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Abstract—We have deposited intrinsic amorphous silicon6
(a-Si:H) using the electron cyclotron resonance (ECR) chemical7
vapor deposition technique in order to analyze the a-Si:H/c-Si het-8
erointerface and assess the possible application in heterojunction9
with intrinsic thin layer (HIT) solar cells. Physical characteriza-10
tion of the deposited films shows that the hydrogen content is in11
the 15–30% range, depending on deposition temperature. The op-12
tical bandgap value is always comprised within the range 1.9–13
2.2 eV. Minority carrier lifetime measurements performed on the14
heterostructures reach high values up to 1.3 ms, indicating a well-15
passivated a-Si:H/c-Si heterointerface for deposition temperatures16
as low as 100 ºC. In addition, we prove that the metal–oxide–17
semiconductor conductance method to obtain interface trap dis-18
tribution can be applied to the a-Si:H/c-Si heterointerface, since19
the intrinsic a-Si:H layer behaves as an insulator at low or negative20
bias. Values for the minimum of Dit as low as 8 × 1010 cm-2�eV-121
were obtained for our samples, pointing to good surface passivation22
properties of ECR-deposited a-Si:H for HIT solar cell applications.

Q1
23

Index Terms—Electron cyclotron resonance chemical vapor24
deposition (ECR-CVD), heterojunction, interface defects, metal–25
insulator–semiconductor (MIS) devices, minority lifetime.26

I. INTRODUCTION27

NOWADAYS, there is a growing interest in heterojunction28

with intrinsic thin layer (HIT) solar cells. This kind of solar29

cell holds the current world efficiency record for devices based30

on silicon with a 25.6% efficiency [1], obtained by Panasonic on31

a large-area device (143.7 cm2). This value exceeds by 0.6% the32

previous record obtained in 1998 with a small-area crystalline33

silicon-based solar cell (4 cm2) from the University of New34

South Wales [2].35
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The HIT device combines crystalline silicon with hydro- 36

genated amorphous silicon (a-Si:H). The key step is the c-Si 37

surface dangling bond passivation by insertion of a high-quality 38

thin layer of intrinsic a-Si:H between the c-Si wafer and the 39

doped a-Si:H, which enables high-efficiency solar cells [3]. An- 40

other characteristic of HIT devices is the low-temperature pro- 41

cessing (<200 °C), which enables the use of very thin wafers 42

without causing substrate warping, avoiding any thermal dam- 43

age to the whole cell structure and low manufacturing cost. 44

Finally, devices can be fabricated with fewer processing steps 45

[4]. 46

It would be very advantageous to use a low-damage tech- 47

nique for the deposition of the intrinsic a-Si:H layer in or- 48

der to preserve the heterointerface with the c-Si. Usually, the 49

a-Si:H is deposited by plasma-enhanced chemical vapor deposi- 50

tion (PECVD), but there are other possible deposition methods, 51

such as electron cyclotron resonance chemical vapor deposi- 52

tion (ECR-CVD), which is a remote plasma procedure [5]. In 53

this case, the substrate holder is far from the region where the 54

plasma is generated, and as a consequence, it would be feasi- 55

ble to minimize the damage to the c-Si semiconductor surface 56

during the plasma deposition. Other advantages of ECR-CVD 57

are the possibility of in-situ substrate plasma pretreatment [6] or 58

layer posttreatment, the absence of active electrodes, and a high 59

degree of ionization, which permits low-processing pressures, 60

reducing processing gas demands and minimizing contamina- 61

tion of the growing film [7]. Finally, the ECR-CVD technique 62

has the possibility for scaling-up to deposition onto very large 63

substrates. These properties make ECR-CVD a very attractive 64

technique for low-cost commercial solar cell fabrication. 65

In research environments, insulator films with excellent prop- 66

erties, such as SiNxOy :H, a-Si, SiO2 , etc. [8]–[10], have been 67

deposited using the ECR-CVD plasma method. In addition, 68

a-Si:H films deposited by ECR-CVD have shown good elec- 69

trooptical properties for solar cell applications [11], [12]. 70

Concerning the specific characteristics of the HIT devices, 71

there are presently open questions about the properties of the 72

a-Si:H/c-Si heterointerface [13], [14], and thus, more stud- 73

ies dealing with this key aspect of the HIT devices are 74

mandatory. 75

The aim of this paper is twofold: analyze the physical prop- 76

erties of the intrinsic a-Si:H films deposited by ECR-CVD, and 77

characterize in depth the a-Si:H/c-Si heterointerface, focusing 78

our study on the passivation role of the a-Si:H deposited by this 79

technique. 80
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II. EXPERIMENTAL DETAILS81

A. Deposition Procedure82

We have deposited intrinsic a-Si:H films by the ECR-CVD83

plasma method on top of silicon wafers. The film thickness84

ranges from 5 to 100 nm. The plasma source was an Astex85

4500 generator, operating at 2.45 GHz and 100 W of microwave86

power. As a precursor gas, we used 19 sccm of 95% Ar/5% SiH487

gas mixture, which was introduced to the chamber through a dis-88

persal ring located 14 cm above the substrate holder. Deposition89

temperature was varied between room temperature and 250 ºC.90

For both film and device characterizations, different c-Si sub-91

strates were used. In all cases, substrates were cleaned with92

organic solvents; then, the native oxide of the Si wafers was93

stripped with a HF:H2O 1:50 solution for 1 min, followed by a94

3-min rinse in deionized water before their introduction in the95

plasma system. This cleaning step was always performed in a96

transfer chamber in N2 atmosphere. This avoids the exposure of97

the wafer surface to air after native oxide stripping and there-98

fore prevents oxidation of the surface. Immediately, the samples99

were introduced to the processing chamber, which was pumped100

down to about 3 × 10-7 mbar before initiating the deposition101

process. This process ensured that the a-Si:H film was deposited102

directly on the silicon surface with no interfacial oxide.103

Different thermal posttreatments were performed in forming104

gas atmosphere (200 ºC, 10 min and 260 ºC, 30 min) with RTP-105

600S equipment from Modular Process Technology Corp.106

B. a-Si:H Film Characterization107

For structural characterization, the intrinsic a-Si:H was de-108

posited on 300 μm <1 0 0> n-type crystalline silicon wafers,109

with resistivity between 1100 and 3000 Ω cm and both sides110

polished. The bonding configuration of the films was deduced111

from the infrared absorption properties. Measurements were112

performed with a Fourier transform infrared (FTIR)—Perkin113

Elmer Spectrum 100 spectrometer in the mid-infrared region114

(340–4000 cm-1). The film spectra were baseline corrected to115

remove the oscillations due to the film thickness. The H concen-116

tration of the films was estimated from both the Si-H stretching117

and wagging modes, using the oscillator strengths calculated118

in [15].119

Optical characterization of the films was done by measure-120

ment of transmittance and reflectance spectra with a Perkin121

Elmer Lambda 1050 UV/Vis/NIR spectrometer, and we ob-122

tained the refractive index (n) and extinction coefficient (k) by123

the method described in [16]. Following this method, a first-124

approach value of the thickness d is introduced to solve the125

reflectance and transmittance equations, and the resulting val-126

ues of n as a function of the wavelength (λ) are fitted to a Cauchy127

dispersion rule. Then, a computer program varies the parameter128

d until the best fit of n versus λ is obtained. This value of d129

is taken as the thickness of the sample, and the absorption co-130

efficient α is calculated from the corresponding values of k as131

α = 4πk/λ. Then, from the data of the absorption coefficient as132

a function of photon energy, the values of the bandgap Eg are133

calculated in the region of strong absorption according to the134

well-known Tauc equation [17]:135

(αhν)1/2 = B (hν − Eg ) .

C. a-Si:H/c-Si Heterointerface Characterization 136

To characterize the passivation of the heterointerface be- 137

tween a-Si:H and c-Si:H, the intrinsic a-Si:H was deposited on 138

both-side-polished c-Si wafers with resistivity ∼3000 Ω�cm. 139

Transmission electron microscopy (TEM) measurements of the 140

deposited films were carried out in a JEOL JEM 3000F mi- 141

croscopy. The effective minority carrier lifetime (τeff ) of these 142

samples was also measured in a WTC-120 from Sinton con- 143

sulting. For this characterization, a-Si:H was deposited also in 144

the backside of the wafer in consecutive processes, without ex- 145

posing the sample to the atmosphere, in order to avoid surface 146

recombination on the backside. 147

For electrical characterization, we have fabricated metal/a- 148

Si:H/c-Si/metal devices in one-side-polished 300-μm <1 0 0> 149

n-type c-Si wafers, with resistivity between 1 and 10 Ω�cm. Af- 150

ter substrate cleaning, a 100-nm-thick a-Si:H film was deposited 151

on the polished surface of c-Si, and devices with different areas 152

(from 4× 10-4 to 2.5× 10-3 cm2) were defined by optical lithog- 153

raphy. Then, we deposited 100-nm Ti + 200-nm Al contacts by 154

e-beam evaporation. 155

Capacitance and conductance measurements as a function 156

of applied voltage were performed using an Agilent 4294A 157

impedance analyzer at frequencies from 1 kHz to 1 MHz. 158

The current versus voltage characteristics were obtained with 159

a Keithley 2636A Source Measure Unit from –6 to 2 V. All 160

these measurements were made in an Everbeing EB-6RF probe- 161

station at room temperature. The a-Si:H is undoped, and a higher 162

bandgap is expected for a-Si:H than for c-Si. Therefore, a metal– 163

insulator–semiconductor (MIS)-like behavior is expected for the 164

devices, at least for negative and low gate voltages. Considering 165

that the intrinsic a-Si:H layer may behave as an insulator, we 166

could obtain the trap distribution (Dit) at the interface between 167

c-Si and a-Si:H [18]. To our knowledge, this is the first time that 168

this procedure has been applied to characterize the a-Si:H/c-Si 169

surface passivation, and it is interesting to compare these re- 170

sults with the conventional lifetime measurements. However, it 171

is necessary to take into account that this method has limitations 172

when applied to the a-Si:H/c-Si structure characterization. For 173

high positive bias voltage, which would correspond to the accu- 174

mulation region of a MIS device, high current is observed, which 175

adds uncertainty to the calculation of series resistance and the 176

capacitance of the intrinsic a-Si:H layer, even if leakage current 177

corrections are taken into account. However, for negative bias 178

voltage, a depletion region is formed in the c-Si substrate, and 179

the effect of interface traps on the conductance as a consequence 180

of charge trapping and detrapping is expected to be observed. 181

The advantage of this technique is that it can be scaled down 182

to small sizes, and therefore, it is possible to obtain quantitative 183

information on uniformity with a high sensitivity. 184

III. RESULTS AND DISCUSSION 185

A. Bonding Structure and Optical Properties of a-Si:H 186

Fig. 1 shows the FTIR spectrum of a sample deposited at 187

100 ºC. In this figure, the following absorption bands can 188

be observed: Si-H stretching (2000 cm-1), Si-H2 stretching 189

(2090 cm-1), Si-H wagging (647 cm-1), and the Si-H2 bending 190
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Fig. 1. FTIR spectrum of a sample deposited at 100 ºC. All the bands present
in this figure are related to Si-H bonds.

Fig. 2. (a) FTIR spectrum for a-Si:H samples deposited by ECR-CVD at
different temperatures. (b) Gaussian fitting used to calculate the H content of
the sample deposited at 100 ºC.

doublet (860 cm-1) [19]. The same absorption bands are ob-191

served for all the temperatures range in this study. The presence192

of only Si-H-related bond reveals a high purity film.193

Fig. 2(a) shows the thickness-normalized FTIR spectra in the194

1800–2300 cm-1 region for samples deposited at different tem-195

peratures. In this region, only the Si-H and Si-H2 stretching196

bands can be observed. The H content is directly related to the197

intensity of these bands; therefore, they can be used to analyze198

the influence of deposition temperature on the H incorporation.199

A high incorporation of H coming from the SiH4 present in the200

gas mixture takes place during film deposition, but the H con-201

tent clearly decreases as deposition temperature is increased. In202

order to quantify the H concentration, we used the oscillator203

strength factors provided in [15] for the wagging and stretch-204

ing modes. The absorption coefficient was obtained following205

the method proposed by Brodsky et al. [20], but corrected ac-206

cording to Maley [21]. The Si-H and Si-H2 stretching modes207

were deconvoluted by Gaussian fit, as shown in Fig. 2(b) for208

the sample deposited at 100 ºC. The H atomic percentage was209

obtained assuming a NH+NSi= 5.3 × 1022 cm-3 value for the210

amorphous silicon density.211

Fig. 3 shows the H content in the films obtained from the212

integration of each of the absorption bands: 647, 2000, and213

2090 cm-1. Note that the band at 640 cm-1 accounts for the214

total hydrogen content of the layer [15]. The hydrogen con-215

centration in the films ranges between 25% and 30% for films216

deposited at temperatures below 150 ºC and between 15% and217

20% for those deposited at 200 and 250 ºC. A clear decrease218

of the Si-H2 stretching mode (2090 cm-1) and Si-H wagging219

(647 cm-1) intensities is observed, with a slight variation of220

Fig. 3. Hydrogen concentration of a-Si:H samples deposited by ECR-CVD at
different temperatures. A decrease in [H] as the deposition temperature increases
is observed.

Fig. 4. Optical gap and refractive index as a function of deposition
temperature.

the Si-H stretching mode (2000 cm-1) intensity. Hydrogenated 221

amorphous silicon films with high concentration of Si-H2 bonds 222

are known to present a higher density of microvoids and defects 223

[22]. As the highest concentration of Si-H stretching bonds is 224

obtained for the sample deposited at 100 ºC, these conditions 225

appears as the most promising to silicon passivate. 226

Regarding the optical properties, in Fig. 4, we show the 227

refractive index at λ = 633 nm and the optical band gap of the 228

films as a function of deposition temperature. The refractive in- 229

dex is comprised in the range 3.2–3.5, within the expected value 230

for this parameter in a-Si:H films [23]. 231

On the other hand, the optical gap decreases from 2.12 eV for 232

films deposited at room temperature to 1.96 eV at 250 ºC. The 233

decrease can be related to the lower hydrogen incorporation into 234

the films as the deposition temperature increases [24], as shown 235

in Fig. 3. In any case, the value of the optical gap is close to 2 eV, 236

which means that a-Si:H films deposited by ECR are transparent 237

to most of the solar spectrum. This is very desirable, since this 238

passivation layer has to act as a transparent window in the HIT 239

solar cell. It is important to take into account that in amorphous 240

semiconductors, the optical bandgap could be different from the 241

real bandgap. 242

B. a-Si:H/c-Si Heterointerface Electrical Properties 243

Fig. 5 shows TEM images of the deposited a-Si:H layers. 244

A highly uniform interface between the intrinsic amorphous 245

silicon and the crystalline Si substrate is observed. This result is 246

very important in order to achieve good wafer passivation. In the 247

low-resolution image on the right side of Fig. 5, we can observe 248
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Fig. 5. TEM images of one sample deposited at room temperature. It is clear
that there is a high uniformity of the deposited film.

Fig. 6. Minority carrier lifetime measurements as a function of deposition
temperature.

that the film thickness remains almost constant across the whole249

surface. The sample was deposited at room temperature, but250

crystalline patterns can be observed between the two layers,251

probably due to the c-Si surface roughness.252

Fig. 6 shows the measured minority carrier lifetime as a253

function of deposition temperature for samples after a 30-min254

postannealing treatment at 260 ºC in forming gas atmosphere.255

Nonannealed samples showed lifetimes lower than 0.1 ms. For256

temperatures below 150 ºC, the minority carrier lifetime is al-257

most constant with values higher than 1.1 ms. In fact, at 100 ºC,258

the minority carrier lifetime is 1.3 ms, which is a high value for259

this parameter, that points to a good passivation role of the a-260

Si:H layer at the heterointerface [25]. For higher temperatures,261

there is a significant decrease in the minority carrier lifetime.262

The results of Fig. 6 can be explained by taking into account263

that the hydrogen atoms introduced into the a-Si:H layers dur-264

ing the ECR-CVD processes play a crucial role in the surface265

passivation of silicon wafers. As shown in Fig. 3, the sample266

deposited at 100 ºC is the one with the highest Si-H stretching267

bond concentration. The increase of minority carrier lifetime268

observed for films deposited at 100 ºC can be attributed to a269

hydrogen redistribution in the interface region, providing an270

excellent passivation of Si dangling bonds [26]. On the other271

hand, the reduction of the minority carrier lifetime at higher272

temperatures is mainly due to the decrease of the hydrogen con-273

tent of the films, as we have detailed in the film characterization274

section of this paper. The values of minority carrier lifetime near275

1.3 ms prove the passivation role of the a-Si:H ECR deposited276

layer and it will be confirmed in the next paragraphs, where we277

present the heterointerface electrical properties.278

Fig. 7. Metal–intrinsic amorphous silicon–semiconductor structure used to
measure capacitance and conductance curves. It is similar to an MIS structure,
where the interface trap influence is taken into account by Rit and Cit .

Fig. 8. Conductance and capacitance measurements as a function of voltage
bias for different frequencies.

Capacitance and conductance were measured as a function 279

of applied voltage and frequency for devices with the structure 280

schematically shown in Fig. 7. To analyze the electrical prop- 281

erties of the a-Si:H/c-Si heterointerface, we have to take into 282

account the physical structure of the device to define a reason- 283

able equivalent circuit. The proposed equivalent circuit is shown 284

in Fig. 7. 285

This schematic is based on MIS devices, taking into ac- 286

count leakage current through the insulator [27]. The 4294A 287

impedance analyzer measures the equivalent parallel capaci- 288

tance and conductance, from which the density of interface Q2289

traps (Dit) can be estimated, as described in [27]. It must be 290

noted that the model requires low values of the conductance Gt 291

(i.e., low current through the a-Si:H film) to be useful. 292

Fig. 8 shows the conductance and capacitance measurements 293

as a function of applied voltage and frequency for a device in 294

which the a-Si:H layer was deposited at room temperature. 295

For negative bias, the c-Si/a-Si:H junction is reversely biased, 296

and a depletion region forms within the n type c-Si substrate. The 297

measured conductance remains low, and the influence of inter- 298

face traps on conductance due to charge trapping and detrapping 299

is clearly observed as a peak for a bias voltage of –1 V. For low 300

positive bias, we observe the expected increase of capacitance as 301

the depletion region decreases and negative charge accumulates 302

at the interface so that the a-Si:H capacitance is measured. Even 303

for low positive bias, the measured conductance remains at rea- 304

sonable levels. Therefore, the observed behavior resembles the 305

expected one for an MIS device [28], [29], [30], which supports 306

our assumption that the a-Si:H plays the insulator role. 307

The dependence of Dit with the deposition temperature 308

is shown in Fig. 9 for as-deposited samples and after an 309
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Fig. 9. Heterointerface trap density at the a-Si:H/c-Si interface as a function of
deposition temperature before (black squares) and after (red circles) annealing
treatment. In the blue triangles, we present results for films deposited by standard
CVD for comparative purposes [31].

annealing treatment at 200 ºC during 10 min in forming gas310

atmosphere. A subsequent annealing treatment was also per-311

formed (260 ºC, 30 min. forming gas). After this second an-312

nealing, no effect of the interfacial traps was observed in the313

conductance graphs. The annealing treatments were performed314

in hydrogen-rich atmosphere to minimize hydrogen loss. For315

comparative purposes, we represent the results of Dit obtained316

by a conventional PECVD system in [31] without annealing.317

The Dit values of this reference were obtained with a semi-318

analytical model from photoconductance decay measurements.319

Our estimated Dit values remain roughly constant at 1 × 1011320

cm-1�eV-1 ± 1.3 × 1010 cm-1�eV-1 over the whole deposition321

temperature range, which is similar to the reported value for322

a-Si:H deposited by PECVD [31]. However, it must be noted323

that in addition to the uncertainty of our Dit estimation (which324

is mainly due to series resistance and Ca−Si calculation), we325

performed the C–V sweeps at room temperature; thus, some326

recharging of the a-Si:H layer may take place. This can lead to327

an overestimation of Dit . Since the Dit calculation method used328

here and in [31] is different, a direct quantitative comparison is329

not possible.330

We relate the low Dit values to an effective passivation of the331

c-Si surface dangling bonds, due to the high H content of the332

films. In addition, although the silicon wafers used for minority333

carrier lifetime measurements are different from those used for334

the Dit characterization, a qualitative comparison is possible.335

The highest lifetime values were obtained after the second an-336

nealing, indicating an improvement of the passivation quality337

of the a-Si:H. After this annealing, no peak in conductance was338

observed, suggesting Dit values below the sensibility of this339

technique.340

IV. CONCLUSION341

In this paper, we present results of a-Si:H thin films deposited342

by the ECR-CVD plasma method. Good passivation properties343

were obtained for films deposited at deposition temperatures344

lower than 250 ºC. TEM images reveal a high uniformity of the345

a-Si:H film all over the deposited area. The film deposited at346

room temperature present a high energy bandgap, and a de-347

crease in this value is observed as we increase the deposition348

temperature, in accordance with the same trend in the hydrogen349

concentration of the samples.350

We have used a simple model to analyze the electrical prop- 351

erties of the a-Si:H/c-Si heterointerface, obtaining Dit values 352

similar to those measured in MIS devices with insulators. Val- 353

ues as low as 1011 cm-1�eV-1 are obtained for samples deposited 354

at temperatures lower than 250 ºC. This low density of interfa- 355

cial defects is related to a reasonable c-Si interface passivation, 356

which is crucial for the fabrication of high-quality HIT solar 357

cells. The high hydrogen concentration in the samples could be 358

related to the Si dangling bonds passivation in the c-Si surface 359

and, therefore, with a reduction of recombination centers at the 360

interface. The minority carriers lifetime measurements confirm 361

the good passivation of the wafer by the a-Si:H deposited by 362

ECR-CVD. 363
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Deposition of Intrinsic a-Si:H by ECR-CVD to
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Abstract—We have deposited intrinsic amorphous silicon6
(a-Si:H) using the electron cyclotron resonance (ECR) chemical7
vapor deposition technique in order to analyze the a-Si:H/c-Si het-8
erointerface and assess the possible application in heterojunction9
with intrinsic thin layer (HIT) solar cells. Physical characteriza-10
tion of the deposited films shows that the hydrogen content is in11
the 15–30% range, depending on deposition temperature. The op-12
tical bandgap value is always comprised within the range 1.9–13
2.2 eV. Minority carrier lifetime measurements performed on the14
heterostructures reach high values up to 1.3 ms, indicating a well-15
passivated a-Si:H/c-Si heterointerface for deposition temperatures16
as low as 100 ºC. In addition, we prove that the metal–oxide–17
semiconductor conductance method to obtain interface trap dis-18
tribution can be applied to the a-Si:H/c-Si heterointerface, since19
the intrinsic a-Si:H layer behaves as an insulator at low or negative20
bias. Values for the minimum of Dit as low as 8 × 1010 cm-2�eV-121
were obtained for our samples, pointing to good surface passivation22
properties of ECR-deposited a-Si:H for HIT solar cell applications.

Q1
23

Index Terms—Electron cyclotron resonance chemical vapor24
deposition (ECR-CVD), heterojunction, interface defects, metal–25
insulator–semiconductor (MIS) devices, minority lifetime.26

I. INTRODUCTION27

NOWADAYS, there is a growing interest in heterojunction28

with intrinsic thin layer (HIT) solar cells. This kind of solar29

cell holds the current world efficiency record for devices based30

on silicon with a 25.6% efficiency [1], obtained by Panasonic on31

a large-area device (143.7 cm2). This value exceeds by 0.6% the32

previous record obtained in 1998 with a small-area crystalline33

silicon-based solar cell (4 cm2) from the University of New34

South Wales [2].35
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The HIT device combines crystalline silicon with hydro- 36

genated amorphous silicon (a-Si:H). The key step is the c-Si 37

surface dangling bond passivation by insertion of a high-quality 38

thin layer of intrinsic a-Si:H between the c-Si wafer and the 39

doped a-Si:H, which enables high-efficiency solar cells [3]. An- 40

other characteristic of HIT devices is the low-temperature pro- 41

cessing (<200 °C), which enables the use of very thin wafers 42

without causing substrate warping, avoiding any thermal dam- 43

age to the whole cell structure and low manufacturing cost. 44

Finally, devices can be fabricated with fewer processing steps 45

[4]. 46

It would be very advantageous to use a low-damage tech- 47

nique for the deposition of the intrinsic a-Si:H layer in or- 48

der to preserve the heterointerface with the c-Si. Usually, the 49

a-Si:H is deposited by plasma-enhanced chemical vapor deposi- 50

tion (PECVD), but there are other possible deposition methods, 51

such as electron cyclotron resonance chemical vapor deposi- 52

tion (ECR-CVD), which is a remote plasma procedure [5]. In 53

this case, the substrate holder is far from the region where the 54

plasma is generated, and as a consequence, it would be feasi- 55

ble to minimize the damage to the c-Si semiconductor surface 56

during the plasma deposition. Other advantages of ECR-CVD 57

are the possibility of in-situ substrate plasma pretreatment [6] or 58

layer posttreatment, the absence of active electrodes, and a high 59

degree of ionization, which permits low-processing pressures, 60

reducing processing gas demands and minimizing contamina- 61

tion of the growing film [7]. Finally, the ECR-CVD technique 62

has the possibility for scaling-up to deposition onto very large 63

substrates. These properties make ECR-CVD a very attractive 64

technique for low-cost commercial solar cell fabrication. 65

In research environments, insulator films with excellent prop- 66

erties, such as SiNxOy :H, a-Si, SiO2 , etc. [8]–[10], have been 67

deposited using the ECR-CVD plasma method. In addition, 68

a-Si:H films deposited by ECR-CVD have shown good elec- 69

trooptical properties for solar cell applications [11], [12]. 70

Concerning the specific characteristics of the HIT devices, 71

there are presently open questions about the properties of the 72

a-Si:H/c-Si heterointerface [13], [14], and thus, more stud- 73

ies dealing with this key aspect of the HIT devices are 74

mandatory. 75

The aim of this paper is twofold: analyze the physical prop- 76

erties of the intrinsic a-Si:H films deposited by ECR-CVD, and 77

characterize in depth the a-Si:H/c-Si heterointerface, focusing 78

our study on the passivation role of the a-Si:H deposited by this 79

technique. 80

2156-3381 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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II. EXPERIMENTAL DETAILS81

A. Deposition Procedure82

We have deposited intrinsic a-Si:H films by the ECR-CVD83

plasma method on top of silicon wafers. The film thickness84

ranges from 5 to 100 nm. The plasma source was an Astex85

4500 generator, operating at 2.45 GHz and 100 W of microwave86

power. As a precursor gas, we used 19 sccm of 95% Ar/5% SiH487

gas mixture, which was introduced to the chamber through a dis-88

persal ring located 14 cm above the substrate holder. Deposition89

temperature was varied between room temperature and 250 ºC.90

For both film and device characterizations, different c-Si sub-91

strates were used. In all cases, substrates were cleaned with92

organic solvents; then, the native oxide of the Si wafers was93

stripped with a HF:H2O 1:50 solution for 1 min, followed by a94

3-min rinse in deionized water before their introduction in the95

plasma system. This cleaning step was always performed in a96

transfer chamber in N2 atmosphere. This avoids the exposure of97

the wafer surface to air after native oxide stripping and there-98

fore prevents oxidation of the surface. Immediately, the samples99

were introduced to the processing chamber, which was pumped100

down to about 3 × 10-7 mbar before initiating the deposition101

process. This process ensured that the a-Si:H film was deposited102

directly on the silicon surface with no interfacial oxide.103

Different thermal posttreatments were performed in forming104

gas atmosphere (200 ºC, 10 min and 260 ºC, 30 min) with RTP-105

600S equipment from Modular Process Technology Corp.106

B. a-Si:H Film Characterization107

For structural characterization, the intrinsic a-Si:H was de-108

posited on 300 μm <1 0 0> n-type crystalline silicon wafers,109

with resistivity between 1100 and 3000 Ω cm and both sides110

polished. The bonding configuration of the films was deduced111

from the infrared absorption properties. Measurements were112

performed with a Fourier transform infrared (FTIR)—Perkin113

Elmer Spectrum 100 spectrometer in the mid-infrared region114

(340–4000 cm-1). The film spectra were baseline corrected to115

remove the oscillations due to the film thickness. The H concen-116

tration of the films was estimated from both the Si-H stretching117

and wagging modes, using the oscillator strengths calculated118

in [15].119

Optical characterization of the films was done by measure-120

ment of transmittance and reflectance spectra with a Perkin121

Elmer Lambda 1050 UV/Vis/NIR spectrometer, and we ob-122

tained the refractive index (n) and extinction coefficient (k) by123

the method described in [16]. Following this method, a first-124

approach value of the thickness d is introduced to solve the125

reflectance and transmittance equations, and the resulting val-126

ues of n as a function of the wavelength (λ) are fitted to a Cauchy127

dispersion rule. Then, a computer program varies the parameter128

d until the best fit of n versus λ is obtained. This value of d129

is taken as the thickness of the sample, and the absorption co-130

efficient α is calculated from the corresponding values of k as131

α = 4πk/λ. Then, from the data of the absorption coefficient as132

a function of photon energy, the values of the bandgap Eg are133

calculated in the region of strong absorption according to the134

well-known Tauc equation [17]:135

(αhν)1/2 = B (hν − Eg ) .

C. a-Si:H/c-Si Heterointerface Characterization 136

To characterize the passivation of the heterointerface be- 137

tween a-Si:H and c-Si:H, the intrinsic a-Si:H was deposited on 138

both-side-polished c-Si wafers with resistivity ∼3000 Ω�cm. 139

Transmission electron microscopy (TEM) measurements of the 140

deposited films were carried out in a JEOL JEM 3000F mi- 141

croscopy. The effective minority carrier lifetime (τeff ) of these 142

samples was also measured in a WTC-120 from Sinton con- 143

sulting. For this characterization, a-Si:H was deposited also in 144

the backside of the wafer in consecutive processes, without ex- 145

posing the sample to the atmosphere, in order to avoid surface 146

recombination on the backside. 147

For electrical characterization, we have fabricated metal/a- 148

Si:H/c-Si/metal devices in one-side-polished 300-μm <1 0 0> 149

n-type c-Si wafers, with resistivity between 1 and 10 Ω�cm. Af- 150

ter substrate cleaning, a 100-nm-thick a-Si:H film was deposited 151

on the polished surface of c-Si, and devices with different areas 152

(from 4× 10-4 to 2.5× 10-3 cm2) were defined by optical lithog- 153

raphy. Then, we deposited 100-nm Ti + 200-nm Al contacts by 154

e-beam evaporation. 155

Capacitance and conductance measurements as a function 156

of applied voltage were performed using an Agilent 4294A 157

impedance analyzer at frequencies from 1 kHz to 1 MHz. 158

The current versus voltage characteristics were obtained with 159

a Keithley 2636A Source Measure Unit from –6 to 2 V. All 160

these measurements were made in an Everbeing EB-6RF probe- 161

station at room temperature. The a-Si:H is undoped, and a higher 162

bandgap is expected for a-Si:H than for c-Si. Therefore, a metal– 163

insulator–semiconductor (MIS)-like behavior is expected for the 164

devices, at least for negative and low gate voltages. Considering 165

that the intrinsic a-Si:H layer may behave as an insulator, we 166

could obtain the trap distribution (Dit) at the interface between 167

c-Si and a-Si:H [18]. To our knowledge, this is the first time that 168

this procedure has been applied to characterize the a-Si:H/c-Si 169

surface passivation, and it is interesting to compare these re- 170

sults with the conventional lifetime measurements. However, it 171

is necessary to take into account that this method has limitations 172

when applied to the a-Si:H/c-Si structure characterization. For 173

high positive bias voltage, which would correspond to the accu- 174

mulation region of a MIS device, high current is observed, which 175

adds uncertainty to the calculation of series resistance and the 176

capacitance of the intrinsic a-Si:H layer, even if leakage current 177

corrections are taken into account. However, for negative bias 178

voltage, a depletion region is formed in the c-Si substrate, and 179

the effect of interface traps on the conductance as a consequence 180

of charge trapping and detrapping is expected to be observed. 181

The advantage of this technique is that it can be scaled down 182

to small sizes, and therefore, it is possible to obtain quantitative 183

information on uniformity with a high sensitivity. 184

III. RESULTS AND DISCUSSION 185

A. Bonding Structure and Optical Properties of a-Si:H 186

Fig. 1 shows the FTIR spectrum of a sample deposited at 187

100 ºC. In this figure, the following absorption bands can 188

be observed: Si-H stretching (2000 cm-1), Si-H2 stretching 189

(2090 cm-1), Si-H wagging (647 cm-1), and the Si-H2 bending 190
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Fig. 1. FTIR spectrum of a sample deposited at 100 ºC. All the bands present
in this figure are related to Si-H bonds.

Fig. 2. (a) FTIR spectrum for a-Si:H samples deposited by ECR-CVD at
different temperatures. (b) Gaussian fitting used to calculate the H content of
the sample deposited at 100 ºC.

doublet (860 cm-1) [19]. The same absorption bands are ob-191

served for all the temperatures range in this study. The presence192

of only Si-H-related bond reveals a high purity film.193

Fig. 2(a) shows the thickness-normalized FTIR spectra in the194

1800–2300 cm-1 region for samples deposited at different tem-195

peratures. In this region, only the Si-H and Si-H2 stretching196

bands can be observed. The H content is directly related to the197

intensity of these bands; therefore, they can be used to analyze198

the influence of deposition temperature on the H incorporation.199

A high incorporation of H coming from the SiH4 present in the200

gas mixture takes place during film deposition, but the H con-201

tent clearly decreases as deposition temperature is increased. In202

order to quantify the H concentration, we used the oscillator203

strength factors provided in [15] for the wagging and stretch-204

ing modes. The absorption coefficient was obtained following205

the method proposed by Brodsky et al. [20], but corrected ac-206

cording to Maley [21]. The Si-H and Si-H2 stretching modes207

were deconvoluted by Gaussian fit, as shown in Fig. 2(b) for208

the sample deposited at 100 ºC. The H atomic percentage was209

obtained assuming a NH+NSi= 5.3 × 1022 cm-3 value for the210

amorphous silicon density.211

Fig. 3 shows the H content in the films obtained from the212

integration of each of the absorption bands: 647, 2000, and213

2090 cm-1. Note that the band at 640 cm-1 accounts for the214

total hydrogen content of the layer [15]. The hydrogen con-215

centration in the films ranges between 25% and 30% for films216

deposited at temperatures below 150 ºC and between 15% and217

20% for those deposited at 200 and 250 ºC. A clear decrease218

of the Si-H2 stretching mode (2090 cm-1) and Si-H wagging219

(647 cm-1) intensities is observed, with a slight variation of220

Fig. 3. Hydrogen concentration of a-Si:H samples deposited by ECR-CVD at
different temperatures. A decrease in [H] as the deposition temperature increases
is observed.

Fig. 4. Optical gap and refractive index as a function of deposition
temperature.

the Si-H stretching mode (2000 cm-1) intensity. Hydrogenated 221

amorphous silicon films with high concentration of Si-H2 bonds 222

are known to present a higher density of microvoids and defects 223

[22]. As the highest concentration of Si-H stretching bonds is 224

obtained for the sample deposited at 100 ºC, these conditions 225

appears as the most promising to silicon passivate. 226

Regarding the optical properties, in Fig. 4, we show the 227

refractive index at λ = 633 nm and the optical band gap of the 228

films as a function of deposition temperature. The refractive in- 229

dex is comprised in the range 3.2–3.5, within the expected value 230

for this parameter in a-Si:H films [23]. 231

On the other hand, the optical gap decreases from 2.12 eV for 232

films deposited at room temperature to 1.96 eV at 250 ºC. The 233

decrease can be related to the lower hydrogen incorporation into 234

the films as the deposition temperature increases [24], as shown 235

in Fig. 3. In any case, the value of the optical gap is close to 2 eV, 236

which means that a-Si:H films deposited by ECR are transparent 237

to most of the solar spectrum. This is very desirable, since this 238

passivation layer has to act as a transparent window in the HIT 239

solar cell. It is important to take into account that in amorphous 240

semiconductors, the optical bandgap could be different from the 241

real bandgap. 242

B. a-Si:H/c-Si Heterointerface Electrical Properties 243

Fig. 5 shows TEM images of the deposited a-Si:H layers. 244

A highly uniform interface between the intrinsic amorphous 245

silicon and the crystalline Si substrate is observed. This result is 246

very important in order to achieve good wafer passivation. In the 247

low-resolution image on the right side of Fig. 5, we can observe 248
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Fig. 5. TEM images of one sample deposited at room temperature. It is clear
that there is a high uniformity of the deposited film.

Fig. 6. Minority carrier lifetime measurements as a function of deposition
temperature.

that the film thickness remains almost constant across the whole249

surface. The sample was deposited at room temperature, but250

crystalline patterns can be observed between the two layers,251

probably due to the c-Si surface roughness.252

Fig. 6 shows the measured minority carrier lifetime as a253

function of deposition temperature for samples after a 30-min254

postannealing treatment at 260 ºC in forming gas atmosphere.255

Nonannealed samples showed lifetimes lower than 0.1 ms. For256

temperatures below 150 ºC, the minority carrier lifetime is al-257

most constant with values higher than 1.1 ms. In fact, at 100 ºC,258

the minority carrier lifetime is 1.3 ms, which is a high value for259

this parameter, that points to a good passivation role of the a-260

Si:H layer at the heterointerface [25]. For higher temperatures,261

there is a significant decrease in the minority carrier lifetime.262

The results of Fig. 6 can be explained by taking into account263

that the hydrogen atoms introduced into the a-Si:H layers dur-264

ing the ECR-CVD processes play a crucial role in the surface265

passivation of silicon wafers. As shown in Fig. 3, the sample266

deposited at 100 ºC is the one with the highest Si-H stretching267

bond concentration. The increase of minority carrier lifetime268

observed for films deposited at 100 ºC can be attributed to a269

hydrogen redistribution in the interface region, providing an270

excellent passivation of Si dangling bonds [26]. On the other271

hand, the reduction of the minority carrier lifetime at higher272

temperatures is mainly due to the decrease of the hydrogen con-273

tent of the films, as we have detailed in the film characterization274

section of this paper. The values of minority carrier lifetime near275

1.3 ms prove the passivation role of the a-Si:H ECR deposited276

layer and it will be confirmed in the next paragraphs, where we277

present the heterointerface electrical properties.278

Fig. 7. Metal–intrinsic amorphous silicon–semiconductor structure used to
measure capacitance and conductance curves. It is similar to an MIS structure,
where the interface trap influence is taken into account by Rit and Cit .

Fig. 8. Conductance and capacitance measurements as a function of voltage
bias for different frequencies.

Capacitance and conductance were measured as a function 279

of applied voltage and frequency for devices with the structure 280

schematically shown in Fig. 7. To analyze the electrical prop- 281

erties of the a-Si:H/c-Si heterointerface, we have to take into 282

account the physical structure of the device to define a reason- 283

able equivalent circuit. The proposed equivalent circuit is shown 284

in Fig. 7. 285

This schematic is based on MIS devices, taking into ac- 286

count leakage current through the insulator [27]. The 4294A 287

impedance analyzer measures the equivalent parallel capaci- 288

tance and conductance, from which the density of interface Q2289

traps (Dit) can be estimated, as described in [27]. It must be 290

noted that the model requires low values of the conductance Gt 291

(i.e., low current through the a-Si:H film) to be useful. 292

Fig. 8 shows the conductance and capacitance measurements 293

as a function of applied voltage and frequency for a device in 294

which the a-Si:H layer was deposited at room temperature. 295

For negative bias, the c-Si/a-Si:H junction is reversely biased, 296

and a depletion region forms within the n type c-Si substrate. The 297

measured conductance remains low, and the influence of inter- 298

face traps on conductance due to charge trapping and detrapping 299

is clearly observed as a peak for a bias voltage of –1 V. For low 300

positive bias, we observe the expected increase of capacitance as 301

the depletion region decreases and negative charge accumulates 302

at the interface so that the a-Si:H capacitance is measured. Even 303

for low positive bias, the measured conductance remains at rea- 304

sonable levels. Therefore, the observed behavior resembles the 305

expected one for an MIS device [28], [29], [30], which supports 306

our assumption that the a-Si:H plays the insulator role. 307

The dependence of Dit with the deposition temperature 308

is shown in Fig. 9 for as-deposited samples and after an 309
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Fig. 9. Heterointerface trap density at the a-Si:H/c-Si interface as a function of
deposition temperature before (black squares) and after (red circles) annealing
treatment. In the blue triangles, we present results for films deposited by standard
CVD for comparative purposes [31].

annealing treatment at 200 ºC during 10 min in forming gas310

atmosphere. A subsequent annealing treatment was also per-311

formed (260 ºC, 30 min. forming gas). After this second an-312

nealing, no effect of the interfacial traps was observed in the313

conductance graphs. The annealing treatments were performed314

in hydrogen-rich atmosphere to minimize hydrogen loss. For315

comparative purposes, we represent the results of Dit obtained316

by a conventional PECVD system in [31] without annealing.317

The Dit values of this reference were obtained with a semi-318

analytical model from photoconductance decay measurements.319

Our estimated Dit values remain roughly constant at 1 × 1011320

cm-1�eV-1 ± 1.3 × 1010 cm-1�eV-1 over the whole deposition321

temperature range, which is similar to the reported value for322

a-Si:H deposited by PECVD [31]. However, it must be noted323

that in addition to the uncertainty of our Dit estimation (which324

is mainly due to series resistance and Ca−Si calculation), we325

performed the C–V sweeps at room temperature; thus, some326

recharging of the a-Si:H layer may take place. This can lead to327

an overestimation of Dit . Since the Dit calculation method used328

here and in [31] is different, a direct quantitative comparison is329

not possible.330

We relate the low Dit values to an effective passivation of the331

c-Si surface dangling bonds, due to the high H content of the332

films. In addition, although the silicon wafers used for minority333

carrier lifetime measurements are different from those used for334

the Dit characterization, a qualitative comparison is possible.335

The highest lifetime values were obtained after the second an-336

nealing, indicating an improvement of the passivation quality337

of the a-Si:H. After this annealing, no peak in conductance was338

observed, suggesting Dit values below the sensibility of this339

technique.340

IV. CONCLUSION341

In this paper, we present results of a-Si:H thin films deposited342

by the ECR-CVD plasma method. Good passivation properties343

were obtained for films deposited at deposition temperatures344

lower than 250 ºC. TEM images reveal a high uniformity of the345

a-Si:H film all over the deposited area. The film deposited at346

room temperature present a high energy bandgap, and a de-347

crease in this value is observed as we increase the deposition348

temperature, in accordance with the same trend in the hydrogen349

concentration of the samples.350

We have used a simple model to analyze the electrical prop- 351

erties of the a-Si:H/c-Si heterointerface, obtaining Dit values 352

similar to those measured in MIS devices with insulators. Val- 353

ues as low as 1011 cm-1�eV-1 are obtained for samples deposited 354

at temperatures lower than 250 ºC. This low density of interfa- 355

cial defects is related to a reasonable c-Si interface passivation, 356

which is crucial for the fabrication of high-quality HIT solar 357

cells. The high hydrogen concentration in the samples could be 358

related to the Si dangling bonds passivation in the c-Si surface 359

and, therefore, with a reduction of recombination centers at the 360

interface. The minority carriers lifetime measurements confirm 361

the good passivation of the wafer by the a-Si:H deposited by 362

ECR-CVD. 363
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QUERIES 467

Q1. Author: Please note that we cannot accept new source files as corrections for your paper. If possible, please annotate the PDF 468

proof we have sent you with your corrections, using Adobe Acrobat editing software, and upload it via the Author Gateway. 469

Alternatively, you may send us your corrections in a simple .txt file, utilizing the line numbers in the margins of the proof to 470

indicate exactly where you would like for us to make corrections. You may, however, upload revised graphics via the Author 471

Gateway. 472

Q2. Author: Please check, Is “trap distribution” the same thing as “density of interface traps”? 473




