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Abstract

This paper presents a novel approach to predict with subspace methods.

It consists in combining multiple forecasts obtained from setting a range of

values for a specific parameter that is typically fixed by the user in this liter-

ature. Two procedures are proposed. The first one combines all the forecast

in a particular range. The second one predicts with a restricted number

of combinations previously optimized. Both methods are evaluated using

Monte Carlo experiments and by forecasting the German gross domestic

product.
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1 Introduction

Subspace methods are widely employed in engineering and physics and have

been recently adapted to some characteristics of the economic and financial data

(see, Bauer and Wagner, 2002; Bauer, 2005b; Garćıa-Hiernaux et al., 2009, 2010).

In comparison with mainstream time series analysis (Box and Jenkins, 1976; Tiao

and Tsay, 1989), they are flexible, as univariate and multivariate cases are treated

in the same way, and fast, as iterations are not required. Consequently, they are

a very interesting alternative to conventional forecasting tools such as VAR models.

Despite the extensive literature about their statistical properties (see, e.g,

Bauer, 2005a,b) and their increasing empirical uses (Kapetanios, 2004; Kascha

and Mertens, 2009), forecasting with subspace methods still remains quite unex-

plored. The scarce references (Ljung, 1999; Mossberg, 2007; Schumacher, 2007)

just use a state-space model estimated with these techniques to extrapolate, with-

out exploiting the subspace properties to improve the forecasts.

In contrast, this paper explores the forecasting in- and out-of-sample proper-

ties of subspace methods and suggests two procedures based on combining multiple

forecasts, obtained from setting a range of values for a specific parameter that is

typically fixed by the user in the subspace literature. The first one combines a range

of forecasts obtained with common subspace methods. The second one optimizes

the number of forecasts to combine using the AIC (Akaike, 1976). The procedures

are compared against appropriate alternatives and tested with simulated and real

data, showing good results in one- and multi-step-ahead out-of-sample forecasts.

The plan of the paper is as follows. Subspace identification techniques are

described in Section 2. Section 3 presents two procedures to improve the forecasts

obtained through subspace methods. The usefulness of the proposals for making

high quality forecasts is illustrated through Monte Carlo experiments in Section

4 and with real data in Section 5. Finally, Section 6 provides some concluding

remarks.
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2 Preliminaries

Consider a linear fixed-coefficients system that can be described by the following

state space model,

xt+1 = Φxt +Eψt (1a)

zt = Hxt +ψt (1b)

where xt,t∈N is a state n-vector, being n the true order of the system. In addition,

zt,t∈N is an observable output m-vector, ψt,t∈N is a noise m-vector known as inno-

vations, while Φ, E and H are parameter matrices. Moreover, some assumptions

about the system and the noise must be established.

Assumptions:

A1. ψt is a sequence of independent and identically distributed random variables

with E(ψt) = 0 and E(ψtψ
′
t) = Q, being Q a positive definite matrix.

A2. System (1a-1b) is non-explosive, i.e., |λi(Φ)| ≤ 1, ∀i = 1, ..., n, where λi(Φ)

denotes the ith eigenvalue of Φ, and fulfills the strictly minimum-phase condition,

i.e., |λi(Φ−EH)| < 1, ∀i = 1, ..., n.

A3. System (1a-1b) is minimal, i.e., it uses the smallest possible state dimension,

n, to represent zt.

System (1a-1b) can be expressed in a single matrix equation (see, Garćıa-

Hiernaux et al., 2010, Section 2) as:

Zf = OXf + VΨf , (2)

where Zf := [z′t, . . . ,z
′
t+f−1] with t = p+1, . . . , T −f+1; p and f are two integers

chosen by the user with p > n. For simplicity, we will assume p = f , throughout

the paper, denoting this value by i. Xf and Ψf are as Zf but with xt or ψt,

respectively, instead of zt. On the other hand, the extended observability matrix,

O, and the lower block triangular Toeplitz matrix V are known nonlinear func-
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tions of the original parameter matrices Φ, E and H (see Garćıa-Hiernaux et al.,

2010, Section 2, for further details).

Given A2 and for large values of i and T , Xf is to a close approximation

representable as a linear combination of the past of the output, MZp, where

Zp := [z′t−p, . . . ,z
′
t−1] with t = p + 1, . . . , T − f + 1. Then, the relationship

between the past and the future of the output can be written as:

Zf ' OMZp + VΨf (3)

For a given n, subspace methods estimate O, M and V in (3) by solving a

reduced-rank weighted least square problem, as the product OM , which is an

im square matrix, is of rank n < im. There are different approaches to do this,

but equation (3) is the common starting point to all of them. Here we use the

Canonical Correlation Analysis (CCA), which is briefly described in the following

steps:

1. Choose the integer i (or p and f).

2. Solve the reduced-rank weighted least square problem:

min
{Ô,M̂}

∥∥∥W (
Zf − ÔM̂Zp

)∥∥∥2

F
(4)

where ‖ · ‖F denotes de Frobenius norm. Note that the weighting matrix,

W , and the system order, n, have to be specified. See Katayama (2005) for

different W and Garćıa-Hiernaux et al. (2007) to estimate n. Compute the

states as X̂f = M̂Zp.

3. Regress zt onto x̂t, t = i, ..., T − i, obtaining Ĥ and the residuals, ψ̂t, from

the equation (1b).

4. Regress x̂t+1 onto x̂t and ψ̂t, t = i, ..., T − i − 1, obtaining Φ̂ and Ê from

the equation (1a).
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5. Check the minimum-phase condition (A2). If A2 does not hold, a refac-

torization is needed to ensure it (see, Hannan and Deistler, 1988, Theorem

1.3.3).

3 Forecasting by exploiting different values of i

I will start by denoting the parameters estimated using the CCA algorithm and

a particular i as, Ξ̂i = {Φ̂, Ê, Ĥ}i. In this situation, it is known that for i ≥ i0

the estimates Ξ̂i are consistent, where i0 = int(dρ̂bic) which is the integer closer to

the product of d and the optimal lag length for an autoregressive approximation

of zt, chosen by using the Schwarz (1978) criterion over 0 ≤ ρ ≤ (log T )a for some

constant 0 < a <∞. Specifically, d > 1 is a sufficient condition in the stationary

case (see Deistler et al., 1995), whereas d > 2 is required in the integrated case

(see Bauer, 2005b). However, in finite samples the estimates Ξ̂i differ for different

i, resulting in distinct forecasts.

Ljung (1999) proposes choosing the value for i that optimizes the AIC. The

procedure consists of: a) choosing a range of possible values for i, b) estimating

the corresponding state space models, c) calculating, for each estimated model,

the AIC, and d) choosing the model which minimizes the criterion.

The procedures proposed here also emphasize in forecasting, but adopt a combi-

nation strategy motivated by the empirical success of combination forecasts. This

approach seems more promising, if only because the combination strategy allows

one to diversify the risk of a potentially erroneous decision about i. Therefore, I ex-

pect the procedures to be more robust than the ones relying on a single choice for i.

Whichever procedure you choose to forecast, it should be noted that the results

about consistency restrict the lower bound of the range of possible values for i to
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i0. Then, consider the I − i0 + 1 estimated models:

x̂i
t = Φ̂ix̂

i
t−1 + Êiψ̂t−1 (5a)

ẑi
t = Ĥ ix̂

i
t (5b)

where i = i0, ..., I, being I deterministically chosen by the user and ψ̂t = zi
t − ẑ

i
t.

Clearly, ẑi
t are highly correlated for different i and, as a consequence of consis-

tency, the correlations will tend to the unity as the sample size grows. In very

large samples, ẑi
t will be virtually identical for different i. Accordingly, the bene-

fits for combining are expected to be more important in short samples.

Consider now a vector, zs
t , that contains the fitted values ẑi

t, i = i0, ..., I,

but sorted in a particular way that will be explained later, and a matrix Π =

[π0 π1 ... πI−i0+1]
′ where each πj is a m-vector of weights. From all of this, one

can solve the least squares problem:

min
{Π̂}

∥∥∥zt −
[
1 zs

t

]
· Π̂

∥∥∥2

F
(6)

where 1 is a ones m-vector. As a result, ẑ∗t = [1 zs
t ] · Π̂ is the optimal linear

prediction of zt (see Granger and Ramanathan, 1984) given the range of i. This

procedure, hereafter PROC A, presents lower in-sample mean squared error than

any subspace forecast obtained with a fixed value of i in the range {i0, I}. Note

that this does not guarantee more accurate out-of-sample predictions, although it

could be expected in practice.

On the other hand, choosing a large I makes the information given by the set of

explanatory variables extremely redundant, due to the high correlations among ẑi
t,

i = i0, ..., I. In order to reduce the number of inputs in regression (6), we suggest a

second procedure, hereafter PROC B, which consists in sequentially increasing the

dimension of zs
t and using the AIC to optimize the number of inputs to combine.
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I will now motivate why zs
t has a specific structure. Vector zs

t is organized

so that the first component is the ẑi
t which presents a lower correlation with the

others, the second element is the second less correlated and so on. As an example,

for i0 = 5, I = 7 and the following correlations corr(ẑ5
t , ẑ

6
t ) = .8, corr(ẑ5

t , ẑ
7
t ) = .6,

and corr(ẑ6
t , ẑ

7
t ) = .7, ẑs

t would be the vector [ẑ7
t ẑ

5
t ẑ

6
t ]. Hence, the reduction of the

sum-squared-error of regression (6) will be, in principle, higher when adding the

first zs
t components than when adding the last ones, as, by construction, most of

the information brought by the last variables will already be in the model. In the

following, I describe the proposals that compute the final out-of-sample forecasts:

1. Find i0 as the integer closer to dρ̂bic and choose I.

2. Estimate Ξ̂i for i = i0, ..., I and compute the corresponding in- and out-of-

sample forecasts.

3. Create zs
t with the in-sample forecasts obtained in step 2, sorted from the

least correlated to the most correlated.

4. Regress zt onto [1 zs
t ], either: (i) once, this is PROC A, or (ii) I − i0 + 1

times, increasing zs
t by one component each time and calculating the AIC in

each regression, this is PROC B. Whatever method is used, keep the weights

Π̂.

5. Compute the combined out-of-sample forecasts as ẑ∗t+f = [1 zs
t+f ] · Π̂, where

f is the prediction horizon. In PROC B, the number of columns of zs
t+f will

be determined by minimizing AIC in the previous step.

4 An empirical application

This section illustrates the application of this methodology to real data by fore-

casting the German GDP growth rate in a one-step and multi-step ahead frame-

work. The forecasts are evaluated in terms of RMSFE and predictive accuracy is

tested with the Diebold and Mariano (1995) test, hereafter DM.
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The data employed corresponds to the quarterly German GDP in constant

prices of year 2000. The sample period goes from 1991:01 until 2008:03. The ex-

ercise is divided in two parts. First, a one-step-ahead forecast evaluation is made

over the period 2006:02 to 2008:03, updating the models each time with the new

data. Second, a multi-step prediction analysis is presented by fitting the models

for the period of 1991:01 to 2006:01 and forecasting ten periods, from 2006:02 to

2008:03.

As a result of the autoregressive approximation of German GDP ρ̂bic = 8, so

i0 is fixed to 11, assuring the consistency of the estimates. As the sample size is

not large, I is fixed to I = 20. Consequently, I − i0 + 1 = 10 models are esti-

mated and used in the prediction exercise. Estimating the system order with the

MbC criterion (Garćıa-Hiernaux et al., 2007) returns n̂ = 7. Finally, an AR(8)

is specified and estimated to provide benchmark forecasts for comparison purposes.

Table 1 presents the RMSFEs, forecast accuracy ranking and results of the DM

for the one-step-ahead predictions obtained from: a) PROC A, the combination of

the forecasts of the whole vector zs
t , b) PROC B, the combination of the forecasts

using the AIC to decrease the dimension of zs
t , c) the alternative AR(8) model,

and d) the subspace single forecasts obtained with i = 11, ..., 20.

[TABLE 1 AND FIGURE 1 SHOULD BE AROUND HERE]

The results show that PROC A clearly outperforms the rest of the methods.

The gain in RMSFE with respect to PROC B is 9% and the DM suggests that

PROC A forecasts are statistically more accurate at 12% level. This result co-

incides with those obtained in the simulation experiments. On the other hand,

the improvement of the RMSFE with respect the rest of the (non-combined) sub-

space models ranges from 6-22%, depending on the choice of i. The DM considers

all these predictions significantly less precise than those resulting from PROC A

at about 10% level, except for the non-combined subspace forecast with i = 11.
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PROC A particularly outperforms the AR(8), which is 26% worse in terms of

RMSFE. This improvement is significant at 2% level in terms of the predictive

accuracy. The performances can be observed in Figure 1, which depicts the pre-

diction errors for the combined procedures, the best subspace single forecast and

the AR(8).

[TABLE 2 AND FIGURE 2 SHOULD BE AROUND HERE]

In a second exercise, ten out-of-sample forecasts are computed from 2006:02

to 2008:03. The models are the same used before, although this time data and

estimates are not updated. Table 2 reports the results. In this case, PROC B

clearly beats the other alternatives. The gain in RMSFE with respect to PROC

A is 27.7% and the predictions are statistically more accurate at 1% level. PROC

A worse behavior is not completely unexpected in multi-step forecasting, as it has

been devised to minimize one-step-ahead errors. More surprising is the positive

performance of PROC B. The precision improvement with respect to the other

(non-combined) subspace models is quite remarkable, ranging from 16.5-58.2%

in terms of RMSFE. Further, DM considers all the predictions significantly less

precise at 1% level than those obtained with PROC B, except for i = 13, 14,

which can be considered less accurate at 10% level. The alternative AR(8), whose

RMSFE is 2.1 and 1.6 times those of PROC B and PROC A, respectively, is widely

defeated by both proposals. Finally, despite the positive results of PROC B in this

exercise, further research is needed in the multi-step forecast to draw more general

conclusions.

5 Concluding remarks

I propose two procedures to forecast linear dynamical systems using subspace

methods. They are based on combining multiple predictions obtained from setting

a range of values for a parameter that is commonly fixed by the user in the sub-

space methods literature. The experiments with Monte Carlo and real data show
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that they generally outperform the (non-combined) subspace methods and (vec-

tor) autoregressive models in one-step and multi-step ahead predictions, although

further research is open for future in the second case.

These algorithms are implemented in a MATLAB toolbox for time series mod-

eling called E4. The source code is freely provided under the terms of the GNU

General Public License and can be downloaded at www.ucm.es/info/icae/e4. This

site also includes a complete user manual and other reference materials.
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‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

PROC A

i = 11

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10

PROC A

i = 11

AR(8)

PROC B

Figure 1: One-step-ahead out-of-sample forecast errors.
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Figure 2: 1-to-10 out-of-sample forecast errors.
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Table 1: Forecast accuracy comparison: Evaluation of the one-step-ahead predic-
tion errors.

RMSFE Diebold-Mariano
Procedure Value Relative Rk Rk(1) vs Rk(j)

Statistic Pvalue

PROC A .746 100 1 - -
PROC B .815 109.0 4 -1.208 .114
AR(8) .945 126.7 13 -2.082 .019
SM (11) .791 106.0 2 -1.221 .111
SM (12) .855 114.6 9 -2.726 .003
SM (13) .832 111.4 6 -3.117 .001
SM (14) .805 107.8 3 -1.252 .105
SM (15) .827 110.8 5 -1.577 .057
SM (16) .858 115.0 10 -1.295 .098
SM (17) .842 112.8 8 -1.391 .082
SM (18) .858 115.0 11 -2.144 .016
SM (19) .911 122.1 12 -2.775 .018
SM (20) .837 112.1 7 -1.358 .087

Notes: The best RMSFE is underlined. SM (i) corresponds to the forecasts obtained from non-
combined subspace methods estimated with i. Prediction errors are multiplied by 100 in order
to facilitate the comparison. Diebold and Mariano’s test computed with a squared error loss.
Hypothesis defined as H0 : E[(ε1t+1|t)

2] ≥ E[(εjt+1|t)
2] and H1 : E[(ε1t+1|t)

2] < E[(εjt+1|t)
2], where

εjt+1|t is the one-step-ahead forecast error obtained from the model ranked in position j.
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Table 2: Forecast accuracy comparison: Evaluation of 1-to-10 prediction errors.

RMSFE Diebold-Mariano
Procedure Value Relative Rk Rk(1) vs Rk(j)

Statistic Pvalue

PROC A .840 127.7 10 -4.840 .000
PROC B .657 100 1 - -
AR(8) 1.375 209.1 13 -4.520 .000
SM (11) .820 124.7 4 -3.596 .000
SM (12) 1.040 158.2 12 -3.094 .001
SM (13) .766 116.5 2 -1.325 .092
SM (14) .780 118.7 3 -1.454 .073
SM (15) .876 133.3 11 -2.230 .003
SM (16) .830 126.3 8 -4.023 .000
SM (17) .835 127.0 9 -8.857 .000
SM (18) .822 125.1 6 -4.549 .000
SM (19) .820 124.7 5 -3.436 .009
SM (20) .827 125.8 7 -2.376 .009

Notes: The best RMSFE is underlined. SM (i) corresponds to the forecasts obtained from
non-combined subspace methods estimated with i. Prediction errors are multiplied by 100 in
order to facilitate the comparison. Diebold and Mariano’s test computed with a squared error
loss. Hypothesis defined as H0 : E[(ε1t+k|t)

2] ≥ E[(εjt+k|t)
2] and H1 : E[(ε1t+k|t)

2] < E[(εjt+k|t)
2],

where εjt+k|t is the one-step-ahead forecast error obtained from the model ranked in position j

and k = 1, 2, ..., 10.
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