Rend. Sem. Mat. Univ. Pol. Torino Fascicolo Speciale 1989 Nonlinear PDE's

Ph. Bénilan - L. Boccardo - M.A. Herrero
 ON THE LIMIT OF SOLUTIONS OF $u_{t}=\Delta u^{m}$ AS $m \rightarrow \infty$

Abstract. We consider the Cauchy problem

$$
\begin{equation*}
u_{t}=\Delta u^{m}, u(0)=f \tag{1}
\end{equation*}
$$

wehere $f \in L^{1}\left(\| R^{N}\right), N \geq 1$ and $f \geq 0$ a.e., and prove that as $m \rightarrow \infty$, the corresponding solutions $u_{m}(t)$ converge in L^{1}, uniformly for t in a compact set in $] 0, \infty$ [, to the solution of a suitable limit problem.
We also show similar results for the Canchy-Dirichlet and Cauchy-Neumann boundary value problems for (1) in bounded domains.

Key words and phrases. Porous medium equation, singular limit, mesa problem, asymptotic behavior.

Let $f \in L^{1}\left(\mathbb{R}^{N}\right), f \geq 0$ be given and consider the problem

$$
\begin{equation*}
\left.u_{t}=\Delta u^{m} \text { on }\right] 0, \infty\left[\times \mathbb{R}^{N}, \quad u(0, .)=f \text { on } \mathbb{R}^{N} \ldots\right. \tag{1}
\end{equation*}
$$

It is well known (see for instance [1]) that for any $m>1$, there exists a unique "strong solution" of (1), that is a function $u(t)(x)=u(t, x)$ satisfying $u \in \mathcal{C}\left(\left[0, \infty\left[, L^{1}\left(\mathbb{R}^{N}\right)\right) \cap \mathcal{C}(] 0, \infty\left[\times \mathbb{R}^{N}\right), u \geq 0\right.\right.$ on $] 0, \infty\left[\times \mathbb{R}^{N}, u(0,)=\right.$.$f on \mathbb{R}^{N}$, for any $\tau>0, u \in L^{\infty}(] \tau, \infty\left[\times \mathbb{R}^{N}\right), \quad u_{t}, \Delta u^{m} \in L^{\infty}(] \tau, \infty\left[, L^{1}\left(\mathbb{R}^{N}\right)\right)$ and

$$
\left.u_{t}=\Delta u^{m} \text { a.e. on }\right] 0, \infty\left[\times \mathbb{R}^{N}\right.
$$

We note u_{m} the solution of (1) and prove the following

THEOREM 1. As $m \rightarrow \infty$,

$$
u_{m}(t) \rightarrow \underline{u}=f+\Delta \underline{w} \text { in } L^{1}\left(\mathbb{R}^{N}\right)
$$

uniformly for t in a compact set in $] 0, \infty[$, where w is the solution of the variational inequality
(2) $\underline{w} \in L^{1}\left(\mathbb{R}^{N}\right), \Delta \underline{w} \in L^{1}\left(\mathbb{\mathbb { R }}{ }^{n}\right), 0 \leq f+\Delta \underline{w} \leq 1, \underline{w} \geq 0, \underline{w}(f+\Delta \underline{w}-1)=0$ a.e. .

Existence and uniqueness of a solution w of (2) follows by the results in [3]: indeed the problem may be rewritten under the form

$$
\begin{equation*}
\underline{u}, \underline{w} \in L^{1}\left(\mathbb{R}^{N}\right)^{+}, \underline{u}-\Delta \underline{w}=f \text { in } \mathcal{D}\left(\| \mathbb{R}^{N}\right), \underline{u} \in \beta(\underline{w}) \text { a.e. } . \tag{3}
\end{equation*}
$$

where β is the sign graph.
If $\underline{w} \in W_{\text {loc }}^{2,1}\left(\mathbb{R}^{N}\right)$, which is the case if $N=1$ or $f \in L_{\text {loc }}^{1+\varepsilon}\left(\mathbb{R}^{N}\right)$ with some $\varepsilon>0$, then $\Delta \underline{w}=0$ a.e. on $\{\underline{w}=0\}$ so that

$$
\begin{equation*}
\underline{u}=\chi \Sigma+f \chi_{r}{ }^{N} \backslash \Sigma \quad \text { with } \Sigma=\mathbb{1 R}^{N} \backslash\{\underline{w}>0\} \tag{4}
\end{equation*}
$$

The fact that for m large the solution of the porous medium equation develops "mesas" on the set of noncoincidence of the solution of the variational inequality (2), and tends to f on the complementary set, has been noticed in [8]. In [7], it has been proved that for f bounded and satisfying strong geometric assumptions, $u_{m}(t) \rightarrow \underline{\mu}$ given by (4) in the weak-* topology of $L^{\infty}\left(\mathbb{R}^{N}\right)$ as $m \rightarrow \infty$, uniformly for t in a compact set in] $0, \infty[$. In [9], Theorem 1 has been proved in the cases $N=1$ and $N \geq 2$ with f radially symmetric.

We also consider equation (1) on a bounded open set Ω in \mathbb{R}^{N} with Dirichlet or Neumann boundary conditions, and prove the results corresponding to Theorem 1 ; for the Cauchy-Dirichlet boundary value problem, such result has been shown in [9] in the case $N=1$.

The paper is organized as follows:

1. Proof of Theorem 1.
2. The Cauchy-Dirichlet boundary value problem.
3. The Cauchy-Neumann boundary value problem.

SECTION 1. Proof of Theorem 1

We first recall that the map $f \rightarrow u_{m}(t)$ is a contraction in $L^{1}\left(\mathbb{R}^{N}\right)$ for any $m>1$ and $t \geq 0$; a similar result holds for the map $f \rightarrow \underline{\boldsymbol{u}}$. Therefore, as it was noticed in [9], it is enough to prove the Theorem assuming that f is bounded and compactly supported. Namely, we will assume throughout this Section that

$$
\begin{equation*}
0 \leq f \leq M \text { a.e. on }\left\{|x|<R_{0}\right\}, \quad f=0 \text { a.e. on }\left\{|x|>R_{0}\right\} . \tag{5}
\end{equation*}
$$

By the maximum principle we have

$$
\begin{equation*}
0 \leq u_{m}(t) \leq M \text { a.e. for any } t \geq 0 \text { and } m>1 . \tag{6}
\end{equation*}
$$

Fix now $T>0$ and $m_{0}>1$. It follows from Lemma 2.1 in [9] that there exists R, depending on N, M, R_{o}, T and m_{0}, such that

$$
\begin{equation*}
u_{m}(t)=0 \text { on }\{|x|>R\} \text { for any } t \in[0, T] \text { and } m \geq m_{0} . \tag{7}
\end{equation*}
$$

By the translation invariance and the L^{1}-contractivity of the maps $f \rightarrow u_{m}(t)$, we have that for any $t \geq 0$ and $m>1$
(8) $\int\left|u_{m}(t, x+y)-u_{m}(t, x)\right| d x \leq \int|f(x+y)-f(x)| d x \quad$ for any $y \in \mathbb{R}^{N}$.

Therefore, as in [9], it follows from (6)-(8) that

$$
\begin{equation*}
\left\{u_{m}(t) ; t \in[0, T], m \geq m_{0}\right\} \text { is precompact in } L^{1}\left(\mathbb{R}^{N}\right) . \tag{9}
\end{equation*}
$$

We now recall the following oneside estimate (see [1]) for the solution $u=u_{m}$ of (1)

$$
\begin{equation*}
u_{t}=\Delta u^{m} \geq-u /(m-1+2 / N) t \text { a.e. . } \tag{10}
\end{equation*}
$$

Since $\Delta u(t)^{m} \in L^{1}\left(\mathbb{R}^{N}\right)$ and $\int \Delta u(t)^{m}=0$ a.e. $t>0$, one then has

$$
\begin{align*}
& \left\|u_{t}(t)\right\|_{L^{1}}=\left\|\Delta u(t)^{m}\right\|_{L^{1}}=2\left\|\left(\Delta u(t)^{m}\right)^{-}\right\|_{L^{1}} \\
& \quad \leq 2\|u(t)\|_{L^{1}} /\left(m-1+\frac{2}{N}\right) t \leq 2\|f\|_{L^{1}} /\left(m-1+\frac{2}{N}\right) t \quad \text { a.e. } t>0 .
\end{align*}
$$

From (6), (7) and (10), it follows that

$$
\begin{equation*}
\left.\left(u_{m}(t, x)\right)^{m} \leq M E(x) /\left(m-1+\frac{2}{N}\right) t \quad \text { onl }\right] 0, T\left[\times \mathbb{R}^{N} \text { for } m \geq m_{0}\right. \tag{12}
\end{equation*}
$$

where $E \in \mathcal{C}\left(\mathbb{R}^{N}\right)$ is the solution of

$$
E=0 \text { on }\{|x| \geq R\},-\Delta E=1 \text { in } \mathcal{D}^{\prime}(\{|x|<R\}) .
$$

In particular for $0<\tau<T$, we have

$$
\begin{equation*}
\left(u_{m}\right)^{m} \rightarrow 0 \text { uniformly on }[\tau, T] \times \mathbb{R}^{N} \text { as } m \rightarrow \infty \tag{13}
\end{equation*}
$$

Thanks to (6) we have $\left(u_{m}\right)^{m} \in \mathcal{C}\left(\left[0, \infty\left[, L^{1}\left(\mathbb{R}^{N}\right)\right)\right.\right.$ and we may define, for $t>0$ and $m>1$

$$
\begin{equation*}
w_{m}(t)=\int_{0}^{t}\left(u_{m}(s)\right)^{m} d s \tag{14}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
u_{m}(t)-\Delta w_{m}(t)=f \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right) . \tag{15}
\end{equation*}
$$

If for a subsequence $m_{k} \rightarrow \infty$ we have $u_{m_{k}}(1) \rightarrow \underline{u}$ in $L^{1}\left(\mathbb{R}^{N}\right)$, then by (11)

$$
\begin{equation*}
u_{m_{k}}(t) \rightarrow \underline{u} \text { in } L^{1}\left(\mathbb{R}^{N}\right) \text { uniformly for } t \in[\tau, T] . \tag{16}
\end{equation*}
$$

whereas, by (7) and (15)

$$
\begin{equation*}
w_{m_{k}}(1) \rightarrow \underline{w} \text { in } L^{1}\left(\mathbb{R}^{N}\right) . \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\underline{u}-\Delta \underline{w}=\int \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right), \quad \underline{w} \geq 0 \text { a.e. on } \mathbb{R}^{N} . \tag{18}
\end{equation*}
$$

and using (13)

$$
\begin{equation*}
0 \leq \underline{u} \leq 1 \text { a.e. on } \mathbb{R}^{N} . \tag{19}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\underline{w}=0 \text { a.e. on }\{\underline{u}<1\} \text {. } \tag{20}
\end{equation*}
$$

This will end the proof the Theorem 1.
In order to prove (20), we first remark that according to (10), the map $t \rightarrow t^{\left(n+1+\frac{2}{N}\right)^{-1}} u(t)$ is nondecreasing so that

$$
\begin{equation*}
u_{m}(t) \leq t^{-1 /\left(m-1+\left(\frac{7}{N}\right)\right)} u_{m}(1) \text { for any } 0<t \leq 1 . \tag{21}
\end{equation*}
$$

By (6)

$$
\begin{equation*}
u_{m}(t)^{m} \leq M u_{m}(t)^{m-1} \tag{22}
\end{equation*}
$$

so that by the definition (14) of $w_{m}(t)$ and (21)

$$
\begin{equation*}
w_{m}(1) \leq M u_{m}(1)^{m-1}(1+N(m-1) / 2) \tag{23}
\end{equation*}
$$

Property (20) is now clear: we may assume $u_{m_{k}}(1) \rightarrow \underline{u}$ a.e., such that, a.e. $x \in\{\underline{u}<1\}$ we willl have for k large, $u_{m_{k}}(1)(x) \leq \delta<1$ and then, using $(23), w_{m_{k}}(1)(x) \rightarrow 0$ as $k \rightarrow \infty$.

REMARK 1. Under assumption (5), we have justified the definition (14) of $w_{m}(t)$, and actually proved that

$$
\begin{equation*}
w_{m}(t) \rightarrow \underline{w} \text { in } W^{2, p}\left(\mathbb{R}^{N}\right) \text { for any } 1 \leq p<\infty, \text { as } m \rightarrow \infty \tag{24}
\end{equation*}
$$

uniformly for t in a compact set in $] 0, \infty[$.

Actually, according to (15), one has that for any $f \in L^{1}\left(\mathbb{R}^{N}\right), w_{m}(t)$ is well defined and converges to \underline{w} in $W_{\text {loc }}^{1, p}\left(\mathbb{R}^{N}\right)$ for any $1 \leq p<N /(N-1)$.

SECTION 2. The Cauchy-Dirichlet boundary value problem

In this section Ω will be an open set in \mathbb{R}^{N} and $f \in L^{1}(\Omega), f \geq 0$. We consider now the problem

$$
\begin{equation*}
\left.u_{t}=\Delta u^{m} \text { on }\right] 0, \infty[\times \Omega, \quad u(0, .)=f \text { on } \Omega, \quad u=0 \text { on }] 0, \infty[\times \partial \Omega \tag{25}
\end{equation*}
$$

For simplicity we will assume Ω bounded with smooth boundary $\partial \Omega$, although the results which follow can be easily extended to a general open set Ω.

Using for instance the results of [2], it follows that for $m>1$ there exists a unique "strong solution" of (25) satisfying
$u \in \mathcal{C}\left(\left[0, \infty\left[, L^{1}(\Omega)\right) \cap \mathcal{C}(] 0, \infty[\times \bar{\Omega}), u \geq 0\right.\right.$ on $] 0, \infty[\times \Omega, u=0$ on $] 0, \infty[\times \partial \Omega$, $u(0,)=$.$f on \Omega ;$ for any $\tau>0, u_{t}, \Delta u^{m} \in L^{\infty}(] \tau, \infty\left[, L^{1}(\Omega)\right)$ and

$$
\left.u_{t}=\Delta u^{m} \text { a.e. on }\right] 0, \infty[\times \Omega
$$

We shall denote by u_{m} the strong solution of (25).
On the other hand there is existence and uniqueness of a solution of the variational inequality
(26) $\underline{w} \in W_{0}^{1.1}(\Omega), 0 \leq f+\Delta \underline{w} \leq 1$ in $\mathcal{D}^{\prime}(\Omega), \underline{m} \geq 0, \underline{w}(f+\Delta \underline{w}-1)=0$ a.e. on Ω.

This follows by the result of [6].
We have the following
THEOREM 2. With the notations of this section, as $m \rightarrow \infty$

$$
u_{m}(t) \rightarrow \underline{u}=\int+\Delta \underline{w} \text { in } L^{1}(\Omega)
$$

uniformly for t in a compact set in $] 0, \infty[$.

To show this we will adapt the proof of Section 1. Using the contraction property in $L^{1}(\Omega)$ of the maps $f \rightarrow u_{m}(t)$ and $f \rightarrow \underline{u}$, we may assume f bounded, namely $0 \leq f \leq M$, such that (6) still holds.

The oneside estimate (10), with the constant $\left(m-1+\frac{2}{N}\right)$ there is no more true, but as it is proved in [4] for general homogeneous evolution equation, we have for $u=u_{m}$

$$
\begin{equation*}
u_{t}=\Delta u^{m} \geq-u /(m-1) t \text { a.e. . } \tag{27}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left\|u_{t}(t)\right\|_{L^{1}}=\left\|\Delta u(t)^{m}\right\|_{L^{1}} \leq 2\|f\|_{L^{1}} /(m-1) t \quad \text { a.e. } t>0 . \tag{28}
\end{equation*}
$$

From (27) and (6), we deduce

$$
\begin{equation*}
\left.\left.\left(u_{m}(t, x)\right)^{m} \leq M E(x) /(m-1) t \quad \text { on }\right] 0, T\right] \times \Omega \text { for } m>1 . \tag{29}
\end{equation*}
$$

where E is now the solution of the Dirichlet problem on Ω

$$
-\Delta E=1 \text { on } \Omega, E=0 \text { on } \partial \Omega
$$

and it follows that for $0<\tau<T$

$$
\begin{equation*}
\left(u_{m}\right)^{m} \rightarrow 0 \text { uniformly on }[\tau, T] \times \Omega \text { as } m \rightarrow \infty . \tag{30}
\end{equation*}
$$

We may define again $w_{m}(t)$ by (14), and we have

$$
\begin{equation*}
u_{m}(t)-\Delta w_{m}(t)=f \text { on } \Omega, w_{m}(t)=0 \text { on } \partial \Omega . \tag{31}
\end{equation*}
$$

If for a subsequence $m_{k} \rightarrow \infty$ we have $u_{m_{k}}(1) \rightarrow \underline{u}$ in $L^{1}(\Omega)$, then we will have by (30), (29) and (31)

$$
\begin{aligned}
& 0 \leq \underline{u} \leq 1 \text { a.e. on } \Omega \\
& u_{m_{k}}(t) \rightarrow \underline{u} \text { in } L^{1}(\Omega) \text { uniformly for } t \in[\tau, T] \\
& w_{m_{k}}(1) \rightarrow \underline{w} \text { in } L^{1}(\Omega)
\end{aligned}
$$

where $\underline{w} \geq 0$ is the solution of

$$
\underline{u}-\Delta \underline{w}=\int \text { on } \Omega, \quad \underline{w}=0 \text { on } \partial \Omega .
$$

The proof of (20) can be done as in Section 1, with slight modifications: according to (27), the map $t \rightarrow t^{1 /(m-1)} u(t)$ is nondecreasing, so that replacing (22) by $u_{m}(t)^{m} \leq M^{2} u_{m}(t)^{m-2}$, we will have in place of (23)

$$
\begin{equation*}
w_{m}(1) \leq M^{2} u_{m}(1)^{m-2}(m-1) \tag{32}
\end{equation*}
$$

which gives also (20) exactly in the same way.
In other words, according to these remarks, the proof of Theorem 2 reduces to showing that

$$
\begin{equation*}
\left\{u_{m}(t) ; t \in[0, T], m \geq m_{0}\right\} \text { is precompact in } L^{1}(\Omega) . \tag{33}
\end{equation*}
$$

According to (6), it is actually enough to prove that

$$
\left\{u_{m}(t) ; t \in[0, T], m \geq m_{0}\right\} \text { is precompact in } L_{\mathrm{loc}}^{1}(\Omega) .
$$

To prove this, fix $\rho \in \mathcal{D}(\Omega), \rho \geq 0$. Let $u=u_{m}$, and for $y \in \mathbb{R}^{N}$ with $\operatorname{supp}(\rho+y)$ contained in Ω, let $v(t, x)=\rho(x)|u(t, x+y)-u(t, x)|$. By Kato's inequality, we have

$$
v_{t} \leq \rho \Delta w \quad \text { in } \mathcal{D}^{\prime}(] 0, \infty[\times \Omega) \quad \text { with } w(t, x)=\left|u(t, x+y)^{m}-u(t, x)^{m}\right|
$$

and then integrating

$$
\int \rho(x)|u(t, x+y)-u(t, x)| d x \leq \int \rho(x)|f(x+y)-f(x)| d x+R|y|
$$

with

$$
R=|y|^{-1} \int_{0}^{t} \int \Delta \rho(x) w(s, x) d x d s \leq\|\Delta \rho\|_{L^{\infty}(\Omega)}\left\|\operatorname{grad} u^{m}\right\|_{L^{1}(] 0, t[\times \Omega)} .
$$

Therefore (33) will follow from
LEMMA 1. For $T>0$ and $m_{0}>1$, there exists C such that $\left\|\operatorname{grad}\left(u_{m}\right)^{m}\right\|_{L^{1}(\mathrm{~J}, T[\times \Omega)} \leq C \quad$ for $m \geq m_{0}$.

Proof of lemmat 1.

Set $u=u_{m}$. For any $t \geq 0$, let $v(t)$ be the solution of

$$
-\Delta v(t)=u(t) \text { on } \Omega, v(t)=0 \text { on } \partial \Omega .
$$

We have

$$
\begin{equation*}
v \in C^{1}(] 0, \infty[\times \Omega), \quad v_{t}=-u^{m} . \tag{34}
\end{equation*}
$$

such that, taking integrating over $] 0, T[\times \Omega$, we obtain

$$
\iint 2 u^{m+1}=\iint 2 v_{t} \Delta v=-\iint\left(|\operatorname{grad} v|^{2}\right)_{t} \leq \int|\operatorname{grad} v(0)|^{2}
$$

and then

$$
\begin{equation*}
\iint u^{m+1} \leq C . \tag{35}
\end{equation*}
$$

Using now (27) we have that for any $t>0$

$$
(m-1) t \int\left|\operatorname{grad} u^{m}(t)\right|^{2} \leq \int u^{m+1}(t) \leq\|u(t)\|_{L^{m+1}}\left(\int u^{m+1}(t)\right)^{m / m+1}
$$

Then using Holder and the fact that $\|u(t)\|_{L^{m+1}} \leq\|f\|_{L^{m+1}}$, we deduce that

$$
\begin{aligned}
& (m-1)\left(\iint\left|\operatorname{grad} u^{m}\right|\right)^{2} \leq \\
& \leq|\Omega|\|f\|_{L^{m+1}}\left(\iint u^{m+1}\right)^{m / m+1}\left(\int d t / t^{(m+1) /(m+2)}\right)^{(m+2) /(m+1)}
\end{aligned}
$$

and

$$
\left(\iint\left|\operatorname{grad} u^{m}\right|\right)^{2} \leq M|\Omega|^{(m+2) /(m+1)} T^{1 / m+1} C^{m / m+1}(m+2)^{(m+2) /(m+1)}(m-1)^{-1}
$$

whence the Lemma follows.

SECTION 3. The Cauchy-Neumann boundary value problem

In this section we consider the problem

$$
\begin{equation*}
\left.u_{t}=\Delta u^{m} \text { on }\right] 0, \infty\left[\times \Omega, u(0, .)=f \text { on } \Omega, \partial u^{m} / \partial n=0 \text { on }\right] 0, \infty[\times \partial \Omega . \tag{36}
\end{equation*}
$$

where Ω is a bounded connected open set with smooth boundary $\partial \Omega$, and $f \in L^{1}(\Omega), f \geq 0$. Using again the results of [2], for any $m>1$ there exists a unique "strong solution" of (36) satisfying

$$
\begin{aligned}
& u \in \mathcal{C}\left(\left[0, \infty\left[, L^{1}(\Omega)\right) \cap \mathcal{C}(] 0, \infty[\times \bar{\Omega}), u \geq 0 \text { on }\right] 0, \infty[\times \Omega, u(0, .)=f \text { on } \Omega,\right. \\
& u_{t} \in L^{\infty}(] \tau, \infty\left[, L^{1}(\Omega)\right) \text { for any } \tau>0, u^{m} \in L_{\text {loc }}^{\infty}(] 0, \infty\left[, W^{2.1}(\Omega)\right) \text { and } \\
& \left.\quad u_{t}=\Delta u^{m} \text { a.e. on }\right] 0, \infty\left[\times \Omega, \partial u^{m} / \partial n=0 \text { a.e. on }\right] 0, \infty[\times \partial \Omega .
\end{aligned}
$$

We denote now by u_{m} this solution of (36).
On the other hand, consider the variational inequality
$\underline{w} \in W^{1,1}(\Omega), 0 \leq f+\Delta \underline{w} \leq 1$ in $\mathcal{D}^{\prime}(\Omega), \underline{w} \geq 0, \underline{w}(f+\Delta \underline{w}-1)=0$ a.e. on Ω and $\int \rho \Delta \underline{w}=-\int \operatorname{grad} \rho \operatorname{grad} \underline{w} \quad$ for any $\rho \in \mathcal{C}^{1}(\bar{\Omega})$.

According to the results in [5], (37) has a solution if and only if

$$
\begin{equation*}
f f=|\Omega|^{-1} \int f \leq 1 \tag{38}
\end{equation*}
$$

Moreover,
if $f f<1$, then the solution \underline{w} of (37) is unique
if $f f=1$, for any solution \underline{w} of $(37), f+\Delta \underline{w}=1$ a.e. on Ω.
We have

THEOREM 3. With the notations of this section,
i) if $f f \geq 1$, then $u_{m}(t) \rightarrow \int \rho$ in $L^{1}(\Omega)$ as $m \rightarrow \infty$, uniformly for t in a compact set in $] 0, \infty[$.
ii) if $f f<1$, then $u_{m}(t) \rightarrow \underline{u}=f+\Delta \underline{w}$ in $L^{1}(\Omega)$ as $m \rightarrow \infty$, uniformly for t in a compact set in $] 0, \infty[$.

To prove this Theorem we may assume again that f is bounded and then that (6) holds. According to the results in [4], (27) and (28), still are true in this case. In particular, it is enough to prove that the conclusion is satisfied at $t=1$: it will then hold uniformly for t in a compact set in] $0, \infty$ [.

We denote by G the Green operator in $L^{1}(\Omega)$ associated to the Neumann problem for the Laplacian: for $w \in L^{1}(\Omega), v=G w$ is the unique solution of the problem

$$
\begin{equation*}
v \in W^{1,1}(\Omega), \quad \int v=0, \quad \int \rho(w-f w)=\int \operatorname{grad} \rho \operatorname{grad} v \text { for any } \rho \in \mathcal{C}^{1}(\bar{\Omega}) \tag{39}
\end{equation*}
$$

It is clear that G is a bounded (actually compact) linear operator from $L^{1}(\Omega)$ into $W^{1,1}(\Omega)$ (see [6]).

Finaly, we set $I=f f$. We then have

$$
\begin{equation*}
f u_{m}(t)=I \quad \text { for any } m>1, \quad t \geq 0 \tag{40}
\end{equation*}
$$

Proof of part i): case $I \geq 1$.
We note for simplicity $u_{m}=u_{m}(1)$; using (40), we have $\int\left|u_{m}-I\right|=$ $2 \int\left(I-u_{m}\right)_{+}$, where $r_{+}=\sup (r, 0)$, and then it is enough to prove that

$$
\begin{equation*}
\int\left(I-u_{m}\right)_{+} \rightarrow 0 \text { as } m \rightarrow \infty \tag{41}
\end{equation*}
$$

Using (28), since $\left(u_{m}\right)^{m}-f\left(u_{m}\right)^{m}=G\left(-\Delta\left(U_{m}\right)^{m}\right)$, we see that

$$
\begin{equation*}
\varepsilon_{m}=\left|\left(u_{m}\right)^{m}-f\left(u_{m}\right)^{m}\right| \rightarrow 0 \quad \text { in } W^{1.1}(\Omega) \text { as } m \rightarrow \infty \tag{42}
\end{equation*}
$$

Now, by convexity, we have

$$
f\left(u_{m}\right)^{m} \geq\left(f u_{m}\right)^{m}=I^{m} \geq 1
$$

so that

$$
\left(u_{m}\right)^{m} \geq\left(1-\varepsilon_{m}\right)_{+}
$$

and

$$
\varepsilon_{m} \geq I^{m}-\left(u_{m}\right)^{m} \geq m\left(u_{m}\right)^{m-1}\left(I-u_{m}\right) .
$$

Then

$$
I-u_{m} \leq \varepsilon_{m}\left(1-\varepsilon_{m}\right)_{+}^{1-1 / m} m^{-1}
$$

and, thanks to (42), (41) holds by Lebesgue dominated convergence theorem.

Proof of part ii): case $I<1$.
We will prove
LEMMA 2. With the notations of this Section 3, if $I<1$ then for $T>0$ there exists C such that

$$
\left\|\left(u_{m}\right)^{m+1}\right\|_{L^{\prime}((0, T[\times \Omega)} \leq C \quad \text { for } m>1 .
$$

Using Lemma 2, and repeating the proof of Lemma 1, one sees that for $m_{0}>1$, there exists C such that

$$
\left\|\operatorname{grad}\left(u_{m}\right)^{m}\right\|_{L^{2}(0, T[\times \Omega)} \leq C \quad \text { for } m \geq m_{0}
$$

and then (33) holds also in this case.
Another consequence of Lemma 2 is that

$$
\left.\liminf _{m \rightarrow \infty}\left(u_{m}\right)^{m+1}<\infty \quad \text { a.e. on }\right] 0, T[\times \Omega
$$

which we will use instead of (30) to obtain, thanks to (28), that if for a subsequence $m_{k} \rightarrow \infty$ we have $u_{m_{k}}(1) \rightarrow \underline{u}$ in $L^{1}(\Omega)$, then we will have $0 \leq \underline{u} \leq 1$ a.e. on Ω.

The proof of Theorem 3 in this case will follow then exactly as that of Theorem 2. To end up, we give the

Proof of lemma 2.

Let $u=u_{m}, v(t)=G u(t)$. We have that

$$
v_{t}(t)=f u^{m}(t)-u^{m}(t), \quad u(t)=I-\Delta v(t)
$$

and then

$$
\begin{aligned}
& f u^{m+1}(t)=f u^{m}(t) f u(t)-f u(t) v_{t}(t)= \\
& =I f u^{m}(t)-I f v_{t}(t)-f \operatorname{grad} v_{t}(t) \operatorname{grad} v(t)
\end{aligned}
$$

Using the convexity inequality $(m+1) u^{m} \leq m u^{m+1}+1$, we obtain

$$
(m+1-m I) \iint u^{m+1} \leq I T+(m+1)\left\{I \int v(0)+1 / 2 \int|\operatorname{grad} v(0)|^{2}\right\}
$$

whence the result.

REFERENCES

[1] D.G. Aronson, Ph. Bénilan. Régularité des solutions de l'équations des milieux poreux dans \mathbb{R}^{N}. C.R.Ac. Sc. Paris 288 (1979), pp. 103-105.
[2] Ph. Bénilan, A strong regularity L^{p} for solutions of the porous medium equation. Contribution nonlinear pde. Res. Notes in Math. 89. Pitman (1983), pp. 39-58.
[3] Ph. Bénilan, H. Brézis, M.G. Crandall. A semilinear elliptic equation in $L^{1}\left(\mathbb{R}^{N}\right)$. Ann. Sc. Norm. Sup. Pisa. V,2. (1975), pp. 523-555.
[4] Ph. Bénilan, M.G. Crandall. Regularizing effect of homogeneous evolutions equations. Contributions to Analysis and Geometry, D.N. Clarke \& al eds, John Hopkins Un. Press, Baltimore (1981), pp. 23-30.
[5] Ph. Bénilan, M.G. Crandall, P.E. Sacks. Some L^{1} existence and dependance results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988), pp. 203-224.
[6] H. Brézis, W. Strauss. Semilinear elliptic equations in L^{1}. J. Math. Soc. Japan, 25 (1973), pp. 565-590.
[7] L.A. Caffarelli, A. Friedman. Asymptotic behavior of solutions of $u_{t}=$ Δu^{m} as $m \rightarrow \infty$. Indiana Un. Math. J. 36,4 (1987), pp. 711-718.
[8] C.M. Elliot, M.A. Herrero, J.R. King. J.R. Ockendon. The mesa problem: diffusion patterns for $u_{t}=\nabla\left(u^{m} \nabla u\right)$ as $m \rightarrow \infty$. IMA J. Appl. Maths 37 (1986), pp. 147-154.
[9] P.E. Sacks. A singular limit problem for the porous medium equation. J.Math. Anal. Appl. 140,2 (1989), pp. 456-466.

PHILIPPE BÉNILAN - Equipe Mathématiques de Besançon
 U.A. CNRS 741 - Université de Franche-Comté
 25030 Besançon Cedex - FRANCE
 LUCIO BOCCARDO - Dipartimento di Matematica
 Università di ROMA 1 - Piazzale Aldo Moro 2
 00185 Roma - ITALIA

MIGUEL A. HERRERO - Departamento de Matematica Aplicada
Facultad de Matematicas - Universidad Complutense
28040 Madrid - ESPANAA

