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Resonant production of fermions in an axial background
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We consider the resonant production of fermions from an oscillating axial background. The classical evo-
lution of the axial field is given by that of a massive pseudovector field, as suggested by the renormalizability
of the theory. We look upon both the massive and the massless fermion production from a perturbative point
of view. We obtain the corresponding spectrum and angular distributions for the different spins or helicities in
the particular case of a spatial-like axial field. We also extend our study to the nonperturbative regime in the
massless case and compare the results with the perturbativel 56656-282(99)04308-§

PACS numbes): 98.80.Cq

[. INTRODUCTION the low-energy string effective action together with graviton
and dilaton fieldg7,8]. In fact, recently some explicit solu-

The parametric resonance phenomenon plays a fundametions with nontrivial axion fields have been obtained in the
tal role in the modern theories of reheating after inflafibh ~ context of homogeneous, isotropic, and anisotropic models
In such theories, after a period of inflation, driven generallyin string cosmology[9,10]. These antisymmetric fields can
by the potential energy of the slowly rolling inflaton field, be interpreted as torsion in pseudo-Riemannian georf@lry
the inflaton experiences a process of coherent oscillationdnd, as we will show, this fact provides a natural way of
around the minimum of the potential. Because of its coupling?@UPling them to other matter field. This is also the case of
to the rest of the fields, those oscillations can give rise to théUPergravity theories which contain a nonsymmetric part in
production of an exponentially large amount of bosons andhe spin connection that is determined by the gravitino field
subsequently to fermions through the decay of newly forme 11]. ) ) . )
bosons, whose energy spectrum is characterized by reso- The presence of gen.eral chiral fields can give rise to a
nance bands. Although it is an efficient mechanism to condifférent kind of production from the usual scalar fields. In
vert the inflaton energy to the intermediate bosons, it is stilP@rticular, the breaking of parity invariance could lead to a
far from complete and we still require to invoke the old ideadlfferent_ pro_ductlon of left and right fermions. I_n the_prt_asent_
of reheating where the bosons decay to various fermions arfeS€, this will not happen because our model is parity invari-
that subsequently leads to the thermalization of the univers@nt- In addition, as far as rotational invariance is broken by
The standard picture of preheating has not been tested f&re axial field, we will obtain an anisotropic production of
fields other than inflatons, and the effect of other fields thaParticles. In the usual picture of reheating it is expected that
could be present in the early universe such as the dilatorsUch initial anisotropy is rapidly erased by subsequent de-
axial, or moduli predicted by string theory is still unexplored. €@ys of the fermions produced in arbitrary directions. On the
It is a general belief that there would still be an amplification®ther hand, as far as the background field could have a non-
to one of the dominant fields depending upon the values oyanishing angular momentum, we should also pay attention
coupling constants but it has also been shown that for twd° the spin distribution of the produced particles. Again, in
scalar fields the system becomes chafftic our case, we W|II_ cqn5|der a very simple homogeneous bapk-

The production of particles from classical sources haground with vanishing total angular momentum and we will
other important consequences apart from reheating. In facfiot generate any net spin.
the same phenomenon is responsible for the amplification of "€ paper is organized as follows. In Sec. Il, we study the
vacuum fluctuations in the generation of gravitational wave§'assical equations of motion for the axial field and its cou-
[3]. It has also been proposed as a mechanism for the geﬁjmg to_fermlo_ns._ Sectmn I_II is devoted to th_e perturbative
eration of primordial magnetic fields in the context of string c@lculation valid in the limit of small axial field for both
cosmology[4]. In this latter model, a dynamical dilaton field Massive and massless fermions. In Sec. IV we extend our
plays the role of the external source. In addition, many othef@lculation to the nonperturbatwe regime in the masless limit
examples of particle production based on alternative gravit"d compare our results with the previous ones. In Sec. V we
theories can be found in the literature, such as Brans-Dick#clude the main conclusions of the work.

[5], higher dimensional mode[$], etc.

In this paper we do not intend to give a holistic picture of
preheating; rather we explore a different mechanism for the
amplification of vacuum fluctuations: it is based on the pres-
ence of an oscillating background axial field. Ax{al anti- The torsion field can be seen to be minimally coupled to
symmetrig fields appear naturally in the bosonic sector offermions by means of the Einstein equivalence principle

II. MINIMAL COUPLING
AND THE AXIAL FIELD DYNAMICS
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[12,13. Thus, the Dirac Lagrangian for a single fermion dratic potential, but replacing the scalar field by a pseudo-
field wih massm in the presence of curvature and torsion isvector. Notice that unlike the vector Abelian case, the pres-

given by ence of massive fermions is incompatible with a gauge in-
o variance associated with the axial field. The corresponding
L=yliy*"(d,+Q,+igS,ys)—m]y, (1) equation of motion is nothing but the Proca equation, i.e.,
where Sp:ewM,T““ is the torsion pseudotracé), the 3,9+ m2S’=0, 3

spin connection, and the coupling constant is fixgd1/8

(We will work with a generag in order to extend our results with mg the mass of torsion. It is now easy to find solutions
to other models in whicl8, is not interpreted as torsign for this equation. In particular, when torsion is spatial-like
Despite the presence of the, the Lagrangian is parity in- and only depends on time we have the following oscillatory
variant sinceS,, is a pseudovector. As a consequence of thissolutions: S'(t) = S'sifmyt—ty)], with S' constants. As is
coupling, the axial field can act as a source of fermion crewell known, this kind of periodic functions can give rise to
ation. Notice that this coupling is dictated by the Einsteinthe parametric resonance pheonomenon.

equivalence principle, unlike the usual inflaton couplings As in the inflaton models, the production of particles in-
which are introduce@d hoc The problem of fermion pro- duces the damping in the torsion oscillations. This can be
duction has received attention only very recently in thedescribed either by including a friction term in the equations
works of Greene and Kofmafl4] and Baackeet al. [15].  of motion or by means of the vacuum polarization correction
They have studied for the first time the problem of reheatingo the torsion mass. The vacuum polarization correction has
of fermions from the coherent oscillations of the inflaton been calculated in a previous pap&8] and from its imagi-
field. They showed how the limit on the occupation numbemary part we get that

imposed by Pauli blocking was saturated by the resonant

: ImII(mg) g?m?
production. — s

. . , [=——« : (4

The first problem we have to deal with regarding the cre- mg mg

ation of particles is that of the classical dynamics of the . ) )
torsion field. There are several models proposed in the litera¥nérem” is the mass of the fermion squared, or in the case
ture for which torsion appears in the classical action only af several fermions present it is given lby’==;mf. Ac-
a mass term; thus, for instance, the Einstein-Cartan theor§ordingly the classical evolution can be taken as
considers the Einstein-Hilbert action but replaces the scalar , s _Ft—tg)2
curvature built out of the Levi-Civitaonnection by the sca- S(t)=Ssimg(t—tg)]e e, 6)

lar curvature built out of an arbitrary connection with tor- For th ke of simplicity we do not consider the expansion
sion. In this theory torsion is a nonpropagating field that or the sake of simplicily we do not consider h€ expansio

appears in the Lagrangian simply in a mass term of the forn?f the universe and accordingly all the calculations will be

M2S?, with Mp the Planck mass. This is also the case of thedone in Minkowski space-time. We will also simplify further

bosonic sector of the low-energy string effective action.and takeS' pointing in thez direction. As usual in particle

However. if we consider the counling of torsion to uantumproduction calculations, we will impose our initial conditions
R ; piing oq on the background fields in such a way that it is possible to
fermionic fields in Eq.(1), the conditions of unitarity and

renormalizability automatically require the existence of a ki-dEfIne asymptotién andout vacuum states. With that pur-

) e . - Jrose we will assume in next section that when —oo the
netic term for the axial field, together with the previous mas axial field is zero: i.e., we will také = 0 for t<t, andS%(t)
term; i.e., they impose the axial field to behave like an Abe- P . 0

lian massive axial vectdr6,17]. In fact, the vacuum diver- gl_\lllen % Eq'(? fort?to, ?S \lNe W'IH shovl;/ tthat lthe r?rs]ult
gences generated by the above Lagrangian in (Egare will not depend on the particular value of but only on the

given by amplitiude of the oscillation§' and decay raté’.
S TS f ” ( 1o o m2S &) @ lll. PERTURBATIVE APPROACH
iv = X\~ 799 14 V+ ETS ’
i[5 (477)2 1927* 16 A. Massive fermions

Let us consider the Dirac equation in the presence of the

_ _ _ 2 ;
whereS,,=43,S,~3,S, ,A=N_+log(u*n?) with the poles axial field:

parametrized as usual in dimensional regularizationNRy
=2/e+log4m— vy, andu is the renormalization scale. Notice ivHg — Moy — =

that there is n&* term although it has the same dimension. (170, =957 vs~M¥=0. ©
When instead of a single fermion we have more than one, thk is to be noted that the form of the coupling does not allow
previous action is replaced by the sum of the actions correds to disentangle the different spin modes, unlike in the case
sponding to each single fermion. Therefore by an appropriatef Greene and Kofman. In addition, it cannot be reduced in
renormalization of mass and wave function we can take aan easy way to the known form of Mathieu equation or Lame
the classical Lagrangian for torsion that of the Abelian mas-equation, which have the known stability and the instability
sive gauge field. This is the minimal Lagrangian for torsionbands. Within instability bands the occupation number
that ensures the renormalizability of the fermionic sectorgrows exponentially fast in the case of bosons. This keep us
This model is analogous to the inflaton model with a qua-from finding the exact solution of the equation. However, it
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is possible to perform a perturbative analysis which provides Xs
part of the resonant behavior of the equation. There exists _ -
various approximation schemes to apply for the bosons as u(k,s)=vo+ o-k '
well as the fermions; we will follow that ifil9]. Multiplying wt+mXs
Eqg. (6) by (iy*d,+9S,y*ys+m), we get o
o-k
[9,0"+ig "y ¥59,S,+19S{¥",y"} ¥s9,,— 9°S* b(k.9)=Jaim| wrmXe 16
+2gmBys+m?]¥ =0. (7) Xe

Since there is no dependence on position in the Dirac operand the Dirac spinors have the simple form
tor, we can write the general solutioh as

1 0
V(1% = i oD, ® X+:(o ' X-:(1>' 17
wheresis a spin index. As we mentioned before we will take We will work in this section in the Dirac representation for
S,=(0,0,05;). Equation(7) reduces to which they matrices appear as
(95+ K2 +ig S5y y®ys— 2gksSyys+m?+g?S] o[t O [0 ¢ (o -t
. Yo -1/ YT l-¢ o) VT l-1 o)
+29mSy”ys) P s(1) =0. 9 (18

We introduce the plane-wave solutions for massive spinorset us consider a given solution of the Dirac equati@gh
with positive and negative frequency, and with a definitethat initially, i.e.,t— —o, behaves like a plane wave with
spin projection along the direction: positive energy and spia In the remote future, where the
interaction is switched off, such a solution will evolve into a
linear combination of positive and negative frequences with

- 1 L e
N — ik-Xx—iwt
Uis(t.X)= u(k,sye ' (10 a certain probability for spin flip, that is,

N

Vgs(t,)_()): U('z,s)eiiké')eriwt, (ll) lﬂks(t X) E akSS’UkS’+BkSS’V Ks' - (19)

1
V2w
- . - The Bugolubov coefficients for fermions satisfy the follow-
wheres= = and w?=k?+m?u(k,s) andv(k,s) satisfy the  ing relation:
following normalization conditions:

UT(E,F)U(E,S)=2w5rS, (12) E (|akss’| +|:8kss’| =1 (20
o1 (K1) (K,8)=2w8,s, 13 I is possible to transform the differential equation_ into an
integral equation that allows a perturbative expansion
u'(=k,r)v(K,s)=0, (14
zpks (t,X)=Uge+ f MisiM w(t—t' )](ﬁks(t Xx)dt’,

Tk T o) —

v'(—k,r)u(k,s)=0, (19 (22)
whereu(lZ,s) andv(lz,s) are defined as where the interaction terrvl; is given by
Mg = ¢°S5 — 2gks S°vs +2gm Fys + M +19557°7 s 22
S——r ~ T ————
I II II7 v 1%

From Eq.(19), we get for the Bugolubov coefficients to first where we have substituteg. on the right-hand side of Eq.

order in perturbation theory the following expression: (21) by the lowest-order solutiobl;; and we have made use
of the limitt—oo of Eq. (21). The corresponding number of
particles in a given spin state is given by the sum

_ - .
o\t n_ t - a—i20t’ 441
’BkSS’_VES’wlZS___A]_wzj_xvlZs’MkukSe ot' gy’

NkSZE |Bl€ss’|2- (24
(23) s’
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Now we discuss the contribution of each term present in the 0.5
potential. First we notice that the diagonal terhandIV do

not contribute to first order in perturbation theory. TWe

term gives rise to

041
t . P .
v 19S37%7% Y Uis= 29 S3(ko T iky), (25)
where — sign applies fors’=— ands=+ and the+ sign
for opposite spin directions. F@&' =s the term vanishes. 031

Thell term gives rise to

t
—20v _ K3S3ysUis=29ksS3

w+m 0.2

002_ m2
o+m— ) .
(26)
Finally thelll term yields

t . 0.1}
2gmo _|25337375Uks: —4gmSKs. (27)
Notice that the contributions frorhl and Il cancel each
other and finally only the terri¥ contributes to the Bogoly- . . ‘ ‘ .
ubov coefficients. Performing the Fourier transform implicit 0 02 04 06 08 1 12 14
in Eq. (23), and using the spherical coordinates in momen- k

tum space K, 6,¢), we can write the total number of par- £ 1. Number of particles againg| for g&=1/8m, and T

ticles produced with spis= =+ and momentunk as =0.2m,. For massive fermions=0.3m,.
Ni. =N =gz|§3(w)|2Esin26 (28) a. (k) 0
k+ = k= w2 : i =v2w o | Ug-=+2w &/ (29
a_

with $3(w) the Fourier transform o83(t) and 6 the angle

betweerk andS. As commented before, the number of pro- Lo b..(k) . 0
duced fermions with spin up equals the number of fermions Uk \/%( o ) Ok V2w b_(k)/’ (30
with spin down and as a consequence there is no net spin
creation. The total number of fermions is just twice thewhere
above result.
We see that the production is not isotropic, with a maxi- 0
mum in the orthogonal directions t8(6==/2), and no cos;
forward-backward productioné=0,7). In Fig. 1 we have a,(k)=—b, (k)= ,
plotted the spectrum in the lower curve and we observe the cosel®
resonance close to=m¢/2 which corresponds to the decay V]
of the axial field quanta into fermion-antifermion pairs.
0
B. Massless fermions R R —sin; e '
a_(k)=-b_(k)= (31

As we have seen, it is not possible to separate out the 0
positive and negative spin states in the massive case, but in cos;
the massless case it is possible to do that by choosing a

different representation for the Dirac matrices, the Weyl P~ e eigenstates of the helicity operator with eigenvalds

resentation. Since the solutions of the Weyl equation in the d —1, respectively. The normalization conditions are the

absence of external sources can be written as eigenstates A e as the massive ones. In the Wevl representation the
the helicity operator, it is useful to consider those eigenstate§ ) yirep

for the positive and negative frequency solutions. We shafa@mma matrices are

derive the total number of massless fermion production and i

we shall see that the summation of both chiralities gives rise _o_ 0 -1 i 0 o ) _ 10

to the total number of fermions and it is equal to the one © |\ -1 0/’ YTloo o) Y lo -1/
obtained in the previous section taking—0. The form of (32)

the plane-wave solutions with positive and negative fre-

quency is that given in Eq11), but now the form of the In the present case, the initial positive frequency solution
spinors is given by will evolve into a linear combination of positive and negative

083510-4



RESONANT PRODUCTION OF FERMIONS IN AN AXIAL ... PHYSICAL REVIEW 39 083510

frequency modes, but since the perturbation is diagonal idlescribe the creation of fermions with definite spin along that

chirality space, there is no mixing between positive anddirection. The normalized spectrum of the total number of

negative chirality modes, i.e., particles created with spis is given by (see[20,2]] for
detail9

A too
n = - - N -
Pie(1,X) — agsUgsT BisV ks - (33 K2+ K2

Nis=

. [IMFs(T)1?
In the massless case, the contributions of tHe and IV

terms are not present and again the diagonal terms do not
contribute. As a consequence only tkleterm is relevant. k2sir?( 6) [IMF(T)]?

Hence the total number of fermions with momentinand - k?+g?S?—2gSkcosd 1—[ReFps(T) ]2
helicity s is given by the following expression:

k2+ 9282+ 29 Sk, sir?(d,)

(38)

e 1222 E 2 where Fg is a solution of Eq.(37) with initial conditions
Nis=|Bisl = g7sin 6] Sy(w)|* 39 Fis(0)=1 andF(0)=0 and we have used the fact that
The total number with both the spins would be just twice thec0osd,=ReFs(T). The numerical computations show that
above expression, which is the same as the massive case.tfit number of fermions produced with spin up is the same as
Fig. 1 we have represented the spectrum for massless fiel@0se with spin down; as expected there is no net spin cre-
in the upper curve. It is to be noted that the production ofation in this particularly simple model. We see that the’gin
massive fermions is, as expected, suppressed by the ma@Rgular dependence that we obtained in the perturbative cal-

term. We also observe the peakkat mg/2. culation is already present in the above result3srk, al-
though it is expected to be modified by the factor involving
IV. NONPERTURBATIVE RESULTS Fis(T). In Figs. 2 and 3 we have represented the spectra

In the previous section we have obtained the spectrurﬁgamsﬂ k| and @ for different values of the amplitudes. First

and angular distribution of the produced particles up to firstV€ notice that for small amplitudes of the oscillatiGthere
order in perturbation theory. Higher-order terms are expecte@PPears a peak &t=0.5m; in agreement with the perturba-

to be suppressed and only will give rise to smaller peaks dVe qalculauon. However, we find new pe:aks also for small
higher energies. However, nonperturbative effects can have@Mplitudes. For large values of the amplitude the departure
more important effect on the results. As shown in the scalafom the perturbative results is apparent. We can also ob-
case, the features of production essentially deviate from th&erve the appearance of the resonance bands in the spectra
pertubative result. Since in our case the equations cannot J#10se structure strongly depends on the arglen addition,
reduced to any known form, we will solve them numerically. the angular dependence is also highly sensitive to the energy
For the sake of simplicity we will only consider the masslessk of the fermions and the amplitudgof the oscillations. In
case in which it is possible to disentangle the two spin stategarticular we find that for large amplitude of the oscillations,
We will also assume that the behavior of the backgroundstrong peaks appear at some particular values of the angles,
field is the following: fort<0 andt>nT,S;=S a constant, indicating that the production mainly takes place in those
with n an integer andr =2/mj the period of the oscilla- directions.

tions. For O<t<nT,Sg,=§cos¢nst). It has been checked that
the final spectra do not depend onin order to reduce Eq. V. CONCLUSIONS
(6) to a second order form we make the following ansatz on

the solutiong 14]: In this work we have studied the resonant production of

fermions from a classical oscillating axial background. The

= (10+gBye) fr() e XWe. | 35  dynamics of the classical background is determined by the
Y=(10+95ys)fis(be . 39 renormalizabililty of the quantum theory of fermions coupled

where for positivenegativé +(—) energy modes with spin to axial fields and is given by the Proca equation. The oscil-

s we take latory solutions to this equation are obtained and the corre-
sponding phenomenon of resonant particle production is ana-

Xs 0 lyzed both from a perturbative and a nonperturbative point of

W = 0/ == . (36 view. In the perturbative case, we have considered both the

massive and massless fermion cases for a simple background

In this section we will work again in the Weyl representa-in which the axial field is oscillating in the direction, and

tion. With this ansatz, the equations of motion can be writterwe have obtained the spectra and angular distributions of the

as a single equation for the functidy: produced particles. In the nonperturbative case, we consider
only the massless case and study the equation numerically.

(F2+K2—isgS;+2gksS;+092S2) fs(t)=0.  (37)  We have checked that the nonperturbative results deviate

from the perturbative ones with the appearance of typical

In addition they spinors will give rise asympoticallyt & resonance bands, which in our case depend on both momenta

+o0) to eigenstates of the the third component of the spirand angle.

operator. In this sense, they have the appropriate form to Concerning the possibility that this mechanism could
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have been relevant in the early universe, we should mentiomteresting to study if the resonant phenomenon studied in
that the generation of an initial anisotropic axial field thatthis work could affect the standard picture of reheating after
later on could have evolved according to E8) has been inflation.
explored in[22]. There it is shown that for axial fields inter-

acting with photons, there is the possibility of spontaneous
symmetry breaking along spatial directions for the axial

field. As a consequence, that field would acquire some A.L.M. acknowledges support from SEUID-Royal Soci-
spatial-like vacuum expectation value. In addition, as weety and(CICYT-AEN96-1634 (Spain. A.M. is supported
mentioned in the Introduction, axial fields are present in theby INLAKS and ORS. We thank Juan GaadBellido, Luis
context of string cosmology and therefore it would be veryMendes, and Andrew Liddle for valuable discussions.
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