
On the relation between the compressibility and the static structure factor
of a fluid with a state-dependent pair-potential
C. F. Tejero and M. Baus 
 
Citation: J. Chem. Phys. 118, 892 (2003); doi: 10.1063/1.1526837 
View online: http://dx.doi.org/10.1063/1.1526837 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v118/i2 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 18 Jun 2013 to 147.96.14.15. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2136120612/x01/AIP-PT/NVIDIA_JCPCoverPg_061213/K20_GPU_TestDrive_1640x440_static.jpg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=C. F. Tejero&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. Baus&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1526837?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v118/i2?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 2 8 JANUARY 2003
On the relation between the compressibility and the static structure factor
of a fluid with a state-dependent pair-potential
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The compressibility equation of a fluid with an effective, state-dependent, pair-potential is derived.
It is shown that the thermodynamic states for which the infinite wavelength limit of the static
structure factor diverges are not consistent with the thermodynamic states for which the
compressibility diverges whenever the effective potential is density-dependent. This result is in
agreement with some recent numerical simulations. ©2003 American Institute of Physics.
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I. INTRODUCTION

In recent years it has become current practice to tra
pose the well-developed statistical mechanical methods f
the theory of simple~atomic! fluids to the complex~say,
colloidal! fluids encountered in many soft-matter system1

In many instances the main constituent~say, the colloidal
particles! of the complex fluid has characteristic space a
time scales which are widely separated from those of
remaining constituents.1 Under such circumstances it is nat
ral to use a coarse-grained description by first integrating
from the partition function all the degrees of freedom n
belonging to the main constituent.1,2 This procedure invari-
ably leads to an ‘‘effective’’ Hamiltonian for the main con
stituent which contains a free-energy term and, hence
state-dependent.1 On many occasions this effective Ham
tonian has been further approximated in terms of sta
dependent potentials. In the simplest case one then end
describing the original complex fluid in terms of an ‘‘equiv
lent’’ simple fluid containing only the main constituent of th
complex fluid but interacting now with a more comple
state-dependent, pair-potential. Two well-known example
such effective pair-potentials are provided by the Deb
Hückel potential used to describe the interaction betw
two charged colloidal particles and the Asakura-Oosa
depletion potential used in the description of the interact
between two uncharged colloidal particles.1,3 Here we will,
however, not question4 the oversimplifications usually in
volved in this reduction of the original complex fluid to
simple fluid with an effective pair-potential but, instead, i
quire for the consequences of the state-dependence of
effective pair-potential on the statistical mechanical relatio
describing the corresponding ‘‘simple fluid.’’

In the following we will thus be concerned solely wit
the question of how one can transpose the equilibrium sta
tical mechanical relations between the structure and the t
modynamics of a simple fluid with a pair-potentialV(r ) to
the case where the simple fluid has an effective pair-poten
of the general formV(r ;r,T), wherer represents the aver
age number density of the uniform fluid andT its tempera-
8920021-9606/2003/118(2)/892/5/$20.00
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ture. Henceforth we will design the~simple! fluid with the
potential,V(r ), as the ‘‘simple’’ fluid, whereas the~simple!
fluid with an effective potential,V(r ;r,T), will for the sake
of brevity be simply designed as the ‘‘complex’’ fluid. I
Sec. II we first briefly summarize the structur
thermodynamics relations of the simple fluid which w
then, in Sec. III, be transposed to the complex fluid. O
conclusions will be gathered in Sec. IV.

II. THE SIMPLE FLUID

The following relations between the structural and th
modynamical properties of a uniform simple fluid a
well-known.5–7 For future comparison we neverthele
briefly summarize the relevant material here. To simplify t
notation, theT-dependence of the thermodynamic state w
not be explicitly indicated but itsr-dependence will be re
tained throughout.

A. Structural properties

Only the pair structure will be considered here. With
the present pair-potential approximation the poten
energy, U(xN), of an N-particle configuration $xN%
[(x1 ,x2 , . . . ,xN) can be represented as

U~$xN%!5 1
2 E dr1E dr2r̂2~r1 ,r2 ;$xN%!V~r 12!, ~1!

whereV(r 12) is the pair-potential,r 125ur12r2u, and

r̂2~r1 ,r2 ;$xN%!5(
i 51

N

(
iÞ j 51

N

d~r12xi !d~r22xj !, ~2!

the quantity whose thermal average yields the pair-den
r2(r1 ,r2),

r2~r1 ,r2!5K (
i 51

N

(
iÞ j 51

N

d~r12xi !d~r22xj !L , ~3!

where ^ . . .& represents a grand-canonical thermal aver
over the configurations$xN%.
© 2003 American Institute of Physics
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For a uniform and isotropic fluid we have, in the the
modynamic limit, for the one-particle density,

r1~r1!5K (
j 51

N

d~r12xj !L 5r, ~4!

while the two-particle density of Eq.~3! can be written as:

r2~r1 ,r2!5r2g~r 12;r!5r2@11h~r 12;r!#, ~5!

where g(r ;r) and h(r ;r) are, respectively, the pair- an
total-correlation function~cf.!. Finally, the direct cf.,c(r ;r),
can be obtained fromh(r ;r) by using the Ornstein–Zernik
equation,6 which can be written in Fourier space as

11rh̃~k;r!5@12r c̃~k;r!#21, ~6!

whereS̃(k;r)511rh̃(k;r) is the static structure factor an
the tilde denotes a Fourier transform.

B. Thermodynamic properties

As is well-known,5–7 the thermodynamic properties ca
be expressed in terms of eitherg(r ;r) or c(r ;r).

1. The free-energy density

Let f (r) denote the thermodynamic limit of the~grand-
potential! free-energy per unit volume andf ex(r)5 f (r)
2 f id(r) its excess value,f id(r)5kBTr@ ln(rL3)21#, kB be-
ing Boltzmann’s constant, andL the thermal de Broglie
wavelength resulting from the system’s kinetic energy. In
grating or ‘‘charging’’ the potential energy of Eq.~1! be-
tween the ideal gas (l50) and the actual system (l51) by
the procedure outlined in, e.g., Ref. 5, one obtains

f ex~r!5 1
2 r2E drV~r !E

0

1

dlg(l)~r ;r!, ~7!

whereg(l)(r ;r) denotes the value ofg(r ;r) calculated for
lV(r ), instead of V(r ) @cf. g(0)(r ;r)51,g(1)(r ;r)
5g(r ;r)]. The theoretical basis for Eq.~7! rests on the fact5

that because of Eq.~1! the functional derivative of the free
energy with respect toV(ur12r2u) equalsr2(r1 ,r2)/2. Alter-
natively, the excess free energy density can also be foun
integrating or ‘‘charging’’ the densityr1(r1)5r between the
ideal gas (l50) and the actual system (l51) following the
procedure outlined, e.g., in Ref. 5, yielding instead of E
~7!:

f̄ ex~r!52kBTE drE
0

r

dr8E
0

r8
dr9c~r ;r9!, ~8!

where, this time, the theoretical basis for Eq.~8! rests on the
relation5 between the direct cf. and the second functio
derivative of the free-energy with respect tor1(r1). Note
that in a thermodynamically consistent theory we must ha
f ex(r)5 f̄ ex(r), since both Eqs.~7! and~8! are exact. In what
follows it will nevertheless be convenient to put a bar on
f ex(r) of Eq. ~8!.

To comparef ex(r) and f̄ ex(r) one can compare thei
~formal! virial or density expansions. To this end let us wr
the density expansion ofg(r ;r) andc(r ;r) as
Downloaded 18 Jun 2013 to 147.96.14.15. This article is copyrighted as indicated in the abstract. R
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g~r ;r!5 (
p50

`

rpgp~r ;@V# !, ~9!

and

c~r ;r!5 (
p50

`

rpcp~r ;@V# !, ~10!

where, as is well-known,6,7 thegp(r ;@V#) andcp(r ;@V#) can
be further expressed in terms of convolutions of Mayer fu
tions. Note also that, for later convenience, we have exp
itly indicated ~but only in the r.h.s.! the functional depen-
dence~cf. @V#! of Eqs.~9!–~10! on V(r ). Introducing Eq.~9!
into Eq. ~7! we obtain

f ex~r!5 (
n52

`

rnBn~@V# !, ~11!

where

Bn~@V# !5 1
2 E drV~r !E

0

1

dlgn22~r ;@lV# !, ~12!

whereas introducing Eq.~10! into Eq. ~8! results in

f̄ ex~r!5 (
n52

`

rnB̄n~@V# !, ~13!

with

B̄n~@V# !52
kBT

n~n21!
E drcn22~r ;@V# !. ~14!

Using now the explicit representation of Eqs.~9!–~10! in
terms of Mayer functions, one can verify explicitly that,
least for the first few n-values, we haveBn(@V#)
5B̄n(@V#), and although we know of no proof for a gener
n we will henceforth still consider that

f ex~r!5 f̄ ex~r!, ~15!

i.e., that the two descriptions of Eqs.~7!–~8! are thermody-
namically consistent.8

2. The pressure

Once the free-energy density,f (r), is known, the pres-
sure, p(r), and the inverse isothermal compressibili
]p(r)/]r, can be obtained from the thermodynamic re
tions

p~r!5r
] f ~r!

]r
2 f ~r!;

]p~r!

]r
5r

]2f ~r!

]r2 . ~16!

From Eq.~7! one obtains then

pex~r!5
1

2
r2E drV~r !E

0

1

dlFg(l)~r ;r!1r
]g(l)~r ;r!

]r G ,
~17!

where pex(r)5p(r)2pid(r), with pid(r)5rkBT, denotes
the excess pressure. Similarly, Eq.~8! yields

pex~r!52kBTE drE
0

r

dr8r8c~r ;r8!. ~18!
euse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



a

of

s
r

th
iv

rm

a
ty-
e

,

he

es
tia

ith
her
s

h

at

on

-

in

894 J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 C. F. Tejero and M. Baus
From Eq.~18! one can also obtain the inverse isotherm
compressibility via (b51/kBT)

b
]p~r!

]r
512rE drc~r ;r!, ~19!

which together with Eq.~6! and h̃(k50,r)5*drh(r ;r),
yields the compressibility equation

b
]p~r!

]r
5@S̃~k50;r!#21, ~20!

where

S̃~k50;r!511rE drh~r ;r!5F12rE drc~r ;r!G21

.

~21!

Note, finally, that because Eq.~17! involves the density
derivative ofg(l)(r ;r) its practical utility is limited and one
often uses instead the so-called virial equation6,7

pex~r!5K 2F]U~$a1/3x%N!

]a G
a51

L , ~22!

which results from rescaling (x→a1/3x) the configuration
space (V→aV), and which when evaluated with the aid
Eq. ~1! yields

pex~r!52
1

6
r2E drg~r ;r!r

]V~r !

]r
, ~23!

which no longer involves any density derivative ofg(r ;r).
Since Eq.~23! is exact it has also to be equivalent to Eq
~17!–~18!, although we know of no explicit proof of thei
equality.

The main question now concerns the way in which
above relations can be transposed to a fluid with an effect
state-dependent, pair-potential.

III. THE COMPLEX FLUID

When in the above fluid the pair-potentialV(r ) is re-
placed by an effective pair-potential of the general fo
V(r ;r,T), or since we do not indicate theT-dependence
explicitly, V(r ;r), all of the above quantities will acquire
supplementary r-dependence induced by the densi
dependence ofV(r ;r). In order to formally distinguish thes
two types ofr-dependencies, we will call in the following
the r-dependence of Sec. II the ‘‘explicit’’r-dependence
while the dependence induced viaV(r ;r) will be designed
as the ‘‘implicit’’ r-dependence, although, of course, in t
end both dependencies are equally explicit.

A. Structural properties

The implicit r-dependence of the structural properti
considered in Sec. II, results from the fact that the poten
energy of anN-particle configuration$xN% now becomes

U~$xN%;r!5 1
2 E dr1E dr2r̂2~r1 ,r2 ;$xN%!V~r 12;r!,

~24!
Downloaded 18 Jun 2013 to 147.96.14.15. This article is copyrighted as indicated in the abstract. R
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instead of Eq.~1!. Note that in Eq.~24! ther-dependence of
U is not formally related to$xN%, i.e., r appears only as a
parameter in the system’s Hamiltonian. Therefore Eqs.~9!–
~10! can be formally transposed as

g~r ;r!5 (
p50

`

rpgp~r ;@V~r!#!, ~25!

and

c~r ;r!5 (
p50

`

rpcp~r ;@V~r!#!, ~26!

indicating that the Mayer functions are now evaluated w
V(r ;r) and hence become density dependent. In ot
words, Eqs.~25!–~26! are now formal density expansion
with respect to the explicitr-dependence but not yet wit
respect to the implicitr-dependence ofg(r ;r) and c(r ;r).
In order to stress this point it will be convenient for wh
follows to introduce the auxiliary functions

g~r ;r;@V~r0!# !5 (
p50

`

rpgp~r ;@V~r0!# !, ~27!

and

c~r ;r;@V~r0!# !5 (
p50

`

rpcp~r ;@V~r0!# !, ~28!

wherer is the system’s density andr0 the parameter which
appears in the system’s Hamiltonian Eq.~24!. Note that Eqs.
~27!–~28! are still related by an Ornstein–Zernike equati
of the form9

11rh̃~k;r;@V~r0!# !5~12r c̃~k;r;@V~r0!# !!21, ~29!

in close analogy with Eq.~6!. Of course, Eqs.~27!–~28!
reduce to Eqs.~25! and ~26! when r05r, i.e., g(r ;r)
5g(r ;r;@V(r)#) and c(r ;r)5c(r ;r;@V(r)#) and these
g(r ;r) andc(r ;r) functions obey the same equation Eq.~6!.
In other words,c(r ;r;@V(r0)#) is the direct cf. conjugated
to g(r ;r;@V(r0)#), andc(r ;r) the direct cf. conjugated to
g(r ;r).

B. Thermodynamic properties

1. The free-energy density

Because of Eq.~24! the functional derivative of the free
energy with respect toV(ur12r2u;r) is still given by
r2(r1 ,r2)/2 and hence the procedure which consists
charging the potential (lV(r ;r);0<l<1) is unaltered and
yields here instead of Eq.~7!

f ex~r!5
1

2
r2E drV~r ;r!E

0

1

dlg(l)~r ;r!, ~30!

where we have, formally, forg(l)(r ;r) @cf. Eq. ~25!#

g(l)~r ;r!5 (
p50

`

rpgp~r ;@lV~r!#!, ~31!

and hence
euse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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f ex~r!5 (
n52

`

rnBn~@V~r!#!, ~32!

where

Bn~@V~r!#!5 1
2 E drV~r ;r!E

0

1

dlgn22~r ;@lV~r!#!,

~33!

in agreement with Eq.~12!. Note, however, that Eq.~32!
contains now the virial expansion off ex(r) with respect to
its explicit r-dependence only. To obtain the full virial ex
pansion off ex(r) one still has to introduce the virial expan
sion of Eq.~33! into Eq. ~32!.

The alternative procedure leading tof̄ ex(r), which con-
sists in charging the density@lr1(r );0<l<1# is, however,
less straightforward. It is indeed not clear a priori wheth
the functional derivatives of the free-energy with respect
r1(r ), which is at the basis of this method, has to take i
account also the implicit density dependence viaV(r ;r). To
avoid this ambiguity with the functional derivative o
V(r ;r), we will exploit the equality,Bn(@V#)5B̄n(@V#),
and proceed as follows. In the same way as Eq.~32! is a
straightforward transposition of Eq.~11!, we will transpose
Eq. ~13! here as

f̄ ex~r!5 (
n52

`

rnB̄n~@V~r!#!, ~34!

where from Eq.~14!,

B̄n~@V~r!#!52
kBT

n~n21!
E drcn22~r ;@V~r!#!. ~35!

Now, sinceB̄n(@V(r)#) is the same functional ofV(r ;r) as
B̄n(@V#) was of V(r ), and similarly for Bn(@V(r)#) and
Bn(@V#) @cf. Eq. ~33! and Eq.~12!#, the equalityB̄n(@V#)
5Bn(@V#), implies the equality of B̄n(@V(r)#)
5Bn(@V(r)#) for all r, and hencef̄ ex(r)5 f ex(r), i.e., Eq.
~15!. Therefore, if the potential-charging and densi
charging procedures have to be mutually consistent, then
density charging will correspond to Eq.~34!, or equivalently

f̄ ex~r!52kBTE drE
0

r

dr8E
0

r8
dr9c~r ;r9,@V~r!#!,

~36!

where

c~r ;r9;@V~r!#!5 (
p50

`

~r9!pcp~r ;@V~r!#! ~37!

@cf. also Eq.~28!#. Hence, while in Eq.~30! the potential is
being charged at constant density, in Eq.~36! the density is
being charged at constant potential. In other words, the d
sity charging operates only on the explicit density dep
dence while the density appearing in the system’s Ham
tonian is treated as an external parameter. This somew
subtle point is forced upon us if we want to mainta
Eq. ~15!. Indeed, if Eq. ~36! was evaluated with
c(r ;r9;@V(r9)#), f̄ ex(r) would differ from f ex(r) already at
order-r3, i.e., Eq. ~15! would no longer hold. Note finally
Downloaded 18 Jun 2013 to 147.96.14.15. This article is copyrighted as indicated in the abstract. R
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that while f ex(r) of Eq. ~30! requires the knowledge of Eq
~31!, or, say, ofg(r ;r;@lV(r)#) for 0<l<1, Eq. ~36! re-
quires the knowledge of Eq. ~37!, or, say, of
c(r ;lr;@V(r)#), or equivalently, ofg(r ;lr;@V(r)#) for 0
<l<1.

2. The pressure

It is now an easy matter to obtain the~osmotic! pressure
from Eq. ~16!. Note, however, that in order to obtain th
pressure of the actual system, the density parameter~say,r0)
appearing in the system’s Hamiltonian must be taken eq
to the system’s density~say, r! and the density derivative
appearing in Eq.~16! must operate on both the explicit an
the implicit density dependencies. Computing the exc
pressure from Eq.~30! thus yields

pex~r!5
1

2
r2E drV~r ;r!E

0

1

dl

3Fg(l)~r ;r!1r
]g(l)~r ;r!

]r G
1

1

2
r3E dr

]V~r ;r!

]r E
0

1

dlg(l)~r ;r!, ~38!

where, as stated, the density dependence ofg(l)(r ;r) now
contains two types of contributions:

]g(l)~r ;r!

]r
5F]g(l)~r ;r;@lV~r0!# !

]r

1
]g(l)~r ;r0 ;@lV~r!#!

]r G
r05r

, ~39!

where we have used the more explicit notation of Eq.~27!.
Similarly Eq. ~36! yields

pex~r!52kBTE drE
0

r

dr8r8c~r ;r8;@V~r!#!

2kBTE drE
0

r

dr8E
0

r8
dr9r

]c~r ;r9;@V~r!#!

]r
,

~40!

using Eq.~28!. An important consequence of Eq.~40! is that

b
]p~r!

]r
512rE drc~r ;r;@V~r!#!

22rE drE
0

r

dr8
]c~r ;r8;@V~r!#!

]r

2rE drE
0

r

dr8E
0

r8
dr9

]2c~r ;r9;@V~r!#!

]r2 ,

~41!

and therefore the conditions

b
]p~r!

]r
50 ~42!

and
euse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



fo
he

i
a

e

y-

Eq
f

. I
is

e
-

th
r.
tiv
-

.

ha

le
it
he

the
tial,
f the
en
re
ts
ss-
n
rib-

ial
dy
ory

te-

4

.

ried
n be
d in,

has

en-
tein-

ent
-

re-
l.

896 J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 C. F. Tejero and M. Baus
S̃~k50;r!5F12rE drc~r ;r;@V~r!#!G21

5` ~43!

do not coincide, i.e., Eq.~20! no longer holds.10 In other
words, for the complex fluid the thermodynamic states
which the compressibility diverges are different from t
thermodynamic states for which the infinite wavelength lim
of the static structure factor diverges, i.e., for which the p
cf. becomes long-ranged@see Eq.~29!#. Note that this gen-
eral result is consistent with the numerical simulations p
formed in Ref. 11 for the particular case~cf. Ref. 12! when
V(r ;r) is of the inverse-power type with a densit
dependent index@viz. V(r ;r)5VHS(r )2e(s/r )n(r), e ands
being some constant energy and length scales, andVHS(r )
the hard-sphere potential for particles of diameters# and in
Ref. 13 for the case of the point Yukawa potential.

Note, finally, that it is not clear how Eq.~22! should be
transposed to the complex fluid. If the potential energy of
~24! is rescaled asU($a1/3x%N;r/a) one obtains instead o
Eq. ~23! the well-known6 result

pex~r!52
1

2
r2E drg~r ;r;@V~r!#!

3F1

3
r

]

]r
2r

]

]rGV~r ;r!, ~44!

the validity of which has been questioned in, e.g., Ref. 4
view of the above, it is indeed not clear whether it is cons
tent to relate the configuration$xN% and the density-
parameter (r05r) appearing in the Hamiltonian in the sam
rescaling process (x→a1/3x,r→r/a) or whether the rescal
ing should be performed at constant density (x→a1/3x,r0

→r0), i.e., whether the density parameter appearing in
Hamiltonian should be treated as an external paramete
the latter is the case then there will be no density deriva
in Eq. ~44!. One way to find this out could consist in com
paring Eq.~44! with Eq. ~38!. Indeed, even if Eq.~23! is
equivalent to Eq.~17! or ~18!, this does not imply that Eq
~44! will also be equivalent to Eq.~38! or ~40! because this
time Eq. ~44! is a different functional ofV(r ;r) than Eq.
~23! was of V(r ). Hence, the status of Eq.~44! cannot be
investigated by the same method as used above and will
to form the subject of a separate investigation.14

IV. CONCLUSIONS

We have assumed that both for a simple and a comp
fluid the expression of the free-energy in terms of either
pair cf. or its direct cf. are mutually consistent. Since t
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expression in terms of the pair cf. is easily transposed to
case of a complex fluid with a state dependent pair-poten
we have constructed an equivalent expression in terms o
direct cf. of the complex fluid. On this basis it has be
shown that the infinite wavelength limit of the static structu
factor of the complex fluid is no longer proportional to i
isothermal compressibility, i.e., that the so called compre
ibility equation no longer holds for the complex fluid. A
alternative conclusion could, of course, also be that desc
ing the complex fluid in terms of an effective pair-potent
only, i.e., without adding higher-order effective many-bo
interactions, does not yield a thermodynamically satisfact
description of the complex fluid.
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