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On the relation between the compressibility and the static structure factor
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The compressibility equation of a fluid with an effective, state-dependent, pair-potential is derived.
It is shown that the thermodynamic states for which the infinite wavelength limit of the static
structure factor diverges are not consistent with the thermodynamic states for which the
compressibility diverges whenever the effective potential is density-dependent. This result is in
agreement with some recent numerical simulations2@3 American Institute of Physics.
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I. INTRODUCTION ture. Henceforth we will design thesimplg fluid with the

In recent years it has become current practice to tran%)otentlal,V(r), as the “simple” fluid, whereas thésimple

pose the well-developed statistical mechanical methods fromUId Wlt.h an eff_ectlve potgntlah/(r,p,T),“WHI for tr’}e sgke
: : ; of brevity be simply designed as the “complex” fluid. In
the theory of simple(atomig fluids to the complex(say, ) ; .
. : : Sec. Il we first briefy summarize the structure-
colloidal) fluids encountered in many soft-matter systéms. . . . . . )
. . . . thermodynamics relations of the simple fluid which will
In many instances the main constitugsty, the colloidal : :
. . -~ hen, in Sec. lll, be transposed to the complex fluid. Our
particleg of the complex fluid has characteristic space an . . .
. . . conclusions will be gathered in Sec. IV.
time scales which are widely separated from those of the
remaining constituentsUnder such circumstances it is natu-
ral to use a coarse-grained description by first integrating out
from the partition function all the degrees of freedom not!- THE SIMPLE FLUID

belonging to the main constitueht. This procedure invari- The following relations between the structural and ther-
ably leads to an “effective” Hamiltonian for the main con- modynamical properties of a uniform simple fluid are
stituent which contains a free-energy term and, hence, i§e|l-known®’ For future comparison we nevertheless
state-dependertOn many occasions this effective Hamil- priefly summarize the relevant material here. To simplify the
tonian has been further approximated in terms of statenqtation, theT-dependence of the thermodynamic state will

dependent potentials. In the simplest case one then ends Wat pe explicitly indicated but itp-dependence will be re-
describing the original complex fluid in terms of an “equiva- tzined throughout.

lent” simple fluid containing only the main constituent of the _
complex fluid but interacting now with a more complex, A- Structural properties
state-dependent, pair-potential. Two well-known examples of  Only the pair structure will be considered here. Within

such effective pair-potentials are provided by the Debyethe present pair-potential approximation the potential
Huckel potential used to describe the interaction betweenergy, U(xV), of an N-particle configuration {x"}

two charged colloidal particles and the Asakura-Oosawa=(x, x,,... xy) can be represented as

depletion potential used in the description of the interaction

between two uncharged colloidal particleSHere we will, U({xM)= ;f dr fdr Doy o IXNYV(r 1) 1)
however, not questidnthe oversimplifications usually in- 2 ! A bne 2

volved in this reduction of the Original CompleX fluid to a WhereV(rlz) is the pair-potentia"‘lzz|r1_r2|, and
simple fluid with an effective pair-potential but, instead, in-
quire for the consequences of the state-dependence of this
effective pair-potential on the statistical mechanical relations
describing the corresponding “simple fluid.”

In the following we will thus be concerned solely wit
the question of how one can transpose the equilibrium statig22("1:72),
tical mechanical relations between the structure and the ther- NN
modynamics of a simple fluid with a pair-potenthd(r) to parr)={ 2 > 8(ri=x)8(ro—x)) |, 3
the case where the simple fluid has an effective pair-potential I=1i#)=1
of the general fornV(r;p,T), wherep represents the aver- where(...) represents a grand-canonical thermal average
age number density of the uniform fluid afidits tempera-  over the configurationgxN}.

N N

ﬁz<r1,r2:{xN}>:i§1i§:15<r1—xi>5<rz—x,—>. )

h the quantity whose thermal average yields the pair-density
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For a uniform and isotropic fluid we have, in the ther-
modynamic limit, for the one-particle density,

N
pl(r1>=<j21 5(r1—x,»>> =p,
while the two-particle density of Eq3) can be written as:

pa(r1,r2)=p?g(r1z;p)=p*[1+h(ryz;p)], 5)

where g(r;p) and h(r;p) are, respectively, the pair- and
total-correlation functioricf.). Finally, the direct cf.c(r;p),
can be obtained frorh(r;p) by using the Ornstein—Zernike
equatior which can be written in Fourier space as

1+ph(k;p)=[1—pT(k;p)] 7%, (6)

whereS(k; p) =1+ ph(k;p) is the static structure factor and
the tilde denotes a Fourier transform.

(4)

B. Thermodynamic properties

As is well-known®>~’ the thermodynamic properties can
be expressed in terms of eithg(r;p) or c(r;p).

1. The free-energy density

Let f(p) denote the thermodynamic limit of tigrand-
potentia) free-energy per unit volume anf,(p)="(p)
—fia(p) its excess valuefy(p) =kgTp[In(pA%)—1], kg be-
ing Boltzmann’s constant, and the thermal de Broglie

wavelength resulting from the system’s kinetic energy. Inte-

grating or “charging” the potential energy of Edl) be-

tween the ideal gas\(=0) and the actual systemx €1) by

the procedure outlined in, e.g., Ref. 5, one obtains
1

fedp)= %pzf drV(r)J dag™(r;p), (7

0

whereg™(r;p) denotes the value aj(r;p) calculated for

AV(r), instead of V(r) [cf. g©(r;p)=19%(r:p)

=g(r;p)]. The theoretical basis for E¢7) rests on the fact

that because of Eq1) the functional derivative of the free-
energy with respect t¥(|r;—r,|) equalsp,(rq,ry)/2. Alter-
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9(rip)= 2, pPG5(IVD), ©)
and

c(r;p>=p§0 pPey(r;IV]), (10

where, as is WeII—knowﬁfthegp(r;[V]) andcp(r;[V]) can

be further expressed in terms of convolutions of Mayer func-
tions. Note also that, for later convenience, we have explic-
itly indicated (but only in the r.h.9.the functional depen-
dence(cf. [V]) of Egs.(9)—(10) onV(r). Introducing Eq(9)

into Eqg. (7) we obtain

fex<p>=n§2 p"Bn([V]),

(11)
where
1

B(VD=1 [ arvin) [ ng, v, a2
whereas introducing Eq10) into Eqg. (8) results in

fadp)= 2 p"B([V]), (13
with

_— kBT

BAVD =~ s | drea oniv)) (14

Using now the explicit representation of EG8)—(10) in
terms of Mayer functions, one can verify explicitly that, at
least for the first few n-values, we haveB,([V])
=B,([V]), and although we know of no proof for a general
n we will henceforth still consider that

fodp)=fexp), (15)

i.e., that the two descriptions of Eq¥)—(8) are thermody-
namically consisterit.

natively, the excess free energy density can also be found b9. The pressure

integrating or “charging” the density,(r,) =p between the
ideal gas £ =0) and the actual system & 1) following the
procedure outlined, e.g., in Ref. 5, yielding instead of Eq
(7):

Tutp)=—koT [ dr ["ap [ " apretripn), ®)

where, this time, the theoretical basis for E8). rests on the

relatiom between the direct cf. and the second functional

derivative of the free-energy with respect g@(r;). Note

1
_ -2
that in a thermodynamically consistent theory we must have?ex(p)_ 2P f drV(r)fo dr

fexdP) =f_ex(p), since both Eq97) and(8) are exact. In what

Once the free-energy densityp), is known, the pres-
sure, p(p), and the inverse isothermal compressibility,

‘dp(p)/dp, can be obtained from the thermodynamic rela-

tions

at(p) ~ap(p)  *(p)
p(P)—PW—f(P), op P a7 (16)
From Eq.(7) one obtains then
1 ag™(r;p)
N (- = T
gM(r;p)+p p :
(17)

follows it will nevertheless be convenient to put a bar on the .o Pl p) =P(p) = Pulp), With pig(p)=pksT, denotes
€ I 1 I 1

fedp) Of Eq. (8). o

To comparef.(p) and fo(p) one can compare their
(formal) virial or density expansions. To this end let us write
the density expansion af(r;p) andc(r;p) as

the excess pressure. Similarly, £8) yields

Pol)= ko [ dr ["dp'pretrin) (19

Downloaded 18 Jun 2013 to 147.96.14.15. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



894 J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 C. F. Tejero and M. Baus

From Eq.(18) one can also obtain the inverse isothermalinstead of Eq(1). Note that in Eq(24) the p-dependence of

compressibility via = 1/kgT) U is not formally related tqxN}, i.e., p appears only as a
p(p) parameter in the system’s Hamiltonian. Therefore Eg5s-
B . (10) can be formally transposed as

g2 —1-p | arcirip), 19 :

which together with Eq.6) and h(k=0,0)=fdrh(r;p), g(r;p)= ZO PPau(r;[V(p)]), (25

yields the compressibility equation -
an(0) and

plp)  ~ _
B——=[S(k=0;p)]" %, (20) -
c(rip)= 2, pPey(ri[V(p)]), (26)
where -

1 indicating that the Mayer functions are now evaluated with
~S(k=0;p)=1+pf dl’h(l’;p)Z[l—pf dI‘C(I‘;p)} _ V(r;p) and hence become density dependent. In other
words, Eqgs.(25)—(26) are now formal density expansions
(22) with respect to the explicip-dependence but not yet with
Note, finally, that because E(L7) involves the density respect to the implicip-dependence of(r;p) andc(r;p).
derivative ofg™(r;p) its practical utility is limited and one In order to stress this point it will be convenient for what

often uses instead the so-called virial equéion follows to introduce the auxiliary functions
JU({aN) .
pe>e(p)=< B B ye— : (22) g(r;p;[V(/oo)])=pZ0 PPau(r:[V(po)]), (27)
a=1 -
which results from rescalingx(~«**x) the configuration and
space YV — «aV), and which when evaluated with the aid of %
Eq. (1) yields o(r;pi[V(po) )= 2 pPey(ri[V(po)]), (28)
p=0
1 aV(r) . . .
Pex(p) = — gpzj drg(r;p)r gt (23)  wherep is the system’s density angl the parameter which

appears in the system’s Hamiltonian E84). Note that Egs.

which no longer involves any density derivative gfr;p).  (27)—(28) are still related by an Ornstein—Zernike equation

Since Eq.(23) is exact it has also to be equivalent to Egs.of the forn?

(17)—(18), although we know of no explicit proof of their 5

equality. 1+ ph(k;p;[V(po) D) =(1-pE(k;p;[V(po) ) ™1 (29)

The main question now concerns the way in which the )

above relations can be transposed to a fluid with an effectivd ¢lose analogy with Eq(6). Of course, Eqs(27)—(28)

state-dependent, pair-potential. reduce to Eqgs.(25 and (26) when py=p, i.e., g(r;p)
=g(r;p:[V(p)]) and c(r;p)=c(r;p;[V(p)]) and these
g(r;p) andc(r;p) functions obey the same equation Eg).
In other words,c(r;p;[V(pg)]) is the direct cf. conjugated

lll. THE COMPLEX FLUID to g(r;p:[V(po)]), andc(r;p) the direct cf. conjugated to

When in the above fluid the pair-potenti®(r) is re- 9(r:p).

placed by an effective pair-potential of the general form

V(I’;'p,'T), or since we do not indicate.'FhTé-d(.epende'nce B. Thermodynamic properties

explicitly, V(r;p), all of the above quantities will acquire a

supplementary p-dependence induced by the density-l The free- densit

dependence of (r;p). In order to formally distinguish these © free-energy densty _ o

two types ofp-dependencies, we will call in the following Because of Eq24) the functional derivative of the free-
the p-dependence of Sec. Il the “explicitp-dependence, energy with respect toV(|ry—ryl;p) is still given by
while the dependence induced W4r;p) will be designed p2(r1,72)/2 and hence the procedure which consists in
as the “implicit” p-dependence, although, of course, in thecharging the potential\V(r;p);0<A<1) is unaltered and
end both dependencies are equally explicit. yields here instead of Eq7)

A. Structural properties 1 !
eprop a7 anviei) | Cang®ip) (30
The implicit p-dependence of the structural properties 0

considered in Sec. Il, results from the fact that the potentiajyhere we have, formally, fog™)(r;p) [cf. Eq. (25)]
energy of arN-particle configuratio{x"} now becomes

N(r;p)= 2, pPgp(ri[AV(p)]), (3D)
U= 4 [ s [ drapatr o) Virazin) 9rin)= 2, e V()

(24) and hence
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that while f.,(p) of Eq. (30) requires the knowledge of Eq.
(31), or, say, ofg(r;p;[\V(p)]) for 0=<A=<1, Eq.(36) re-
quires the knowledge of Eq.(37), or, say, of
c(r;hp;[V(p)]), or equivalently, ofg(r;\p;[V(p)]) for O
SN

fex<p>=n§2 P"Bn([V(p)]), (32)

where

1
B.([Vp) = [ arvirip) [ ag, o)),
39

in agreement with Eq(12). Note, however, that Eq32)
contains now the virial expansion &f,(p) with respect to from Eq. (16). Note, however, that in order to obtain the
its explicit p-dependence only. To obtain the full virial ex- pressure of the actual system, the density paranietgrp,)
pansion off,(p) one still has to introduce the virial expan- appearing in the system’s Hamiltonian must be taken equal
sion of Eq.(33) into Eq. (32). to the system’s densitysay, p) and the density derivative
The alternative procedure leading ftg(p), which con- ~ appearing in Eq(16) must operate on both the explicit and
sists in charging the densif\p;(r);0<\<1] is, however, the implicit density dependencies. Computing the excess

2. The pressure

It is now an easy matter to obtain tk@smotig pressure

less straightforward. It is indeed not clear a priori whetherpressure from Eq(30) thus yields

the functional derivatives of the free-energy with respect to
p1(r), which is at the basis of this method, has to take into

account also the implicit density dependenceV{a;p). To

avoid this ambiguity with the functional derivative of

V(r;p), we will exploit the equality,B,([V])=B,([V]),

and proceed as follows. In the same way as B§) is a
straightforward transposition of Eq11), we will transpose
Eqg. (13) here as

f_exm:n; p"Bn([V(p)]), (34)

where from Eq.(14),

_ kgT
BA([V(p) )=~ ms [ drcy smVipD. (39

Now, sincegn([V(p)]) is the same functional o¥(r;p) as
gn([V]) was of V(r), and similarly forB,([V(p)]) and
B,([V]) [cf. Eq. (33) and Eq.(12)], the equalityB,([V])
=B,([V]), implies the equality of gn([V(p)])
=B,([V(p)]) for all p, and hence‘_ex(p)zfex(p), i.e., Eq.
(15). Therefore,

density charging will correspond to E(4), or equivalently
J— p ’
futo)=—kaT | ar [ "o’ [ apctripr vio)),

(36)
where

C(r;p”;[V(P)])=p§0 (p")Pep(r;[V(p)]D) (37

[cf. also Eq.(28)]. Hence, while in Eq(30) the potential is
being charged at constant density, in E86) the density is

being charged at constant potential. In other words, the den-

if the potential-charging and density-
charging procedures have to be mutually consistent, then the

1 1
pel)= 507 [ arvirip) [ o

x| gM(r;p)+p

ag™M(r;p)
ap

1 aN(r;p) (1
—,3 R N (y-
+2p jdr p fodxg (r;p),

where, as stated, the density dependencg®ir;p) now
contains two types of contributions:

(38)

ag™(r;p) [ag™(r;pi[\V(po)])
ap B ap
N (p-p -
+ &g (r:POvD\V(P)])} ’ (39)
ap

Po=p
where we have used the more explicit notation of E).
Similarly Eq. (36) yields

P
Pex(p) = _kBTJ drfo dp’p'c(r;p";[V(p)])

—kBderf dpf dp”p
(40

using Eq.(28). An important consequence of E@0) is that

ap(p)
IBLPP_]' pf dre(r;p;[V(p)])

ac(r;p’;[V(p)])
2, J dr J:dp,%

v dPe(rip™ [V
—del’fpdp'dep" ( pz[ (p)]),
0 0 ap

c(r; P” [V(p)])

sity charging operates only on the explicit density depen-

dence while the density appearing in the system’s Hamil-

(41)

tonian is treated as an external parameter. This somewhahd therefore the conditions

subtle point is forced upon us if we want to maintain
if Eg. (36) was evaluated with

Eq. (19. Indee_d,
c(r;p";[V(p")]), fed p) would differ fromf.,(p) already at
orderp?,

ﬂp(p)

B——-=0 (42)

i.e., Eq.(15 would no longer hold. Note finally and
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-1 expression in terms of the pair cf. is easily transposed to the
1—Pf dre(r;p;[V(p)]D)| =< (43 case of a complex fluid with a state dependent pair-potential,
o ] 0 we have constructed an equivalent expression in terms of the
do not coincide, i.e., Eq(20) no longer holds? In other  girect ¢f. of the complex fluid. On this basis it has been

words, for the complex fluid the thermodynamic states forgpawn that the infinite wavelength limit of the static structure
which the compressibility diverges are different from the 5101 of the complex fluid is no longer proportional to its

thermodynamic states for which the infinite wavelength limitisohermal compressibility, i.e., that the so called compress-
of the static structure factor diverges, i.e., for WhICh the Pailipility equation no longer holds for the complex fluid. An
cf. becomes long-ranggdee Eq.(29)]. Note that this gen-  giemative conclusion could, of course, also be that describ-
eral result is consistent with the numerical simulations P€ling the complex fluid in terms of an effective pair-potential
only, i.e., without adding higher-order effective many-body

formed in Ref. 11 for the particular casef. Ref. 12 when
V(rip) is of the inverse-power type with a density- jhieractions, does not yield a thermodynamically satisfactory
description of the complex fluid.

dependent indepviz. V(r;p)=Vpus(r) —e(o/r)"?), eando
being some constant energy and length scales,\apgr)
the hard-sphere potential for particles of diamet¢and in
Ref. 13 for the case of the point Yukawa potential. ACKNOWLEDGMENTS
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independently, the density dependence of the effective potential can be

the validity of which has been questioned in, e.g., Ref. 4. In transformed away by working in the semi-grand ensemble as illustrated in,
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—po), .., whether the density parameter appearing in thealgm' : . . . .
po), 1.€., y P PP 9 Of course, in many cases this condition of thermodynamic consistency has

Hamiltonian should be treated as an external parameter. Ifaready been verified numerically.
the latter is the case then there will be no density derivative’Approximate integral equation theories for complex fluids should be gen-
in Eq. (44). One way to find this out could consist in com- eralized in the same way and then be closed with the generalized Ornstein-

. . . . Zernike equation(29).
paring Eq.(44) with Eq. (38). Indeed, even if Eq(23) is  1o1pe crycial point here is again provided by Eg6). If Eq. (36) was

equivalent to Eq(17) or (18), this does not imply that Eq.  evaluated withc(r;p”;[V(p")]), the compressibility equatio(Eq. (20))
(44) will also be equivalent to Eq.38) or (40) because this would hold but the theory would not be thermodynamically consistent
time Eq. (44) is a different functional ofV(r;p) than Eq. [i.e., Eq.(15) would not hold. Our treatment favors thus the latter prop-

erty over the former one. That a problem should arise with (26). can
(23) was of V(I’). Hence, the status of E(ﬁ44) cannot be also be inferred from the standard textbook derivatich Ref. 6 of the

investigated by the same method as used above and will have:ompressibility equation since the latter is based on derivatives with re-

to form the subject of a separate investigaﬁén. spect to the fugacity which now also operate on the effective potential.
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