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Nonlinear PDE's 

Ph. Bénilan - L. Boccardo - M.A. Herrero 

ON THE LIMIT OF SOLUTIONS OF ut = Aum AS m -> oo 

A b s t r a c t . We consider the Cauchy problem 

(1) ii« = A t i m , w.(0) = / . 

wehere / G Ll(VL\ ), N > 1 and / > 0 a.e., and prove tliat as in —• oo, the 
corresponding solutions w m ( 0 converge in L , uniformly for t in a compact set 
in ] 0 , o o [, to the solution of a suitable limit problem. 
We alsoshowsiiuilar results for the Catichy-Dirichlet and Cauchy-Neumanii boundary 
value problems for (1) in bounded domains. 

Key words and phrases. Porous medium equation, singular limit, mesa 
problem, asymptotic behavior. 

Let / e Ll(\RN), / > 0 be given and consider the problem 

(1) ut = Aum on]0, oolxlil^, w(0,.) = / on IR^ . 

It is vvell known (see for instance [1]) tliat for any m > 1, there exists a 
unique "strong solution" of (1), tliat is a function u(t) (x) = u(t} x) satisfying 

ti e CT([0, oolLl(W.N))nC{]Qt oo [xlRN), ti > 0 on ]0, oo[xJRN
f ti(0,.) = / on Ili/ 

for any r > 0, u e L°°(] r, oo [ xlR^), utt Aum <E L°°i]rt oo[, Ll(VXN)) and 

ut = A«m a.e. on ] 0, oo [ xIRN . 

We note um the solution of (1) and prove the following 
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THEOREM 1. As m -+ oo, 

um(t)-+u=: f + Awin Ll(KlN) 

uniformly for t in a compact set in ]0, oo[, where m is the solution of the 
variationai inequality 

(2) weLl(M,N)y Aui€L l(Utn), 0 < / + A M < 1, i*i > 0, i£(/ + Aw-1) = 0 a.e. . 

Existence and uniqueness of a solution w of (2) follows by the results 
in [3]: indeed the problem rnay be rewritten under the forni 

(3) IL, we Ll{lllN)+, u- Aw = f in V(\\lN),ueP(w) a.e. . 

where j3 is the sigli graph. 
li me H^cClll"), which is tiie case if N = 1 or / e L ^ I R * ) with 

some e > 0, then Aw = 0 a.e. on {w = 0} so that 

(4) a = XE + / \ r ^ \ s w i t h S = ^N\{w > 0} . 

The fact that for 7?? large the solution of the porous medium equation 
develops "mesas" on the set of noncoincidence of the solution of the variationai 
inequality (2), and tends to / on the complementary set, has been noticed 
in [8]. In [7], it has been proved that for / bounded and satisfying strong 
geometrie assumptions, um(t) —• u given by (4) in the weak-* topology of 
L°°(\[\N) as 7?i —• oo, uniformly for t in a compact set in ]0, oo[. In [9], 
Theorem 1 has been proved in the cases N = 1 and N > 2 with / radialiy 
symmetric. 

We also consider equation (1) on a bounded open set Q in IR^ with 
Dirichlet or Neumann boundary conditions, and prove the results correspon-
ding to Theorem 1; for the Cauchy-Dirichlet boundary value problem, sudi 
result has been shown in [9] in the case N = 1. 

The paper is organized as follows: 

1. Proof of Theorem 1. 
2. The Cauchy-Dirichlet boundary value problem. 
3. The Cauchy-Neumann boundary value problem. 
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S E C T I O N 1. Proof of Theorem 1 

We first recali that the map / —• um(t) is a contraction in Ll(MN) for 
any m > 1 and t > 0; a similar result holds for the map / —• M. Therefore, 
as it was noticed in [9], it is enough to prove the Theorem assuming that / is 
bounded and compactly supported. Namely, we will assume throughout this 
Section that 

(5) 0 < / < M a.e. on {\x\ < R0}, / = 0 a.e. on {\x\ > RQ} . 

By the maximum principle we have 

(6) 0 < um(t) < M a.e. for any t > 0 and m > 1 . 

Fix now T > 0 and m0 > 1. It follows from Lemma 2.1 in [9] that 
there exists /2, depending on N, A/, R0, T and wQì sudi that 

(7) um(t) = 0 on {\x\ > 11} for any t e [0, 7'] and m > m0 . 

By the translation in vari ance and the L^contractivity of the maps 
/ —• um(t)j we have that for any t > 0 and in > 1 

(8) / |tim(<, x + y) - um(tt x)\ dx < J \f(x + y) - f(x)\ dx for any y € 111" . 

Therefore, as in [9], it follows from (6)-(8) that 

(9) {um(i)i < £ [U>?]> m > mo} i« precompact in Ll(\SXN) . 

We now recali the following oneside estimate (see [1]) for the solution u = um 

o f ( l ) 

(10) ut = Aum > -w./(7;i - 1 + 2/N)t a.e. . 

Since Au(t)m e Ll{\\lN) and / Au(t)m = 0 a.e. t> 0, one tlien has 

(11) 

IMOIIL« = il Any rii£.« = 2ii( At to rn i t i 

< 2||u(0IU»/ (m - 1 + j ^ t < 2 | | / |U. / (m - 1 + J : ) t a.e. t > 0. 

From (6), (7) and (10), it follows that 

(12) (um (t,x))m < ME(x)/ (m - 1 + -^ j t on ]0, T[ xlllN for m > 7?i0 . 
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where EeC(lRN) is the solution of 

£ = 0 on {\x\ > R], -AE = 1 in V'({\x\ < R}) . 

In particular for 0 < r < T, we have 

(13) («m)m -»• 0 uniformly on [r, T] x IR^ as m -+ oo . 

Thanks to (6) we have (um)m G C([0, oo[, Ll(ÌRN)) and we may defme, 
for t > 0 and m > ì 

(14) wm(t) = f (um(s))mds . 
Jo 

which satisfies 

(15) um(t) - Awm(t) = f in D'(1RN) . 

lf for a subsequence m* —• oo we have u„,fc(l)—+u in Ll(V& ), then 
b y ( H ) 

(16) timfc (*) -* a in Ll(\ìiN) uniformly for * G [r, T] . 

whereas, by (7) and (15) 

(17) tvmk{l)-+w\n Ll{\\lN) . 

with 

(18) w - Au; = / in £>'(lllN) , w > 0 a.e. on IR* . 

and using (13) 

(19) 0 < n < 1 a.e. on IR* . 

We claim that 

(20) w = 0 a.e. on {u< 1} . 

This will end the proof the Theorem 1. 

In order to prove (20), we first reniark that according to (10), the map 

t —• t(n+l+N) u(t) is nondecreasing so that 

(21) um(t) < t~ 1 / (m-1+(^) )w.m(l) for any 0 < t < 1 . 



5 

By (6) 

(22) tifn(Om < Mum(t)m-1 . 

so that by the definition (14) of wm(t) and (21) 

(23) wm(ì) < Mum(ì)m-l(ì + N(m - 1)/2) . 

Property (20) is novv clear: we may assume wnlfc(l) —+ u a.e., sudi that , a.e. 
x € {u < 1} we willl have for k large, tinlfc(l)(x) < 6 < 1 and then, using 
(23), wmk(l)(x)-*0 as k —• oo. 

REMARK 1. Under assumptìon (5), we have justified the definition (14) of 
wm(i), and actually proved that 

(24) wm(t) —• w in W2,P(ÌR.N) for any 1 < p < oo, as m —• oo . 

uniformly for t in a compact set in ]0, oo[. 

Actually, according to (15), one lias that for any / 6 Ll(ÌR.N)1 wm(t) is 
well defìned and converges to w in W^(ÌRN) for any 1 < p < N/(N - 1). 

S E C T I O N 2. T h e Cauchy-Dirichlet boundary value problem 

In this section Q will be an open set in 1RN and / € Ll(£l), / > 0. 
We consider now the problem 

(25) ut = Awm on ] 0, oo[xfì, ti(0,.) = / on Q, w = 0 o n ] 0 , o o [ x a « . 

For simplicity we will assume Q bounded with smootli boundary ^fì, 
although the results which follow can be easily extended to a general open 
set 12. 

Using for instance the results of [2], it follows that for m > 1 there 
exists a unique "strong solution" of (25) satisfying 

u 6 C([0, oo[,Ll(Q))nC(]0y oo[xS), u > 0 on ]0, oo[ xQ, u = 0 on ]0, oo[ xdtì, 

M(0,.) = / on Q\ for any r > 0, utì Aum G L°°(] r, o o [ , ^ ( 0 ) ) and 

ut = Aum a.e. on ]0, o o [ x ^ . 
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We shall denote by um the strong solution of (25). 
On the other band there is existence and uniqueness of a solution of the 

variational inequality 

(26) we WyiQ), 0 < / + Aui< lin'P'(ft), rr> > 0, i ( / + A w - l ) = 0a.e.onfì . 

This follovvs by the result of [6]. 

We have the follovving 

THEOItEM 2. With the notations of this section, as m —• oo 

«m(0 —• li = / + AMI in Ll(Q) 

uniformiy for t in a compact set in ]0,oo[. 

To show this we will adapt the proof of Section 1. Using the contraction 
property in L1^) of the maps / —• um(t) and / —• w, we rnay assume / 
bounded, namely 0 < / < A/, such tliat (G) stili holds. 

The oneside estimate (10), with the Constant (m- 1-f — j there is 

no more true, but as it is proved in [4] for general homogeneous evolution 
equation, we have for u = um 

(27) ut = Atim > -ti/(m - 1)/. a.e. . 

and also 

(28) IMOIIn = IIMOmIU« < 2| | / |Ui/(m- ì)t a.e. t > 0 . 

From (27) and (6), we deduce 

(29) («,„(*, x))m < 'ME(x)/(m - ì)l on ]0, T] x Q for m > 1 . 

where E is now the solution of the Dirichlet problem on Q 

- A £ = 1 on il, E = 0 on diì 

and it follows that for 0 < r < T 

(30) («m)m —• 0 unifornily on [r, T] x Q as m—> oo . 
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We may defme again wm(t) by (14), and vve have 

(31) um(t) - Awm(t) = / on Q} wm(t) = 0 on dSl . 

If for a subsequence m* —• oo we have timk(l) —• IL in £*(ft), then we will 
have by (30), (29) and (31) 

0 < i£ < 1 a.e. on U 
umk(t) —• IL in £*(fì) uniformly for / € [r, T] 

tvmk(ì) —• w in L!(Q) 

where u; > 0 is the solution of 

u — Aw - / on i2, w = 0 on dQ . 

The proof of (20) can be done as in Section 1, with slight modifications: 
according to (27), the map t —• tl^m~l^u(l) is nondecreasing, so that replacing 
(22) by um(t)m < M2um(t)m-2, we will have in place of (23) 

(32) wm(l)<M2um(l)m-\m-l). 

which gives also (20) exactly in the sanie way. 

In other words, according to these remarks, the proof of Theorem 2 
reduces to showing that 

(33) {«m(0i * £ [0, T], m > ino] is precompact in L 1 ^) . 

According to (6), it is actually enough to prove that 

{um(t)\ t e [0, T], m > m0} is precompact in Lloc(tì) . 

To prove this, fix p € V(Q), p > 0. Let u = um, and for y e lllN with 
supp(/?-fy) contained in Q, let v(tt x) = p(x)\u(t,x + y) - u(t,x)\. By Kato's 
inequality, we have 

ut < pAu; in Z>'(]0, oo[xQ) with u;(i, x) = |«(<, a; + y)m - u(t, x)m\ 

and then integrating 

I p(x)\u(t, l' + i / ) - «(<, x)\dx < Ip(x)\f(x + y) - /(ar)|<fa? + i2|y| 



with 

R=\y\~l I I Ap(x)w(s} x)dxds <\\Ap\\Looin)\\ grsid um\\Lii]0,t[xiì) • 

Therefore (33) will follow from 

LEMMA 1. For T>0 and m0 > 1, there exists C sudi that 

||grad (um)m|U»(]o,r[xn) < C for m > m0 . 

Proof of lemmn 1. 

Set u = um. For any t > 0, let v(t) be the solution of 

-Av(t) = u(t) on Q, v(t) = 0 on dtt . 

We have 

(34) v£ClQ0too[xQ)t vt = -um . 

sudi that, taking integrating over ]0, T[ xQ, vve obtain 

jj^nm+l = ^ 2«,Ai; = -JJ(\gr*à v\2)t < f |grad t;(0)|2 

and then 

(35) ffum+l<C. 

Using now (27) we have that for any t > 0 

/

/. / r \ m/m+l 

Igrad u"'(OI2 < ^ u"*+1(«) < ||«(0IU-+> f y « m + 1 (0 j 
Then using Holder and the fact that ||w(/)||Lm+i < ||/||L»»+I, we deduce that 

(771-1) ( ^ Igrad um | ) < 

< l«lll/llx»+« Uj um+l) il<///<(m+1)/(m+2) 
m/m+l / r \ (m+2)/(m+l) 

<i«iii/iii-+^yy«m+ij 
and 

( Il |grad tim |) < M|fì|(m+2)^m+1)7 ,1/m+1Cm/m+1(m + 2)<m+2>'<m+1>(m - l )" 1 , 

whence the Lemma follows. 
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SECTION 3. The Cauchy-Neumann boundary value problem 

In this section we consider the problem 

(36) ut = Aum on ] 0, oo [ xU, u(0,.) = / on Q, dum/dn = 0 on ] 0, oo [ xdQ . 

where Q is a bounded connected open set with smooth boundary dQ, and 
/ € L1^), / > 0. Using again the results of [2], for any m > 1 there exists a 
unique "strong solution" of (3G) satisfying 

u GC([0, oo [ ,^(^))0^(10, oo[x£J), u> 0 on ]0, oo[xft, u(0,.) = / on ft, 

ut e L°°(] T, oo [, L\Q)) for any r > 0, um G ££.(] 0, oo [, W2ì(ty) and 

ut = Aum a.e. on ]0, oo[ x£2, dum/dn = 0 a.e. on ]0, oo[ xdQ . 

We denote now by um this solution of (36). 

On the other hand, consider the variational inequality 
(37) 

w e WM(n) , 0 < / + Aw < 1 in Z>'(Q), w > 0, w(f + A i - 1) = 0 a.e. on Q 

and / pAw = — grad p grad w for any p e C1^) . 

According to the results in [5], (37) has a solution if and only if 

(38) ff=\n\-lJf<Ì; 

Moreover, 

if ff< 1, then the solution w of (37) is unique 

if - / / = 1 , for any solution w of (37), / + Aw = 1 a.e. on Q. 

We have 

THEOREM 3. With the notations of this section, 

i) if / / > ! , then um(t)^J-fin I ' (0 ) as ,n-* oo, « / a n n / y / o r , ina 

compact set in ] 0, oo [. 
ll) if / / < 1J then um(t)-+u = f + Aw in LJ(f2) as m —* oo, uniformly 

for t in a compact set in ] 0, oo [. 



10 

To prove this Theorem we ma,y assume again that / is bounded and 
then that (6) holds. According to the results in [4], (27) and (28), stili are 
true in this case. In partìcular, it is enough to prove that the conclusion is 
satisfied at t = 1: it will then hold uniformly for / in a compact set in 
]0,oo[. 

We denote by G the Green operator in Ll(Q) associated to the 
Neumann problem for the Laplaeian: for w £ ^(Q), v = Gw is the unique 
solution of the problem 
(39) 

v G W 1 , 1 ^ ) , Y V = 0, p(w- jw)= /grad/> gradi; for any p£Cl(p). 

It is clear that G is a bounded (actually compact) linear operator from Ll(SÌ) 
into Wl'l(Q) (see [6]). 

Finaly, we set / = / / . We then have 

(40) jum(t) = I f o r a n y m > l , t>0. 

Proof of part i): case / > 1. 

We note for simplicity um = wm(l); using (40), we have / |wm - / | = 

2 I(I — um)+, where r+ = sup(r,0), and then it is enough to prove that 

(41) / (/ — wrn)+ -+ 0 as m -> oo . 

Using (28), since (um)m - f(um)m = G(-A(t /m )m ) , we see that 

(42) em = |(«m)m - j(um)m\ - 0 in W^1-1^) a s m - o o . 

Now, by convexity, we have 

so that 
(um)m>(l-em)+ 
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and 
£m > Im ~ ( « m ) m > m(um)m"l(I - t l m ) . 

Then 
I-um<em(ì-em)\r1,mm'1 

and, tlianks to (42), (41) holds by Lebesgue dominated convergence theorem. 

Proof of part ii): case I < 1. 

We will prove 

LEMMA 2. With the notations of this Section 3, if I < ì then for T > 0 
there exists C sudi that 

ll(tim)m+1|U«(]olT[xn)<C f o r m > l . 

Using Lemma 2, and repeating the proof of Lemma 1, one sees that for 
mo > 1, there exists C such that 

||grad (wm)m|U»(]o,T[xn) < C for m > m0 

and then (33) holds also in this case. 
Another consequence of Lemma 2 is that 

liminf(tim)m+l < oo a.e. on ]0, T\xQ 
m-+oo 

which we will use instead of (30) to obtain, tlianks to (28), that if for a 
subsequence m* -+ oo we have umk(ì) -+« in ^(Q), then we will have 
0 < u < 1 a.e. on Q. 

The proof of Theorem 3 in this case will follow then exactly as that of 
Theorem 2. To end up, we give the 

Proof of lemma 2. 

Let w = um, v(t) 

vt(t) 

= Gu{t). We have that 

= fum(t) - um(t)t u(t) = / - Av(t) 
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and then 

y«m+i(o=jumMju(t) - fu(t)vt(t)= 
= / fum(t) - I fvt(t) - / grad vt(t) grad v(t) . 

Using the convexity inequality (m + l)wm < mum+l + 1, we obtain 

(m + 1 — m/) 
/ / « m + 1 < / r + (m + 1){I jv(Q) + 1 / 2 ^ |grad t;(0)|2} 

whence the result. 
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