; in
this case the script contains :postpone commands and loading
the proof in CiMPA will provide extra information about these
subgoals.

Finally, remember that the :infer-proof command is used
and executed in the same way if we just want to use CiMPG. Once
the proof score has been introduced, it would not be required
to introduce the goal because CiMPG can infer the goal and the
variable used for induction from the reductions in the open-close
environments. Then, the tasks generated from the command will
include a non-empty set of environments related to the goal and,
before applying the algorithm from the previous section, will
try to use them to generate a (possibly partial) proof for the
recursive case. In case the proof score introduced by the user
was not correct CiMPG would try to fix the proof using CiMPG+F.
The corresponding proof script will include comments indicating
those commands generated by CiMPG+F.

4.2. Interactive session

In this section we briefly describe how the new version of
CiMPA is used. We refer to Riesco and Ogata (2018) and the tool
repository for an exhaustive list of commands. We start the proof
by introducing the goal; although we can use the :proven com-
mand shown in the previous section, in this case we will show
how to prove the three goals simultaneously by introducing the
following goal (which can be outside an open-close environment,
as the rest of commands):

:goal{
eq [proofNSLPK :nonexec] : inv1(S:Sys, n1:Nonce) = true .
eq [proofNSLPK1 :nonexec] : inv2(S:Sys, n1:Nonce, q:Prin) = true .
eq [proofNSLPK2 :nonexec] : inv3(S:Sys, n1:Nonce, n2:Nonce, q:Prin)

= true .
}

Following the same ideas presented in Section 2.3 we apply
induction, select the goal for send2, and apply the theorem of
constants:

:ind on (S:Sys)
:apply(si)

:sel(6)
:apply(tc)

If we print the information of the proof we obtain

CafeInMaude> :desc proof .
6. SI eq [proofNSLPK :nonexec] :

inv1(send2(S#Sys, P#Prin, P0#Prin, N#Nonce), n1:Nonce) = true .

-- Assumption:
eq [proofNSLPK :nonexec] : inv1(S#Sys, n1:Nonce) = true .
-- Assumption:
eq [proven-goal0 :nonexec] : inv2(S#Sys, N1:Nonce, Q:Prin) = true .
-- Assumption:
eq [proven-goal1 :nonexec] : inv3(S#Sys, N1:Nonce, N2:Nonce, Q:Prin) = true .
6-1. > TC eq [proofNSLPK :nonexec] :

inv1(send2(S#Sys, P#Prin, P0#Prin, N#Nonce), n1@Nonce) = true .
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Table 1
Benchmarks for CiMPG and CiMPG+F.
Protocol Spec. Proof Proof CiMPG CiMPG CiMPG CiMPG+F CiMPG+F CiMPG+F Auto.

size score script (old) (conc.) (old) (conc.)

2p-mutex 58 73 23 <1 s <1 s <1 s <1 s <1 s <1 s 100%
TAS 73 341 88 10 s 9 s 7 s <1 s <1 s <1 s 100%
Qlock 124 444 88 24 s 23 s 12 s <1 s <1 s <1 s 100%
Cloud 127 1 715 530 132 s 82 s 27 s <1 s <1 s 1 s 100%
SCP 182 664 200 202 s 62 s 31 s 340 s 51 s 34 s 100%
NSLPK1 188 1 173 342 284 s 118 s 59 s 617 s 26 s 14 s 100%
ABP 320 8 655 1370 5 h 13 m 5 h 13 m 2 h 25 m 2 h 35 m 2 h 30 m 2 h 1 m 100%
MCS 342 6 517 2484 2 h 21 m 2 h 14 m 53 m 50 s – 3 h 16 m 59 m 14 s 52,5%
NSLPK2 568 15713 3829 12 h 2 h 53 m 2 h 1 m – 4 h 59 m 2 h 57 m 90%
r
c

where we have omitted the information unrelated to the cur-
rent subgoal. Note that fresh constants have been generated as
explained in Section 2.3 and that the induction hypotheses are
the only assumptions; case splittings will be added to these
assumptions when introduced by the user.

At this point, we can ask CiMPG+F about the case splittings
omputed by the generate algorithm in Section 3.2 with the
:help command:

CafeInMaude> :help .
The following case splittings are recommended:
Case splitting by constructors for

enc1(P#Prin, N#Nonce, P0#Prin) \in nw(S#Sys)
Case splitting by constructors for nw(S#Sys)
Case splitting by constructors for p1(n1@Nonce)
Case splitting by constructors for p2(n1@Nonce)
The following case splittings are recommended when using premises:
Case splitting by constructors for N#Nonce \in nonces(S#Sys)
Case splitting by constructors for n1@Nonce \in nonces(S#Sys)
Case splitting by constructors for

enc1(P#Prin, N#Nonce, intr) \in nw(S#Sys)
Case splitting by constructors for

enc1(P#Prin, n1@Nonce, intr) \in nw(S#Sys)
Case splitting by constructors for

enc1(P0#Prin, N#Nonce, intr) \in nw(S#Sys)
Case splitting by constructors for

enc1(P0#Prin, n1@Nonce, intr) \in nw(S#Sys)
Case splitting by constructors for nonces(S#Sys)
Case splitting by constructors for p1(N#Nonce)
Case splitting by constructors for p2(N#Nonce)

This novel feature makes available for the user the internal
knowledge that was hidden in the previous version of the tool. As
explained in the previous section, the information distinguishes
between the case splittings obtained from the current goal and
the ones computed when using implications. In this case we
would use the first one and continue with the proof. If we ask
for case splittings in the next step we obtain:

CafeInMaude> :help .
The following case splittings are recommended:
Case splitting by constructors recommended for N@Nonce
Case splitting by constructors recommended for P0#Prin
Case splitting by constructors recommended for p1(N@Nonce)
Case splitting by constructors recommended for p2(N@Nonce)
The following case splittings are recommended when using premises:
...

In this case, we find case splitting by constructors using
P0#Prin, which in fact is the second case splitting (the con-
structor for Prin is intr) that we used for our proof. CiMPG+F
suggests case splitting by constructors because it is more power-
ful, assuming equalities are defined for all constructor symbols,
than using equalities. After applying this case splitting we ask for
help again and we find:
14
CafeInMaude> :help .
The following case splittings are recommended:
Case splitting by true-false recommended for N#Nonce = N@Nonce
Case splitting by true-false recommended for

n(P#Prin, P0#Prin, rand(S#Sys)) = N@Nonce
Case splitting by true-false recommended for p1(N@Nonce) = P0#Prin
Case splitting by true-false recommended for p2(N@Nonce) = P0#Prin
Case splitting by constructors recommended for N@Nonce \in nonces(S#Sys)
Case splitting by constructors recommended for nonces(S#Sys)
Case splitting by constructors recommended for p1(N@Nonce)
Case splitting by constructors recommended for p2(N@Nonce)
Case splitting by constructors recommended for rand(S#Sys)
The following case splittings are recommended when using premises:
...

The last case splitting that we require, n(P#Prin, P0#Prin,
and(S#Sys)) = N@Nonce, is also suggested by the tool. In this
ase the right hand side of the equality is N@Nonce because it is
a constant. Once these three case splittings have been used we
can discharge the subgoal and continue with the rest of the proof
using the same features described thus far. Finally, it is worth
remembering that incomplete proofs can be also saved in order
to continue with them later.

5. Benchmarks

In this section we present the results obtained when using
the CafeInMaude tool set to prove properties of different systems
specified in CafeOBJ. All benchmarks were executed on a MacBook
Pro with 16 GB of memory and a 2,4 GHZ CPU with four cores.
We decided to set the number of workers when using concurrent
computation to four; even though in some cases the same core
might be busy with both the coordinator and one worker, it
is worth for large proofs because the time the coordinator is
working is much smaller than the worker time. It is worth noting
that the values for the parameters in Section 3.2 have been chosen
experimentally, using the lowest values that generate the proof.

Table 1 summarizes the information, where the columns have
the following meaning:

• The Protocol column indicates the protocol name.
• The Spec. size column displays the lines of code of the

protocol specification.
• The Proof score column presents the lines of code of the

proof scores verifying the protocol.
• The Proof script column indicates the size, in lines of code, of

the CiMPA proof scripts generated for verifying the protocol.
• The CiMPG (old) column presents the time required to gener-

ate the proof script from the proof scores with the previous
version of the tool.

• The CiMPG and CiMPG (conc.) columns show the time re-
quired to generate the proof script from the proof scores
with the new version of the tool using one and four cores,
respectively.

• The CiMPG+F (old) column indicates the time required to
generate the proof script using automatic generation with
the previous version of the tool.
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• The CiMPG+F and CiMPG+F (conc.) columns depict the time
required to generate the proof script combining automatic
generation and proof scores with the new version of the tool
using one and four cores, respectively.

• The Auto. column indicates the degree of automation for the
CiMPG+F and CiMPG+F (conc.) columns. That is, the percent-
age of proof scripts generated automatically, without using
proof scores.

The protocols that we have used for benchmarking, ordered
y specification size, are:

• 2p-mutex is a simple protocol for mutual exclusion of two
processes. We verify mutual exclusion between them.

• TAS (Test And Set) is a spinlock mutual exclusion proto-
col. The proof ensures that at most one process enters the
critical section.

• Qlock is a variant of Dijkstra’s binary semaphore. The prop-
erties in this case are mutual exclusion and that only the
process on the top of the queue can go into the critical
section.

• Cloud is a simplified cloud synchronization protocol, where
one server stores a value and all clients must synchronize
when a new value is uploaded. The properties verify that,
when updated, the clients and the server share the same
value.

• SCP (Simple Communication Protocol) is a simplified version
of the ABP communication protocol, which uses unreliable
cells as communication channels. We analyze in this case
the reliable communication property: if a receiver gets n
packets, then they are the first n packets dispatched by the
sender, and they have been received in the same order they
were sent.

• NSLPK 1 is the protocol used as running example in this
paper.

• ABP is a communication protocol between two agents that
can be understood as a simplified version of TCP. In ABP the
channels are unreliable, so information might be repeated
or lost, and we verify that all messages are delivered in the
proper order.

• MCS is a list-based queuing lock algorithm for spinlocks. This
protocol must verify the safety and liveness properties.

• NSLPK 2 is a more complex NSLPK specification that includes
the details required for proving that the protocol satisfies
both the nonce secrecy and one-to-many correspondence
(which verifies that answers to messages in fact are sent by
those principals that were addressed the previous message)
properties. More details on this proof are presented in Mon
et al. (2021).

The values in Table 1 show some relevant points. First, the
ew version with one core behaves in all cases at least as well
s the old version, and better in general. Second, some case
tudies cannot be generated by CiMPG+F, while CiMPG behaves
uch worse for NSLPK2; these issues are due to the automation

evel and the new features developed for the new version, as we
ill discuss next. It is illustrative the ABP case, which behaves
lmost in the same way in both cases. We consider this is due
o the fact that new heuristics are used in the simplest cases,
here not much improvement can be obtained. Second, using
he concurrent version of the tools is more useful with bigger
pecifications, because for smaller ones the time required for
istributing and collecting the tasks is similar to the one required
o generate the whole proof. Then, the automation level of MCS
nd NSLPK2 is not 100%. In the MCS case, we found out an
nteresting scalability problem: some subgoals are huge and just
15
reducing them is a very expensive task that takes up to min-
utes even when reduced standalone (from the terminal, without
involving CiMPG+F). Because reduction is used in all nodes of
the search tree for checking whether the current subgoal can
be discharged, as explained in Section 3.2, it is not possible in
practice to generate the proof for them. This problem emphasizes
the importance of the interaction with the user, because he/she
can guide the proof in these cases. In this sense, we consider
that helping the user with the case splittings that can be used,
as we showed in the previous sections, is useful in systems like
this. On the other hand, NSLPK2 has a particular recursive case
(out of ten) that requires a large number of case splittings, much
larger in particular than the rest of recursive cases. Hence, it
is worth using the integration between the tools to solve this
case while automatically generating the rest. It is also interesting
mentioning that all NSLPK2 properties (17 properties in total) are
not recursively dependent and can be proved one by one using
the :proven command presented in the previous section, which
greatly improves the performance of the proof; previous versions
of the tool required up to 12 h to completely generate the proof
with CiMPG, while we stopped CiMPG+F after this time, because
the number of possible combinations of induction hypotheses is
too big, hence making the state space too large for a complete
traversal. Hence, the improvement is mainly due to the fact that
using less hypotheses ease both the function in charge of checking
whether a goal can be discharged and the list of case splittings to
be tried.

We also note that CiMPG+F is faster than CiMPG mainly for
smaller examples, while CiMPG is faster for larger proofs. This
indicates that, for small examples, it is easier to generate the
proof than to process all open-close environments and infer the
proof from them. However, as the complexity of the proof grows
the generation process becomes more time consuming and pro-
cessing the open-close environments becomes the most adequate
option for obtaining a proof. Note, however, that the time re-
quired for creating the proof scores by hand is not included in
the table and it is possibly much larger than the one required to
generate the proof automatically.

It is also important to note that the time for the concurrent
version is not reduced by four, as could be expected from using
four cores: we noticed that some recursive cases take much more
time than others, so implementing a method for allowing the
user to customize the particular subgoal to be parallelized is an
interesting topic of future work. Moreover, it would allow us to
define different parameters for each call, so proofs requiring a
large number of case splittings would have a larger d value (see
Section 3.2 for details) than the rest of case splittings, improving
the performance of smaller case splittings while using a large
enough value for generating more complex cases.

6. Related work

Theorem proving is a well established field, with several state-
of-the-art tools. Among the automatic theorem provers we high-
light Spass (Weidenbach et al., 2009) and Vampire (Kovács and
Voronkov, 2013). Although these tools are less powerful in gen-
eral than interactive theorem provers, they are very efficient for
a large number of problems, and hence it is worth consider-
ing their features for automating parts of interactive theorem
provers. On the other hand, possibly three of the most used in-
teractive theorem provers are Isabelle/HOL (Nipkow et al., 2002),
Coq (Huet et al., 2002), and PVS (Owre et al., 1992). These the-
orem provers implement powerful commands combining several
heuristics for trying to automatically discharge goals. The advan-

tages of CiMPG+F with respect to these provers are: (i) CafeOBJ
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s a high-level language for specifying systems, not for specifi-
ally proving theorems, which provides users with a much richer
yntax, and (ii) while heuristics are general, CiMPG+F strategies
re specific for each goal, making them appropriate for novel
ituations. However, we consider that the user interface provided
y these theorem provers is far superior to the one currently used
y CafeInMaude tools, so an interesting topic of future work is im-
roving our interface, possibly integrating some graphical aspects
nd allowing the definition of high-level strategies. It is important
o note that our generation algorithm is different from the simpli-
ication rules supported by theorem provers like Isabelle/HOL. It
s also different from the Sledgehammer tool (Isabelle/HOL, 2009),
tool integrated into Isabelle/HOL that uses external automated
easoning tools to discharge a goal, which is passed to the tool
ogether with a ‘‘smart selection of lemmas from the current
heory context’’ (Wenzel and Berghofer, 2009). In our case, the
implification rules are directly obtained from the specification
nd do not rely just in matching, but in a more complex relation
uided by the goal being proven. On the other hand, in Nagashima
nd Kumar (2017) the authors introduce a Proof Strategy Lan-
uage (PSL) that is used by a proof script generator to produce
actics combinations for Isabelle/HOL. This approach is similar to
urs, since they work in an integrated way as CiMPG+F when
xtra open-close environments are introduced. As an advantage,
n our case no extra language is required, because CafeOBJ syntax
s used. However, using a particular language is more flexible and
ay help the tool to reduce the state space and produce better

esults.
Another tool for automatic proof generation related to Is-

belle/HOL is Zeno (Sonnex et al., 2012). Although the tool is
imited to proofs of properties of recursive data structures spec-
fied in Haskell, the authors implement several heuristics for
enerating these proofs, including general ones like prioritizing
ome tactics, and some that depend of the current goal. It is
orth studying whether some of these heuristics can be general-

zed to other programming languages and other contexts beyond
ecursive data structures.

It is worth discussing the NSLPK proof carried out in Is-
belle/HOL (Paulson, 1998). On the one hand, the specification is
uch shorter in Isabelle/HOL, mainly because it just defines what
appens in the set of messages (which in fact is implemented as
list), while not making observations explicit and using built-in
otation for lists. In this case that the CafeInMaude specification
s executable might help the user understand what is going on,
lthough it requires a higher specification effort. On the other
and, the proof is shorter but must be done by hand, while
he CafeInMaude is larger but automatically generated. Although
arger proofs are worser in general when generated by hand,
n an automatic setting they provide more detailed information
f the proofs, which might help users to understand how they
re carried out. Note that Sledgehammer has been tried with
SPK. Although the results are positive, it cannot fully verify the
rotocol, discharging up to 68% of the goals (Paulson, 2010). This
esult gives us confidence in the usability of our approach.

There exist other tools that have been used in combination
ith theorem provers that are worth discussing. Boogie (Leino,
008) is an intermediate verification language designed to be
sed as middle layer in the construction of other verifiers. It
s able to generate verification conditions, which are solved by
xternal SMT solvers, being Z3 (de Moura and Bjørner, 2008)
he default one. Dafny (Leino, 2010) is an imperative language
hat aims C#. Dafny has been built on top of Boogie, which is
sed to generate verification conditions from pre and postcondi-
ions, as well as for loop invariants. KeY (Ahrendt et al., 2016)
ollows a similar approach: it supports (a subset of) Java pro-
rams annotated using the Java Modeling Language and generate
16
proof obligations that can be later discharged using their theo-
rem prover. Why3 (Filliâtre and Paskevich, 2013) provides a lan-
guage for specifying programs; then, verification conditions can
be extracted from these programs and discharged using external
theorem provers. Frama-C (Kirchner et al., 2015) is a platform for
analyzing and proving properties of C programs. Although it has
an internal prover, it is only used for simplification before sending
the proof obligations to external solvers. In particular, Why3 can
be used as front-end for Frama-C programs.

Automatic software repair (Gazzola et al., 2019) is a field of
growing interest. For example, in model checking a logic-based
machine learning technique (inductive logic programming) has
been used to automatically repair models (Alrajeh et al., 2013).
We propose the complementary approach, where the model is
assumed correct and we try to ‘‘fix’’ the proof by closing gaps.
Note that this fixing includes automatically generating new case
splittings, which is beyond the standard automatic strategies in-
tegrated in other theorem provers, where a fixed set of previously
generated lemmas is applied.

A similar approach to CiMPG+F was proposed in Nakano et al.
(2007), whose authors present Crème, a tool checking invariants
in CafeOBJ OTS specifications by trying case splitting. Crème also
automatically generates lemma candidates and then it is unnec-
essary for users to prepare them in advance. Its main advantage
with respect to CiMPG+F is that Crème is able to generate a
counterexample when the invariant does not hold. However, it
presents a number of problems: it can only use case splittings for
Boolean terms, greatly limiting the proofs it can tackle; it is not
directed by the current goal and the module, hence generating a
much bigger state space, which makes very time-consuming to
automatically generate lemma candidates and highly reduces its
scalability; and it is not directly implemented in Maude but in
Common Lisp, which greatly worsens its efficiency. For these rea-
sons Crème is restricted to particular examples, while CiMPG+F
has been applied to many protocols implemented in CafeOBJ.

Regarding theorem provers implemented for Maude spec-
ifications, the Interactive Theorem Prover (ITP) (Clavel et al.,
2006) allowed users to prove inductive properties in Maude
specifications. Although partially updated for inclusion into the
Maude Formal Environment (Durán et al., 2011), the new fea-
tures were not documented and currently it is discontinued.
The Constructor-based Interactive Theorem Prover (Gâinâ et al.,
2013) is also a theorem prover for inductive properties of Maude
specifications (updated in Gâinâ et al. (2018) to deal with a
novel induction scheme), which has been partially updated to use
some Maude 3 features. In particular, it supports external objects
for interaction with the standard I/O, although it does not keep
its own database, use meta-interpreters, nor interact with text
files. Regarding its features, it incorporates many general decision
procedures for optimizing proofs but, as happened with other
theorem provers, they are not guided by the current goal. Finally,
as it does not consider any integration with CafeOBJ it cannot be
externally guided by proof score-like information.

The K framework (Rosu and Serbanuta, 2010), which was
initially implemented in Maude (the current implementation lan-
guage is Java), is a semantic framework for the specification and
analysis of programming languages. K provides theorem proving
via matching logic (Chen et al., 2021), a logic proposed to reason
about the static structure and dynamic behavior of programs. The
main difficulty to adapt these techniques to our tool is the specific
target of the K framework, which is not designed for general
systems but for the semantics of programming languages.

It is interesting to consider other specification languages like
Alloy (Jackson, 2012). In Alloy systems are described by means of
constraints, while verification, performed by the Alloy Analyzer,
follows a ‘‘lightweight’’ approach based in a Boolean SAT solver
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sed to find structures that satisfy these constraints. This analyzer
an be used to both explore the model and to generate coun-
erexamples. This approach is interesting for us because Maude
upports SMT annotations, that are later solved by external tools.
ollowing Alloy ideas, specific parts of the system could be an-
otated, so SMT solvers can be used to find a counterexample,
hich would indicate the property does not hold.
Some other approaches are being developed to prove partic-

lar systems. The CompCert (Kästner et al., 2018) project has
ntroduced different features into Coq, so compiler verification is
ore easily achieved. Similarly, seL4 (Trustworthy Systems Team,
021) is a microkernel that has, as main feature, a full code-
evel functional correctness proof, performed in Isabelle/HOL. This
nforces integrity, confidentiality, and availability, given some
ardware assumptions hold. Experience in these languages might
e useful for implementing new heuristics for particular classes
f proofs.
Besides theorem proving, model checking has been used for

erifying several properties of systems. Maude and Spin (Ben-
ri, 2008) support LTL model checking, while NuSMV (Cavada
t al., 2010) supports CTL model checking. These tools have
een used to verify, automatically, temporal properties in several
ystems. In particular, Spin has been used to find the error in
SPK (Dong-huo, 2008) later fixed in NSLPK. Although this veri-
ication technique is different to the one in this paper, and in fact
an be used to analyze different properties (which are weaker in
eneral, because model checking is applied to a particular initial
tate), it is interesting to consider how to combine them. In fact,
earches have been used to analyze reachability (see e.g. Riesco
t al., 2016), so our tool set could take this strategy into account
nd extend it with model checking in the future for some classes
f properties. This would be particularly interesting (i) when
ooking for counterexamples to falsify a property and (ii) using an
ndependent meta-interpreter, so this computation is performed
ithout affecting the rest of the proof.

. Concluding remarks and ongoing work

In this paper we have presented a new architecture for the
afeInMaude tools implemented using the last features from
aude 3.1, including meta-interpreters and rewriting with ex-

ernal objects. Using these features we implemented our own
odule database, made the tools interactive, integrated the func-

ionality of all tools, added new commands, and implemented
oncurrent computation. We have also described new heuristics
n the CiMPG+F tool and shown how they work. The benchmarks
onfirm that the tools are promising and point out some lines of
uture work. We are currently working on a flexible infrastructure
or allowing users to send subgoals interactively for background
xecution, modifying on the fly the corresponding parameters.
he user would continue with the proof and eventually he/she
ould receive a notification informing whether the subgoal was
ischarged or must be discharged by hand (or automatically
ith new parameters or after manually introducing a new case
plitting). It would also allow us to define proof scripts for au-
omatizing the proof generation with different depths for each
ecursive case, further splitting the most complex cases. We
re experimenting with the latest Maude alpha release, which
rovides for the first time non-blocking interaction with the stan-
ard input (required to interact with the user), which previously
revented us from using the meta-interpreter at the same time.
We are also studying how to extend CiMPG+F to detect false

roperties, so the rest of the proof (if computed concurrently)
ould be canceled and the user informed.
It is also interesting to extend the number and the variety

enchmarks, possibly using already developed sets of examples
17
like the ones in Claessen et al. (2015) and Hajdú et al. (2021).
Using these new benchmarks we could compare with other tools
and analyze the usefulness of new features.

Finally, it would be interesting to use external objects to
integrate the tool with a graphical interface, so the user could
visualize the proof tree and select in a graphical way which case
splittings he/she wants to proof by hand and which ones to proof
automatically.
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