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Resonant production of fermions in an axial background
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We consider the resonant production of fermions from an oscillating axial background. The classical evo-
lution of the axial field is given by that of a massive pseudovector field, as suggested by the renormalizability
of the theory. We look upon both the massive and the massless fermion production from a perturbative point
of view. We obtain the corresponding spectrum and angular distributions for the different spins or helicities in
the particular case of a spatial-like axial field. We also extend our study to the nonperturbative regime in the
massless case and compare the results with the perturbative ones.@S0556-2821~99!04308-8#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

The parametric resonance phenomenon plays a fundam
tal role in the modern theories of reheating after inflation@1#.
In such theories, after a period of inflation, driven genera
by the potential energy of the slowly rolling inflaton field
the inflaton experiences a process of coherent oscillat
around the minimum of the potential. Because of its coupl
to the rest of the fields, those oscillations can give rise to
production of an exponentially large amount of bosons a
subsequently to fermions through the decay of newly form
bosons, whose energy spectrum is characterized by r
nance bands. Although it is an efficient mechanism to c
vert the inflaton energy to the intermediate bosons, it is s
far from complete and we still require to invoke the old id
of reheating where the bosons decay to various fermions
that subsequently leads to the thermalization of the unive
The standard picture of preheating has not been tested
fields other than inflatons, and the effect of other fields t
could be present in the early universe such as the dila
axial, or moduli predicted by string theory is still unexplore
It is a general belief that there would still be an amplificati
to one of the dominant fields depending upon the values
coupling constants but it has also been shown that for
scalar fields the system becomes chaotic@2#.

The production of particles from classical sources h
other important consequences apart from reheating. In
the same phenomenon is responsible for the amplificatio
vacuum fluctuations in the generation of gravitational wa
@3#. It has also been proposed as a mechanism for the
eration of primordial magnetic fields in the context of stri
cosmology@4#. In this latter model, a dynamical dilaton fiel
plays the role of the external source. In addition, many ot
examples of particle production based on alternative gra
theories can be found in the literature, such as Brans-D
@5#, higher dimensional models@6#, etc.

In this paper we do not intend to give a holistic picture
preheating; rather we explore a different mechanism for
amplification of vacuum fluctuations: it is based on the pr
ence of an oscillating background axial field. Axial~or anti-
symmetric! fields appear naturally in the bosonic sector
0556-2821/99/59~8!/083510~8!/$15.00 59 0835
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the low-energy string effective action together with gravit
and dilaton fields@7,8#. In fact, recently some explicit solu
tions with nontrivial axion fields have been obtained in t
context of homogeneous, isotropic, and anisotropic mod
in string cosmology@9,10#. These antisymmetric fields ca
be interpreted as torsion in pseudo-Riemannian geometry@8#
and, as we will show, this fact provides a natural way
coupling them to other matter field. This is also the case
supergravity theories which contain a nonsymmetric par
the spin connection that is determined by the gravitino fi
@11#.

The presence of general chiral fields can give rise t
different kind of production from the usual scalar fields.
particular, the breaking of parity invariance could lead to
different production of left and right fermions. In the prese
case, this will not happen because our model is parity inv
ant. In addition, as far as rotational invariance is broken
the axial field, we will obtain an anisotropic production
particles. In the usual picture of reheating it is expected t
such initial anisotropy is rapidly erased by subsequent
cays of the fermions produced in arbitrary directions. On
other hand, as far as the background field could have a n
vanishing angular momentum, we should also pay atten
to the spin distribution of the produced particles. Again,
our case, we will consider a very simple homogeneous ba
ground with vanishing total angular momentum and we w
not generate any net spin.

The paper is organized as follows. In Sec. II, we study
classical equations of motion for the axial field and its co
pling to fermions. Section III is devoted to the perturbati
calculation valid in the limit of small axial field for both
massive and massless fermions. In Sec. IV we extend
calculation to the nonperturbative regime in the masless li
and compare our results with the previous ones. In Sec. V
include the main conclusions of the work.

II. MINIMAL COUPLING
AND THE AXIAL FIELD DYNAMICS

The torsion field can be seen to be minimally coupled
fermions by means of the Einstein equivalence princi
©1999 The American Physical Society10-1
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ANTONIO L. MAROTO AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 59 083510
@12,13#. Thus, the Dirac Lagrangian for a single fermio
field wih massm in the presence of curvature and torsion
given by

L5c̄@ igm~]m1Vm1 igSmg5!2m#c, ~1!

where Sr5emnlrTmnl is the torsion pseudotrace,Vm the
spin connection, and the coupling constant is fixedg51/8
~we will work with a generalg in order to extend our result
to other models in whichSm is not interpreted as torsion!.
Despite the presence of theg5 , the Lagrangian is parity in-
variant sinceSm is a pseudovector. As a consequence of t
coupling, the axial field can act as a source of fermion c
ation. Notice that this coupling is dictated by the Einste
equivalence principle, unlike the usual inflaton couplin
which are introducedad hoc. The problem of fermion pro-
duction has received attention only very recently in t
works of Greene and Kofman@14# and Baackeet al. @15#.
They have studied for the first time the problem of reheat
of fermions from the coherent oscillations of the inflat
field. They showed how the limit on the occupation numb
imposed by Pauli blocking was saturated by the reson
production.

The first problem we have to deal with regarding the c
ation of particles is that of the classical dynamics of t
torsion field. There are several models proposed in the lit
ture for which torsion appears in the classical action only
a mass term; thus, for instance, the Einstein-Cartan the
considers the Einstein-Hilbert action but replaces the sc
curvature built out of the Levi-Civita` connection by the sca
lar curvature built out of an arbitrary connection with to
sion. In this theory torsion is a nonpropagating field th
appears in the Lagrangian simply in a mass term of the fo
M P

2S2, with M P the Planck mass. This is also the case of
bosonic sector of the low-energy string effective actio
However, if we consider the coupling of torsion to quantu
fermionic fields in Eq.~1!, the conditions of unitarity and
renormalizability automatically require the existence of a
netic term for the axial field, together with the previous ma
term; i.e., they impose the axial field to behave like an Ab
lian massive axial vector@16,17#. In fact, the vacuum diver-
gences generated by the above Lagrangian in Eq.~1! are
given by

Sdiv@S#5
D

~4p!2E d4xS 2
1

192
SmnSmn1

m2

16
SmSmD , ~2!

whereSmn5]mSn2]nSm ,D5Ne1 log(m2/m2) with the poles
parametrized as usual in dimensional regularization byNe
52/e1 log4p2g, andm is the renormalization scale. Notic
that there is noS4 term although it has the same dimensio
When instead of a single fermion we have more than one,
previous action is replaced by the sum of the actions co
sponding to each single fermion. Therefore by an appropr
renormalization of mass and wave function we can take
the classical Lagrangian for torsion that of the Abelian m
sive gauge field. This is the minimal Lagrangian for torsi
that ensures the renormalizability of the fermionic sect
This model is analogous to the inflaton model with a qu
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dratic potential, but replacing the scalar field by a pseu
vector. Notice that unlike the vector Abelian case, the pr
ence of massive fermions is incompatible with a gauge
variance associated with the axial field. The correspond
equation of motion is nothing but the Proca equation, i.e

]mSmn1ms
2Sn50, ~3!

with ms the mass of torsion. It is now easy to find solutio
for this equation. In particular, when torsion is spatial-li
and only depends on time we have the following oscillato
solutions: Si(t)5Ŝisin@ms(t2t0)#, with Ŝi constants. As is
well known, this kind of periodic functions can give rise
the parametric resonance pheonomenon.

As in the inflaton models, the production of particles i
duces the damping in the torsion oscillations. This can
described either by including a friction term in the equatio
of motion or by means of the vacuum polarization correct
to the torsion mass. The vacuum polarization correction
been calculated in a previous paper@18# and from its imagi-
nary part we get that

G[
ImP~ms!

ms
}

g2m2

ms
, ~4!

wherem2 is the mass of the fermion squared, or in the ca
of several fermions present it is given bym25( imi

2 . Ac-
cordingly the classical evolution can be taken as

Si~ t !5Ŝisin@ms~ t2t0!#e2G~ t2t0!/2. ~5!

For the sake of simplicity we do not consider the expans
of the universe and accordingly all the calculations will
done in Minkowski space-time. We will also simplify furthe
and takeSi pointing in thez direction. As usual in particle
production calculations, we will impose our initial condition
on the background fields in such a way that it is possible
define asymptoticin andout vacuum states. With that pur
pose we will assume in next section that whent→2` the
axial field is zero; i.e., we will takeSi50 for t,t0 andS3(t)
given by Eq.~5! for t>t0 , as we will show that the resul
will not depend on the particular value oft0 but only on the
amplitiude of the oscillationsŜi and decay rateG.

III. PERTURBATIVE APPROACH

A. Massive fermions

Let us consider the Dirac equation in the presence of
axial field:

~ igm]m2gSmgmg52m!C50. ~6!

It is to be noted that the form of the coupling does not allo
us to disentangle the different spin modes, unlike in the c
of Greene and Kofman. In addition, it cannot be reduced
an easy way to the known form of Mathieu equation or La
equation, which have the known stability and the instabil
bands. Within instability bands the occupation numb
grows exponentially fast in the case of bosons. This keep
from finding the exact solution of the equation. However
0-2
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RESONANT PRODUCTION OF FERMIONS IN AN AXIAL . . . PHYSICAL REVIEW D59 083510
is possible to perform a perturbative analysis which provi
part of the resonant behavior of the equation. There ex
various approximation schemes to apply for the bosons
well as the fermions; we will follow that in@19#. Multiplying
Eq. ~6! by (igm]m1gSmgmg51m), we get

@]m]m1 iggmgng5]mSn1 igSn$g
m,gn%g5]m2g2S2

12gmS”g51m2#C50. ~7!

Since there is no dependence on position in the Dirac op
tor, we can write the general solutionC as

C~ t,xW !5ckW ,s~ t !eikW•xW, ~8!

wheres is a spin index. As we mentioned before we will ta
Sm[(0,0,0,S3). Equation~7! reduces to

~]0
21kW21 igṠ3g0g3g522gk3S3g51m21g2S3

2

12gmS3g3g5!ck,s~ t !50. ~9!

We introduce the plane-wave solutions for massive spin
with positive and negative frequency, and with a defin
spin projection along thez direction:

UkW ,s~ t,xW !5
1

A2v
u~kW ,s!eikW•xW2 ivt, ~10!

VkW ,s~ t,xW !5
1

A2v
v~kW ,s!e2 ikW•xW1 ivt, ~11!

wheres56 andv25kW21m2;u(kW ,s) andv(kW ,s) satisfy the
following normalization conditions:

u†~kW ,r !u~kW ,s!52vd rs , ~12!

v†~kW ,r !v~kW ,s!52vd rs , ~13!

u†~2kW ,r !v~kW ,s!50, ~14!

v†~2kW ,r !u~kW ,s!50, ~15!

whereu(kW ,s) andv(kW ,s) are defined as
t
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u~kW ,s!5Av1mS xs

sW •kW

v1m
xs
D ,

v~kW ,s!5Av1mS sW •kW

v1m
xs

xs

D ~16!

and the Dirac spinors have the simple form

x15S 1

0D , x25S 0

1D . ~17!

We will work in this section in the Dirac representation f
which theg matrices appear as

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D , g55S 0 21

21 0 D .

~18!

Let us consider a given solution of the Dirac equationc in

that initially, i.e., t→2`, behaves like a plane wave wit
positive energy and spins. In the remote future, where th
interaction is switched off, such a solution will evolve into
linear combination of positive and negative frequences w
a certain probability for spin flip, that is,

ckWs
in

~ t,xW !→
t→`

(
s8

akWss8UkWs81bkWss8V2kWs8 . ~19!

The Bugolubov coefficients for fermions satisfy the follow
ing relation:

(
s8

~ uakWss8u
21ubkWss8u

2!51. ~20!

It is possible to transform the differential equation into
integral equation that allows a perturbative expansion

ckWs
in

~ t,xW !5UkWs1
1

vE2`

t

MkWsin@v~ t2t8!#ckWs
in

~ t8,xW !dt8,

~21!

where the interaction termMkW is given by
~22!
.
e
f

From Eq.~19!, we get for the Bugolubov coefficients to firs
order in perturbation theory the following expression:

bkWss85V
2kWs8
†

ckWs
in

52
i

4v2E2`

`

v2kWs8
†

MkWukWse
2 i2vt8dt8,

~23!
where we have substitutedckWs
in on the right-hand side of Eq

~21! by the lowest-order solutionUkWs and we have made us
of the limit t→` of Eq. ~21!. The corresponding number o
particles in a given spin state is given by the sum

NkWs5(
s8

ubkWss8u
2. ~24!
0-3
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ANTONIO L. MAROTO AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 59 083510
Now we discuss the contribution of each term present in
potential. First we notice that the diagonal termsI andIV do
not contribute to first order in perturbation theory. TheV
term gives rise to

v2kWs8
†

igṠ3g0g3g5ukWs52gṠ3~k27 ik1!, ~25!

where2 sign applies fors852 ands51 and the1 sign
for opposite spin directions. Fors85s the term vanishes
The II term gives rise to

22gv2kWs
†

k3S3g5ukWs52gk3S3S v1m2
v22m2

v1m D .

~26!

Finally the III term yields

2gmv2kWs
†

S3g3g5ukWs524gmS3k3 . ~27!

Notice that the contributions fromII and III cancel each
other and finally only the termV contributes to the Bogoly-
ubov coefficients. Performing the Fourier transform impli
in Eq. ~23!, and using the spherical coordinates in mome
tum space (k,u,f), we can write the total number of pa
ticles produced with spins56 and momentumkW as

NkW15NkW25g2uŜ3~v!u2
kW2

v2
sin2u, ~28!

with Ŝ3(v) the Fourier transform ofS3(t) and u the angle
betweenkW andSW . As commented before, the number of pr
duced fermions with spin up equals the number of fermio
with spin down and as a consequence there is no net
creation. The total number of fermions is just twice t
above result.

We see that the production is not isotropic, with a ma
mum in the orthogonal directions toSW (u5p/2), and no
forward-backward production (u50,p). In Fig. 1 we have
plotted the spectrum in the lower curve and we observe
resonance close tok5ms/2 which corresponds to the deca
of the axial field quanta into fermion-antifermion pairs.

B. Massless fermions

As we have seen, it is not possible to separate out
positive and negative spin states in the massive case, b
the massless case it is possible to do that by choosin
different representation for the Dirac matrices, the Weyl r
resentation. Since the solutions of the Weyl equation in
absence of external sources can be written as eigenstat
the helicity operator, it is useful to consider those eigensta
for the positive and negative frequency solutions. We sh
derive the total number of massless fermion production
we shall see that the summation of both chiralities gives
to the total number of fermions and it is equal to the o
obtained in the previous section takingm→0. The form of
the plane-wave solutions with positive and negative f
quency is that given in Eq.~11!, but now the form of the
spinors is given by
08351
e

t
-

s
in

-

e

e
in
a

-
e
of

es
ll
d
e
e

-

ukW15A2vS a1~kW !

0
D , ukW25A2vS 0

a2~kW !
D , ~29!

vkW15A2vS b1~kW !

0
D , vkW25A2vS 0

b2~kW !
D , ~30!

where

a1~kW !52b1~kW !5S cos
u

2

cos
u

2
eif
D ,

a2~kW !52b2~kW !5S 2sin
u

2
e2 if

cos
u

2

D ~31!

are eigenstates of the helicity operator with eigenvalues11
and 21, respectively. The normalization conditions are t
same as the massive ones. In the Weyl representation
gamma matrices are

g05S 0 21

21 0 D , g i5S 0 s i

2s i 0 D , g55S 1 0

0 21D .

~32!

In the present case, the initial positive frequency solut
will evolve into a linear combination of positive and negati

FIG. 1. Number of particles againstukW u for gŜ51/8ms and G
50.2ms . For massive fermionsm50.3ms .
0-4
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RESONANT PRODUCTION OF FERMIONS IN AN AXIAL . . . PHYSICAL REVIEW D59 083510
frequency modes, but since the perturbation is diagona
chirality space, there is no mixing between positive a
negative chirality modes, i.e.,

ckWs
in

~ t,xW !→
t→`

akWsUkWs1bkWsV2kWs . ~33!

In the massless case, the contributions of theIII and IV
terms are not present and again the diagonal terms do
contribute. As a consequence only theV term is relevant.
Hence the total number of fermions with momentumkW and
helicity s is given by the following expression:

NkWs5ubkW ,su25g2sin2uuŜ3~v!u2. ~34!

The total number with both the spins would be just twice
above expression, which is the same as the massive cas
Fig. 1 we have represented the spectrum for massless fi
in the upper curve. It is to be noted that the production
massive fermions is, as expected, suppressed by the
term. We also observe the peak atk5ms/2.

IV. NONPERTURBATIVE RESULTS

In the previous section we have obtained the spect
and angular distribution of the produced particles up to fi
order in perturbation theory. Higher-order terms are expec
to be suppressed and only will give rise to smaller peak
higher energies. However, nonperturbative effects can ha
more important effect on the results. As shown in the sca
case, the features of production essentially deviate from
pertubative result. Since in our case the equations canno
reduced to any known form, we will solve them numerical
For the sake of simplicity we will only consider the massle
case in which it is possible to disentangle the two spin sta
We will also assume that the behavior of the backgrou
field is the following: fort,0 andt.nT,S35Ŝ a constant,
with n an integer andT52p/ms the period of the oscilla-
tions. For 0,t,nT,S35Ŝcos(mst). It has been checked tha
the final spectra do not depend onn. In order to reduce Eq
~6! to a second order form we make the following ansatz
the solutions@14#:

c5~ i ]”1gS”g5! f kWs~ t !eikW•xWWs6 , ~35!

where for positive~negative! 1(2) energy modes with spin
s we take

Ws15S xs

0 D , Ws25S 0

xs
D . ~36!

In this section we will work again in the Weyl represent
tion. With this ansatz, the equations of motion can be writ
as a single equation for the functionf kWs :

~]0
21kW22 isgṠ312gk3S31g2S3

2! f kWs~ t !50. ~37!

In addition thec spinors will give rise asympotically (t→
6`) to eigenstates of the the third component of the s
operator. In this sense, they have the appropriate form
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describe the creation of fermions with definite spin along t
direction. The normalized spectrum of the total number
particles created with spins is given by ~see @20,21# for
details!

NkWs5
k1

21k2
2

kW21g2Ŝ212gŜk3

1

sin2~d2!
@ ImFkWs~T!#2

5
k2sin2~u!

k21g2Ŝ222gŜkcosu

@ ImFkWs~T!#2

12@ReFkWs~T!#2
, ~38!

where FkWs is a solution of Eq.~37! with initial conditions
FkWs(0)51 and ḞkWs(0)50 and we have used the fact th
cosd25ReFkWs(T). The numerical computations show th
the number of fermions produced with spin up is the same
those with spin down; as expected there is no net spin
ation in this particularly simple model. We see that the sin2u
angular dependence that we obtained in the perturbative
culation is already present in the above result forŜ@k, al-
though it is expected to be modified by the factor involvi
FkWs(T). In Figs. 2 and 3 we have represented the spe
againstukW u andu for different values of the amplitudes. Firs
we notice that for small amplitudes of the oscillationsŜ there
appears a peak atk50.5ms in agreement with the perturba
tive calculation. However, we find new peaks also for sm
amplitudes. For large values of the amplitude the depar
from the perturbative results is apparent. We can also
serve the appearance of the resonance bands in the sp
whose structure strongly depends on the angleu. In addition,
the angular dependence is also highly sensitive to the en
k of the fermions and the amplitudeŜ of the oscillations. In
particular we find that for large amplitude of the oscillation
strong peaks appear at some particular values of the an
indicating that the production mainly takes place in tho
directions.

V. CONCLUSIONS

In this work we have studied the resonant production
fermions from a classical oscillating axial background. T
dynamics of the classical background is determined by
renormalizabililty of the quantum theory of fermions coupl
to axial fields and is given by the Proca equation. The os
latory solutions to this equation are obtained and the co
sponding phenomenon of resonant particle production is a
lyzed both from a perturbative and a nonperturbative poin
view. In the perturbative case, we have considered both
massive and massless fermion cases for a simple backgr
in which the axial field is oscillating in thez direction, and
we have obtained the spectra and angular distributions of
produced particles. In the nonperturbative case, we cons
only the massless case and study the equation numeric
We have checked that the nonperturbative results dev
from the perturbative ones with the appearance of typ
resonance bands, which in our case depend on both mom
and angle.

Concerning the possibility that this mechanism cou
0-5
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FIG. 2. Normalized number of particles againstukW u. ~a!, ~b!, and ~c! correspond togŜ50.1ms , 1ms, and 10ms , respectively, withu
5p/2 and~d!, ~e!, and~f! to the same amplitudes but foru5p/4.
083510-6



RESONANT PRODUCTION OF FERMIONS IN AN AXIAL . . . PHYSICAL REVIEW D59 083510
FIG. 3. Normalized number of particles againstu. ~a!, ~b!, and ~c! correspond togŜ50.1ms, 1ms, and 10ms , respectively, with

ukW u50.1ms and ~d!, ~e! to gŜ510ms with ukW u51ms ,10ms , respectively.
083510-7
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have been relevant in the early universe, we should men
that the generation of an initial anisotropic axial field th
later on could have evolved according to Eq.~3! has been
explored in@22#. There it is shown that for axial fields inter
acting with photons, there is the possibility of spontaneo
symmetry breaking along spatial directions for the ax
field. As a consequence, that field would acquire so
spatial-like vacuum expectation value. In addition, as
mentioned in the Introduction, axial fields are present in
context of string cosmology and therefore it would be ve
v.

ev

r,
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interesting to study if the resonant phenomenon studied
this work could affect the standard picture of reheating a
inflation.
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