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ABSTRACT 

The Permian-Triassic transition (P-T) was marked by important geochemical perturbations and the largest 

known life crisis. Consequences of this event, as oxygen-depleted conditions and the unusual behavior of 

the carbon cycle, were prolonged during the Early Triassic interval delaying the recovery of life in both ter­

restrial and marine ecosystems. Studies on Lower Triassic sediments of continental origin, as in the case of 

Western Europe, are especially problematic due to the scarcity of fossils and absence of precise dating. The 

Cafiizar Fm. is an Early-Middle Triassic unit of continental origin of the SE Iberian Ranges, E Spain. A detailed 

sedimentary study of this unit allows a shedding of light on some unresolved problems of the continental de­

posits of this age. 

The top of this unit is dated as early Anisian by means of a pollen association, while the age of its base is here 

estimated as late Smithian or Smithian-Spathian transition. Different facies associations and architectural el­

ements have been defined in this unit. In the western and central parts of the basin, this unit shows sedimen­

tary characteristics of fluvial deposits with locally intercalated aeolian sediments, while in the eastern part 

there is an alternation of both aeolian and fluvial deposits. Sedimentary structures also indicate changes in 

the climate conditions, mainly from arid to semiarid. Two marked arid periods when well-preserved aeolian 

sediments developed during early-middle Spathian and Spathian-Anisian transition. They alternated with 

two semiarid but more humid periods during the late Spathian and early Anisian. These conditions basically 

correspond with the general arid and very arid conditions described for central-western European plate dur­

ing the same period of time. The Ateca-Montalban High, in the northern border of the study basin, must have 

represented an important topographic barrier in the western Tethys separating aeolian dominated areas to 

the N and NE from fluvial dominated areas to the south. 

The Cafiizar Fm. has been subdivided into six members (A-F) separated by seven (1-7) major bounding 

surfaces (MBS). These surfaces are well recognized laterally over hundred of km and they represent 

104_105 My. MBS-5 is considered to be of late Spathian age and it is a clear indication of tectonic activity, 

represented by a mild unconformity. This event represents a change in the sedimentary characteristics 

(reactivation) of the unit and from here to the top of the unit are found the first signals of biotic recovery, 

represented by tetrapod footprints, plants, roots and bioturbation. All of these characteristics and the esti­

mated age represented by the MBS-5 event permit this surface to be related to the coeval Hardegsen un­

conformity of Central-Western Europe. These first signals of biotic recovery can thus be related to an 

increased oxygen supply due to the new created paleogeographical corridors in the context of this tectonic 

activity. These biotic signals occurred 5 My after the Permian-Triassic limit crisis; a similar delay as oc­

curred in other coeval and neigh boring basins. 

1. Introduction 

The time around the Permian-Triassic boundary was marked by a 
number of anomalous events and the biggest known crisis in life his­
tory, which provoked drastic changes in terrestrial and marine eco­
systems (e.g. Martin and MacdougaU, 1995; Benton, 2003; Erwin, 



2006). The magnitude of many of these events, which included mas­
sive volcanism from the Siberian Traps and its consequent general 
geochemical anomalies, led to multiple environmental perturbations 
and a series of short- and long-termed changes in ecosystems that 
first caused a widespread mass mortality event and lately delayed 
the subsequent Early Triassic recovery (see among others Pruss and 
Bottjer, 2005; Chen et aI., 2007; Sottjer et aI., 2008; Hermann et aI., 
2011 ). 

Large and protracted volcanic episodes may have been a trigger 
for the continuation of the disturbances of the carbon cycle during 
the Early Triassic (Baud et al., 1996; Payne and Krump, 2007; 
Sellwood and Valdes, 2007). In the same way, oxygen-depleted con­
ditions during the Early Triassic have been widely described as a 
continuation of the perturbations from the Permian-Triassic bound­
ary event in both marine and continental environments (Wignall, 
1990; Hallam, 1991; Retallack, 1999; Sheldon and Retallack, 2002; 
Pruss et al., 2005). 

During this latter period and even until the early Anisian, these 
excursions in the carbon isotope ratios have been related to climate 
variations (Kidder and Worsley, 2004; Galfetti et al., 2007b), paleo­
ceanographic changes (Atudorei and Baud, 1997; Briihwiler et al., 
2009), rare and episodic sedimentation (Woods et al., 1999; Pruss 
et al., 2005) and even phosphate regeneration, productivity and re­
lated biodiversity (Payne and Krump, 2007). 

Although there is a general acceptance concerning connections of 
multiple perturbations during the Early Triassic with drastic environ­
mental changes and the delay in the post-extinction recovery (Payne 
et al., 2004), there is still an important lack of information when an 
attempt is made to establish correlations between the observed ma­
rine and continental variations. There are few papers focussed on 
this problem, and only some of them recognize clear relationships 
(e.g. Twitchett, 1999; Krull and Retallack, 2000; Galfetti et al., 2007a). 

One of the main problems for correlations between marine and 
continental sediments is to establish a precise age of continental 
rocks, always difficult but even more so in a period during a biotic cri­
sis that left only a decimated fossil record. Particularly, this fact im­
pedes correlations also between continental series. Some important 
attempts have been made to tackle this problem in the Early Triassic 
series of continental origin from Central-Western Europe by means of 
different dating techniques when fossils were almost absent or poorly 
representative (e.g. Geluk and Rohling, 1997; Bourquin et al., 2006, 
2009; Filomena and Stollhofen, 2011). 

The Cafiizar Fm. (Early-Middle Triassic) is a very well exposed 
unit of continental origin in the central-eastern Iberian Range, Cen­
tral Spain. It shows a similar general lack of biotic data as the above 
mentioned Early Triassic series of Central-Western Europe and was 
probably deposited under similar anomalous geochemical conditions. 
Although there are several works dealing with the Cafiizar Fm. 
(L6pez-G6mez and Arche, 1993a,b; Alonso-Azd.rate et al, 1997; 
Arche and Lapez-COmez, 1999; 2005; Vargas et aI., 2009; Lapez­
G6mez et al., 2010), none of these focusses on the relationship be­
tween the sedimentary environment, the biotic recovery and its pa­
leogeographical significance. The aim of the present work is to 
define new approaches on the sedimentary and biotic characteristics 
and to determine the age of the Cafiizar Fm. in order to define precise­
ly its sedimentary environment, the first signals of biotic recovery 
after the Permian-Triassic transition crisis and its paleogeographical 
significance in the western Tethys domain. 

2. Geological setting 

At the end of the Permian and Early Triassic Iberia was located in 
the eastern side of central Pangea. It was a small plate assembled in 
the southernmost part of the ancient Laurentia megacontinent (De 
Vicente et al., 2009; Vargas et al, 2009). 

The present-day Iberian Range (Fig. 1A, C) is an intracratonic linear 
alpine structure occupying central and eastern Spain, which was cre­
ated by inversion tectonics during the Alpine compressive events in 
an extensional Mesozoic basin: the Iberian Basin (Fig. lB). The origin 
of the Iberian Basin was related to the development of a fault­
bounded multistage rift basin during the Early-Middle Permian 
(Arche and Lopez-{;omez, 1996; Vargas et aI., 2009). This basin started 
its development on a Hercynian basement of Cambrian-Silurian slates 
and quartzites affected by low-grade metamorphism, which was de­
formed in kilometer-size structures trending NW-SE with a general 
eastwards convergence (Capote and Gonzalez-Lodeiro, 1983; De 
Vicente et aI., 2009). 

The Iberian Range is subdivided into the Castilian and the Arago­
nian Branches, toward the northeast and the southwest, respectively 
(Fig. lB). These are morphological alpine structures hundreds of kilo­
meters long, trending NW-SE and we separated by different Cenozoic 
basins. These major structures are controlled by basin boundary faults 
that acted as normal faults during the Mesozoic development of the 
basin and later were reactivated as reverse faults during the alpine 
compression. During the evolution of the rift basin, a series of accom­
modation faults was developed almost perpendicular to the main 
NW-SE extensional faults which allowed block differentiation during 
the refilling of the basin. 

In the Castilian Branch, the refilling of the Iberian Basin started 
during the Permian and consists of a well-developed series of alluvial 
deposits (L6pez-G6mez and Arche, 1993a; Arche and Lopez-GOmez, 
1996) (Fig. 2). Above these rocks, and separated from them by an im­
portant hiatus, expressed sometimes as an angular unconformity, are 
the first Triassic deposits, the so-called Buntsandstein facies, of Early­
early Middle Triassic, which are also of continental origin, mainly flu­
vial but also of aeolian (Bourquin et al., 2007, 2011; L6pez-Gomez et 
al., 2011; Soria et al., 2011). These sediments were succeeded during 
the Anisian-Ladinian times by the deposition of carbonates of shallow 
marine origin (Muschelkalk facies) related to the westward progra­
dation of the Tethys sea (L6pez-G6mez and Arche. 1993a; L6pez­
COmez et aI., 1993, 1998, 2002). 

These continental sediments are broadly organized into two main 
sequences, the lower one for the Permian and the upper one for the Tri­
assic. When the sedimentary record is complete, the Triassic continental 
sequence is mainly constituted by the Cafiizar and Eslida fins., from base 
to top respectively, and the Valdemeca Unit, that constitutes the lower­
most part of the Cafiizar Fm. in some areas of the Castilian branch. The 
present work is focussed on the Cafiizar Fm. in the SE of the Castilian 
branch (Fig. lC) where three main fault-bounded blocks or sub-basins 
can be differentiated (Fig. 1 B). These basins were not isolated during 
the Triassic from their neighboring ones, however some sedimentary 
characteristics are particular for each one. Based on these characteris­
tics, the area of the present study is divided in three sectors (Fig. 1B): 
Western (W) sector (west of the Teruel-Montalban fault), Central (C) 
sector (between Teruel-Montalban and Sagunto-Benicassim faults) 
and Eastern (E) sector (east of the Sagunto-Benicassim fault). 

3. Stratigraphy and sedimentology of the Cafiizar Formation 

3.1. The stratigraphy 

A total of seven complete sections of the Cafiizar Fm. have been 
studied (Fig. 3). These sections are representative of the W, C and E 
sectors. Sector W is represented by the Rio Mayor, Talayuelas and 
Pun tal del Carnero sections, sector C by the Montan, Gatova and 
Alfondeguilla sections and sector C is represented by the Benicassim 
section. 

The Cafiizar Fm. (L6pez-G6mez and Arche, 1993b) commonly 
crops-out to form prominent cliffs (Fig. 4). Its thickness ranges 
from 75 m to 165 m and its lateral continuity reaches hundreds of 
kilometers across the Iberian Ranges, although its name changes 



toward the N and NW of the Iberian Ranges, outside the study area, 
where it is named the Rillo de Gallo Fm. (Ramos, 1979; L6pez-G6mez 
et al., 2002, 2005). The Cafiizar Fm. lies lll1conformably on the Alcotas 
Fm of Middle Permian age and the contact with the overlying Eslida 

A 

]]11IIII Elevated Paleozoic blocks 

..J Main basin boundary faults 

PMCL: Present Mediterranean coast line 

Tagus 

Basin 

JURASSIC-CRETACEOUS 
PERMlAN-TRlASSIC 

N 
t 

Fm., of early Anisian age, is represented by a hiatus surface in most of 
the study area (Arme and lopez-<:;omez, 2005) (Fig. 2). 

The Cafiizar Fm. is basically composed of sandstone bodies with 
thin layers of intercalated mudstone. The texture of the sandstone 



varies from fine to coarse grained and is angular to well-rounded. The 
general petrological composition changes transitionally from subar­
kose in the NW to quartz-arenite in the SE (Fig. 5), a change probably 
related to loss of feldspars during transport from proximal to distal 
areas, as indicated by paleocurrent data of the fluvial systems, that 
are mainly directed to the SE and S.5E (Fig. 3); this was parallel to 
the main axis of the basin, where master faults were still controlling 
sedimentation (Fig. lB). Sandy matrix-supported centimeter-thick 
quartzitic conglomerate levels occur locally. 

The Cafiizar Fm. consists of six subunits or informal members, A to 
F (Fig. 3), (L6pez-G6mez and Arche, 1993b). The lowest, which only 
crops-out in the western part, was later defined as the Valdemeca 
Conglomerates unit (De la Horra et al., 2005). This subunit is laterally 
equivalent to the Chequilla Conglomerates of the NW Iberian Ranges 
defined by Ramos (1979), out of the area studied in this work. The 
other five differentiated members are present in most of the studied 
sections. The six members are delimited by seven (1 to 7) major 
bounding surfaces (MBS) that show lateral continuity across the 
study area, except in the easternmost part, E sector, where these sur­
faces are not easy to differentiate from the laterally equivalent aeolian 
sediments. The A to F members and the seven MBS, originally defined 
for the Cafiizar Fm. by L6pez-G6mez and Arche (1993b), are also used 
in this study with some minor modifications (Figs. 3, 4). The internal 
architecture of members shows also minor bounding surfaces (mbs). 
Both MBS and mbs will be described later. 

3.2. The sedimentology: Jades and architectural elements 

The sedimentary characteristics of the Cafiizar Fm. are defined 
here by means of the analysis of different fades and facies assoda­
tions that constitute sedimentary bodies or architectural elements 
(sensu Miall, 1992, 1996) with particular external and internal geom­
etry. The sedimentary environment has been reconstructed from the 
analysis and interpretation of these architectural elements and 
bounding surfaces are based on the concepts and nomenclature of 
Allen (1963), DeCelles et al. (1991), Bridge (1993) and Miall (1995, 
1996). The writer's nomenclature is applied in the case of the aeolian 
sediments. 

3.2.1. fluvial sediments 

These sediments are the most common in the studied stratigraph­
ic sections and constitute almost the total record in the western and 
central sectors. A total of 8 fades have been differentiated in the sed­
iments of fluvial origin. These fades consist of three main lithologies: 
conglomerates (G), sandstones (S) and mainly fine grained mainly 
sandstones but also with mudstones (F). Different colors and sedi­
mentary and/or biogenic structures are common in these lithologies 
and define the different fades. These are: planar cross-stratification 
(p), trough cross-stratification (t), parallel lamination (h), current 
ripples (r), bioturbation (b), plant remains (p) and incipient paleo­
sols. The eight differentiated facies result from the most frequent ob­
served combination of these structures with the three lithologies 
described above. The description and interpretation of these fades 
are summarized in Fig. 6. 

These fades tend to be organized into 6 facies associations, show­
ing spedfic vertical succession and thickness and therefore from a 
characteristic morphology for each. At outcrop these morphologies 
can be observed in 2D and sometimes in 3D. In this latter case, 
some other characteristics, such as type of the base and top. The 
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Fig. 2. Scheme of the Permian and Triassic sedimentary successions in the Iberian 

Ranges including lithological units. unconformities and hiatuses. 

predictable type of vertical fades succession of each facies associa­
tion, their thickness and their particular geometric arrangement de­
fine a total of 7 architectural elements in the Cafiizar Fm. The 
description, interpretation and presence of these architectural ele­
ments in the different members of each of the W, C, E sectors are sum­
marized in Fig. 7. 

The architectural elements include: filled isolated channels with 
defined borders (CH), sandstone megarripples (mesoforms) with pla­
nar or erosive bases (SBp, SBe), downstream accretion mesoforms 
(DA), sandy bed forms with isolated clasts (SGB), sandstone bodies 
with parallel or semi-parallel lamination (LS) and gravel bed form 
(GB) (Fig. 8). Each member (A to F) of the Cafiizar Fm. shows one 
or more different architectural elements and the presence of these el­
ements in each member also can change laterally from one sector to 
other of the study area. 

Five of the defined architectural elements are related to channel 
development (CH, SB, DA, SGB, GB), while just one (LS) to non­
channelized fluvial deposition. 

Fig. 1. Location of the study area. (A) Main geologic units of the Iberian Peninsula. 1: Pyrenees Range. 2: Catalan Coastal Ranges. 3: Ebro Basin. 4: Duero Basin. 5: Iberian Range. 6: 

Tagus Basin. 7: Guadalquivir Basin. 8: Betic Cordillera. 9: Hesperian Massif. (B) Tentative reconstruction for the Iberian Basin during the Triassic of the sedimentary basins. main Pa­

leozoic highs (the Ateca-Montalban High is located north of the study area). basin boundary faults systems and related accommodation faults. Main N.NE-S.SE faults: I-I' Teruel­
Segre. 2-2' Requena. 3-3' Sagunto. 4_4' Serrania de Cuenca. 5-5' Molina de Arag6n. 6-6' Alhama. 7-7' Ateca-Montalban. (C) Geological and geographical map of the present-day 

Iberian Ranges where the Aragonian and the castilian branches and the seven studied sections: Rio Mayor. Puntal del carnero. Talayuelas. Gatova. Montan. Alfondeguilla and Beni­

cassim are indicated. These sections are representative of theW. C and Esectors: sectorW is represented by the Rio Mayor. Talayuelas and Puntal delCarnero sections; sector C by the 

Montan. Gatova and Alfondeguilla sections. and sector E by the Benicassim section. 
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Fig. 3. The studied sections in the three subdivided sectors: Western, Central and Eastern. A to B represent the six formal subunits (members) of the Cafiizar Fm. MBS 1 to 7 are the 

Major Boundary Surfaces. See Fig. 1 for a more detailed geographical 1ocation of the sections. Paleocurrents are indicating fluvial or aeolian in each case and represented by the 

different colors in the sections. Main fluvial paleocurrents indicate E and SE, although some NE readings are also recorded. Paleowinds mainly indicate from S to W. The Eslida 
Fm crops out above the (aflizar Fm in the Central and Eastern sectors, while there is an important unconformity with the Landete Fm (marine in origin) in the Western Sector. 

The whole Cafiizar Fm crops out with an unconformity above the Middle Permian Alcotas Fm. See Fig. 2 for a more detailed stratigraphy. 

Paleocurrents in these fluvial sediments are directed mainly to the 
SE and S.5E in all the members and range from 1 DOe to 170e N (L6pez­
G6mez and Arche, 1993b), but occasionally some fluvial paleocurrents 

also indicate transportation to the NE (Fig. 3). These data have been 
obtained from 83 readings mainly on planar and trough cross­
stratification but also from parting lineation structures. 

Fig. 4. General view of the Cafiizar Fm. in the Rio Mayor section. Western sector. The six members of the formation and the seven Major Boundary Surfaces (MBS) are indicated. The 

unconformity on the Permian sediments (Alcotas Fm.) is located at the base of the photograph. MBS-5 is representing a morphological change in the outcrop and by a mild uncon­

formity in some areas. This surface is commonly shown by a more vegetated cover. 



3.2.1.1. Channel-fill complexes vvith defined borders (CH). These have 
concave-up erosive bases, although these are not commonly well 
preserved. The width of individual complexes is less than 50 m 
and thicknesses rarely exceeds 4 m (Fig. 8a). They are always amal­
gamated and are constituted of partially eroded sequences of less 
than 1 m in thickness composed of fades St, Sp, Sh, and Sf. This el­
ement occurs almost exclusively in W sector, and is mainly related 
to members E and A 

These are interpreted as channel-fill sandstone bodies which have 
deposited during important lateral shifts which have provoked fre­
quent erosive surfaces in the mesoforms that make it difficult to rec­
ognize the channel margins (Gibling, 2006). They are related to 
proximal and medial areas into the fluvial system. 

3.2.1.2. Megariples of sandstone complexes (SB). Vertical accumulation 
of straight and sinuous crest sandstone megaripples commonly ap­
pears in the three studied sectors. Their lateral migration has pro­
duced erosive surfaces (SBe), although they have often accumulated 
with planar contacts (SBp). Vertically they are upward fining with se­
quences which rarely exceeds 1 m in thickness where fades St, Sp, Sh 
and Sr are the most representative. Their vertical accumulation may 
reach tens of meters (Fig. 8b) and have sheet morphologies. These 
are common in all of the members and in all the three studied sectors. 

These are interpreted as channel-fill deposits which were deposit­
ed over wide areas of sedimentation of sand-dominated river sys­
tems. They represent trains of individual bedforms that accumulated 
predominantly by vertical aggradation (Ashley, 1990; Gibling and 
Rust, 1990). 

3.2.13. Downstream accretional deposits (DA). These are formed of co­
sets of downstream-oriented flow-regime bedforms, and normally 
are common in sector W. They are differentiated in large exposures 
where individual bedforms are formed by planar cross bedding 
about 1.5 m to 2.5 m in thickness. Characteristically they rest on the 
moderate dipping surfaces of the previous bedform which show a 
gentle concave-upper surface and may reach tens of meters in 
width (Fig. Se). 

These are interpreted as dynamically related trains of sand­
dominated bedforms with vertical aggradation (Miall, 1996) and in­
dicate filling of channels with a more important height in the system 
which is roughly similar to minimum channel depth. 

3.2.1.4. Sandy bedforms with isolated clasts (SBC). These consist of ver­
tical accumulations of straight-crest sandy bedforms that incorporate 
disperse quartzite subrounded-rounded clasts. The bedforms consist 
mainly of fades Sp, rarely exceed 1 m in thickness and show a general 
fining-upward trend (Fig. 8d). They consist of sets that may reach 
3 m. The base and top of bedforms may be flat and may be slightly 
eroded. This element is very common in both W and C sectors and 
it is mainly linked to members E and A 

These deposits are interpreted as channel-fill deposits of migrating 
streams in a wide area of sedimentation of sandy and gravely­
dominated river systems. They represent trains of individual bedforms 
related to stages of increasing energy during periods of reactivation in 
the system (Ramos et aL, 1986). 

3.2.1.5. Cravel bedforms (CB). This element is basically represented by 
fades P. It appears only in member A and use to be more frequent in 
sector W. It consists of gravelly bedforms that rarely exceeds 0.7 m in 
thickness and forms sets that may reach 8 m (Fig. 8e). They show sub­
rounded-rounded quartzite clasts less than 8 cm in size and planar 
and trough cross-stratification and may incorporate sand lenses of 
few meters in width which separate the bed forms. 

These are interpreted as channel-fill deposits linked to proximal­
medial areas with periodical waning-water stages in a shallow gravel 

dominated fluvial system, similar to the examples described by 
Ramos and Sopefia (1993) and Rice et aL (2009). 

3.2.1.6. Laminated sandstone bodies interbedded with mudstones (LS). 

This element is basically developed in members C and D but also ap­
pears in C and E sectors. It consists of sandy bodies with parallel or 
semi-parallel lamination and possible current ripples (Fig. 8f) which 
are interbedded with fine sandstone or mudstones. The sand layers 
sometimes reach several centimeters in thickness, although locally 
form sets that may reach 1 m in thickness. They mainly consist of fa­
des Sh, Sbp, Fl and Fb. 

This architectural element is interpreted as a non-channelized de­
posit related to overbank flooding (Bown and Kraus, 1987; Smith 
et aL, 1989) and it is commonly related both vertically and laterally 
to channelized elements. 

3.2.2. Boundary surfaces 

Different orders of classifications of bounding surfaces have been 
erected for alluvial sediments by some authors (Allen, 1983; 
DeCelles et aL, 1991; Bridge, 1993; Miall, 1992, 1996; Bristow and 
Best, 1993, among others) using different names or numbers, but 
with clear equivalences among them. We have followed Miall's 
(1996) classification for the interpretation of the numerical values 
of the time-span of each major and minor described surface. 

Different types of boundaries have been observed in the sedi­
ments of the Cafiizar Fm. They range from 1 to 8 order according to 
Miall's (1996) classification and constitute minor and major bound­
ary surfaces (mbs and MBS, respectively) depending on the type of 
surface they represent They may range from only the laminae of a 
ripple to major surfaces affecting the whole basin. In this latter classi­
fication, 1 st to 4rd-order include a range of surfaces related to process 
of development of a microform (e.g. ripple) to a macroform (e.g. 
levee, splay or point bar), and each represents less than 103 years of 
development The 5th order surface includes a channel base surface 
and represents 103_104 years, while a 6th order is related to flat, re­
gionally extensive surface (e.g. a channel belt) and represents 104_ 
105 years. The 7th and 8th order surfaces are both regionally 
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FACIES DESCRIPTION INTERPRETATION 

1, 0'"0,°0 ' 0,"" 0\ o . � . o · Gp: Clasl-supported quartz microconglomerate 
Transverse dunes of gravels. r'CT\o.", oo� 0. �ci� with abundant red colOf coarse grain sandy matrix. 

Massive or showing planar cross-stratified structure. 
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Fig. 6. The eight defined fades and their interpretation for the fluvial sediments of the (aftizar Formation (some of the fades characteristics are obtained from Mia.ll 1996 

classification). 

extensive (e.g. major depositional system and basin-fill complex, re­
spectively) and represents 105_106 and 106_107 years respectively. 

Surfaces of minor order (mbs) are of 1st to 5th order, while MBS 
are represented by those 6th, 7th and 8th order. Fig. 9 shows some 
differentiated boundaries and illustrates how they fit in Puntal del 
Carnero section (sector C). Minor boundary surfaces are well­
defined in the interior of the meso- and macro forms included in the 
architectural elements. The MBS are however observed as planes 
that can be followed for hundreds of meters in the outcrops and 
therefore they are regionally differentiated (Figs. 3, 4). The six mem­
bers (A-F) of the Cafiizar Fm. are separated by surfaces of 6th order, 
except the surface between members D and E (MBS-5) whose is sep­
arated by a 7th order surface. This latter surface, which is associated 
to a slight unconformity, represents a boundary that separates impor­
tant sedimentary and lithologic features that can be traced as much as 
hundreds of kilometers across the studied basin. For what concerns 
the angular unconformity at the base of the Cafiizar Fm. it represents 
a hiatus likely more than 8 My and separates the Middle-Late Perm­
ian from the beginning of the Triassic sedimentation, and this is con­
sidered an 8th order surface. 

In order to determine the vertical evolution of the Cafiizar Fm. it is 
important to consider both the time of sedimentation and the hia­
tuses and/or erosion, represented by mbs and MBS. These aspects 
are discussed later. 

323. Aeolian sediments 

Aeolian sediments occur mainly in Eastern sector, close to the 
present-day Mediterranean coast, where they are tens of meters in 
thickness in the Benicassim section. However, thin isolated aeolian 
beds, normally lesser than 1 m in thickness intercalated with sedi­
ments of fluvial origin, are also present in sectors Western and Cen­
tral sectors of the studied area. Although there are some references 
of aeolian deposits in equivalent units of neigh boring areas (Marzo, 
1986; Soria et al., 2011), in the study area these deposits are identi­
fied and described for the first time. Paleowinds mainly are directed 
to the S and SW with a range from 175c_265c• These are based on 
57 readings from what have been interpreted as former avalanching 
faces of dunes. 

Four main facies (ae-1 to ae-4) and eight associated or secondary 
facies have been differentiated in the aeolian sediments. The 
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Fig. 7. The six different architectural elements defined for the fluvial sediments of the (aftizar Formation showing their most representative facies associations and the description 

of their main general characteristics. The appearance of these elements in the three studied (W. C, E) sectors. and their distribution into the different subunits of the Caftizar For­

mation are shown in the left. 

description of these associated facies is based upon sedimentary struc­
tures, grain characteristics and biogenic structures. Their description 
and interpretation are shown in Figs. 10, 11 and 12. The main associat­
ed facies are: ae1 - cross-bedded sandstone, ae2 - wind ripple­
laminated sandstone, ae3 - horizontally bedded sandstone and ae4 
- massive sandstone. The secondary facies are lesser frequent and ap­
pear associated with the four main facies and allow a precise interpre­
tation. They appear as isolated elements, as ventifacts (vf), 
deformation structures (ds), or as structures which affect more exten­
sive sedimentary surfaces such as reactivation surfaces (rs) and defla­
tion surfaces (ds). 

Three architectural elements have been differentiated as the result 
of the combination of the four main facies with different associated 
facies (Figs. 13, 14). These architectural elements are as follows: 

A Dune architectural element. This element mainly appears in sector 
E, in the Benicassim section, although punctually it also appears 
in sectors W and C (Fig. 3). It is mainly constituted by facies ae1, 
ae2 and associated facies ad, rs, ds, ssrg, vf, dst, and gfw 
(Fig. 13A). It shows planar-shaped and through-shaped tongues 
with inversely graded sands. It sometimes forms sets reaching 
3-4 m in thickness in sector E, while these are thinner than 1 m 
in sectors W and C. Where it is well-developed it is traceable for 
25-30 m in sections parallel to the dip of the cross-bedding. Inter­
nally the sets consist of thin laminae normally lesser than 2 cm 
thick and which are frequently dominated by inversely graded 
grainflow cross-strata (facies gfw) and subhorizontal wind-ripple 
strata. Wavy-laminated strata may appear at the bases of the 
troughs, showing non-erosive geometry (Fig. 14a). Minor reactiva­
tion surfaces are the most common internal bounding surfaces. 
Interpretation. This is interpreted as having formed during the mi­
gration of the slip-faces of aeolian dlll1es constituting superim­
posed morphologies (Hunter, 1977; Chrintz and Oemensen, 
1993; Rodriguez-L6pez et al., 2010). Interfingering of grainflow 

strata and wavy-laminated strata perhaps represents periods of 
dry conditions within interdune depressions (Cain and MOlll1tney, 
2009). Grainflow soft-sediment deformation is possibly related to 
episodic wet conditions produced by fluvial incursions into lateral­
ly extensive interdune areas (Langford and (han, 1989; Herries, 
1992). Prevailing paleo-wind directions are considered to have 
been mainly from the E.NE. Cross-bedded sandstones show 
second- and third- order bounding surfaces (sensu Brookfield. 
1977). Second-order surfaces are the most commonly represented 
type. These are low angle surfaces and mainly define the base of 
through-shaped sets. Third-order surfaces show convex-upwards 
shape and are located in the upper part of sets normally indicating 
a change in the dip of the foresets. 

B. Sandsheet architectural element. This element basically appears in 
sector E and it is poorly represented in sectors W and C. It is com­
posed mainly of horizontally laminated sandstones and rippled or 
translatent strata that have been interrupted by erosive surfaces 
linked to fluvial incursions (Fig. 13B). Laterally, this element may 
sometimes be structure less, and can be traced over some tens of 
meters, although its thickness never exceeds 1.2 m (Fig. 14c) 
Interpretation. The sandsheet element is developed in areas of 
transition between fluvial to aeolian dominance (Kocurek and 
Nelson, 1986; Cain and Mountney, 2009). The variation of wind 
speed would favor the transition between plane-bed laminations 
and wind-ripple strata. The lateral development of these morphol­
ogies of low relief was possibly be related to the restricted sedi­
ment supply in these transitional areas (Kocurek and Nelson, 
1986; Mountney, 2006). 

C. Interdune architectural element. This element is mainly developed 
in sector E, although some poorly developed examples are also ob­
served in sectors W and C. It consists of dark red, very fine-grained 
sandstone which is almost devoid of internal structures (Fig. 13C). 
Small current ripples, bioturbation, mottling and rootlets have 
been observed in the upper part of the Rio Mayor section of sector 



Fig. 8. View in the field of the architectural elements defined for the fluvial sediments of the Cafiizar Formation. The architectural elements are: (a) Channels (CH). scale bar: 1 m. 

(b) Megarriples with erosive base (Sbe-p). (c) Downstream accretion (DA). (d) Sandy bedforms with isolated c1asts (SGB). scale bar: 0.2 m. (e) Gravel bedform (GB) (hammer in 
the center-right: 26 cm). (f) Sandstone bodies with parallel or semi-parallel lamination (LS) (pencil: 12 cm). 

W (Fig. 14b). Normally these occur as lens-shaped or sheet-like 
laterally extensive bodies in close relation to deposits of fluvial fa­
des. This element may reach 0.45 m in thickness and is less than 
12 m in lateral extent. 
Interpretation. The interdune element probably represents inter­
dune flats between aeolian dunes. These surfaces were close to 
with the capillary fringe of the water table (Mountney, 2006), 
where colonization by root structures and bioturbation are com­
mon (Kocurek, 1981; Loope, 1988; Hasiotis, 2002). 

3.3. General sedimentary interpretation 

The sedimentary interpretation of the Cafiizar Fm. is mainly based 
on the architectural elements and their fades associations and thus 
has been done separately for the differentiated subunits and the 
three different areas (W, C, E). The sedimentary characteristics indi­
cate a succession of fluvial systems as the main process of sedimenta­
tion in sectors W and C, while both fluvial and aeolian sedimentation 
have been identified in the Benicassim section, sector E (Fig. 15). 

The vertical evolution of the fluvial characteristics in the subunits 
of sectors W and C indicate the development of sandy braided fluvial 
systems flowing to the SE, where the Paleotethys was supposedly lo­
cated (Bourquin et al., 2011). These complexes represent multilater­
al-multi-storey sand bodies represented by channel-fill deposits 
related to migrating bedforms formed of mainly linguoid and trans­
verse bars. Overbank fines and floodplain sediments are almost ab­
sent. Similar deposits have been extensively described in ancient 
river systems (Cant and Walker, 1978; Miall, 1978; Crowley, 1983; 
Ramos et al., 1986; Bridge and Mackey, 1993; Bourquin et al., 2006; 
Gibling, 2006). 

Both the underlying and overlying deposits (Alcotas and Eslida Fms, 
respectively) are formed of a variety of fluvial deposits, substantial fine­
grained sediments and evidence of contemporary vegetation. The 
change in fluvial style of the Cafiizar Fm. with respect to these two for­
mations (Arche and L6pez-G6mez, 2005; L6pez-G6mez et al., 2010), 
the absence of fine-fraction, and the braided nature of the fluvial chan­
nels with frequent abandonment and re-occupation can be explained 
by the absence of vegetation, especially riparian assodations that 



Fig. 9. Field example of the hierarchy of some major (MBS) and minor (mbs) observed in the Puntal del Camero section of the C Sector. Hierarchy is based on Miall's (1996) clas­

sification. Geologist's fits are located between B and C subunits. 

precluded the existence of fixed banks and active chemical weathering. 
These conditions could resemble the pre-Devonian fluvial systems de­
velopment (Love and Williams, 2000; Davies and Gibling, 201Oa,b). 

Aeolian erosion and reworking of the exposed sandflats during 
low-water stages would have been effective process of partial erosion 
of the upper part of the alluvial deposits in the absence of vegetation 

Main aeoiian facies 
Code Facies Description Interpretation 

Cross-bedded 
sandstones Salmon-pink fine to medium- Migration of aeolian 

� grained well-sorted and -rounded dunes by avalanching 

ael quartz grains with planar-shaped in the lee slope. 

�-- and trough-shaped tongues showing 10.3 m 

inversaly graded sands. 

Wind-ripple Light-pink lower fine-grained Migration of aeolian 

laminated-sandstone well-sorted quartz grains showing wind ripples. 

ae2 ripples and sub-horizontal � 
lamination. 

I � 0.1 m 

Horizontal laminated Light-pink fine-grained and High-wind velocity 
ae3 sandstone well-sorted quartz displaying conditions with 

I 0.2 m 

horizontal lamination. Small possible restricted 
and isolated bioturbation may available sediment. 
appear. 

Massive aeolian Orange to brown very Remnant of 
sandstone fine-grained sandstone devoid aeolian facies 

ae4 of internal structure. Mottling le " 2> and root lets may appear. 

0.2 m 

Fig. 10. The description and interpretation of the four main defined fades for the aeolian sediments of the caflizar Formation. 



Associated or secondary aeolian facies 

ad - Avalanche deposits 

rs - Reactivation surface 

ds - Deflation surface 

ssrg - Steep surface composed of well-sorted grains 

vf - Ventifacts 

es - Erosive surface (related to fluvial scours) 

dst - Deformation structure 

gfw - Grainflow wedges 

Fig. 11. Eight differentiated associated or secondary aeolian fades in the (aftizar For­

mation. They are normally associated to main fades and complete the description of 

the aeolian architectural elements. 

cover (Mac Na.ughton et al., 1997; Ashworth et al., 2000), as observed 
in some of the described elementary sequences, especially in sector W. 

Clear changes in the vertical evolution of the system are observed 
when the subunits are compared. The most important differences are 
related to the MBS-S (Fig. 3). This major surface is clearly the most 
persistent laterally with continuity over hundreds of kilo meters in 
the SE Iberian Ranges. MBS-S marks a general reactivation in the sys­
tem, as shown by the increase in the size of sedimentary structures 
and by the petrology of the sandstones, which show an increase in 
pebble content. More importantly, the first occurrence of paleosols, 
plant fragments and traces of bioturbation in the Cafiizar Fm, is 
found just above the MBS-S. This implies a remarkable biotic and en­
vironmental change of important consequences that will be discussed 
later on. 

Although fluvial sediments are the most characteristic in sectors 
W and C, occasional aeolian architectural elements are observed in 
the Rio Mayor, Montan, Gatova and Alfondeguilla sections. These 
are located mainly in the transition between the B-C and C-D sub­
units, and represent isolated or semi-isolated centimeter-scale aeo­
lian bedforms intercalated in the fluvial sediments. They indicate 
aeolian reworking of fluvial sediments during low-waters periods 
and development of centimeter-scale aeolian trough sets on the top 
of fluvial bedforms during the seasonal dry period. Depressed water 
table and the lack of vegetation colonizing the sandy fluvial deposits 
created a temporary, easily erodible sandy sediment surface, on 
which accumulated aeolian deposits. 

The Benicassim section is taken as representative of Sector E in this 
paper. Except for members B and C, differentiation of the same mem­
bers described in sectors W and C is not easy in this sector. The lower 
third of the section, members B and C, is characterized by the alternate 
development of fluvial and aeolian bedforms. Fluvial fades analyses 
indicate the presence of migrating bedforms and filling channels into 
a braided fluvial system (L6pez-G6mez and Arche, 1993b). These 
were periodically interrupted by the development of isolated aeolian 
bedforms represented by the architectural element Ae-2. 

The architectural element Ae-3 is the most representative of the 
upper part of the Benicassim section. It indicates the development 
of an important aeolian complex. This is as temporal interruption in 
its development, due to renewed fluvial sedimentation (Fig. 12b). 
This fluvial incursion eroded the aeolian dunes and desert pavements, 
and separates the aeolian sediments into two main units, each of 
which are about 30 m in thickness. Both show supersurfaces in their 
uppermost part that represent decreases in the aeolian sand supply 
(Wilson, 1973; Brookfield, 1992; Langford and Chan, 1993). This 
change, due to the reactivation of fluvial processes perhaps corre­
sponds to the surface E represented by the transition of members D 
and E in sectors W and C, that is, MBS-S. These intercalated beds of 
fluvial deposits in the Benicassim section contain tetrapod footprints 
(Gand et aI., 2010). 

Sector E broadly represents an incursion from the NNE of an aeo­
lian domain that converged with the fluvial systems coming from the 
NW (Fig. 15). The presence of these aeolian sand bodies was probably 
related to the extremely arid periods that occurred during the Olene­
kian in the western Peri-Tethyan areas (Bourquin et al., 2011; Sofia et 
al., 2011) and are probably linked with the southern Catalan Range, 
where Marzo (1980) described similar aeolian facies for a coeval 
stratigraphical unit (Prades Sandstones Unit). A paleo-high located 
in the northern part of the study area, related to the Montalban and 
Ateca faults (Figs. 1. 15), was probably controlling the incursion of 
the aeolian belt toward the south. A similar interaction between aeo­
lian dunes and water-laid deposits was described by Cain and 
Mountney (2009) in terminal fan lobes of the Permian Organ Rock 
Formation, SE Utah, USA. 

4. Paleontological content and age of the Cafiizar Fm. 

In the Cafiizar Fm. there is no evidence of any biotic remains below 
member E, all the fossil remains found are only in the upper part of 
this unit, just above MBS-S, the 7th order surface separating members 
E and D. The fossil content is restricted to one pollen association 
(Doubinger et al., 1990), some fragments of plants, and some pre­
served ichnofossils: a few tetrapod traces (Gand et al., 2010) and bio­
turbation (Figs. 4, 16). 

The pollen occurs in subunit, F close to Rio Mayor section, sector 
W. It consists of an association of Alisporites toralis, Falcisporites cf. sta­

bilis, Guthoerlisporites cancellosus, Lunatisporites sp. This association 
was considered as probable Aegean (lowermost Anisian) in age by 
Doubinger et al. (1990), Diez (2000) and Diez et al. (2010). On the 
other hand, fragments of plants appear in members E and F in sec­
tors W and C. These consist of brown, isolated, millimeter scale frag­
ments without any differentiated internal structure. An incomplete 
swimming and trackway of Rhynchosauroides, with three digital 
scratches, a possible resting (cubichnia) and furrowing (pascichnia) 
traces have been found in the Benicassim section, sector E (Gand 
et aI., 2010). 

Isolated bioturbation occurs elsewhere in very low density. They 
occur in subunits E and F of sectors W and C, and consist of structures 
representative of the Scoyenia ichnofades, where Skolithos is practi­
cally the sole representative. Isolated dedmeter-scale levels with 
trace roots 2-3 cm long appear at the base of members E and F. 

This data, suggests the age of the uppermost part of the Cafiizar Fm is 
Aegean (lowermost Anisian). Other criteria which support this inter­
pretation is the Pelsonian age (upper Anisian) of the base of the overly­
ing Landete Fm., based on Foraminifera and Ammonites (L6pez-G6mez 
et aI., 1998 and Marquez et al, 1994, respectively) (Fig. 16). 

The age of the lower part of the Cafiizar Fm. is however not possi­
ble to define at present by means of paleontological data. However, 
Bourquin et al. (2007, 2011) estimated its age as middle-late 
Smithian (Olenekian stage, Early Triassic) (Fig. 16) by regional corre­
lation and comparison with lateral equivalent units of areas located to 
the north of the study area. This is the estimated age based on 



Fig. 12. View in the field of some of the aeolian differentiated facies of the (aftizar Formation. a - cross-strata (ae1) (pencil at the top is 12 cm). b - wind-ripple laminated­

sandstone (ae2) (pencil is 12 cm). c - horizontal laminated sandstone (ae3) with small wind ripples at the lower part (pencil is 13 cm). d - massive aeolian sandstone (ae-4) (pen­

cil is 14 cm). e - grainflow wedges (gfw) (coin is 2.1 cm). f - steep surface with well-sorted grains (ssrg) showing inverse grading (coin is 1.7 cm). g - deformation structure (dst) 
linked to avalanche process (ad) (pencil is 13 cm). h - ventifacts (vf) (right of the pencil) into a deflation surface (ds). Coin is 2.5 cm. 

sedimentary criteria described here, even if we know well the objec­
tive limits of this method to date geological units. This simple calcula­
tion has been made with consideration of timespan represented by 
the MBS and mbs differentiated in the Cafiizar Fm., as it is obvious 
that the sum of all the time represented by these surfaces would at 
least imply the minimum time that was needed in the deposition of 
the deposits of the Cafiizar Fm. took. 

This estimation has been made by considering only the surfaces of 
4th to 7th order, as those of lesser order are not very representative 
for the total time of deposition. As previously shown, each member 
has one 6th order surface at its base. A mean of eight 5th order sur­
faces and twenty two 4th order surfaces can be easily traced in each 
member (Fig. 9). If the total time of this sum based on the time they 

represent is considered, it would be approximately 1.650,000 years 
of the whole Cafiizar Fm. 

To achieve a more precise figure, the time represented by the sed­
iments (and their internal mbs) of the Cafiizar Fm. which have been 
removed due to erosion during its deposition should also be consid­
ered, and so, this would increase the total time of sedimentation. 
This process of internal erosion is common in deposits of accretionary 
bars during the final stages of their deposition ("weaker flows" in the 
sense of William and Rust, 1969), as described in similar ancient flu­
vial systems by Bluck (1971), Blodgett and Stanley (1980) and 
Crowley (1983). Thorne et al. (1993) have shown also in the Brahma­
putra River how bank erosion during the last three decades may reach 
at least 90 m per year. 



Aeolian architectural elements 
Code Element Facies Characteristics 

A 1 3 .8m I Dune I 

� 
ae I, ae2, ad, 

rs, ds, ssrg, 
vf, dst, gfw 

Migration of aeolian dune 
elements. They fann sets 
and may interact with 

fluvial sediments. 

c// 

B Sandsheet ae2, ae3, 
es 

Low-relief sheets of 
sandstones. They may show 
translatent-strata or wind 
ripple - laminated sandstone 

c I Interdune I 

I O.6 m � ae4, sbp, 

Fb, FI 

Irregular lenses of very 

fine - grained dark massive 

sandstone with possible 

mottling. 

� 
Fig. 13. The three aeolian architectural elements defined for the (aftizar Formation including their characteristics and common main and associated fades. 

The addition of the results of all of these phenomena agrees gen­
erally with the above estimations of middle-late Smithian done for 
the age of the base of the Cafiizar Fm. by Bourquin et al. (2007, 2011). 

5. Discussion 

The beginning of the Triassic of Western Europe is always 
represented by sediments of continental origin and there is always 
a marked hiatus and/or unconformity surface between these de­
posits and those of the underlying Permian rocks. Problems relat­
ed to the precise age of these sediments, climate conditions 
changes, the possible causes of lack of fossil record and delay of 
life recovery after the Permian-Triassic biotic crises are still unre­
solved. The study of the Cafiizar Fm. may shed light on some of 
these points. 

5.1. Paleogeography and climate conditions 

Studies of the paleoaltitudes of various parts of Europe during the 
Early Triassic (Kidder and Worsley, 2004; Peron et al., 200S; Preto et 
al., 2010; Roscheret al., 2011) indicate the presence of mountain belts 
in Central and Western Europe related to the still prominent central 
Variscan Belt (Bourquin et al., 2011). These paleogeographic barriers 
conditioned water supply in the basins of this area of the European 
plate that were controlled by hyper-arid to semi-arid climate in the 
northern and southern parts, respectively, of this mountain central 
belt during most of the Smithian (Ulicny, 2004; Bourquin et al., 
2006, 2011). 

The sedimentary characteristics of the Cafiizar Fm. indicate howev­
er the occurrence of an important development of fluvial processes in 
the SE Iberian Basin intertingering eastwards with areas where aeolian 
processes were dominant during late Smithian-Spathian times. 
Warmer and moister conditions were probably occurred southwards 
of the study area, toward the high Southern Hemisphere latitudes 
(Woods, 2005). It appears that the SE Iberian Basin was a transition 
zone between those of general arid conditions to the N and warmer 

and those of moister conditions to the S. In this context, the Ateca­
Montalban High, located at the northern border of this basin, probably 
acted as a paleogeographical barrier separating drier conditions to the 
N from other wetter ones to the S (Figs. lB, 15). This interpretation is 
also supported by the presence of important aeolian dune-fields in the 
northern part of this high, as recently described by Soria et al. (2011) 
and L6pez-G6mez et al. (2011). These dune-fields may partially ex­
plain the presence of well-rounded homometric quartz wind­
reworked grains incorporated into the fluvial systems of the studied 
sectors W and C. 

However, a detailed study of the Cafiizar Fm. also shows that cli­
mate was not constant through time, but changed during the deposi­
tion of its different units. There was a stage of increased aeolian 
processes which is mainly related to subunits C and D, but also in A 
and B subunits and which mostly show partial reworking of some flu­
vial sediments by aeolian activity in the sector W. This is more easily 
seen laterally toward sector E, where clear aeolian dominance was 
established. This stage represented an arid to very arid time-interval 
which can be approximately located during the middle-late Smithian 
to early-middle Spathian. This interval unfortunately, up to now, 
lacks any biotic traces in the Iberian Ranges (Fig. 16). 

The middle-late Smithian interval was coincident with the dry pe­
riod described for the same age-interval in Central-Western Europe 
by Ulicny (2004), Peron et al. (2005), Durand (2006), Calfetti et al. 
(2007a), Cassinis et al. (2007), Preto et al. (2010), and Bourquin et 
al. (20ll). However, it is also important to stress that in NW Europe, 
the early-middle Spathian was a more humid interval (Szurlies, 
2007) with some paleosoils and tetrapod footprints in the rocks of 
the German Basin, (Detfurth and Hardegsen formations, Haubold, 
1983; Fichter and Kunz, 20(4), or only paleosoils in the Paris Basin 
("Zone limite violette", Gall et al., 1977). These data allow speculation 
about some climate variations during the early-middle Spathian from 
Central-N to SW Europe, from approximately latitude 20c to 10c• 

Different sedimentary and biotic indicators show that this period 
of arid to very arid conditions suddenly changed during the sedimen­
tation of the upper part of the Cafiizar Fm., probably in the middle-



Fig. 14. Field views of the three different aeolian architectural elements of the (aftizar Formation. a - dune element. It shows wavy-laminated strata in the base of the troughs with 

a non-erosive geometlY (arrow). Pendl at the center-upper part is 14 cm. b - interdune element showing small current ripples. bioturbation. mottling and rootlets. Picture from Rio 
Mayor section. Pendl 12 cm. c - sandsheet element. The picture shows a transition from fluvial (fades St) at the base. fluvial-aeolian (fades Sp and architectural element B) in the 

middle part. to aeolian sandsheet showing plane-bed lamination and wind-ripple strata (architectural element B) in the upper part. 

late Spathian. This time-interval was related to the transition from 
members D to E, and so, is related to MBS-5. It was coincident with 
the appearance of paleosols, thin intercalated clay layers, bioturba­
tion, tetrapod footprints and the to-date only pollen and spore associ­
ation preserved in the Cafiizar Fm. All of these characteristics indicate 
slightly more humid conditions, but also indicate the first appearance 
of life after the Permian-Triassic biotic crisis in this area of the West­
ern Tethys (Fig. 16). It is important to state that life traces, such as 
pollen and fossil tetrapod footprints, were already described in sedi­
ments of Induan age in Central German Basin (Swiecicki et al., 1995). 

After a new brief period of dry conditions indicated by the de­
posits of the top of subunit E, during the Spathian-Anisian transition, 
new slightly humid conditions were re-established during the early 
Anisian, during the deposition of the top of the Cafiizar Fm. and 
were maintained during most of the time of the Eslida Fm. 
sedimentation. 

These arid and semi-arid climate fluctuations during the Smithian­
Spathian interval were possibly related to the still prevailing elevated 
CO2 values caused by coeval episodic volcanic activity well after the 
emplacement of the Siberian Traps (Royer, 2006; Payne and Krump, 
2007; Briihwiler et al., 2009). Carbon isotope excursions have been 
studied in detail in the last decade in different marine basins of the 
world and used for identification of drastic changes during the Olene­
kian and the transition to the Anisian (late Early Triassic-early Middle 
Triassic), where some large and short-lived fluctuations occurred 
(Galfetti et al., 2007a,b; Krystyn et al., 2007; Payne and Krump, 

2007; Richoz et al., 2007; Briihwiler et al., 2009). Three important 
shifts in the carbon isotope excursions were observed in the late 
Early Triassic and were broadly located in the middle Smithian, in 
the Smithian-Spathian and in the Spathian-Anisian transitions 
(Baud et al., 1996; Payne and Krump, 2007; Sellwood and Valdes, 
2007). 

These inferred volcanic episodes and the general absence of a veg­
etated cover, as shown by the rocks of the Cafiizar Fm., would have fa­
vored intense weathering of the basement rocks of the continental 
Early Triassic basins and increase of run-off and the influx of more 
terrigenous sediments to the basin (Retallack, 1999), as it is also cor­
roborated by the 87Sr and 143Nd data (Martin and Macdougall, 1995; 
Uysal et al., 2007; Hartmann et al., 2009). These circumstances would 
allow active channel lateral migration. Avulsion processes due to the 
lack of riparian vegetation stabilizing the banks of the channels were 
frequent allowing multi-storey development of the sedimentation. 

5.2. Tectonics and life recovery 

The Permian-Triassic transition in Western Europe is usually 
represented by a hiatus and/or a clear angular unconformity 
(Bourquin et al., 2007, 2011). Although this tectonic activity and 
time without sedimentation or erosion were variable depending on 
the studied basin of this area, the continental sedimentary record of 
the Mesozoic cycle always started during the Smithian-Spathian 



W Sector C Sector 
Rio Mayor Puntal del Car. Talayuelas Galova Monlan Alfondeguilla 

E Sector 
Benicassim 

7 1 2 3 4 5 6 
,----c=r-------,�--�,_���= 

] 

N.NE / 
Paleowinds 

N.NW •" r " .'. � 1 
'if . 

Benicassim section: 

F- fluvial 
Ae- aeolian 

4:7' transverse 
dunes 

Fig. 15. PaJeogeographicaJ reconstruction of the (aftizar Formation in the three studied sectors showing fluvial dominance in the W and C sectors and aeolian-fluvial toward the E 

sector (Benicassim section). A paJeohigh in the northern border of the studied basin, limited by Alhama and Ateca-Montalban faults (see Fig. 1) and so-called Ateca-Montalban 

High represented an important paJeogeographic barrier in the sedimentation isolating more humid areas toward the S and SW. 

(Olenekian, Early Triassic) except in central German Basin, where 
there is a continuous sedimentary record from the Induan (Szurlies, 
2007). 

Late Paleozoic-Late Triassic construction and dismemberment of 
Pangea and the possible associated volcanism are thought to have 
profoundly altered atmospheric circulation over tropical regions 
(e.g. Tabor and Montafiez, 2002; Woods, 2005; Galfetti et al., 
2007a). These changes led to general and local paleogeographical 
modifications as climate shifts and consequent changes in weathering 
intensity which modified the general atmospheric CO2 balance 
(Martin and Macdougall, 1995; Retallack, 1999; Payne et al., 2004; 
Royer et al., 2004; Hartmann et al., 2009). 

The sediments of the Cafiizar Fm. and those of the above cited ba­
sins were deposited in rift systems resulting from reactivation of pre­
vious Permian basins (Nikishin et al., 2002). Active tectonics caused 
punctuated phases of reactivation during the Smithian in most of 
West-Central Europe basins (Twitchett, 1999). As a result, different 
sedimentary breaks and major boundary surfaces (MBS) appeared 

intercalated in the sedimentary record. This is well demonstrated in 
the MBS of the Cafiizar Fm. (Figs. 4, 16), but also clearly recognizable 
in other basins, such as the Paris Basin and western part of the Ger­
manic Basin (Aigner and Bachmann, 1992; Bourquin et al., 2006). 
Each of these MBS separates continental depositional cycles that 
show tendency of base-level rise and a possible interruption at their 
top, which was later reactivated by a new tectonic pulse. 

The seven MBS described for the Cafiizar Fm. can be traced all 
along the central-eastern Iberian Ranges, indicating that coeval rift­
ing phases were affecting this broad area (L6pez-G6mez and Arche, 
1993b; Vargas et al., 2009). There is still no proof to demonstrating 
that these phases were related to the MBS of similar age observed 
in other European basins. However, the MBS-5, separating subunits 
D and E, which is the most important one from the paleogeographical 
point of view in the Iberian Ranges and was recently also been ob­
served in the Catalonian Ranges, NE Iberian Peninsula (Galan­
Abellan, 2011) is thought to have an intra-Spathian age, and may be 
related to the Hardegsen unconformity, of similar age, described in 
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unconformity separating members D and E. Sedimentary and paieontological features allow to establish four main climate intervals between the late Smithian to early Anisian. 

detail in the Vosges (NE France), central Germanic basin and Paris 
basin (Bourquin et al., 2006, 2009; Bourquin and Durand, 2007), 
and the Triassic Cheshire basin, UK (Mountney and Thompson, 
2002). In fact, a major tectonic phase of the same age was related to 
an important structural reorganization in NW Europe (Geluk, 2005), 
which could be related to the final phase of collapse of the Variscan 
Belt (R6hling. 1991). 

The analogies of the Cafiizar Fm. with other coeval units of neigh­
boring basins of western Tethys perhaps indicate that general uni­
form paleoecological conditions existed during the Early Triassic 
over extensive areas (Cassinis et al., 2003; Payne et al., 2004; 
Galfetti et al., 2007a; Cassinis et al., 2012). It would have included 
vast surfaces with a general depleted oxygen content, punctuated 
by elevated CO2 values and general acidic conditions that prevailed 
after the catastrophic PiT boundary volcanic event in Siberia until 
middle Spathian, when new, improved paleoenvironmental condi­
tions allowed life recovery (Twitchett, 1999). 

As it is shown in the Cafiizar Fm., these new paleoenvironmental 
conditions also allowed slow re-establishment of biotic diversity in 
the Iberian Basin, where first signals of life, such as tetrapod footprints, 
plant fragments, bioturbation and paleosols occurred just above the 
MBS-S, in member E, during middle-late Spathian (Fig. 16), but it is 
not until the early Anisian, during deposition of the Eslida Fm., about 
1 My later, that diversity showed a clear increase in this area, as 

shown by the presence of different paleontological groups (Bethoux 
et al., 2009; Gand et al., 2010; Gal.in-AbeUan, 2011). Therefore, the 
first signals of recovery of life in the SE Iberian Basin started just 
after the unconformity represented by MBS-S, a 7th order surface 
that we have been related to the coeval tectonic event in Western 
and Central Europe mirrored by the so-called Hardegsen unconformi­
ty. The absence of any biological activity traces in the Early Triassic of 
the Iberian Ranges does not imply that this area was an absolute bio­
logical desert, only that populations were very sparse. 

Changes in paleoenvironmental and geochemical conditions could 
be so related to tectonic activity allowing new possibilities for the re­
covery of life in the middle Spathian. The creation of new geographi­
cal corridors that would favor an increase of water oxygenation and 
animal migration allowing their installation in areas with more suit­
able life conditions could be related to this activity. 

Prolonged general disturbances and delay in the recovery of life in 
the Early Triassic in most of Pangea are probably related to a chain of 
processes. Simple evidence of this fact is the similar general sedimen­
tary record observed in different and geographically separated conti­
nental basins. Volcanic pulses during the Early Triassic and its 
related prolonged geochemical anomalies could be a linking cause 
for the above mentioned lack of vegetated cover, CO2 anomalies and 
weathering (Payne and Krump, 2007). Carbon cycle disturbances con­
tinued through the Early Triassic during an interval of approximately 



5 My with an excursion of its isotope characterized by positive and 
negative shifts (Galfetti et al., 2007a,b; Richoz et al., 2007; Bruhwiler 
et al., 2009). These types of fluctuations could have delayed 5-10 My 
the appearance of generalized signals of the recovery of life since the 
beginning of the Triassic (EMin, 1993, 2006; Hallam and Wignall, 
1997; Brayard et aI., 2006). 

6. Conclusions 

The Cafiizar Fm. represents the beginning of the first Mesozoic 
cycle of sedimentation in the Iberian Basin after the Permian-Triassic 
crisis and paleoenvironmental changes. It is subdivided into six mem­
bers (A-F) separated by major boundary surfaces (MBS). The sedi­
mentological and paleontological study of this unit allows a 
comparison of some paleoenvironmental characteristics which can 
be observed in neighboring basins of SW Europe during this special 
period of time. 

Each of the MBS may represent a time-span of about 104_ 
105 years and can be traced laterally over hundreds of kilo meters, in­
dicating to a regional tectonic origin. Renewed activity along the 
basin boundary faults changed local and/or regional slopes, causing 
partial erosion of previous sediments and fluvial network changes. 

The age of the uppermost part of the Cafiizar Fm. is lower Anisian 
according to a pollen association, and the age of the base is here esti­
mated as middle-late Smithian based on elemental sedimentary cal­
culations of the MBS and sedimentary sequences time span and the 
comparison with other described coeval series of neighboring basins. 

Detailed study on facies and architectural elements defined in the 
Cafiizar Fm. allows the determination of its fluvial origin with some 
punctuated aeolian incursions for the western and central areas, 
and a mixed aeolian and fluvial origin in the eastern area of the Iberi­
an Ranges, close to the present-day Mediterranean coast. These data 
allow the recognition of the Ateca-Montalban High, at the northern 
border of the study area, as a topographic barrier separating the 
northern-eastern aeolian dominated zone from the southern mainly 
fluvial dominated zone. This barrier was probably not only of local 
significance in the Iberian Basin, but also for western Tethys area. 

The sedimentary characteristics and fossil record of the upper part 
of the unit record different shifts in climate conditions during the sed­
imentation of the Cafiizar Fm. The climate ranged from semiarid to 
arid, with at least two marked arid periods in the middle-late 
Smithian to middle Spathian, mainly affecting to B, C and D members, 
and a short one during the Spathian-Anisian transition, at the top of E 
member. They are intercalated with two more humid periods during 
the late Spathian and in the early Anisian, at the top of the unit, affect­
ing E and F members. The lower middle-late Smithian to middle 
Spathian arid interval contrasts with a more humid interval of similar 
age in N and Central Europe. 

Finally, MBS-5 is estimated to have a late Spathian age, and is 
represented by a slight unconformity due to a clear sedimentary 
and tectonic reorganization in the Iberian Basin. The beginning of 
the first signals of biotic recovery in the Iberian Basin and the appear­
ance of the necessary environmental conditions for this recovery are 
observed just above MBS-5, about 5 My after the Permian-Triassic 
formation of the boundary, although it is not approximately until 
1 My later, as seen in the Eslida Fm., that clear life signals appear. 

The age of this first fossil record in the Iberian Basin contrasts with 
that of the Induan one described for the first fossil record in N and 
Central Europe. It is perhaps related to a more arid climate conditions 
extended until the middle Spathian in the Iberian basin. 

The age, stratigraphy and general sedimentary characteristics of 
MBS-5 surface allow a comparison with the coeval Hardegsen uncon­
formity defined for Central-Western Europe and so, clearly indicates 
tectonic activity of regional extent for this broad area. These data 
allow a consideration of the possible relationship of tectonic activity 

and related development of geographical corridors with biotic recov­
ery in the study area. 
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