GAUGE INVARIANCE ON PRINCIPAL SU(2)-BUNDLES

M. Castrillón López

Departamento de Geometría y Topología, Universidad Complutense de Madrid Ciudad Universitaria, s/n, 28040–Madrid, Spain E-mail: mcastri@sungt1.mat.ucm.es

J. Muñoz Masqué

CSIC, Instituto de Física Aplicada C/ Serrano 144, 28006-Madrid, Spain E-mail: jaime@iec.csic.es

ABSTRACT. Given a principal SU(2)-bundle $\pi: P \to M$, the structure of differential forms on $J^1(P)$ which are invariant under the natural representation of the gauge algebra of P, is analyzed.

1. Introduction

Given a principal SU(2)-bundle $\pi:P\to M$, we study the structure of the algebra of differential forms on $J^1(P)$ (the 1-jet bundle of local sections of π) which are invariant under the natural representation of the Lie algebra of all infinitesimal automorphisms of P and also under the subalgebra of π -vertical infinitesimal automorphisms, the so-called gauge algebra of P. In [HM1], [HM2] the structure of the invariant differential forms with respect to the above two algebras has been determined in the case of a principal U(1)-bundle. In the non-abelian case however this structure seems to be much more complex. Because of this we proceed to analyze the invariant differential forms on the 1-jet bundle of sections of P as a first step to obtain the invariant differential forms on the bundle of connections. This is a well-known technique in gauge theories (e.g., see [A2], [B], [G], [GS], [K]) which is based on the fact that the bundle of connections can be identified to the quotient bundle of $J^1(P)$ modulo de action of the structure group, so that we recover the action of the gauge algebra and also the algebra of all infinitesimal automorphisms of P on connections as a quotient action of these algebras on $J^1(P)$ by infinitesimal contact transformations.

Key words and phrases: Automorphism of a principal bundle, bundle of connections, contact forms, gauge algebra, gauge group, infinitesimal contact transformation, invariant differential forms, jet bundle.

2. PRELIMINARIES AND NOTATIONS 2.1. AUTOMORPHISMS

An automorphism of a principal G-bundle $\pi: P \to M$ is an equivariant diffeomorphism $\Phi: P \to P$; i.e.,

$$\Phi(u \cdot g) = \Phi(u) \cdot g, \quad \forall u \in P, \forall g \in G.$$

The set of all automorphisms of P is a group denoted by $\operatorname{Aut} P$. An automorphism $\Phi \in \operatorname{Aut} P$ induces a diffeomorphism on the ground manifold $\phi \colon M \to M$, such that $\pi \circ \Phi = \phi \circ \pi$. If ϕ is the identity map then Φ is said to be a gauge transformation. The set of all gauge transformations is a normal subgroup $\operatorname{Gau} P \subset \operatorname{Aut} P$, and we have an exact sequence of groups

$$1 \to \text{Gau}P \to \text{Aut}P \to \text{Diff}M.$$

In the case of the trivial bundle $\operatorname{pr}_1: P = M \times G \to M$, every $\Phi \in \operatorname{Aut} P$ can be written as

$$\Phi(x,g) = (\phi(x), \psi(x) \cdot g),$$

with $x \in M$, $g \in G$, $\psi \in C^{\infty}(M, G)$. Hence

$$\operatorname{Gau}(M \times G) \simeq C^{\infty}(M, G)$$
.

2.2.~G-invariant vector fields

A vector field $X \in \mathfrak{X}(P)$ is G-invariant if and only if

$$R_g \cdot X = X, \quad \forall g \in G.$$

Let Φ_t be the flow of X. Then,

X is G-invariant
$$\Leftrightarrow \Phi_t \in \operatorname{Aut} P, \forall t \in \mathbb{R}.$$

The G-invariant vector fields are a Lie algebra denoted by aut P. G-invariant vector fields are π -projectable. The gauge algebra of P is the ideal gau P of π -vertical vector fields in the Lie algebra aut P; i.e.,

$$gauP = \{X \in autP \mid \pi_*X = 0\}.$$

The group G acts naturally on T(P) by setting:

$$X \cdot g = (R_g)_* (X), \quad \forall X \in T(P), \forall g \in G.$$

The quotient manifold T(P)/G exists and we have

$$\operatorname{aut} P \simeq \Gamma\left(M, T(P)/G\right)$$
.

If $\operatorname{ad} P = (P \times \mathfrak{g})/G$ is the bundle associated to P by the adjoint representation of G on \mathfrak{g} (cf. [A1]), then

$$\operatorname{gau} P \simeq \Gamma(M, \operatorname{ad} P)$$
.

By passing to the quotient modulo G in the exact sequence of vector bundles over P,

$$0 \to V(P) \to T(P) \xrightarrow{\pi_*} \pi^* TM \to 0,$$

where V(P) stands for the *vertical subbundle*, we obtain an exact sequence of vector bundles over M (the so-called *Atiyah sequence*, [A1], [B1], [G], [GS], [K]),

$$0 \to \operatorname{ad} P \to T(P)/G \xrightarrow{\pi_*} TM \to 0.$$

$$2.3.~SU(2)$$
 notations

We consider the standard basis of the Lie algebra $\mathfrak{su}(2)$ normalized by the factor $\frac{1}{2}$; i.e.,

$$B_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, B_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, B_3 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

with $i = \sqrt{-1}$. Note that $2i B_a$, $1 \le a \le 3$ are the Pauli matrices. We have

$$[B_1, B_2] = B_3, \quad [B_2, B_3] = B_1, \quad [B_3, B_1] = B_2.$$

As is well-known (e.g., see [NS]), SU(2) can be identified to the 3-sphere; i.e.,

$$SU(2) \simeq S^3 \subset \mathbb{C}^2$$
.

Let $(y^0 + iy^1, y^2 + iy^3)$ be the standard coordinates in \mathbb{C}^2 . Then, a matrix $g \in SU(2)$ is uniquely written as

$$\begin{cases} g = \begin{pmatrix} y^0(g) + iy^1(g) & y^2(g) + iy^3(g) \\ -y^2(g) + iy^3(g) & y^0(g) - iy^1(g) \end{pmatrix} \\ y^0(g)^2 + y^1(g)^2 + y^2(g)^2 + y^3(g)^2 = 1 \end{cases}$$

3. The bundle of connections

3.1. Connections and splittings

A connection Γ on a principal G-bundle $\pi: P \to M$ gives an splitting

$$\sigma_{\Gamma}: TM \to T(P)/G, \quad \pi_* \circ \sigma_{\Gamma} = 1_{TM}$$

of the Atiyah sequence (cf. [A1], [K], [MV]), by setting $\sigma_{\Gamma}(X) = X^*$, where X^* stands for the Γ -horizontal lift of X to P, as the horizontal lift of a vector field $X \in \mathfrak{X}(M)$ is G-invariant (see [KN]). The bundle of connections,

$$p: \mathcal{C}(P) \to M$$

is the bundle of all \mathbb{R} -linear maps

$$\lambda: T_xM \to (T(P)/G)_x$$
 such that $\pi_* \circ \lambda = 1_{T_xM}$

Connections on P are the global sections of $p:\mathcal{C}\left(P\right)\to M$. Moreover, $\mathcal{C}\left(P\right)$ is an affine bundle modelled over the vector bundle

$$\operatorname{Hom}(TM,\operatorname{ad}P)\simeq T^*M\otimes\operatorname{ad}P.$$

3.2. COORDINATES ON $\mathcal{C}(P)$

Let $(U; x^1, ..., x^n)$ be a coordinate open domain in M such that a given principal SU(2)-bundle $\pi: P \to M$ is trivial over U. For every $B \in \mathfrak{su}(2)$, we define

$$\varphi_t^B: \pi^{-1}(U) \simeq U \times SU(2) \to \pi^{-1}(U)$$

by the formula:

$$\varphi_t^B(x,g) = (x, \exp(tB) \cdot g)$$

and we denote by \tilde{B} the infinitesimal generator of φ_t^B . It follows that \tilde{B} is a π -vertical SU(2)invariant vector field; i.e., $\tilde{B} \in \text{gau}P$. Furthermore, $(\tilde{B}_1, \tilde{B}_2, \tilde{B}_3)$ is a basis of $\Gamma(U, \text{ad}\pi^{-1}(U))$.
Hence for each σ_{Γ} there exist unique functions $A_i^a(\Gamma) \in C^{\infty}(U)$ such that,

$$\sigma_{\Gamma}\left(\frac{\partial}{\partial x^{j}}\right) = \frac{\partial}{\partial x^{j}} - A_{j}^{a}\left(\Gamma\right)\tilde{B}_{a}, \quad 1 \leq j \leq n.$$

The functions

$$(x^{j}; A_{i}^{a}), \quad 1 \leq j \leq n, \ 1 \leq a \leq 3$$

are a coordinate system on $p^{-1}(U) = \mathcal{C}(\pi^{-1}U)$, which will be called the natural coordinate system induced by the coordinate system $(U; x^1, \dots, x^n)$ on the bundle of connections.

4. Aut
$$P$$
 ACTING ON $\mathcal{C}(P)$

Each $\Phi \in \operatorname{Aut} P$ acts on the connections of P as follows: given Γ , $\Gamma' = \Phi(\Gamma)$ is the connection corresponding to the connection form

$$\omega_{\Gamma'} = (\Phi^{-1})^* \omega_{\Gamma}.$$

If $\Psi \in \text{Aut}P$, then

$$(\Psi \circ \Phi)(\Gamma) = \Psi(\Phi(\Gamma)).$$

For each $\Phi \in \operatorname{Aut} P$ there exists a unique diffeomorphism

$$\Phi_{\mathcal{C}}:\mathcal{C}\left(P\right)\to\mathcal{C}\left(P\right)$$

such that $p \circ \Phi_{\mathcal{C}} = \varphi \circ p$, where $\varphi \in \text{Diff } M$ is the diffeomorphism induced by Φ . Furthermore,

$$\Phi_{\mathcal{C}} \circ \sigma_{\Gamma} = \sigma_{\Phi(\Gamma)},$$

for every connection Γ . We obtain a group homomorphism

$$\operatorname{Aut}P \to \operatorname{Diff} \mathcal{C}(P), \quad \Phi \mapsto \Phi_{\mathcal{C}}.$$

If Φ_t is the flow of a G-invariant vector field $X \in \text{aut}P$, then $(\Phi_t)_{\mathcal{C}}$ is a one-parameter group in $\mathcal{C}(P)$. We set

$$X_{\mathcal{C}} = \text{infinitesimal generator of } (\Phi_t)_{\mathcal{C}}$$
.

In this way we obtain a Lie algebra representation of the Lie algebra of all infinitesimal automorphisms of P on the vector fields of its bundle of connections,

$$\operatorname{aut} P \to \mathfrak{X} (\mathcal{C} (P)), \quad X \mapsto X_{\mathcal{C}}.$$

Note that X and $X_{\mathcal{C}}$ both are projectable onto the same vector field of M. By using a coordinate domain $(U; x^1, \ldots, x^n)$ in M and the basis $(\tilde{B}_1, \tilde{B}_2, \tilde{B}_3)$, each $X \in \operatorname{aut} \pi^{-1}(U)$ can be written as

$$X = f_j \frac{\partial}{\partial x^j} + g^a \tilde{B}_a, \quad f_j, g^a \in C^{\infty}(U).$$

The local expression of the above representation is as follows:

$$X_{\mathcal{C}} = f_j \frac{\partial}{\partial x^j} - \mathfrak{S}_{123} \left(\frac{\partial g^1}{\partial x^j} + \frac{\partial f_i}{\partial x^j} A_i^1 + g^3 A_j^2 - g^2 A_j^3 \right) \frac{\partial}{\partial A_j^1},$$

where \mathfrak{S}_{123} stands for cyclic sum over the indices 1, 2, 3. In particular, if X is an infinitesimal gauge transformation then $f_j = 0$. Hence

$$X_{\mathcal{C}} = -\mathfrak{S}_{123} \left(\frac{\partial g^1}{\partial x^j} + g^3 A_j^2 - g^2 A_j^3 \right) \frac{\partial}{\partial A_j^1}.$$

5. The identification
$$(J^1P)/G \simeq \mathcal{C}(P)$$

Let $\pi: P \to M$ be an arbitrary principal G-bundle and let $\pi_1: J^1P \to M$ be the 1-jet bundle of local sections of π . The group G acts (on the right) on J^1P by

$$j_x^1 s \cdot g = j_x^1 \left(R_g \circ s \right),$$

where s is a local section of π , $g \in G$ and R_g stands for the right translation. The quotient $(J^1P)/G$ exists as a fibred differentiable manifold over M which can be identified to $\mathcal{C}(P)$. Let us describe this identification. Let

$$q: J^1P \to \mathcal{C}(P)$$

be the mapping defined as follows. Each local section s defines a retract

$$\Gamma_{s(x)}: T_{s(x)}P \to V_{s(x)}P = \ker (\pi_*)_{s(x)}$$

of the inclusion

$$V_{s(x)}P \subset T_{s(x)}P$$
,

by setting

$$\Gamma_{s(x)}(X) = X - s_*\pi_*(X).$$

For every $u \in \pi^{-1}(x)$ there exists a unique $g \in G$ such that $u = s(x) \cdot g$ and we define $\Gamma_u: T_uP \to V_uP$ as

$$\Gamma_u = (R_g)_* \circ \Gamma_{s(x)} \circ (R_{g^{-1}})_*.$$

In this way we obtain a "connection Γ at x"; that is, an element of $\mathcal{C}(P)$ which only depends on j_x^1s . Hence we set

$$q(j_x^1 s) = \Gamma.$$

5.1. Aut
$$P$$
 acting on J^1P

Let X be a π -projectable vector field on P, let X' be its projection onto M and let Φ_t , ϕ_t be the flows of X, X', respectively. A flow $\Phi_t^{(1)}$ can be defined on J^1P by the formula

$$\Phi_t^{(1)}\left(j_x^1 s\right) = j_{\phi_t(x)}^1 \left(\Phi_t \circ s \circ \phi_{-t}\right).$$

If X is π -vertical (i.e., X' = 0 or even $\phi_t = \mathrm{id}_M$) then

$$\Phi_t^{(1)} = J^1(\Phi_t).$$

We denote by $X^{(1)}$ the infinitesimal generator of the flow $\Phi_t^{(1)}$ which is called the *infinitesimal* contact transformation associated to X (or also the natural lift of X to the 1-jet bundle). The mapping $X \mapsto X^{(1)}$ is a Lie algebra monomorphism and $X^{(1)}$ is π_{10} -projectable onto X, where π_{10} is the canonical projection,

$$\pi_{10}: J^1P \to P, \quad \pi_{10}(j_x^1s) = s(x).$$

For every $\Phi \in \operatorname{Aut} P$ we have

$$q \circ J^1(\Phi) = \Phi_{\mathcal{C}} \circ q.$$

Hence for every $X \in \text{aut } P$ the vector field $X^{(1)}$ is q-projectable and its projection is $X_{\mathcal{C}}$; i.e.,

$$q_* \circ X^{(1)} = X_{\mathcal{C}} \circ q.$$

Therefore

Proposition. The representation

$$\operatorname{aut} P \to \mathfrak{X} (\mathcal{C} (P)), \quad X \mapsto X_{\mathcal{C}}.$$

can be obtained "by projecting" the natural representation of the algebra aut P on J^1P by infinitesimal contact transformations by means of the identification $(J^1P)/G \simeq \mathcal{C}(P)$.

6. Gauge invariance in
$$J^1P$$

6.1. Contact forms on J^1P

Let $\pi: P \to M$ be a principal SU(2) -bundle. We define a $\mathfrak{su}(2)$ -valued 1-form θ on J^1P as follows. For every $Y \in T_{j_x^1s}(J^1P)$ we have

$$q(j_x^1 s)((\pi_{10})_* Y) \in V_{s(x)} P.$$

If $B^* \in \mathfrak{X}(P)$ is the fundamental vector field (cf. [KN]) associated to $B \in \mathfrak{su}(2)$ we have a vector bundle isomorphism

$$P \times \mathfrak{su}(2) \to V(P),$$

given by

$$(u,B)\mapsto B_u^*$$
.

Hence there exists a unique $B \in \mathfrak{su}(2)$ such that

$$q(j_x^1 s) ((\pi_{10})_* Y) = B_{s(x)}^*,$$

and we set

$$\theta(Y) = B$$
.

In the standard basis we have

$$\theta = \theta^a \otimes B_a,$$

where θ^1 , θ^2 , θ^3 are global ordinary 1-forms on J^1P called the *standard contact forms*. The following properties of the form θ are easily checked:

1. For every $\Phi \in \operatorname{Gau} P$, we have

$$J^1(\Phi)^*\theta = \theta.$$

2. Hence for every $X \in \text{gau}P$,

$$L_{X^{(1)}}\theta^a = 0, \ 1 \le a \le 3,$$

3. For every $B \in \mathfrak{su}(2)$, let B^{\bullet} be the fundamental vector field associated to B under the action of SU(2) on J^1P . Then,

$$L_{B\bullet}\theta = [\theta, B]$$
.

6.2. Invariant differential forms

A differential form ω_r on J^1P of degree $r \in \mathbb{N}$ is said to be $\operatorname{gau} P$ -invariant if for every $X \in \operatorname{gau} P$ we have

$$L_{X^{(1)}}\omega_r=0.$$

We denote by \mathcal{I}_{gauP} the set of gauP-invariant differential forms. (Usually, gauP-invariant differential forms are called gauge invariant forms.)

Example. The standard contact forms are gauge invariant.

Note that $\mathcal{I}_{\text{gau}P}$ is a \mathbb{Z} -graded algebra over $\Omega^{\bullet}(M)$.

A differential form ω_r on $\mathcal{C}(P)$ of degree $r \in \mathbb{N}$ is said to be aut P -invariant if for every $X \in \text{aut } P$ we have

$$L_{X_c}\omega_r=0.$$

We denote by $\mathcal{I}_{\operatorname{aut}P}$ the set of $\operatorname{aut}P$ -invariant differential forms. Note that $\mathcal{I}_{\operatorname{gau}P}$ is a \mathbb{Z} -graded algebra over $\Omega^{\bullet}(M)$ and that $\mathcal{I}_{\operatorname{aut}P} \subset \mathcal{I}_{\operatorname{gau}P}$ is a subalgebra.

6.3. Statement of the main result

Theorem. The algebra of gauge invariant forms on J^1P is generated over $\pi_1^*\Omega^{\bullet}(M)$ by the forms

$$(\theta^a, d\theta^a), 1 \leq a \leq 3,$$

that is,

$$\mathcal{I}_{gauP} = \pi_1^* \Omega^{\bullet}(M) \left[\theta^a, d\theta^a \right]_{1 \le a \le 3}.$$

The only aut P-invariant differential forms on J^1P are:

$$\mathcal{I}_{\text{aut}P} = \mathbb{R} \left[\theta^a, d\theta^a \right]_{1 \leq a \leq 3}.$$

6.4. Conclusions

If $\pi: P \to M$ is a principal SU(2)-bundle, we have seen that the algebra of gauge invariant (resp. aut P-invariant) differential forms on $J^1(P)$ is differentiably generated over the graded algebra of differential forms on M (resp. over the real numbers) by the standard structure forms. In a previous paper ([EM, Theorem 3]) it was proved that if $\pi: P \to M$ is an arbitrary principal G-bundle with G and M connected, then on $J^1(P)$ the unique gauge invariant Lagrangian densities are the differential n-forms on M. This result was originally motivated by Utiyama's theorem ([U]; also see [B], [Bl], [G] for the geometric interpretation of Utiyama's theorem) which stated the structure of gauge invariant Lagrangian densities on $J^1(\mathcal{C}(P))$. In the case G = SU(2) Theorem 3 in [EM] can be obtained as a consequence of the theorem above remarking that contact forms on the 1-jet bundle are not horizontal over the base manifold.

REFERENCES

- [A1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
- [A2] M. F. Atiyah, Geometry of Yang-Mills Fields, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1979.
- [B] D. Betounes, The geometry of gauge-particle field interaction: a generalization of Utiyama's theorem, J. Geom. Phys. 6 (1989), 107-125.
- [Bl] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley Publishing Company, Inc., Reading, MA, 1981.
- [EM] F. Etayo Gordejuela, J. Muñoz Masqué, Gauge group and G-structures, J. Phys. A: Math. Gen. 28 (1995), 497-510.
 - [G] P. L. García, Gauge algebras, curvature and symplectic structure, J. Differential Geom. 12 (1977), 209-227.
- [GS] V. Guillemin, S. Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, UK, 1983.
- [HM1] L. Hernández Encinas, J. Muñoz Masqué, Symplectic structure and gauge invariance on the cotangent bundle, J. Math. Phys. 35 (1994), 426-434.
- [HM2] L. Hernández Encinas, J. Muñoz Masqué, Gauge invariance on the bundle of connections of a U(1)-principal bundle, C.R. Acad. Sci. Paris, t. 318, Série I (1994), 1133-1138.
 - [K] M. Keyl, About the geometric structure of symmetry-breaking, J. Math. Phys. 32 (1991), 1065-1071.
- [KN] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Volumes I-II, John Wiley & Sons, Inc., New York, 1963, 1969.

- [MV] P. K. Mitter, C. M. Viallet, On the Bundle of Connections and the Gauge Orbit Manifold in Yang-Mills Theory, Commun. Math. Phys. 79 (1981), 457-472.
- [NS] Ch. Nash, S. Sen, Topology and Geometry for Physicists, Academic Press, Inc., 1982.
- [U] R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956), 1597-1607.