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1 Introduction

Let Ω be a bounded domain in IRN , N ≥ 1, with smooth boundary ∂Ω. Consider the linear non
autonomous model equation






ut −∆u = C(t, x)u in Ω, t > s
Bu = 0 on ∂Ω

u(s) = u0

(1.1)

with the boundary operator

Bu = u, Dirichlet case, or Bu =
∂u

∂"n
, Neumann case, Bu =

∂u

∂"n
+ b(x)u, Robin case,

being "n the outward normal vector-field to ∂Ω and b(x) a C1 function.
Note that if C ∈ Cθ(IR, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, then (1.1) is well

posed for every initial data u0 ∈ Lq(Ω) for 1 ≤ q ≤ ∞; see [9] and [10]. Hence, (1.1) defines an
evolution operator in Lq(Ω), 1 ≤ q ≤ ∞, UC(t, s), as UC(t, s)u0 := u(t, s;u0).

Moreover, there exist M > 0 and β ∈ IR such that

‖U(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) for all t > s. (1.2)

Therefore, we can define the exponential type

β0(C) = inf{β ∈ IR, such that (1.2) holds for some M > 0}, (1.3)

which measures the growth/decay of solutions of (1.1).
In this paper we want to discuss the question of the minimal amount of perturbation needed

to change the exponential type of the evolution equation.
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tigacin UCM-Comunidad de Madrid GR69/06. Grupo 920894 CADEDIF, Spain
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Observe that in the autonomous case, that is, when C = C(x), with C ∈ Lp(Ω), and p > N/2,
the exponential type of the associated semigroup is determined by the first eigenvalue of the
associated eigenvalue problem

{
−∆u = C(x)u + λu in Ω,
Bu = 0 on ∂Ω

which is given by

λ1(C) = min
φ

∫
Ω |∇φ|2 −

∫
Ω C(x)|φ|2∫

Ω |φ|2

and
β0(C) = −λ1(C). (1.4)

Note that the minimum above is attained over a suitable set of test functions, depending on the
boundary conditions. Therefore, if 0 ≤ P ∈ Lp(Ω), with p > N/2, it is clear that λ1(C + P ) ≤
λ1(C) and using that the minima are attained and that P (= 0 then we get

λ1(C + P ) < λ1(C).

Hence any signed, no zero, perturbation actually modifies the exponential type.
In the T–periodic case, that is when C(t, x) in (1.1) is a T periodic function, using the

Poincarè map associated to (1.1), using the positivity properties of the parabolic equation and
the Krein–Rutman theorem, the exponential type (1.3) can be determined in terms of the
periodic–parabolic eigenvalue problem






ut −∆u = C(t, x)u + µu in Ω, 0 < t < T
Bu = 0 on ∂Ω

u(T ) = u(0).
(1.5)

In fact, if µ is such that the solution u of (1.5) is positive in Ω × (0, T ) then from Proposition
14.4 in [4] we have

β0(C) = e−µT .

See [4] for precise assumptions on the regularity of the coefficients and boundary conditions and
further details. In particular note that C(t, x) is assumed to be Hölder continuous in space and
time and, for the case of Robin boundary conditions, it is assumed that b ≥ 0 on the boundary
of Ω.

Using these tools, Lemma 15.5 in [4] implies that for P (t, x) ≥ 0, T–periodic, not identically
zero and satisfying certain regularity properties, we have again

β0(C) < β0(C + P )

and the exponential type is actually modified.
In the general case, that is, when no assumption is made on the time behavior of the co-

efficients, we have no associated eigenvalue problems anymore. In fact there is no complete
spectral theory as for the finite dimensional case, [12]. Thus, a different approach must be
explored. Therefore, our goal here is to give sharp conditions on time dependent perturbations
P (t, x) of C(t, x) in (1.1) to ensure that the exponential type of the perturbed equation






ut −∆u = C(t, x)u + P (t, x)u in Ω, t > s
Bu = 0 on ∂Ω

u(s) = u0
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is either increased or decreased.
As will be seen below, our results state that the exponential type is decreased provided the

favorable part in the perturbation is “effectively positive” and the defavorable part is not too
big. In doing this, we will only require conditions on the asymptotic values of the perturbation
as t → ±∞. Also, we will show that the good part of the perturbation must be “sustained” at
infinity, that is it must be active for large times and on the whole domain; see Theorems 4.4
and 4.5. Otherwise we can not change the exponential type; see Remark 4.6. In particular, it
is not true that any non–negative nontrivial perturbation changes the exponential type. Note
in particular, that we can change the exponential type with periodic perturbations even if the
original problem is not periodic. In particular the exponential type is decreased if the T–periodic
perturbation P (t, x) satisfies

1
T

∫ T

0
inf
x∈Ω

P (r, x) dr > 0.

A particular important case is when the original system (1.1) is at the limit of stability (or
neutrally stable) in the sense that the norm of the evolution operators are bounded above and
below (in particular, the exponential type is β0 = 0). Then our results give qualitative and
quantitative threshold values on the perturbations that can stabilize the system, that is, to have
solutions that decay exponentially.

In summary, our results, which are of perturbative nature, do not assume any kind of pe-
riodicity or almost–periodicity in the equation. Also, no sign conditions are imposed in the
boundary coefficient in the case of Robin boundary conditions. Finally, perturbations are only
assumed to be in the class Cθ(IR, Lp(Ω)), for some p > N/2. Indeed all the results here apply
for much more general linear non–autonomous parabolic problems than (1.1), of the form






ut + A(t)u = C(t, x)u in Ω, t > s
B(t)u = 0 on ∂Ω
u(s) = u0

with time dependent elliptic part of the form

A(t, D)u = −
N∑

i,j=1

aij(t, x)∂i∂ju +
N∑

i=1

ai(t, x)∂iu + a(t, x)u

with suitable smooth coefficients and either Dirichlet boundary conditions or time–dependent
boundary conditions of Robin type

B(t)u =
∂u

∂"η
+ b(t, x)u,

for suitable exterior (oblique) vector "η; see (6.1).
Using these results, we also analyze the asymptotic behavior of the positive solutions of the

nonlinear equation 




ut −∆u = f(t, x, u) in Ω, t > s
Bu = 0 on ∂Ω

u(s) = u0 ≥ 0
(1.6)

with the conditions f(t, x, 0) ≥ 0 and

f(t, x, u)
u

decreasing for u ≥ 0 (1.7)
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and improve some results in [11]. In fact, in [9] there were given conditions on the nonlinear
term f(t, x, u) ensuring the existence of some special complete positive solutions of (1.6), that
is, which are defined for all times; see Definition 3.6. Condition (1.7) guarantees the uniqueness
of such solution ϕ(t, x), see [11].

This special solution describes the asymptotic behavior of all positive solutions of (1.6) in a
pullback sense, that is, for any positive initial data u0, for s ≤ t0 and for any t ∈ IR, we have
that

u(t, s;u0)− ϕ(t) → 0, as s → −∞ in C(Ω).

Furthermore, ϕ(t, x) also describes the forwards behavior of positive solutions of (1.6), since in
fact it was also shown in [11] that for any s ∈ IR and for any two positive solutions of (1.6), for
t > s, we have,

u1(t, x)− u0(t, x) → 0 as t →∞ in C(Ω).

Our goal here is to show that such convergences are actually exponential, see Theorems 5.3
and 5.4.

An important particular example considered in [11] are logistic equations, for which

f(t, x, u) = m(t, x)u− n(t, x)uρ, ρ ≥ 2

where m ∈ Cθ(IR, Lp(Ω)) for certain p > N/2 and 0 < θ ≤ 1 and n ≥ 0 is continuous and locally
Hölder in t, not identically zero. Our results here also apply to these models; see Remark 5.2.

The paper is organized as follows. In Section 2 we present some of the basic estimates on the
solutions of (1.1) that will be used as building blocks for the rest of the results. We also define the
exponential type of the evolution operator at ±∞ which reflects the possible different behavior
of solutions for large positive and very negative times. We show then that the exponential type is
independent of the space in which we look at the solutions. Some relationship with the principal
spectrum, as defined in [7], [6] is also given. In particular the exponential type coincides with the
so called principal Lyapunov exponent. Also, some estimate on the exponential type is derived
form the elliptic part of the equation.

In Section 3 we take advantage of the order preserving properties of the solutions, that is, of
the maximum principle, and relate the exponential type with the behavior of positive solutions.
In particular we show how the exponential type at infinity can be estimated by observing the
forwards behavior of a given particular positive solution. On the other hand, we also show how
the exponential type at minus infinity is related to the behavior of complete positive solutions.
The existence of such objects has been studied in [6, 7] and [8].

In Section 4 we give our main results on the linear problem above, giving conditions on the
perturbations that guarantee the change in the exponential type of the evolution operators; see
Theorems 4.4 and 4.5. As mentioned before this is done by only imposing conditions only in the
asymptotic values of the perturbations as t → ±∞. As a by product we also show that if the
perturbation is not sustained enough at ±∞ then, actually, no change in the exponential type is
achieved. Some particular easy–to–apply cases are also given in Propositions 4.7 and 4.9. Note
in particular that in the latter result we allow sing changing perturbations with very large bad
values in small time–wandering sets in Ω.

In Section 5, we apply our previous results to the nonlinear non-autonomous problem (1.6).
In particular we first show that the special solution ϕ(t, x) mentioned above, is linearly expo-
nentially stable, both forwards and in pullback senses; see Proposition 5.1. Then we show that
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ϕ(t, x) attracts the dynamics of positive solutions of (1.6) exponentially fast; see Theorems 5.3
and 5.4.

Finally, in Section 6 we discuss how all the previous results on linear equations apply for much
more general classes of parabolic equations including time–dependent coefficients and boundary
conditions.

2 Exponential type of evolution equations

We consider the problem





ut −∆u = C(t, x)u, in Ω, t > s
Bu = 0, on ∂Ω, t > s

u(s) = u0

(2.1)

posed in X = Lq(Ω) with 1 < q < ∞ or in X = C(Ω). Then, quoting results from [10],
we have that if C ∈ Cθ(IR, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, then (2.1) defines
an order preserving evolution operator in X. We denote this evolution operator by UC(t, s),
i.e. u(t, s;u0) = UC(t, s)u0 is the solution of (2.1).

Moreover for each q and r with 1 ≤ q ≤ r ≤ ∞ and R0 > 0 there exist L = L(R0, r, q) > 0
and δ = δ(R0, r, q) > 0 such that the evolution operator UC(t, s) satisfies

‖UC(t, s)u0‖Lr(Ω) ≤ L
eδ(t−s)

(t− s)
N
2

(
1
q−

1
r

) ‖u0‖Lq(Ω), t > s (2.2)

for every C ∈ Cθ(IR, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, such that ‖C‖L∞(IR,Lp(Ω)) ≤ R0.
Also, the evolution operator smoothes the solutions. More precisely, for every u0 ∈ Lq(Ω)

and t > s we have

(s,∞) + t ,−→ u(t, s;u0) := UC(t, s)u0 ∈
{

Cν
B(Ω) if p > N/2

C1,ν
B (Ω) if p > N

is continuous for some ν > 0. Here Cj,ν
B (Ω) =

{
Cj,ν

0 (Ω) for Dirichlet
Cj,ν(Ω) for Neumann or Robin

, see e.g. [10].

Note that (2.2) implies that, with r = q, the evolution operator satisfies

‖UC(t, s)‖L(Lq(Ω)) ≤ Leδ(t−s)

with L = L(R0, q) and δ = δ(R0, q) if ‖C‖L∞(IR,Lp(Ω)) ≤ R0.
We will see now that, in fact, for a given C(t, x) an exponent in such an estimate can be

taken independent of q; see Lemma 3.1 in [9].

Lemma 2.1 Assume that U = UC , as above, as an evolution operator in Lq(Ω), 1 ≤ q ≤ ∞,
satisfies

‖U(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) (2.3)

for some constants M > 0 and β ∈ IR and for all t > s ≥ s0 or t0 ≥ t > s respectively.
Then, as an operator in Lr(Ω), with 1 < r ≤ ∞, U(t, s) satisfies, for all t > s ≥ s0 or

t0 ≥ t > s
‖U(t, s)‖L(Lr(Ω)) ≤ Keβ(t−s) for all t > s,
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respectively, for K = Leδ max{Me−βc(|Ω|), eβ−}, where β− = max{−β, 0} ≥ 0 denotes the
negative part of β and L, δ as in (2.2).

Proof. Suppose that r ≥ q, so that Lr(Ω) ⊆ Lq(Ω). Then, if t − s > 1, since U(t, s) =
U(t, t− 1)U(t− 1, s),

‖U(t, s)u0‖Lr(Ω) ≤ ‖U(t, t− 1)‖L(Lq(Ω),Lr(Ω))‖U(t− 1, s)u0‖Lq(Ω).

Using now (2.3) and (2.2) we have

‖U(t, s)u0‖Lr(Ω) ≤ LMeδ−βeβ(t−s)‖u0‖Lq(Ω) ≤ LMeδ−βc(|Ω|)eβ(t−s)‖u0‖Lr(Ω).

Thus
‖U(t, s)‖L(Lr(Ω)) ≤ K0eβ(t−s)

for all t− s > 1 with K0 = LMeδ−βc(|Ω|).
Suppose now that 1 ≤ r < q, and therefore Lq(Ω) ⊂ Lr(Ω). Now, if t − s > 1 we remark

that U(t, s) = U(t, s + 1)U(s + 1, s). So, using (2.3) and (2.2)

‖U(t, s)u0‖Lr(Ω) ≤ c(|Ω|)‖U(t, s)u0‖Lq(Ω)

≤ c(|Ω|)‖U(t, s + 1)‖L(Lq(Ω))‖U(s + 1, s)u0‖Lq(Ω)

≤ c(|Ω|)LMeδ−βeβ(t−s)‖u0‖Lr(Ω).

Thus,
‖U(t, s)‖L(Lr(Ω)) ≤ K0eβ(t−s)

for all t− s > 1, with K0 as above.
Finally, for t− s ≤ 1 and for either case of r, from (2.2), we have

‖U(t, s)‖L(Lr(Ω)) ≤ Leδe−β(t−s)eβ(t−s) ≤ K1eβ(t−s)

with K1 =
{

Leδ if β ≥ 0
Leδ−β if β < 0

}
= Leδ+β− , where β− = max{−β, 0} ≥ 0 denotes the negative

part of β.
Now we take K = max{K0,K1} and the result follows.

Note that the constant K in the lemma also depends on q and r but we will not pay attention
to this dependence.

Hence we can define

Definition 2.2
i) The exponential type at ∞ of the evolution operator UC(t, s) is the best exponent in the
inequality

‖U(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) for all t > s ≥ s0, (2.4)

that is,

β+
0 (C) = inf{β ∈ IR, such that (2.4) holds for some M > 0 and t > s ≥ s0}

for some s0.
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ii) The exponential type at −∞ of the evolution operator UC(t, s) is the best exponent in the
inequality

‖U(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) for all t0 ≥ t > s, (2.5)

that is,

β−0 (C) = inf{β ∈ IR, such that (2.5) holds for some M > 0 and t0 ≥ t > s}

for some t0.
iii) The exponential type of the evolution operator UC(t, s) is the best exponent in the inequality

‖U(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) for all t > s,

that is,
β0(C) = max{β−0 (C), β+

0 (C)}.

Now observe that for each β such that (2.4) or (2.5) are satisfied, the optimal constant in
these inequalities depends on β, i.e. M = M(β). Also, it can be easily shown that M(β) is a
decreasing function of β. This constant may depend on q and Ω as well, but we will not pay
attention to such dependence.

In general it may happen that as β approaches the optimal value, β±0 (C), the best constant
M(β) diverges. Hence we have the following

Definition 2.3 We say UC(t, s) has “defect γ ≥ 0” at ±∞, if for ε > 0 we have that the best
constant in (2.4) or (2.5) satisfies

M(β±0 (C) + ε) ≤ D0(ε−γ + 1)

for some constant D0 > 0.

Note that the defect is zero iff the exponential type is attained, that is, if (2.4) or (2.5) hold
for β = β±0 (C) respectively. Hence, summarizing the consequences of Lemma 2.1, we have

Corollary 2.4 With the notations above,
i) The exponential type of the evolution operator UC(t, s) at ±∞, is independent of the Lq(Ω)
space.
ii) The defect γ ≥ 0 of the evolution operator UC(t, s) at ±∞, is independent of the Lq(Ω) space.

Proof. Part i) is clear. For part ii) just note that the constant K in Lemma 2.1 satisfies
K(β) = Leδ max{M(β)e−βc(|Ω|), eβ−}, and the result follows taking β = β±0 (C) + ε .

Remark 2.5 Note that if β+
0 (C) < 0 then for a bounded set of initial data u0, all solutions of

(2.1), u(t, s;u0), decay exponentially to zero, as t →∞. We say then that UC(t, s) is exponen-
tially stable at ∞.

On the other hand, if β−0 (C) < 0 then for a bounded set of initial data u0, all solutions of
(2.1), u(t, s;u0) decay exponentially to zero, as s → −∞, that is in the pullback sense. We say
then that UC(t, s) is exponentially stable at −∞ or exponentially pullback stable.
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Observe that the concept of exponential type used above is closely related to that of principal
spectrum for nonautonomous equations, [6], [7], [5] and references therein. More precisely the
principal spectrum, related to the dynamical spectrum or the Sacker and Sell spectrum in finite
dimensions, [12], is defined as the set of all possible limits

lim
n

ln ‖U(tn, sn)‖L(Lq(Ω))

tn − sn

on all sequences such that tn − sn → ∞. This set is a closed interval and thus coincides with
[βinf , βsup] where

−∞ ≤ βinf = lim inf
ln ‖U(tn, sn)‖L(Lq(Ω))

tn − sn
, βsup = lim sup

ln ‖U(tn, sn)‖L(Lq(Ω))

tn − sn

where the liminf and limsup are taken on all sequences such that tn − sn →∞. It is clear then
that

β0(C) = βsup,

which, is also denoted the principal Lyapunov exponent.
Also note that considering only sequences such that tn − sn → ∞ and sn ≥ s0 or t0 ≥ tn

leads, respectively, to the numbers β±sup and β±inf . Also clearly

β±0 (C) = β±sup.

See Section 3 for further details on the principal spectrum for (2.1).
Now we show that the exponents in (2.4), (2.5) are also related to the smoothing estimates

between Lebesgue spaces of the evolution operator, see [9], Lemma 3.2.

Lemma 2.6 If (2.4) or (2.5) is satisfied with M = M(β) then, for 1 ≤ q ≤ r ≤ ∞, for every
ε > 0

‖UC(t, s)‖L(Lq(Ω),Lr(Ω)) ≤ M(ε, β)
e(β+ε)(t−s)

(t− s)
N
2

(
1
q−

1
r

) , (2.6)

for t > s ≥ s0 or t0 ≥ t > s respectively, with

M(ε, β) = K(β)e|β|
{

(α
e )αε−α if 0 < ε < ε0 = α

e
1 if ε ≥ ε0 = α

e

}

≤ K(β)e|β|c(α)(ε−α + 1)

where K(β) = Leδ max{1,M(β)e−β}, with L, δ as in (2.2), and α = N
2

(
1
q −

1
r

)
.

Proof. From (2.2) for t− s ≤ 1,

‖U(t, s)‖L(Lq(Ω),Lr(Ω)) ≤ Leδ(t− s)−
N
2

(
1
q−

1
r

)

and, for t− s > 1, from (2.2) and (2.3)

‖U(t, s)‖L(Lq(Ω),Lr(Ω)) ≤ ‖U(t, t− 1)‖L(Lq(Ω),Lr(Ω))‖U(t− 1, s)‖L(Lq(Ω))

≤ LM(β)eδ−βeβ(t−s).
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Hence,

‖U(t, s)‖L(Lq(Ω),Lr(Ω)) ≤
{

K(β)(t− s)−
N
2

(
1
q−

1
r

)
if t− s ≤ 1

K(β)eβ(t−s) if t− s > 1
(2.7)

for K(β) = Leδ max{1,M(β)e−β}.
The right hand side in (2.7) can be bounded above by a right hand side as in (2.6), iff

M(ε, β) ≥ K(β)e−(β+ε), and M(ε, β) ≥ K(β) sup
z≥1

h(z)

with α = N
2

(
1
q −

1
r

)
and h(z) = zαe−εz. Note that max{1, e−(β+ε)} ≤ e|β|, hence the condition

above can be recast as
M(ε, β) ≥ K(β)e|β| max{1, sup

z≥1
h(z)}.

Since, the sup of h(z) for z ≥ 0 is attained at z∗ = α/ε and h(z∗) = (α
e )αε−α, comparing

with h(1) = e−ε we get

sup
z≥1

h(z) =
{

(α
e )αε−α for ε ≤ α

e−ε for ε >α
.

Now, comparing this sup with 1, the result follows.

Next we give an upper bound on the exponential type of an evolution operator UC(t, s). See
the next section for further upper and lower bounds.

Lemma 2.7 Let C ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and p > N/2. Denote by λ1(t) is the first
eigenvalue of the problem

{
−∆u− C(t, x)u = λ(t)u in Ω

Bu = 0 on ∂Ω.

Assume there exists s0 (or t0 respectively), τ > 0 and m ∈ IR, such that for all t > s ≥ s0 (or
s < t ≤ t0 respectively) and t− s ≥ τ

1
t− s

∫ t

s
λ1(r) dr ≥ m.

Then the exponential type of evolution operator UC(t, s) satisfies

β+
0 (C) ≤ −m.

(β−0 (C) ≤ −m respectively).

Proof. As the exponential type is independent of the Lebesgue space, we take X = L2(Ω) and
for any fixed t ∈ IR, the first eigenvalue satisfies

∫

Ω

(
|∇ϕ|2 − C(t, x)|ϕ|2

)
dx + I(u,B) ≥ λ1(t)‖ϕ‖2, (2.8)

for all smooth functions ϕ satisfying Bu = 0 on ∂Ω, where we have denoted by ‖ · ‖ the norm
in L2(Ω) and I(u,B) = 0 for Dirichlet or Neumann boundary conditions or I(u,B) =

∫
∂Ω b(x)u2

for Robin boundary conditions.
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Multiplying the first equation in (2.1) by u(t) and integrating in Ω, we have

1
2

d
dt
‖u(t)‖2 +

∫

Ω

(
|∇u|2 − C(t, x)|u|2

)
dx + I(u(t),B) = 0.

By (2.8) we have
d
dt
‖u(t)‖2 + 2λ1(t)‖u(t)‖2 ≤ 0

and then
‖u(t)‖2 ≤ e−2

∫ t

s
λ1(r) dr‖u(s)‖2.

The rest follows from part v) of the Lemma below.

Now we prove the Lemma used above, that introduces a class of real functions that will be
used several times henceforth.

Lemma 2.8 Given m ∈ IR, define the class C+(m) (or C−(m) respectively) of real continuous
and bounded functions f(t), such that there exists s0 (or t0 respectively) and τ > 0, such that
for all t > s ≥ s0 (or s < t ≤ t0 respectively) and t− s ≥ τ

1
t− s

∫ t

s
f(r) dr ≥ m.

Then
i) C±(m) is a nonempty, convex, closed subset of Cb(IR).
ii) If f(t) = m for all t, then f ∈ C±(m).
iii) If f ∈ C±(m) and g(t) is a continuous and bounded function such that g(t) ≥ f(t), then
g ∈ C±(m).
iv) If f(t) is a T -periodic continuous function, set

m =
1
T

∫ T

0
f(r) dr.

Then f ∈ C±(m− ε) for every ε > 0.
v) If f ∈ C±(m) then there exists s0 (or t0 respectively) and M = M(f,m) such that for all
t > s ≥ s0 (or s < t ≤ t0 respectively) we have

e−
∫ t

s
f(r) dr ≤ Me−m(t−s).

Even more M = 1 if f ≥ 0 and m ≥ 0.

Proof. Parts i)–iii) are immediate. For part iv), given t > s, using z = t− s > 0, we have

1
t− s

∫ t

s
f(r) dr =

1
z

∫ z

0
f(r + s) dr.

Therefore it is enough to prove that for a T -periodic function and for every ε > 0 there exists
τ = τ(ε) > 0 such that for t > τ we have

F (t) =
1
t

∫ t

0
f(r) dr ≥ m− ε,
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for every ε > 0, with τ independent of all translations of f .
Now note that F (0) = f(0) and F (jT ) = m for j = 1, 2, . . .. Then for t ∈ [jT, (j + 1)T ),

t = jT + s, with 0 ≤ s < T , using periodicity we have

F (t) =
1

jT + s

( ∫ jT

0
f(r) dr +

∫ jT+s

jT
f(r) dr

)
=

1
jT + s

(
jmT +

∫ s

0
f(r) dr

)
.

But for 0 ≤ s < T ,
∫ s
0 f(r) dr ≥ I0 := −

∫ T
0 f−(r) dr, where f−(t) = max{−f(t), 0} denotes the

negative part of f(t). Also, the same bound hold for any translate of f . Hence,

F (t) ≥ 1
(j + 1)T

(
jmT + I0

)
→ m, as j →∞

and the result follows.
Finally, for v), if f ∈ C±(m) let s0 (or t0 respectively) and and τ > 0 as in the definition.

Then, clearly, for all t > s ≥ s0 (or s < t ≤ t0 respectively) and t− s ≥ τ , we have

e−
∫ t

s
f(r) dr ≤ e−m(t−s).

Then it is enough to observe that for any γ ∈ IR there exists M = M(f, γ) such that for all
t > s ≥ s0 (or s < t ≤ t0 respectively) and t− s ≤ τ , we have

e−
∫ t

s
f(r) dr ≤ e‖f−‖∞τ ≤ Meγ(t−s)

for

M(f, γ) =
{

e‖f−‖∞τ if γ ≥ 0
e(‖f−‖∞−γ)τ if γ < 0 .

Then we take γ = m.

As we will see below the classes C+(m) and C−(m) will play an important role in the results
of the next sections.

3 Exponential type, principal spectrum and positive solutions

One crucial property of (2.1) that has not been exploited in the previous section is the order
preserving property. Thus, in this section we take advantage of this property and relate the
exponential type with the behavior of positive solutions.

Lemma 3.1 i) If u0 ≥ 0 then UC(t, s)u0 ≥ 0 and is strictly positive in Ω, for t > s. Additionally
for every u0 ∈ Lq(Ω) we have |UC(t, s)u0| ≤ UC(t, s)|u0|.

In particular, positive functions grow at the maximum rate, i.e. β±0 (C) is the best exponent
in the inequality

‖U(t, s)u0‖Lq(Ω) ≤ Meβ(t−s)‖u0‖Lq(Ω)

for all 0 ≤ u0 ∈ Lq(Ω) and for all t > s ≥ s0 or s < t ≤ t0, respectively.
ii) Assume that for all t > s ≥ s0 or s < t ≤ t0, we have

C1(t, x) ≤ C2(t, x).

11



Then
β±0 (C1) ≤ β±0 (C2)

iii) In particular, assume that for either all t ≥ s0 or t ≤ t0 we have

C0(x) ≤ C(t, x) or C(t, x) ≤ C1(x)

for every x ∈ Ω and for some Ci ∈ Lp(Ω) for some p > N/2, i = 1, 2. Then

−λ1(C0) ≤ β±0 (C) or β±0 (C) ≤ −λ1(C1),

respectively, where λ1(Ci) is the first eigenvalue of the problem
{
−∆u− Ci(x)u = λu in Ω

Bu = 0 on ∂Ω.

Proof. For i) we just refer to [10]. Just observe that UC(t, s)u0 ≥ 0 and is strictly positive in Ω,
for t > s, as a consequence of the maximum principle. This in particular implies, since UC(t, s)
is order preserving, that |UC(t, s)u0| ≤ UC(t, s)|u0| and the rest is easy.

For ii) note that from comparison, we have for u0 ≥ 0, t > s and s ≥ s0 or t ≤ t0

UC1(t, s)u0 ≤ UC2(t, s)u0

and the result follows from i).
For iii) note that we have again, for u0 ≥ 0, t > s and s ≥ s0 or t ≤ t0

UC(t, s)u0 ≥ UC0(t, s)u0 = SC0(t− s)u0 ≥ 0

or
UC(t, s)u0 ≤ UC1(t, s)u0 = SC1(t− s)u0

where SCi(t) denotes the semigroup associated to the autonomous linear equation
{

zt −∆z = Ci(x)z, in Ω
Bz = 0 on ∂Ω.

Then the result follows easily from ii) and (1.4).

The next result states that we can obtain some estimates on the norms ‖UC(t, s)‖L(Lq(Ω))

for t > s ≥ s0 by observing the forwards behavior of a particular positive solution.

Lemma 3.2
i) If there exists u0 ∈ Lq(Ω), u0 > 0 a.e. in Ω, and a β ∈ IR, such that

‖u(t, s0;u0)‖Lq(Ω) ≤ Meβ(t−s0), for all t > s0 (3.1)

then for some positive constant M1(s) we have

‖UC(t, s)‖L(Lq(Ω)) ≤ M1(s)eβ(t−s), for all t ≥ s ≥ s0.

ii) If there exists u0 ∈ Lq(Ω) and β′ ∈ IR, m > 0, such that

meβ′(t−s0) ≤ ‖u(t, s0;u0)‖Lq(Ω), for all t > s0

12



then
‖UC(t, s)‖L(Lq(Ω)) ≥ M0(s)eβ′(t−s), for all t ≥ s ≥ s0

with M0(s) = meβ′(s−s0)

‖u(s,s0;u0)‖Lq(Ω)
.

iii) Therefore, if

meβ′(t−s0) ≤ ‖u(t, s0;u0)‖Lq(Ω) ≤ Meβ(t−s0), for all t > s0

with β′ ≤ β, then

M0(s)eβ′(t−s) ≤ ‖UC(t, s)‖L(Lq(Ω)) ≤ M1(s)eβ(t−s), for all t ≥ s ≥ s0

for M0(s) = m
M e−(β−β′)(s−s0) and some positive constant M1(s).

Proof. For i), observe first that we can always assume that (3.1) is satisfied for every t > s ≥ s0.
For this define w(s) = e−β(s−s0)u(s, s0;u0). Then ‖w(s)‖Lq(Ω) ≤ M and

‖u(t, s;w(s))‖Lq(Ω) ≤ Meβ(t−s).

Also w(s) ∈ Lq(Ω), w(s) > 0 a.e. in Ω.
Now, fix s ≥ s0 and take any t > s ≥ s0 and consider an initial data v0 ∈ Lq(Ω), such that

there exists λ = λ(s, v0) such that |v0| ≤ λw(s). Then
∣∣∣e−β(t−s)UC(t, s)v0

∣∣∣ ≤ λe−β(t−s)UC(t, s)w(s).

Thus
‖e−β(t−s)UC(t, s)v0‖Lq(Ω) ≤ λ(s, v0)M, for any t > s.

Now observe that the set

C(s) = {v, ∃λ > 0, |v(x)| ≤ λw(s, x) a.e. x ∈ Ω}

is dense in Lq(Ω) since w(s) > 0 a.e. in Ω, see Lemma 3.3 below.
Hence, T (t, s) = e−β(t−s)UC(t, s), for t > s ≥ s0, is pointwise bounded in a dense subset of

Lq(Ω) and hence, the upper bound follows from the Uniform Boundedness Principle.
ii) Just note that ‖u(t, s0;u0)‖Lq(Ω) ≥ meβ′(s−s0)eβ′(t−s) and also

‖u(t, s0;u0)‖Lq(Ω) = ‖UC(t, s)u(s, s0;u0)‖Lq(Ω) ≤ ‖UC(t, s)‖L(Lq(Ω))‖u(s, s0;u0)‖Lq(Ω).

Hence, the lower bound follows and iii) is obvious.

Now we prove the Lemma used above.

Lemma 3.3 Let Ω ⊂ IRN bounded, 1 ≤ q < ∞ and 0 ≤ u0 ∈ Lq(Ω) in Ω. Then they are
equivalent
i) The set

C = {v, ∃λ > 0, |v(x)| ≤ λu0(x) a.e. x ∈ Ω}

is dense in Lq(Ω).
ii) u0 > 0 a.e. in Ω.
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Proof. i) ⇒ ii) Assume A0 = {x ∈ Ω, u0(x) = 0} has positive measure. Define φ = XA0 ∈
Lq′(Ω) and then ∫

Ω
φv = 0 for all v ∈ C.

Thus C is not dense, which is absurd.
ii) ⇒ i) Denote Aε = {x ∈ Ω, u0(x) ≤ ε}, for ε ≥ 0. This is a decreasing family of sets with
intersection A0. Thus their measure converge to zero. Now if v ∈ Lq(Ω) then vε = vXΩ\Aε

converges to v in Lq(Ω). Now, with fixed ε, we truncate vε at height R > 0, that is, vR
ε ={

vε if |vε| ≤ R,
R if |vε| ≥ R

. Thus |vR
ε | ≤ R

ε u0 in Ω, that is vR
ε ∈ C and vR

ε → vε in Lq(Ω), as R → ∞.

Therefore C is dense in Lq(Ω).

In order to get constants M0,M1 independent of s in Lemma 3.2 above, we will need some
additional properties of the solutions. For this we recall the following definition introduced in
[11].

Definition 3.4 A positive function z(t, ·) with values in X = Lq(Ω), 1 ≤ q ≤ ∞ or X = C(Ω),
is non–degenerate (ND) at ∞ (respectively −∞) if there exists t0 ∈ IR such that z is defined in
[t0,∞) (respectively (−∞, t0]) and there exists a C1(Ω) function ϕ0(x) > 0 in Ω, (vanishing on
∂Ω in case of Dirichlet boundary conditions), such that

z(t, x) ≥ ϕ0(x) for all t ≥ t0

(respectively for all t ≤ t0).

With this, we have the following improvement of Lemma 3.2.

Lemma 3.5 If there exists u0 ∈ Lq(Ω), u0 > 0 a.e. in Ω, and a β ∈ IR, such that

‖u(t, s0;u0)‖Lq(Ω) ≤ Meβ(t−s0), for all t > s0

and e−β(t−s0)u(t, s0;u0) is nondegenerate, then for all s ≥ s0 and for all nontrivial v0 ≥ 0,
e−β(t−s)u(t, s; v0) is nondegenerate, for t ≥ s + 1. Moreover,

M0eβ(t−s) ≤ ‖UC(t, s)‖L(Lq(Ω)) ≤ M1eβ(t−s), for all t ≥ s ≥ s0

for some M0,M1 independent of t > s ≥ s0.
In particular the exponential type satisfies

β+
0 (C) = β and has defect γ = 0 at ∞.

Proof. Let s ≥ s0 and v0 ≥ 0 and observe that for t > s + 1 we have u(t, s; v0) = UC(t, s)v0 =
UC(t, s + 1)UC(s + 1, s)v0 and w0 = UC(s + 1, s)v0 ∈ C1

B(Ω) is positive in Ω. Then there exists
δ = δ(s, v0) > 0 such that w0 ≥ δu(s + 1, s0;u0) and then

u(t, s; v0) = UC(t, s + 1)w0 ≥ δUC(t, s + 1)u(s + 1, s0;u0) = δu(t, s0;u0) ≥ δeβ(t−s)eβ(s−s0)ϕ0.

Thus,
e−β(t−s)u(t, s; v0) ≥ δeβ(s−s0)ϕ0
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and it is nondegenerate.
On the other hand notice that by assumption we have w(s) = e−β(s−s0)u(s, s0;u0) ≥ ϕ0 as

in Definition 3.4. In particular, this solution satisfies the assumptions of point iv) Lemma 3.2
with β′ = β. Hence, the lower bound on ‖UC(t, s)‖L(Lq(Ω)), with M0 independent of s, follows.

For the upper bound we proceed as in the proof of point ii) in Lemma 3.2. In fact now
for every t ≥ s ≥ s0 consider an initial data v0 ∈ Lq(Ω), such that there exists λ = λ(v0),
independent of s, such that |v0| ≤ λϕ0. Then

∣∣∣e−β(t−s)UC(t, s)v0

∣∣∣ ≤ λe−β(t−s)UC(t, s)w(s).

Thus
‖e−β(t−s)UC(t, s)v0‖Lq(Ω) ≤ λ(v0)M, for any t > s.

Now the set
C = {v, ∃λ > 0, |v(x)| ≤ λϕ0(x) a.e. x ∈ Ω}

is dense in Lq(Ω), see Lemma 3.3. Hence the result follows again from the Uniform Boundedness
Principle on the family of operators T (t, s) = e−β(t−s)UC(t, s), for t ≥ s ≥ s0.

The rest follows easily.

On the other hand, in order to get some estimates on the norms ‖UC(t, s)‖L(Lq(Ω)) for
s ≤ t ≤ t0, for sufficiently negative t0, we will rely on the concept of complete trajectory as
follows.

Definition 3.6 A complete solution of (2.1) is a solution defined for all times, in the sense that
it is a continuous function z(t, x) with values in X = Lq(Ω), 1 ≤ q ≤ ∞ or X = C(Ω), such
that for each s ∈ IR the solution of (2.1) with initial data u0(x) = z(x, s) is given by z(t, x) for
each t > s. In other words, for every s ∈ IR and t > s we have

z(t) = UC(t, s)z(s).

When C(t, x) is smooth, [7], [6], or at least bounded, [5], then (1.1) has a unique (up to
multiple) global positive solution, vC(t). Note that we are unaware of such results for the case
of nonsmooth-in-space potentials C ∈ Cθ(IR, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2,
considered in this paper.

Thus, if complete positive solutions exist, we have the following

Lemma 3.7 i) Assume there exists a complete positive solution such that

‖z(t)‖Lq(Ω) ≤ Meβt, for all t ≤ t0

and for some β′ ≥ β
e−β′tz(t, x) is nondegenerate at −∞.

Then for every t ≤ t0 and s ≤ t we have

M0(t)eβ(t−s) ≤ ‖UC(t, s)‖L(Lq(Ω)) ≤ M1(t)eβ′(t−s), for all s ≤ t ≤ t0

with M0(t) = ‖ϕ0‖Lq(Ω)

M e(β′−β)t and M1(t) = M1e−(β′−β)t for certain positive constant M1.
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ii) In particular, assume that (2.1) has a complete positive solution, z(t, x), such that for t ≤ t0,

e−βtz(t, x) is bounded and nondegenerate at −∞.

Then for each s ≤ t ≤ t0 we have

M0(t0)eβ(t−s) ≤ ‖UC(t, s)‖L(Lq(Ω)) ≤ M1(t0)eβ(t−s)

Hence
β−0 (C) = β, with defect γ = 0 at −∞.

Proof. First note that for each u0 ∈ C1(Ω), vanishing on ∂Ω, there exists λ = λ(u0) such that
|u0(x)| ≤ λϕ0(x) in Ω, where ϕ0 is as in Definition 3.4. Then by comparison, we have for each
s ≤ t ≤ t0

|UC(t, s)u0(x)| ≤ λUC(t, s)ϕ0(x) ≤ λUC(t, s)e−β′sz(s)(x) = λe−β′sz(t, x)

and then
‖eβ′sUC(t, s)u0‖Lq(Ω) ≤ λ‖z(t)‖Lq(Ω) ≤ λMeβt.

Hence, eβ′sUC(t, s) is pointwise bounded in a dense subset of Lq(Ω) and hence, from the Uniform
Boundedness Principle we get the upper bound on eβ′s‖UC(t, s)‖L(Lq(Ω)) ≤ M1eβt, independent
of t, s. Now we rewrite this estimate as

e−β′(t−s)‖UC(t, s)‖L(Lq(Ω)) ≤ M1e−(β′−β)t = M1(t)

for s ≤ t and we get the upper bound in the statement.
On the other hand, note that

‖z(t)‖Lq(Ω) = ‖UC(t, s)z(s)‖Lq(Ω) ≤ ‖UC(t, s)‖L(Lq(Ω))‖z(s)‖Lq(Ω) ≤ Meβs‖UC(t, s)‖L(Lq(Ω)).

Thus,

‖UC(t, s)‖L(Lq(Ω)) ≥
‖ϕ0‖Lq(Ω)eβ′t

Meβs
= M0(t)eβ(t−s).

Hence, the result follows.
The second part follows using β = β′.

As mentioned in the previous section, the exponential type is related to the principal spec-
trum. On the other hand, as shown above, the exponential type is also related to the behavior
of positive solutions. In fact, when C(t, x) is smooth, [7], [6], or at least bounded,[8], [5], then
(1.1) has a unique (up to multiple) global positive solution, vC(t). Moreover, for every s ∈ IR
and t > s, any solution of (2.1) can be split in a unique way

u(t, s;u0) = αvC(t) + w(t, s;w0)

with u0 = αvC(s) + w0, α ∈ IR and w(t, s;u0) is a sign changing solution of (2.1).
Furthermore there is exponential separation of non positive solutions in the sense that for

any sign changing solution of (2.1), we have, for any s ∈ IR and t > s

‖w(t, s;u0)‖X

‖vC(t)‖X
≤ Ke−σ(t−s) ‖w0‖X

‖vC(s)‖X
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with X = L∞(Ω), for some K > 0 and σ > 0.
From here one easily gets that the exponential type is that of this particular global positive

solution, i.e.

β0(C) = lim sup
ln ‖vC(tn)‖Lq(Ω) − ln ‖vC(sn)‖Lq(Ω)

tn − sn

where the limsup is taken on all sequences tn − sn →∞. Moreover, if we restrict the sequences
above to satisfy sn ≥ s0 or tn ≤ t0 we get the exponential types at ±∞, β±0 (C).

As mentioned above, we are unaware of analogous results for the case of nonsmooth-in-space
potentials C ∈ Cθ(IR, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, considered in this paper.

4 Effectively changing the exponential type

In this section our goal is to give sufficient conditions on some perturbations of (2.1) to ensure
that exponential type of the resulting evolution operator is actually modified.

Note that these results allows to quantitatively estimate the sizes of the “favorable” and
“defavorable” parts allowed in the perturbation term. Also, observe that we can assume with-
out loss of generality that all evolution operators considered below satisfy (2.2) with the same
constants L and δ.

Before going further, note that if the perturbation is a multiple of the identity, then

UC−α(t, s) = e−α(t−s)UC(t, s)

and hence
β±0 (C − α) = β±0 (C)− α.

In particular we prove the following result which complements and somehow improves Propo-
sition 4.4 in [9].

Theorem 4.1 Let τ0 ≥ −∞ and denote J = (τ0,∞). Assume that U = UC is the evolution
operator defined by the solutions of (2.1) as above and satisfies (2.3), that is

‖UC(t, s)‖L(Lq(Ω)) ≤ M(β)eβ(t−s) for all t > s > τ0 (4.1)

for some β ∈ IR and a constant M(β) > 0.
Assume that P ∈ Cθ(J, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–dependent

perturbation of C(t, x). Assume there exists a decomposition

P (t, x) = P 1(t, x)− P 2(t, x), P i ∈ Cθ(J, Lp(Ω)), i = 1, 2

such that for all x ∈ Ω and t > τ0,
P 2(t, x) ≥ a(t)

for some continuous and bounded function such that there exists τ > 0, such that for all t, s ∈ J
with t− s ≥ τ

1
t− s

∫ t

s
a(r) dr ≥ a0

and a0 ∈ IR. Also, assume
P 1 ∈ Lσ(J, Lp(Ω)).

17



Then,
i) If σ = 1 and p = ∞,

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M(β)e(β−a0)(t−s), t ≥ s > τ0. (4.2)

ii) If 1 < σ < ∞ and p > Nσ′

2 then for every ε > 0, there exists s0(ε) with s0(ε) →∞ as ε → 0,
such that

‖UC+P (t, s)‖L(Lq(Ω)) ≤ 2M(β)e(β−a0+2ε)(t−s), (4.3)

for t ≥ s ≥ s0(ε).
If τ0 = −∞ then, additionally, for every ε > 0, there exists t0(ε) with t0(ε) → −∞ as ε → 0

such that
‖UC+P (t, s)‖L(Lq(Ω)) ≤ 2M(β)e(β−a0+2ε)(t−s), (4.4)

for t0(ε) > t > s.
iii) If σ = ∞ and p > N

2 then for every ε > 0,

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M(β)c(p, N)e(β−a0+µ(ε))(t−s), t ≥ s > τ0 (4.5)

where µ(ε) = ε+(M(ε, β)Γ(1−α)‖P 1‖L∞(J,Lp(Ω)))
1

1−α with M(ε, β) as in (2.6), 0 ≤ α = N
2p < 1

and some constant c(p, N).

Proof. We consider solutions of (2.1) in Lq(Ω), 1 ≤ q ≤ ∞ to be chosen below.
First we have, by the variation of constants formula, that for every u0 ∈ Lq(Ω) the solution

u(t, s, u0) = UC+P 1(t, s)u0 satisfies for t ≥ s > τ0,

u(t, s;u0) = UC(t, s)u0 +
∫ t

s
UC(t, τ)P 1(τ)u(τ, s;u0) dτ.

Using this, we chose q such that p ≥ q′. Then the term P 1(τ)u(τ, s;u0) can be estimated, us-
ing Hölder’s inequality, in Lr(Ω) with 1

r = 1
p+1

q . Thus, denoting z(t) = e−(β+ε)(t−s)‖u(t, s, u0)‖Lq(Ω),
and a(τ) = M(ε, β)‖P 1(τ)‖Lp(Ω), with M(ε, β) as in (2.6) (or M(0, β) = M(β) if ε = 0, that is,
for σ = 1 and p = ∞), we get, for t ≥ s > τ0, from (4.1) and (2.6)

z(t) ≤ M(β)‖u0‖Lq(Ω) +
∫ t

s

a(τ)

(t− τ)
N
2p

z(τ) dτ.

Using the singular Gronwall Lemma below, Lemma 4.11 and Corollary 4.12, with α = N
2p < 1

and A = M(β)‖u0‖Lp(Ω) we get,

‖u(t, s, u0)‖Lq(Ω) ≤ M(β)eβ(t−s)‖u0‖Lq(Ω), t ≥ s > τ0 (4.6)

if σ = 1 and p = ∞ (and α = 0). Also, we get

‖u(t, s, u0)‖Lq(Ω) ≤ 2M(β)e(β+2ε)(t−s)‖u0‖Lq(Ω), (4.7)

if 1 < σ < ∞ and p > Nσ′

2 for t ≥ s ≥ s0(ε) with s0(ε) →∞ as ε → 0. Additionally, if τ0 = −∞
we get (4.7) for t0(ε) > t > s with t0(ε) → −∞ as ε → 0. Finally

‖u(t, s, u0)‖Lq(Ω) ≤ M(β)c(α)e(β+µ(ε))(t−s)‖u0‖Lq(Ω), t ≥ s > τ0 (4.8)
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where µ(ε) = ε + (M(ε, β)Γ(1− α)‖P 1‖L∞((s,∞),Lp(Ω)))
1

1−α , if σ = ∞ and p > N
2 .

Now, we prove that for t ≥ s > τ0, we have

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M0e−a0(t−s)‖UC+P 1(t, s)‖L(Lq(Ω)) (4.9)

for some constant M0 = M0(a, a0).
To see this, note first that if u0 ≥ 0 then UC+P (t, s)u0 ≥ 0 which implies that |UC+P (t, s)u0| ≤

UC+P (t, s)|u0|. Therefore it is enough to prove the claim for non-negative initial data. In such
a case, let u(t, s;u0) = UC+P (t, s)u0 ≥ 0 then, since P 2(t, x) ≥ a(t), we have for t > s






ut −∆u = C(t, x)u + P 1(t, x)u− P 2(t, x)u ≤ C(t, x)u + P 1(t, x)u− a(t)u
Bu = 0
u(s) = u0.

Now let 0 ≤ v(t, x) = u(t, s;u0)e
∫ t

s
a(r) dr, which satisfies






vt −∆v ≤ C(t, x)v + P 1(t, x)v, t > s
Bv = 0
v(s) = u0.

(4.10)

Hence, see [10], for t ≥ s > τ0

0 ≤ v(t, x) ≤ UC+P 1(t, s)u0

and then (4.9) follows from the assumption on a(·) see v) in Lemma 2.8.
The result then follows from (4.6), (4.7), (4.8) and (4.9).

Observe that we do not assume in Theorem 4.1 above any sign on a0. However, as we are
interested in giving conditions on P (t, x) such that the exponent in (4.2), (4.3), (4.4) and (4.5)
is less than β, we have the following results. Note that the results below only make use of the
asymptotic properties of the perturbations as t → ±∞. Also note that we will use the classes
C±(m) as in Lemma 2.8.

Corollary 4.2 Assume that U = UC is the evolution operator defined by the solutions of (2.1)
as above and satisfies for some s0 ∈ IR,

‖UC(t, s)‖L(Lq(Ω)) ≤ M(β)eβ(t−s) for all t > s > s0

for some β ∈ IR and a constant M(β) > 0.
Assume that P ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–dependent

perturbation of C. Assume there exists a decomposition

P (t, x) = P 1(t, x)− P 2(t, x), P i ∈ Cθ(IR, Lp(Ω)), i = 1, 2

such that for all x ∈ Ω and t ≥ s0

P 2(t, x) ≥ a(t) with a ∈ C+(a0).

satisfying,
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Also, assume that
P 1 ∈ Lσ((s0,∞), Lp(Ω))

for some σ, p, such that either σ = 1 and p = ∞, or 1 < σ < ∞ and p > Nσ′

2 , or σ = ∞ and
p > N/2.

Then, for some sufficiently large t+0 > s0, the perturbed evolution operator satisfies

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M ′eβ′(t−s), (4.11)

for t ≥ s ≥ t+0 , with
β′ < β,

provided that
i) if σ = 1 and p = ∞

a0 > 0

and in such a case M ′ = M(β)M0(a, a0), for certain constant M0(a, a0), or
ii) if 1 < σ < ∞ and p > Nσ′

2
a0 > 0

and in such a case M ′ = 2M(β)M0(a, a0), or
iii) if σ = ∞ and p > N

2 ,
a0 > ac

0(lim sup
t→∞

‖P 1(t)‖Lp(Ω)) > 0 (4.12)

where the continuous functions ac
0(s) is given by

ac
0(s) =

{
c0s, if 0 ≤ s ≤ s∗

c1 + c2s
1

1−α , if s ≥ s∗

where α = N
2p < 1 and all positive constants c0, c1, c2, s∗ depend on N, p, δ, L as in (2.2), β and

M(β). In such a case M ′ = M(β)c(p, N)M0(a, a0) with M0(a, a0) and c(p, N) as in Theorem
4.1.

Proof. First note that, as in (4.9),

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M0e−a0(t−s)‖UC+P 1(t, s)‖L(Lq(Ω)) (4.13)

for sufficiently large t ≥ s ≥ t+0 and some constant M0 = M0(a, a0), since a ∈ C+(a0), see v) in
Lemma 2.8.

Now, if σ = 1 and p = ∞, we get from i) in Theorem 4.1 we get

‖UC+P 1(t, s)‖L(Lq(Ω)) ≤ M(β)eβ(t−s), t ≥ s > t+0

and, with (4.13), we get case i) above.
If 1 < σ < ∞ and p > Nσ′

2 then from ii) in Theorem 4.1 we have that for every ε > 0, there
exists s0(ε) with s0(ε) →∞ as ε → 0, such that

‖UC+P 1(t, s)‖L(Lq(Ω)) ≤ 2M(β)e(β+2ε)(t−s),

for t ≥ s ≥ s0(ε) and, with (4.13), we get case ii).
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For σ = ∞ note that from iii) in Theorem 4.1 and taking J = (t+0 ,∞) for t+0 large enough,
we get that for every ε > 0, as in (4.5)

‖UC+P 1(t, s)‖L(Lq(Ω)) ≤ M(β)c(p, N)e(β+µ(ε))(t−s), t ≥ s ≥ t+0 (4.14)

where µ(ε) = ε + (M(ε, β)Γ(1 − α) lim supt→∞ ‖P 1(t)‖Lp(Ω))
1

1−α with M(ε, β) as in (2.6) and
α = N

2p < 1, that is

M(ε, β) = K(β)e|β|
{

(α
e )αε−α if 0 < ε < ε0 = α

e
1 if ε ≥ ε0 = α

e

}

where K(β) = Leδ max{1,M(β)e−β}.
Hence setting LS(P 1) = lim supt→∞ ‖P 1(t)‖Lp(Ω), for some constants A0, A1 that depend

only on N, p, δ, L as in (2.2), β and M(β) we have

µ(ε) =
{

ε + A0LS(P 1)
1

1−α ε
−α
1−α if 0 < ε < ε0

ε + A1LS(P 1)
1

1−α if ε >ε 0

.

Thus µ(0) = µ(∞) = ∞.
But the function h(ε) = ε + A0LS(P 1)

1
1−α ε

−α
1−α has a unique minimum at ε1 = B0LS(P 1),

and h(ε1) = B1LS(P 1) for some constants B0, B1 that depend only on N, p, δ, L as in (2.2), β
and M(β). Therefore, using (4.14) and (4.13), comparing ε0 and ε1, minimizing µ(ε) and setting
a0 > inf{ε>0} µ(ε) leads to (4.12).

In all the cases, (4.13) leads to (4.11).

Analogously, for sufficiently negative time, we have

Corollary 4.3 Assume that U = UC is the evolution operator defined by the solutions of (2.1)
as above and satisfies for some t0 ∈ IR,

‖UC(t, s)‖L(Lq(Ω)) ≤ M(β)eβ(t−s) for all t0 > t > s (4.15)

for some β ∈ IR and a constant M(β) > 0.
Assume that P ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–dependent

perturbation of C. Assume there exists a decomposition

P (t, x) = P 1(t, x)− P 2(t, x), P i ∈ Cθ(IR, Lp(Ω)), i = 1, 2

such that for all x ∈ Ω and t0 ≥ t

P 2(t, x) ≥ a(t) with a ∈ C−(a0).

Also, assume that
P 1 ∈ Lσ((−∞, t0), Lp(Ω))

for some σ, p, such that either σ = 1 and p = ∞, or 1 < σ < ∞ and p > Nσ′

2 , or σ = ∞ and
p > N/2.

Then, for some sufficiently negative t−0 < t0, the perturbed evolution operator satisfies

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M ′eβ′(t−s), (4.16)
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for t−0 ≥ t ≥ s, with
β′ < β,

provided that
i) if σ = 1 and p = ∞

a0 > 0

and in such a case M ′ = M(β)M0(a, a0), for certain constant M0(a, a0), or
ii) if 1 < σ < ∞ and p > Nσ′

2
a0 > 0

and in such a case M ′ = 2M(β)M0(a, a0), or
iii) if σ = ∞ and p > N

2
a0 > ac

0(lim sup
t→−∞

‖P 1(t)‖Lp(Ω)) > 0 (4.17)

where the continuous functions ac
0(s) is given by

ac
0(s) =

{
c0s, if 0 ≤ s ≤ s∗

c1 + c2s
1

1−α , if s ≥ s∗

respectively, where α = N
2p < 1 and all positive constants c0, c1, c2, s∗ depend on N, p, δ, L as in

(2.2), β and M(β). In such a case M ′ = M(β)c(p, N)M0(a, a0) with M0(a, a0) and c(p, N) as
in Theorem 4.1.

Proof. First, note that (4.13) can be obtained in the same way as in Corollary 4.3 for sufficiently
negative t−0 and t−0 ≥ t > s.

Now observe that we can redefine C(t, x) for t ≥ t−0 in such a way that the corresponding
evolution operator satisfy (4.15) for all t > s > −∞. Also we can redefine P (t, x) for t ≥ t−0 in
such a way that (4.13) holds for all t > s > −∞ and P 1 ∈ Lσ(IR, Lp(Ω)). Even more we can
always assume that ‖P 1‖Lσ(IR,Lp(Ω)) ≤ (1 + δ)‖P 1‖Lσ((−∞,t−0 ),Lp(Ω)) for any δ > 0, if 1 ≤ σ < ∞,
or ‖P 1‖L∞(IR,Lp(Ω)) = ‖P 1‖L∞((−∞,t−0 ),Lp(Ω)).

Thus, we can apply Theorem 4.1 to get at once (4.16) in cases i) and ii). For case iii) note
that indeed by taking t−0 very negative we get in (4.5),

µ(ε) = ε + (M(ε, β)Γ(1− α) lim sup
t→−∞

‖P 1(t)‖Lp(Ω))
1

1−α

with M(ε, β) as in (2.6) and α = N
2p < 1. Minimizing in ε, as in Corollary 4.2 we get (4.17).

Note that the estimates in Theorem 4.1 and Corollaries 4.2 and 4.3 above, give a quantitative
estimate on the admissible sizes of the favorable and defavorable parts of the perturbation P 2

and P 1, respectively, for which one can ensure that a given exponent for an evolution operator
is effectively modified.

In the previous results we have considered the question of decreasing the given exponent of
the evolution operator UC(t, s) in (4.1). As we shall see, if we pose the same question about the
optimal of such exponents, that is, the exponential type of the evolution operator (see Definition
2.2), some times a higher price must be payed, as the optimal constant (which gets involved in
the computations of the perturbation) may get worse as one is closer to the exponential type,
that is when β = β0(C) + ε. This is expressed in the next results where we will assume below
that the evolution operator UC(t, s) has a “defect γ ≥ 0” as in Definition 2.3.
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Theorem 4.4 Assume that U = UC is the evolution operator defined by the solutions of (2.1)
as above and has defect γ ≥ 0 at ∞, as in Definition 2.3.

Assume that P ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–dependent
perturbation of C(t, x). Assume there exists a decomposition

P (t, x) = P 1(t, x)− P 2(t, x), P i ∈ Cθ(IR, Lp(Ω)), i = 1, 2

such that for all x ∈ Ω and sufficiently large s0 and t ≥ s0

P 2(t, x) ≥ a(t) with a ∈ C+(a0), a0 > 0.

Then, for some sufficiently large t+0 ∈ IR, the perturbed evolution operator satisfies

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M ′eβ′(t−s), (4.18)

for t ≥ s ≥ t+0 , with
β′ < β+

0 (C),

provided that either
i) P 1 ∈ L1((s0,∞), L∞(Ω)) or P 1 ∈ Lσ((s0,∞), Lp(Ω)), with 1 < σ < ∞ and p > Nσ′

2 , and in
such a case

M ′ ≤ 2D0((
a0

4
)−γ + 1)

where D0 is as in Definition 2.3, or
ii) if P 1 ∈ L∞((s0,∞), Lp(Ω)) with p > N

2 , and

a0 > Ac
0(lim sup

t→∞
‖P 1(t)‖Lp(Ω)) > 0 (4.19)

where the continuous function Ac
0(s) is given by

Ac
0(s) =

{
c0s

1
γ+1 , if 0 ≤ s ≤ s∗

c1 + c2s
1

1−α , if s ≥ s∗

and in such a case

M ′ ≤
{

b0LS(P 1)
−γ
γ+1 , if 0 < LS(P 1) ≤ s∗

b1, if LS(P 1) ≥ s∗

where LS(P 1) = lim supt→∞ ‖P 1(t)‖Lp(Ω) and all positive constants c0, c1, b0, b1, s∗ depend on
N, p, δ, L, β+

0 (C), γ and D0 and α = N/2p < 1.
In particular, in all the cases above, we have

β+
0 (C + P ) < β+

0 (C).

Proof. We proceed as in Theorem 4.1 and Corollary 4.2 with β = β0(C) + ε and M(β) ≤
D0(ε−γ + 1) to obtain (4.2), (4.3) and (4.5) for t > s ≥ t+0 , according to the cases for P (t, x).

Then (4.18) for the cases in i) follows by taking 0 ≤ 2ε < a0, e.g. ε = a0
4 . In these cases,

from (4.2), (4.3) we have M ′ ≤ 2M(β).
For case ii) note that we have in (4.5), µ(ε) = 2ε+(M(ε, β)Γ(1−α)LS(P 1))

1
1−α with M(ε, β)

as in (2.6) and α = N
2p < 1. Thus, according to (2.6) and Definition 2.3, we have

M(ε, β) ≤
{

B0ε−γ−α if 0 < ε < ε0 = α
e

B1 if ε >ε 0
.
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for some constants B0, B1 that depend on δ, L as in (2.2) and D0. Hence

µ(ε) ≤
{

2ε + A0LS(P 1)
1

1−α ε
−γ−α
1−α if 0 < ε < ε0

2ε + A0LS(P 1)
1

1−α if ε >ε 0

.

and µ(0) = µ(∞) = ∞, for some constant A0 that depends on δ, L and D0.
But the function h(ε) = 2ε+A0LS(P 1)

1
1−α ε

−γ−α
1−α has a unique minimum at ε1 = B2LS(P 1)

1
γ+1 ,

and h(ε1) = B3LS(P 1)
1

γ+1 , for some constants B2, B3 that depend on δ, L and D0. Therefore,
setting

a0 > inf
{ε>0}

µ(ε) =
{

µ(ε1) = h(ε1) if ε1 < ε0

µ(ε0) = 2ε0 + A0LS(P 1)
1

1−α if ε1 > ε0

leads to (4.19).
Also, in this case, from (4.5), we have M ′ ≤ M(β0(C)+ ε)c(p, N) ≤ M0(ε−γ +1)c(p, N) and

then taking ε = ε1 if ε1 < ε0 or ε = ε0 if ε1 > ε0, we get the result.

Analogously, we have

Theorem 4.5 Assume that U = UC is the evolution operator defined by the solutions of (2.1)
as above and has defect γ ≥ 0 at −∞, as in Definition 2.3.

Assume that P ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–dependent
perturbation of C(t, x). Assume there exists a decomposition

P (t, x) = P 1(t, x)− P 2(t, x), P i ∈ Cθ(IR, Lp(Ω)), i = 1, 2

such that for all x ∈ Ω and sufficiently negative t0 and t0 ≥ t

P 2(t, x) ≥ a(t) with a ∈ C−(a0), a0 > 0.

Then, for some sufficiently negative t−0 ∈ IR, the perturbed evolution operator satisfies

‖UC+P (t, s)‖L(Lq(Ω)) ≤ M ′eβ′(t−s),

for t−0 ≥ t ≥ s, with
β′ < β−0 (C),

provided that either
i) P 1 ∈ L1((−∞, s0), L∞(Ω)) or P 1 ∈ Lσ((−∞, s0), Lp(Ω)), with 1 < σ < ∞ and p > Nσ′

2 , and
in such a case

M ′ ≤ 2D0((
a0

4
)−γ + 1)

where D0 is as in Definition 2.3, or
ii) if P 1 ∈ L∞((−∞, s0), Lp(Ω)) with p > N

2 , and

a0 > Ac
0(lim sup

t→−∞
‖P 1(t)‖Lp(Ω)) > 0

where the continuous function Ac
0(s) is given by

Ac
0(s) =

{
c0s

1
γ+1 , if 0 ≤ s ≤ s∗

c1 + c2s
1

1−α , if s ≥ s∗
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and in such a case

M ′ ≤
{

b0LS(P 1)
−γ
γ+1 , if 0 < LS(P 1) ≤ s∗

b1, if LS(P 1) ≥ s∗

where LS(P 1) = lim supt→−∞ ‖P 1(t)‖Lp(Ω) and all positive constants c0, c1, b0, b1, s∗ depend on
N, p, δ, L as in (2.2), β−0 (C), γ and D0 and α = N/2p < 1.

In particular, in all the cases above, we have

β−0 (C + P ) < β−0 (C).

Remark 4.6
i) Observe that we get no information on the defect of the perturbed evolution operator.
ii) All the results above are written in terms of decreasing the exponential type. On the other
hand, assume that a given time dependent perturbation P (t, x) is such that the defect of UC+P (t, s)
at ±∞ is γ and that we can decompose −P (t, x) = P 1(t, x)− P 2(t, x) such that P i(t, x) satisfy
the assumptions in either Theorem 4.4 or 4.5. Then we have, respectively

β±0 (C) < β±0 (C + P ).

iii) On the other hand, note that with Theorem 4.1 it is easy to obtain, taking P 2(t, x) = 0, that
if

P ∈ Lσ(IR, Lp(Ω)).

with σ = 1 and p = ∞ or 1 < σ < ∞ and p > Nσ′

2 , then

β±0 (C ± P ) = β±0 (C).

In other words, perturbations which are not sustained at ±∞ do not change the exponential type
of an evolution operator.

Now we illustrate the scope of our results with the following two examples in which we apply
Theorems 4.4 or 4.5. The first one allows to improve the conclusions of [11, Propositions 2, ii)],
for t → −∞ and [11, Proposition 4, ii)], for t → ∞. In fact in that reference only convergence
to zero of solutions of (2.1) as t → ±∞ was obtained, for fixed initial data; here exponential
convergence is obtained in operator norm.

Proposition 4.7 Assume that U = UC is the evolution operator defined by the solutions of
(2.1) as above and has defect γ ≥ 0 at ±∞, as in Definition 2.3.

Assume also that P ∈ Cθ(IR, Lp(Ω)) with 0 < θ ≤ 1 and some p > N/2, is a given time–
dependent perturbation of C(t, x) that for t ≥ s0, or t ≤ t0, respectively, satisfies

P (t, x) ≤ −ϕ(x), 0 ≤ ϕ ∈ Lp(Ω), p > N/2

and assume for 0 < a sufficiently small we have

µ({x ∈ Ω, 0 ≤ ϕ(x) ≤ a}) ≤ Kaν

with ν
p > γ and K > 0. Then, we have

β±0 (C + P ) < β±0 (C),

respectively.
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Proof. Observe first that for any initial data, we have,

|UC+P (t, s)u0| ≤ UC+P (t, s)|u0| ≤ UC−ϕ(t, s)|u0|

and from here
β±0 (C + P ) ≤ β±0 (C − ϕ).

Now take
ϕ(x) = ϕa

2(x)− ϕa
1(x)

with
ϕa

2(x) = max{ϕ(x), a} ≥ a > 0

and then 0 ≤ ϕa
1(x) ≤ a with

‖ϕa
1‖

1
γ+1

Lp(Ω) ≤ Ka(1+ ν
p ) 1

γ+1 .

Then the result follows from Theorem 4.4 or 4.5 respectively, taking P 1(t, x) = ϕa
1(x) and

P 2(t, x) = ϕa
2(x) and a0 = a > 0 small, provided (1 + ν

p ) 1
γ+1 > 1, i.e. ν

p > γ.

Remark 4.8 Note that Theorems 4.4 or 4.5 also give that the constant for the perturbed evo-
lution operator is of order a(1+ ν

p ) −γ
γ+1 .

For example, if ϕ is a C1(Ω) with nonzero gradient at the points it vanishes, the above is
satisfied with ν = 1. More generally, if ϕ is a Cθ(Ω), with no “flat” parts where it vanishes,
then typically ν = 1

θ . Note that in particular, in any case, ϕ(x) > 0 a.e. in Ω is required.

The next example is a time dependent variant of the one above. Observe that we remove
the sign assumption above on the perturbation and allow very large bad perturbations in small
time–wandering sets in Ω. More precisely we have

Proposition 4.9 With the notations in Proposition 4.7, assume that for t ≥ s0 or for t ≤ t0,
respectively, we have for 0 < a(t) sufficiently small,

µ({x ∈ Ω, P (t, x) ≥ −a(t)}) ≤ K0a(t)ν0

with ν0 > 0, K0 > 0 and
sup
Ω

P (t, x) ≤ K1a(t)−ν1

with ν1 ≥ 0. Furthermore, assume that if K1 = 0 then ν0
p > γ, while if K1 > 0 then

ν0

p
> γ + 1 + ν1,

where γ ≥ 0 is the defect of the evolution operator UC(t, s) at ±∞ respectively.
Then, if limt→±∞ a(t) = a0 > 0 is sufficiently small,

β±0 (C + P ) < β±0 (C),

respectively.
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Proof. We decompose P = P 1 − P 2, where −P 2(t, x) = min{P (t, x),−a(t)}. Then P 2(t, x) ≥
a(t) and

‖P 1(t)‖
1

γ+1

Lp(Ω) ≤ (K1a(t)−ν1 + a(t))
1

γ+1 (K0a(t)ν0)
1

p(γ+1)

with C1 ≥ 0. Then the result follows from Theorem 4.4 or 4.5, respectively, since in either case
for K1 the leading term in the estimate above has exponent greater than 1 and a(t) is small.
Also note that a ∈ C±(a0

2 ).

Remark 4.10 Note that Theorems 4.4 or 4.5 also give that the constant for the perturbed
evolution operator is of order (K1a

−ν1
0 + a0)

−γ
γ+1 (K0a

ν0
0 )

−γ
p(γ+1) .

We now state the singular Gronwall lemma used above. Note that a very similar result was
proved in Lemma 4.5 in [9] and the present one follows from that proof. Here we pay detailed
attention to the dependence of the constants involved. As the proof is short we include it for
the reader’s convenience.

Lemma 4.11 A singular Gronwall lemma
Assume that a ∈ Lσ((τ0,∞))∩L∞loc(τ0,∞) with 1 ≤ σ ≤ ∞, τ0 ≥ −∞ and that z(t) ≥ 0 is a

locally bounded function that for t ≥ s > τ0 satisfies

z(t) ≤ Mz(s) +
∫ t

s

a(τ)
(t− τ)α

z(τ) dτ (4.20)

with ασ′ < 1. Then
i) If σ = 1 (and α = 0), we have for t ≥ s > τ0

0 ≤ z(t) ≤ Mz(s).

ii) If 1 < σ < ∞ and ασ′ < 1, for every γ > 0 there exists s0 > τ0 such that if (4.20) holds for
t > s ≥ s0 then

0 ≤ z(t) ≤ 2Meγ(t−s)z(s), t > s ≥ s0,

and s0 = s0(γ) →∞ as γ → 0.
If τ0 = −∞, for every γ > 0 there exists t0 such that if (4.20) holds for t0 ≥ t > s then

0 ≤ z(t) ≤ 2Meγ(t−s)z(s), t0 ≥ t > s,

and t0 = t0(γ) → −∞ as γ → 0.
iii) If σ = ∞ and 0 ≤ α < 1 then we have for t ≥ s > τ0

0 ≤ z(t) ≤ M(α)eγ(t−s)z(s)

with γ = γ(a, s, α) = (‖a‖L∞(s,∞)Γ(1− α))1/(1−α) and M(α) depends only on M and α but not
on the function a(·) or s or γ or τ0.

Proof. Note that the case σ = 1, α = 0 reduces to the usual Gronwall lemma and then
z(t) ≤ Mz(s)e

∫ t

s
a(τ) dτ and the result is obvious.
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On the other hand the case σ = ∞ and 0 ≤ α < 1 is a particular case of the singular Gronwall
lemma in Henry [3, Lemma 7.1.1, page 188] which gives γ = (‖a‖L∞(s,∞)Γ(1 − α))1/(1−α) and
M(α) = Mc(α) for certain constant c(α).

Therefore, we will consider now the case 1 < σ < ∞ and ασ′ < 1. Note that in this case we
can take s0 large enough such that ‖a‖Lσ(s0,∞) is as small as we want. Also, from (4.20) we get
that for s0 ≤ s ≤ t ≤ s + T we have, denoting w(s, T ) = sups≤τ≤s+T z(τ) and using Hölder’s
inequality

z(t) ≤ Mz(s) + w(s, T )‖a‖Lσ(s,s+T )

( ∫ t

s

1
(t− τ)ασ′

dτ
)1/σ′

≤ Mz(s) + w(s, T )δ(s0, T )

where we have set δ(s0, T ) = ‖a‖Lσ(s0,∞)C(α, σ′)T 1/σ′−α, for some constant C(α, σ′).
Now, given s0, choose T such that

δ(s0, T ) = ‖a‖Lσ(s0,∞)C(α, σ′)T 1/σ′−α = 1/2. (4.21)

Taking the supremum for s ≤ t ≤ s + T we get

z(t) ≤ w(s) ≤ 2Mz(s) for all s ≤ t ≤ s + T.

Writing s1 = s + T and repeating the process and the estimate above we get a sequence
sn = s + nT such that

z(t) ≤ (2M)nz(s), for all s + (n− 1)T ≤ t ≤ s + nT.

From here it follows that

z(t) ≤ (2M)
t−s
T +1z(s) = 2Me

ln(2M)
T (t−s)z(s), for all t ≥ s ≥ s0.

Now given γ > 0 we choose T such that γ = ln(2M)
T and s0 large enough, such that (4.21) is

satisfied and we get the first part of the result. In particular s0 = s0(γ) →∞ as γ → 0.
If τ0 = −∞, we slightly change the argument above and proceed “backwards”. Take t0 such

that ‖a‖Lσ(−∞,t0) is as small as we want. Then from (4.20) we get that for t − T ≤ s ≤ t ≤ t0
we have, denoting w(t, T ) = supt−T≤τ≤t z(τ) and using Hölder’s inequality

z(t) ≤ Mz(s) + w(t, T )‖a‖Lσ(t−T,t)

( ∫ t

s

1
(t− τ)ασ′

dτ
)1/σ′

≤ Mz(s) + w(t, T )δ(t0, T )

where we have set δ(t0, T ) = ‖a‖Lσ(−∞,t0)C(α, σ′)T 1/σ′−α, for some constant C(α, σ′).
Now, given t0, choose T such that

δ(t0, T ) = ‖a‖Lσ(−∞,t0)C(α, σ′)T 1/σ′−α = 1/2. (4.22)

Then we get
z(t) ≤ 2Mz(s) for all t− T ≤ s ≤ t ≤ t0.

Writing t1 = t − T and repeating the process and the estimate above we get a sequence
tn = t− nT such that

z(t) ≤ (2M)nz(s), for all t− nT ≤ s ≤ t− (n− 1)T.
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From here it follows that

z(t) ≤ (2M)
t−s
T +1z(s) = 2Me

ln(2M)
T (t−s)z(s), for all s ≤ t ≤ t0.

Now given γ > 0 we choose T such that γ = ln(2M)
T and s0 large enough, such that (4.22) is

satisfied and we get the result. In particular t0 = t0(γ) → −∞ as γ → 0.

As a consequence we obtain the following corollary that was used before.

Corollary 4.12 Assume that a ∈ Lσ((τ0,∞))∩L∞loc(τ0,∞) with 1 ≤ σ ≤ ∞, τ0 ≥ −∞ and that
z(t) ≥ 0 is a locally bounded function that for t ≥ s > τ0 satisfies

z(t) ≤ A +
∫ t

s

a(τ)
(t− τ)α

z(τ) dτ (4.23)

with ασ′ < 1. Then
i) If σ = 1 (and α = 0), we have for t ≥ s > τ0

0 ≤ z(t) ≤ A.

ii) If 1 < σ < ∞ and ασ′ < 1, for every γ > 0 there exists s0 > τ0 such that if (4.23) holds for
t > s ≥ s0 then

0 ≤ z(t) ≤ 2Aeγ(t−s), t > s ≥ s0,

and s0 = s0(γ) →∞ as γ → 0.
If τ0 = −∞, for every γ > 0 there exists t0 such that if (4.23) holds for t0 ≥ t > s then

0 ≤ z(t) ≤ 2Aeγ(t−s), t0 ≥ t > s,

and t0 = t0(γ) → −∞ as γ → 0.
iii) If σ = ∞ and 0 ≤ α < 1 then we have for t ≥ s > τ0

0 ≤ z(t) ≤ A(α)eγ(t−s)

with γ = γ(a, s, α) = (‖a‖L∞(s,∞)Γ(1 − α))1/(1−α) and A(α) depends only on A and α but not
on the function a(·) or s or γ or τ0.

Proof. Denote now Z(t) = A +
∫ t
s

a(τ)
(t−τ)α z(τ) dτ and note that for every s < ρ < t we have

Z(t) = A +
∫ ρ

s

a(τ)
(t− τ)α

z(τ) dτ +
∫ t

ρ

a(τ)
(t− τ)α

z(τ) dτ

and using that t > ρ > s and z(τ) ≤ Z(τ), we get

Z(t) ≤ Z(ρ) +
∫ t

ρ

a(τ)
(t− τ)α

z(τ) dτ ≤ Z(ρ) +
∫ t

ρ

a(τ)
(t− τ)α

Z(τ) dτ.

Therefore Z(t) satisfies (4.20) with M = 1 and then Lemma 4.11 applies and we get the result.
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5 The nonlinear equation

We apply now the previous results in the analysis of the asymptotic behavior of the positive
solutions of the nonlinear problem






ut −∆u = f(t, x, u) in Ω, t > s
Bu = 0 on ∂Ω

u(s) = u0 ≥ 0
(5.1)

where f : IR× Ω× IR → IR is suitably smooth and f(t, x, 0) ≥ 0.
In [9] there were given conditions on the nonlinear term f(t, x, u) ensuring the existence of

complete positive solutions of (5.1). Also, conditions guaranteeing that positive solutions are
nondegenerate at ∞ and/or −∞, in the sense of Definition 3.4, where also given in [11].

Finally it was also shown in [11] that the additional assumption

f(t, x, u)
u

decreasing for u ≥ 0 (5.2)

implies the uniqueness of the complete, positive, bounded and nondegenerate at −∞ solution
of (5.1), ϕ(t, x).

Moreover, such solution ϕ(t, x) describes the asymptotic behavior of all positive solutions of
(5.1) in a pullback sense, that is, for any bounded set of positive nondegenerate initial data u(s)
for s ≤ t0 and for any t ∈ IR, we have that

u(t, s;u(s))− ϕ(t) → 0, as s → −∞ in C(Ω). (5.3)

Furthermore, ϕ(t, x) also describes the forwards behavior of positive solutions of (5.1), since
in fact it was also shown in [11] that for any s ∈ IR and for any two positive solutions of (5.1)
for t > s, we have,

u1(t, x)− u0(t, x) → 0 as t →∞ in C(Ω). (5.4)

Note that standard parabolic regularization implies that (5.3) and (5.4) can also be obtained in
C1(Ω).

An important particular example considered in [11] are logistic equations, for which

f(t, x, u) = m(t, x)u− n(t, x)uρ, ρ ≥ 2 (5.5)

where m ∈ Cθ(IR, Lp(Ω)) for certain p > N/2 and 0 < θ ≤ 1 and n ≥ 0 is continuous and locally
Hölder in t, not identically zero. See [11] for precise conditions on m(t, x), n(t, x) such that the
results above apply.

Assuming (5.2), our goal here is to give conditions such that the convergences in (5.3) and
(5.4) above are exponential. In fact, we first have

Proposition 5.1
i) Let u(t, x), for t > s ≥ s0, be a positive, bounded and nondegenerate at ∞ solution of (5.1).
Assume

P (t, x) =
∂

∂u
f(t, x, u(t, x))− f(t, x, u(t, x))

u(t, x)
( ≤ 0)
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(which is nonpositive thanks to (5.2)), satisfies the assumption in Theorem 4.4 or Propositions
4.7 or 4.9 with γ = 0, as t →∞.

Then the exponential type at ∞ of the linearized equation along u(t, x) i.e. (2.1), with

C(t, x) =
∂

∂u
f(t, x, u(t, x)),

is negative, i.e.
β+

0 (C) < 0.

In other words, u(t, x) is linearly exponentially stable for (5.1) as t →∞.
ii) Let u(t, x) be a positive, bounded and nondegenerate at −∞ complete solution of (5.1). As-
sume we have, that for t ≤ t0

P (t, x) =
∂

∂u
f(t, x, u(t, x))− f(t, x, u(t, x))

u(t, x)
( ≤ 0)

(which is nonpositive thanks to (5.2)) satisfies the assumption in Theorem 4.5 or Propositions
4.7 or 4.9 with γ = 0 as t →∞.

Then the exponential type at −∞ of the linearized equation along u(t, x) i.e. (2.1), with

C(t, x) =
∂

∂u
f(t, x, u(t, x)),

is negative, i.e.
β−0 (C) < 0.

In other words, u(t, x) is linearly exponentially stable for (5.1) in the pullback sense.

Proof. i) In fact the linearized equation along u, can be written as

ηt −∆η =
∂

∂u
f(t, x, u(t, x))η =

(
P (t, x) + C0(t, x)

)
η

with boundary conditions Bη = 0, with P (t, x) as in the statement and C0(t, x) = f(t,x,u(t,x))
u(t,x) .

But, since u(t, x) is positive bounded and nondegenerate at +∞, from Lemma 3.5, see also
Proposition 3 in [11], we have that, for s ≥ s0 and some positive constants M0,M1, M0 ≤
‖UC0(t, s)‖ ≤ M1 i.e.

β+
0 (C0) = 0,

and the defect in ∞ is γ = 0.
From the assumptions on P (t, x) we get

β+
0 (C0 + P ) < 0

and the solutions of the linearized equation decays exponentially as t →∞.
The case ii) follows along the same lines.
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Remark 5.2 Note that in the case of logistic equations as in (5.5), that is,

f(t, x, u) = m(t, x)u− n(t, x)uρ, ρ ≥ 2,

(5.2) is satisfied and

P (t, x) :=
∂

∂u
f(t, x, u(t, x))−f(t, x, u(t, x))

u(t, x)
= (1−ρ)n(t, x)uρ−1(t, x) ≤ (1−ρ)n(t, x)ϕρ−1

0 (x) ≤ 0

since u(t, x) ≥ ϕ0(x) is non degenerate. Then Proposition 5.1 above applies, provided P (t, x)
satisfies the assumptions of either Theorem 4.4 or 4.5, Proposition 4.7, or Proposition 4.9 with
γ = 0.

For example, if lim inft→±∞ n(t, x) = N0(x) ≥ 0 a.e in Ω, does not have flat regions where
it vanishes, then Proposition 4.7 applies.

Now we can translate this linear behavior to the nonlinear equation. In particular, we can
prove the next result which improves (5.4).

Theorem 5.3 Assume (5.2) and, for t ≥ s0, 0 ≤ u(t, x) is a nondegenerate at ∞ and bounded
solution of (5.1), satisfying the assumptions in Proposition 5.1 i).

Then any other nonnegative, nontrivial solution of (5.1) v(t, x) is nondegenerate and bounded
and, as t →∞,

u(t, x)− v(t, x) → 0, exponentially in C(Ω).

Proof. Note that it was already proved in [11] that any other nonnegative, nontrivial solution
of (5.1) is nondegenerate at ∞ and bounded. Now consider such a solution v(t, x) and observe
that it is enough to prove the result in the cases v(t, x) ≤ u(t, x) or u(t, x) ≤ v(t, x).

Assume first then that v(t, x) ≤ u(t, x). Denote

w(t, x) = u(t, x)− v(t, x) ≥ 0

which satisfies {
wt −∆w = f(t, x, u(t, x))− f(t, x, v(t, x)) = C(t, x)w
Bw = 0

where
C(t, x) =

∂

∂u
f(t, x, ξ(t, x)), with v(t, x) ≤ ξ(t, x) ≤ u(t, x).

Hence
C(t, x) = C0(t, x) + P (t, x), C0(t, x) :=

∂

∂u
f(t, x, u(t, x))

and from [11], see (5.4), we have

P (t, ·) → 0 in L∞(Ω)

as t →∞.
Since, u(t, x) satisfies the assumptions in Proposition 5.1 above, we then have

β+
0 (C0) < 0
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and then, from Theorem 4.4, with P 2(t, x) = 0 and P 1(t, x) = P (t, x), we get

β+
0 (C) < 0.

Thus w(t, x) converges to zero exponentially as t →∞.
On the other hand, if u(t, x) ≤ v(t, x) then (5.2) implies that

C1(t, x) :=
∂

∂u
f(t, x, v(t, x)) ≤ C0(t, x) :=

∂

∂u
f(t, x, u(t, x))

which implies, from Lemma 3.1,

β+
0 (C1) ≤ β+

0 (C0) < 0.

Repeating the argument above, interchanging the roles of u and v, we get the result.

Finally, concerning the pullback behavior, we have the following result that improves (5.3).

Theorem 5.4 Assume (5.2) and, for t ≤ t0, let 0 ≤ ϕ(t, x) be a positive nondegenerate at −∞
and complete bounded solution of (5.1), satisfying the assumptions in Proposition 5.1 ii).

Then for any bounded set of nondegenerate positive initial data u(s) for s ≤ t0 and for any
t ∈ IR, we have that

u(t, s;u(s))− ϕ(t) → 0, exponentially as s → −∞ in C(Ω).

Proof. Take t−0 ≤ t0 to be chosen later and denote

w(t, x) = ϕ(t, x)− u(t, s, x;u(s)) for t−0 ≥ t > s

which satisfies, for t−0 ≥ t > s,





wt −∆w = f(t, x, ϕ(t, x))− f(t, x, u(t, s, x;u(s))) = Cs(t, x)w
Bw = 0
w(s) = ϕ(s)− u(s)

where

Cs(t, x) :=
∂

∂u
f(t, x, ξs(t, x)), with ξs(t, x) = θu(t, s, x;u(s)) + (1− θ)ϕ(t, x)

and 0 ≤ θ = θ(t, s, x) ≤ 1.
Hence

Cs(t, x) = C0(t, x) + Qs(t, x), with C0(t, x) :=
∂

∂u
f(t, x, ϕ(t, x))

Then from [11], see (5.3), we have that

sup
s≤t≤t−0

‖Qs(t)‖L∞(Ω) → 0 as t−0 → −∞.

Then we can choose t−0 and extend Qs(t, x) for t ≤ s to have a family P s(t, x), with s ≤ t−0 ,
such that

sup
−∞<t≤t−0

‖P s(t)‖L∞(Ω)
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is as small as we want.
Since, ϕ(t, x) satisfies the assumptions in Proposition 5.1 above, we then have

β−0 (C0) < 0

and then, from Theorem 4.5, we get, for all s ≤ t−0

β−0 (Ds) ≤ β0 < 0,

where
Ds(t, x) = C0(t, x) + P s(t, x), C0(t, x) =

∂

∂u
f(t, x, ϕ(t, x)).

Therefore, for all s and all t−0 ≥ t ≥ τ , we have

‖UDs(t, τ)‖L(L∞(Ω)) ≤ Meβ0(t−τ).

In particular, if we restrict to τ = s we get

‖ϕ(t)− u(t, s;u(s))‖L∞(Ω) = ‖w(t)‖L∞(Ω) = ‖UDs(t, s)w(s)‖L∞(Ω) ≤ Meβ0(t−s)‖w(s)‖L∞(Ω)

which goes to zero as s → −∞, since ϕ(s)− u(s) remains bounded in L∞(Ω).

6 Final remarks

Note that all the results in this paper have been worked out for the model problem (1.1). In
fact, from the proofs above it is clear that building blocks of our approach are the smoothing
estimates between Lebesgue spaces (2.2) and the subsolution argument around (4.10), which
basically amounts for the maximum principle to hold. All the remaining estimates are obtained
from this and the variations of constants formula. Hence, everything in this paper applies as
well for more general linear non–autonomous problems






ut + A(t)u = C(t, x)u in Ω, t > s
B(t)u = 0 on ∂Ω
u(s) = u0

(6.1)

with time dependent elliptic part of the form

A(t, D)u = −
N∑

i,j=1

aij(t, x)∂i∂ju +
N∑

i=1

ai(t, x)∂iu + a(t, x)u

with suitable smooth coefficients and either Dirichlet boundary conditions or time–dependent
boundary conditions of Robin type

B(t)u =
∂u

∂"η
+ b(t, x)u,

for suitable exterior (oblique) unit vector "η, as long as the estimates mentioned above hold true.
For example, for smooth coefficients and time–independent boundary conditions see [4], [2] or
[1]. In particular, this applies to the problems considered in [5].
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