
ON  LOJASIEWICZ’S INEQUALITY AND THE NULLSTELLENSATZ

FOR RINGS OF SEMIALGEBRAIC FUNCTIONS

JOSÉ F. FERNANDO AND J.M. GAMBOA

Abstract. In this article we present versions of  Lojasiewicz’s inequality and the Null-
stellensatz for the ring of bounded semialgebraic functions on an arbitrary semialgebraic
set M . We also prove that the classical  Lojasiewicz inequality and Nullstellensatz for the
ring of semialgebraic functions on a semialgebraic set M work if and only if M is locally
compact.

1. Introduction

A subset M ⊂ Rn is said to be basic semialgebraic if it can be written as

M = {x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gm(x) > 0}

for some polynomials f, g1, . . . , gm ∈ R[x1, . . . , xn]. The finite unions of basic semialgebraic
sets are called semialgebraic sets. A continuous function f : M → R is said to be semi-
algebraic if its graph is a semialgebraic subset of Rn+1. Usually, semialgebraic function
just means a function, non necessarily continuous, whose graph is semialgebraic. How-
ever, since most of the semialgebraic functions occurring in this article are continuous we
will omit for simplicity the continuity condition when we refer to them and we will write
functions whose graph is semialgebraic for those which are non necessarily continuous. For
further readings about semialgebraic sets and functions we refer the reader to [BCR, §2].

The sum and product of functions, defined pointwise, endow the set S(M) of semial-
gebraic functions on M with a natural structure of commutative ring whose unity is the
function with constant value 1. In fact S(M) is an R-algebra, if we identify each real
number r with the constant function which just attains this value. The simplest examples
of semialgebraic functions on M are the restrictions to M of polynomials in n variables.
Other relevant ones are the Euclidean distance function dist( · , N) to a given semialge-
braic set N ⊂ M , the absolute value of a semialgebraic function, the maximum and the
minimum of a finite family of semialgebraic functions, the inverse and the k-root of a
semialgebraic function whenever these operations are well-defined.

It is obvious that the subset S∗(M) of bounded semialgebraic functions on M is a real
subalgebra of S(M). For the time being we denote by S�(M), indistinctly, either S(M)
or S∗(M), in case the involved statements or arguments are valid for both rings. For each
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f ∈ S�(M) and each semialgebraic subsetN ⊂M , we denote ZN (f) = {x ∈ N : f(x) = 0}
and DN (f) = M \ ZN (f). In case N = M , we say that ZM (f) is the zeroset of f .

 Lojasiewicz’s inequality is one of the main results in Real Algebraic Geometry. Its first
versions are due, independently, to L. Hörmander [H] and S.  Lojasiewicz [L], who invented
them as the main ingredient in their solutions to the so called “division problem”, stated
by L. Schwartz [S], concerning the division of a distribution by a polynomial or, more
generally, by an analytic function.

Precisely, Hörmander’s version states that given a polynomial f ∈ R[x1, . . . , xn] there
exist positive real numbers c, µ such that cdist(x, ZM (f))µ ≤ |f(x)| for every x ∈ Rn with
‖x‖ ≤ 1. On the other hand,  Lojasiewicz stated (without proof) that given a compact set
K ⊂ Rn, an open neighbourhood Ω ⊂ Rn of K, and an analytic function f : Ω→ R, there
exist positive real numbers c, µ so that cdist(x, ZM (f))µ ≤ |f(x)| for all x ∈ K.

A useful version of this classical result, when dealing with semialgebraic functions, and
which produces as a byproduct a Nullstellensatz for semialgebraic functions (see 3.4),
appears in [BCR, 2.6.6-7]. Namely,

Theorem 1.1 ( Lojasiewicz’s inequality). Let M ⊂ Rn be a locally compact semialgebraic
set and let f, g ∈ S(M) be such that ZM (f) ⊂ ZM (g). Then,

(i) There exist a positive integer ` and h ∈ S(M) such that g` = fh.
(ii) Moreover, if c = sup{|h(x)| : x ∈M} exists, then |g(x)|` ≤ c|f(x)| for each x ∈M .

Remarks 1.2. (i) The previous result, and in fact the corresponding Nullstellensatz, is no
longer true if M is not locally compact, see 3.5. A very representative example of this
situation is the following one, proposed in [BCR, 2.6.5]. Consider the semialgebraic set
M = {y > 0} ∪ {(0, 0)} ⊂ R2 and the semialgebraic functions g(x, y) = x2 + y2 and
f(x, y) = y. Their zerosets are ZM (f) = ZM (g) = {(0, 0)}. However, for each ` ∈ N the

limit at the origin of the semialgebraic function h` = g`

f = (x2+y2)`

y does not exist.

(ii) Observe that statement 1.1(ii) says nothing if c = +∞. However, if c < +∞ it is
equivalent to 1.1(i), even if M ⊂ Rn is an arbitrary semialgebraic set. More precisely, let
M ⊂ Rn be a semialgebraic set and let f, g ∈ S�(M) be such that ZM (f) ⊂ ZM (g) and
there exist a constant c > 0 and a positive integer ` ≥ 1 such that |g(x)|` ≤ c|f(x)| for
each x ∈M . Then, there exists h ∈ S�(M) such that g2`+1 = fh.

Indeed, for each x ∈ M we have g2`(x) ≤ c2f2(x). Thus, the function h0 : M → R
given by

h0(x) =

{
g2`+1(x)
f2(x)

if x ∈ DM (f),

0 if x ∈ ZM (f).

is continuous because ZM (f) ⊂ ZM (g) and the quotient g2`/f2 is bounded on DM (f).
Moreover, h0 ∈ S(M), and in fact it is bounded if g is so. Now, since h0f

2 = g2`+1, we
deduce that h = fh0 ∈ S�(M) satisfies the required condition. �

In view of 1.2(ii), in what follows we will say that  Lojasiewicz’s inequality does not hold
for a semialgebraic set M if there exist semialgebraic functions f, g ∈ S(M) such that

ZM (f) ⊂ ZM (g) but g /∈
√
fS(M).

Of course, 1.1(i) can be understood as a Nullstellensatz for principal ideals. To approach
the announced Nullstellensatz for arbitrary ideals (see 3.4), and since the common zeroset
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Z of the semialgebraic functions of a prime ideal p of S(M) provides almost no information
about such p because Z is either empty or a singleton (see 2.3), we are led to consider the
z-filter consisting of the collection of the zerosets of all functions in p (see 3.1). As it is
well-known, this is a classical idea used to study rings of continuous functions, which was
compiled full in detail in [GJ]. On the other hand, the use of these kinds of filters is a
usual technique in Real Algebra (see for instance [ABR, II.1.6] and [BCR, 7.1, 7.5]).

In any case, the main goal of this work is to develop a similar theory ( Lojasiewicz’s
inequality and Nullstellensatz) to approach the case of bounded semialgebraic functions.
The existence of non-units in S∗(M) with empty zeroset will require to generalize these
z-filters to obtain a similar  Lojasiewicz’s inequality, which has been revealed as a crucial
tool in Real Geometry. Even more, the bounded case can be done without the local
compactness assumption. Namely,

Theorem 1.3. Let f, g be two bounded semialgebraic functions on the semialgebraic set
M such that each maximal ideal of S∗(M) containing f contains g too. Then, g` = fh for
a suitable positive integer ` and a function h ∈ S∗(M). In particular, |g|` ≤ supM (|h|)|f |
on M .

Clearly, this result (translated to the language of maximal spectra of semialgebraic
rings in 3.12) can be understood as the counterpart for rings of bounded semialgebraic
functions of the classical  Lojasiewicz inequality 1.1(ii). Its importance lies, among other
things, behind the fact that it provides as a byproduct a Nullstellensatz for the ring
S∗(M), where M is an arbitrary semialgebraic set (see 3.11). In contrast, as we have
already commented, the Nullstellensatz for S(M) is only true if M is locally compact (see
3.5). To prove this fact it will be indispensable to analyze the set Mlc ⊂M of those points
in M having a compact neighbourhood in M . In fact, such set is moreover semialgebraic
(see 2.10).

The article is organized as follows. In Section 2 we introduce most of the terminology
used in the sequel, and we also prove that every non locally compact semialgebraic set M
contains a semialgebraic subset C, closed in M , which is semialgebraically homeomorphic
to the triangle T = {(x, y) ∈ R2 : 0 < y ≤ x ≤ 1} ∪ {(0, 0)}. This last result is the key
to prove that  Lojasiewicz inequality and the corresponding Nullstellensatz are no longer
true for non locally compact semialgebraic sets. Finally, in Section 3 we develop the main
results of this work concerning  Lojasiewicz inequality and the Nullstellensatz for rings
of semialgebraic and bounded semialgebraic functions on semialgebraic sets. In fact, we
prove that Theorem 1.1 can be also obtained as a byproduct of Theorem 1.3.

To finish this Introduction, we would like to point out that  Lojasiewicz’s inequalities
and Nullstellensätze are crucial tools for the study of chains of prime ideals in rings
of semialgebraic and bounded semialgebraic functions (see [Fe1]), and to determine the
Krull dimension of the rings of semialgebraic and bounded semialgebraic functions on a
semialgebraic set (see [FG1] for further details).

2. Preliminaries on semialgebraic sets and functions

In this section we present some preliminary terminology and results that will be useful
in the rest of the sequel. We point out first that some times it will be advantageous to
assume that the semialgebraic set M we are working with is bounded. Such assumption
can be done without loss of generality because of the next remark. Along this work, we
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denote by Bn(x, ε) and Bn(x, ε) the open and closed balls of Rn of center x ∈ Rn and
radius ε. Their common boundary is denoted by Sn−1(x, ε).

Remark 2.1. Let M ⊂ Rn be a semialgebraic set. The semialgebraic homeomorphism

ϕ : Bn(0, 1)→ Rn, x 7→ x√
1− ‖x‖2

,

induces a ring isomorphism S(M) → S(N), f 7→ f ◦ ϕ, where N = ϕ−1(M), that maps
S∗(M) onto S∗(N). Hence, if necessary, we may always assume that M is bounded.

The following result, which concerns the representation of closed semialgebraic subsets
of a semialgebraic set as zerosets of semialgebraic functions, is well-known and it will be
used freely along this work.

Lemma 2.2. Let Z be a closed semialgebraic subset of the semialgebraic set M ⊂ Rn.
Then, there exists h ∈ S∗(M) such that Z = ZM (h).

Proof. Take for instance h = min{1, dist(·, Z)}. �

In contrast to what happens in dealing with ideals of polynomial rings, the zeroset of a
prime ideal p of S�(M) provides no substantial information about p, because it is either a
point or the emptyset.

Proposition 2.3. Let M ⊂ Rn be a semialgebraic set and let p be a prime ideal of S�(M).
Then, the set Z = {x ∈M : f(x) = 0 ∀f ∈ p} is either empty or a singleton.

Proof. Suppose, by way of contradiction, that Z contains two distinct points p, q. Let
r > 0 be the Euclidean distance between p and q and let B1 and B2 be the open balls
centered at p of respective radii r1 = r/3 and r2 = 2r/3. Consider the closed semialgebraic
sets in Rn defined as C1 = Rn \B1 and C2 = ClRn(B2). By 2.2, there exist f1, f2 ∈ S∗(Rn)
such that ZRn(fi) = Ci. Clearly, the product f1f2 vanishes identically on Rn; hence, on
M . Thus, if we write gi = fi|M for i = 1, 2 we have g1g2 ∈ p, and therefore either g1 or g2

belongs to p. But g1 does not vanish at p and g2 does not vanish at q, a contradiction. �

This result suggests to introduce some classical definitions.

Definitions and Notations 2.4. An ideal a of S�(M) is said to be fixed if all functions
in a vanish simultaneously at some point of M . Otherwise the ideal a is free.

Given a point p ∈ M we denote by mp (resp. m∗p) the fixed ideal of S(M) (resp.
S∗(M)) consisting of those functions vanishing at p. Distinct points produce distinct
maximal ideals, and {mp}p∈M (resp. {m∗p}p∈M ) constitutes the collection of all fixed
maximal ideals of S(M) (resp. S∗(M)).

We will denote by β*
sM the collection of all maximal ideals of S∗(M). Given a function

f ∈ S∗(M) we write

Zβ*
sM

(f) = {m ∈ β*
sM : f ∈ m} and Dβ*

sM
(f) = β*

sM \ Zβ*
sM

(f).

Notice that the map φ : M → β*
sM, p 7→ m∗p is injective; thus, for the time being,

we identify M with φ(M). This provides the equalities DM (f) = Dβ*
sM

(f) ∩ M and

ZM (f) = Zβ*
sM

(f) ∩M .
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Concerning free maximal ideals of S∗(M), which are deeply studied in [Fe2] and [FG2],
we are mainly interested in simplest class of them: those associated to semialgebraic paths.
Namely,

(2.5) Maximal ideals associated to semialgebraic paths. Let M ⊂ Rn be a semialge-
braic set. Consider a semialgebraic path α : (0, 1]→M , that is, a continuous map whose
components are semialgebraic functions. We claim that: The set m∗α = {f ∈ S∗(M) :
limt→0(f ◦ α)(t) = 0} is a maximal ideal of S∗(M). Of course, the ideal m∗α is free if and
only if α cannot be extended to a (continuous) semialgebraic path [0, 1]→M .

Before proving 2.5, we need the following preliminary result. Recall that given an open
semialgebraic set U ⊂ Rn, a function f ∈ S(U) is said to be a Nash function on U if it is,
moreover, analytic (see [BCR, 8.1.6-8]).

Lemma 2.6. Let I = (a, b) ⊂ R be an open interval, with −∞ ≤ a < b ≤ +∞, and let
f ∈ S(I) be a semialgebraic function. Then,

(i) There exists a finite subset F ⊂ I such that the restriction h = f |I\F is a Nash
function.

(ii) There exists c ∈ I such that the restriction f |[c,b) is a monotone function.
(iii) If f is moreover bounded, there exist limx→a f(x) and limx→b f(x).

Proof. (i) The graph of f being a 1-dimensional semialgebraic subset of R2, it is a finite
union of singletons {p1, . . . , pn} and 1-dimensional Nash manifolds (see [BCR, 2.9.10]).
Let π1 : R2 → R, (x, y) 7→ x be the projection onto the first coordinate. Then, the set
F = {π1(p1), . . . , π1(pn)} satisfies the statement.

(ii) If f is constant on a subinterval (c, b) of I the result is evident. If not, since the
zeroset ZI\F (f ′) of the derivative f ′ of f is semialgebraic, it is a union of singletons and
intervals, none of them of the form (c, b). In other words, ZI\F (f ′) ⊂ (a, c0) for some
c0 < b, and it is enough to choose c = c0. Note that in this case f |[c,b) is either increasing
or decreasing, according to the sign of f ′ in [c, b).

(iii) It suffices to prove that there exists the limit of f at b. This is obvious if f
is constant on a subinterval J = [c, b) ⊂ I. Hence, we can suppose, without loss of
generality, that f is decreasing on J . Since f is a bounded function, f(J) is a bounded
interval and, f being decreasing on J , there exists λ ∈ R such that f(J) = (λ, f(c)]. Note
that ClR(f(J)) \ f(J) = {λ}, and so limx→b f(x) = λ. �

Now, the claim in 2.5 follows straightforwardly from 2.6:

Proof of 2.5. It follows from 2.6 that there exists limt→0(f ◦ α)(t) ∈ R for each function
f ∈ S∗(M). Once this is done, note that m∗α is the kernel of the ring epimorphism
S∗(M)→ R, f 7→ limt→0(f ◦ α)(t). �

Remark 2.7. With the notation above, suppose there exists limt→0 α(t) = p ∈ M . This
includes the case in which the path α is locally constant around 0. Then, m∗α = m∗p.

Finally in this section, we study some properties about local compactness of semialge-
braic sets.
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(2.8) Local compactness. Locally compact Hausdorff spaces are characterized as those
spaces which admit a Hausdorff compactification by a single point ([Mu, 3.29.1]). On the
other hand, locally closed semialgebraic subsets of Rn are those which can be embedded
as closed semialgebraic subsets of some Rm. It must be pointed out that local closedness
has revealed to be, in the semialgebraic setting, an important property for the validity of
results which are in the core of semialgebraic geometry, as  Lojasiewicz inequality. But, as
it is well-known, locally closed subsets of Rn coincide with the locally compact ones (see
[Bo, §9.7. Prop.12-13]). In fact, if M ⊂ Rn is locally compact, then M = U ∩ ClRn(M)
where U = Rn \ (ClRn(M) \ M) is an open subset of Rn. Of course, if M ⊂ Rn is
a semialgebraic set, both ClRn(M) and U are semialgebraic; hence, each locally compact
semialgebraic set M ⊂ Rn is the intersection of a closed and an open semialgebraic subsets
of Rn.

As we have already announced in the Introduction, we will see in Section 3 that only
the locally compact semialgebraic sets satisfy a  Lojasiewicz inequality or a Nullstellensatz
for its ring of semialgebraic functions. The clue result to prove this is the following:

Lemma 2.9. Let M ⊂ Rn be a semialgebraic set which is not locally compact. Then,
M contains a semialgebraic set C, closed in M , semialgebraically homeomorphic to the
triangle T = {(x, y) ∈ R2 : 0 < y ≤ x ≤ 1} ∪ {(0, 0)}.

The proof of this fact requires a certain analysis of the set of points of M having a
compact neighbourhood in M .

Lemma 2.10. Let M ⊂ Rn be a semialgebraic set. Define

ρ0(M) = ClRn(M) \M and ρ1(M) = ρ0(ρ0(M)) = ClRn(ρ0(M)) ∩M.

Then, Mlc = M \ ρ1(M) is a locally compact semialgebraic set which coincides with the
set of points of M having a compact neighbourhood in M .

Assume we have already proved 2.10 and let as show 2.9.

Proof of Lemma 2.9. We may assume that 0 ∈ ρ1(M). By 2.10, the origin is not an
isolated point of M . By [BCR, 9.3.6], there exist a positive real number ε > 0 and a
semialgebraic homeomorphism ϕ : Bn(0, ε)→ Bn(0, ε) such that:

(i) ‖ϕ(x)‖ = ‖x‖ for every x ∈ Bn(0, ε),
(ii) ϕ|Sn−1(0,ε) is the identity map,

(iii) ϕ−1(M ∩ Bn(0, ε)) is the cone with vertex 0 and basis M ∩ Sn−1(0, ε).

Consider the semialgebraic homeomorphism ψ : Rn → Rn given by

ψ(x) =

{
x if x ∈ Rn \ Bn(0, ε),

ϕ(x) if x ∈ Bn(0, ε).

In what follows we identifyM with ψ−1(M). Since 0 ∈ ρ1(M), this point has no compact
neighbourhood in M , see 2.10. In particular, M ∩ Bn(0, ε), which is the cone with vertex
0 and basis N = Sn−1(0, ε) ∩M , is not compact. This implies that also the basis N is
not compact, hence it is not closed in Rn, and we choose a point q ∈ ClRn(N) \ N . By
the Curve Selection Lemma [BCR, 2.5.5], there exists a semialgebraic path α : [0, 1]→ Rn
such that α(0) = q and α((0, 1]) ⊂ N . After shrinking the domain of α if necessary, we
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may assume that α|(0,1] is a homeomorphism onto its image K = α((0, 1]) ⊂ N . Thus, K
is a closed subset of N , and it is homeomorphic to the interval (0, 1].

Let C be the cone with vertex 0 and basis K. A straightforward computation shows that
C, which is a closed semialgebraic subset of M , is homeomorphic to T via the semialgebraic
homeomorphism

T → C, (s, t) 7→

{
sα(t/s) if s 6= 0,

0 if s = 0,

whose inverse map is defined by

C → T, x 7→

{
(‖x‖/ε)(1, α−1(εx/‖x‖)) if x 6= 0,

0 if x = 0.

We are done. �

Next, we proceed to prove the remaining result 2.10.

Proof of Lemma 2.10. We check first that M \ρ1(M) = ClRn(M)\ClRn(ρ0(M)). Observe
that ClRn(M) = M t ρ0(M) and ClRn(ρ0(M)) = ρ0(M) t ρ1(M). Thus,

ClRn(M) \ ClRn(ρ0(M)) = (M t ρ0(M)) \ (ρ0(M) t ρ1(M)) = M \ ρ1(M).

Consequently, Mlc = M \ ρ1(M) = ClRn(M) \ ClRn(ρ0(M)) is a locally closed set, and so
it is locally compact, by 2.8. Next, note that

ρ1(M) = ClRn(ClRn(M) \M) ∩M
is a closed subset of M . Thus, if N denotes the set of points of M having a compact
neighbourhood in M , we deduce, since Mlc is locally compact and open in M , that Mlc =
M \ ρ1(M) is contained in N .

Conversely, let x ∈ N and let K be a compact neighbourhood of x in M . Let W be an
open subset of Rn such that x ∈W and M ∩W ⊂ K. Thus,

x ∈ ClRn(M) ∩W = ClRn(M ∩W ) ∩W ⊂ K ⊂M,

or equivalently, W is a neighbourhood of x in Rn such that W∩(ClRn(M)\M) = ∅. Hence,
x 6∈ ClRn(ClRn(M) \M) ∩M = ρ1(M), that is, x ∈Mlc = M \ ρ1(M), as wanted. �

3.  Lojasiewicz’s inequalities and Nullstellensätze

We begin this section by introducing several preliminary notions and remarks which
allow us to state properly the Nullstellensatz for the ring of semialgebraic functions on a
semialgebraic set. Along this section whenever we consider an ideal of S�(M) we mean a
proper ideal of S�(M).

(3.1) Filters in rings of semialgebraic functions. Let ZM be the collection of all
closed semialgebraic subsets of M , which coincides, by 2.2, with the family of zerosets of
semialgebraic functions on M . Let P(ZM ) be the set of all subsets of ZM . Recall that a
subset F of P(ZM ) is a z-filter on M if it satisfies the following properties:

(i) ∅ 6∈ F.
(ii) Given Z1, Z2 ∈ F then Z1 ∩ Z2 ∈ F.
(iii) Given Z ∈ F and Z ′ ∈ ZM such that Z ⊂ Z ′ then Z ′ ∈ F.
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Let a be an ideal of S(M). One can check straightforwardly that:

(i) The family Z[a] = {ZM (f) : f ∈ a} is a z-filter on M .
(ii) If F is a z-filter, then J (F) = {f ∈ S(M) : ZM (f) ∈ F} is an ideal of S(M)

satisfying Z[J (F)] = F.

Definition 3.2. An ideal a of S(M) is a z-ideal if J (Z[a]) = a, that is, whenever there
exist f ∈ a and g ∈ S(M) satisfying ZM (f) ⊂ ZM (g), we have g ∈ a.

Remark 3.3. Notice that the equality Z[J (F)] = F implies that J (F) is a z-ideal whenever
F is a z-filter. Note also that each z-ideal is a radical ideal because ZM (f) = ZM (fk) for
each f ∈ S(M) and each k ≥ 1.

We are now ready to present the Nullstellensatz for the ring of semialgebraic functions
on a semialgebraic set.

Corollary 3.4 (Nullstellensatz). Let M ⊂ Rn be a locally compact semialgebraic set. Let
a be an ideal of S(M). Then J (Z[a]) =

√
a, and a is a z-ideal if and only if a is a radical

ideal. In particular, each prime ideal of S(M) is a z-ideal.

Proof. Let g ∈ S(M) be such that ZM (g) ∈ Z[a]. Then, there exists f ∈ a such that
ZM (f) = ZM (g) and, by 1.1, there exist ` ≥ 1 and h ∈ S(M) such that g` = fh ∈ a, that
is, g ∈

√
a. The rest of the statement follows from 3.3 and the fact that all prime ideals

are radical ideals. �

Next, let us see that if M is not locally compact,  Lojasiewicz’s inequality 1.1 does not
hold for M and, in addition, there exist prime ideals in S(M) which are not z-ideals. More
precisely,

Proposition 3.5. Let M ⊂ Rn be a semialgebraic set which is not locally compact. Then,

(i)  Lojasiewicz’s inequality does not hold for M .
(ii) The ring S(M) has fixed prime ideals which are not z-ideals.

Before proving this, we need some preliminary results. Namely,

Lemma 3.6. Let N ⊂ M ⊂ Rm be semialgebraic sets. Write Y = M \ N and take
b ∈ S∗(N). Let h ∈ S�(M) be such that Y ⊂ ZM (h). Then, the product (h|N )b can be
continuously extended by 0 to a semialgebraic function belonging to S�(M).

Proof. Since b is bounded on N and h vanishes identically on Y , we deduce that

lim
x→p

(h|Nb)(x) = 0

for all p ∈ Y ∩ClM (N). Thus, (h|N )b can be continuously extended by 0 to the whole M .
The graph of such extension, being the union graph(h|Nb)∪ (Y × {0}), is a semialgebraic
set. This means that such extension is an element of S�(M). �

Lemma 3.7. Let N ⊂ M ⊂ Rn be semialgebraic sets such that N is closed in M , and
let a be a radical ideal of S(N) which is not a z-ideal. Let j : N ↪→ M be the inclusion
map and let φ : S(M) → S(N), f 7→ f |N = f ◦ j be the induced homomorphism. Then,
b = φ−1(a) is a radical ideal but not a z-ideal.
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Proof. It is immediate to check that b is radical, so let us prove that it is not a z-ideal.
Since N is closed in M , the homomorphism φ is surjective, by the semialgebraic version
of the Tietze–Urysohn Lemma [DK]. Suppose now, by way of contradiction, that b is a z-
ideal. Since a is not a z-ideal, there exist f ∈ a and g ∈ S(N)\a such that ZN (f) ⊂ ZN (g).
Let F,G ∈ S(M) such that φ(F ) = f and φ(G) = g. By 2.2 there exists H ∈ S(M) such
that ZM (H) = N . Consider the semialgebraic functions F1 = F 2 +H2 and G1 = G2 +H2.
Then,

F1|N = f2, G1|N = g2 and ZM (F1) = ZN (f) ⊂ ZN (g) = ZM (G1).

Moreover, F1 ∈ b because φ(F1) = f2 ∈ a. Thus, G1 ∈ b and therefore g2 = φ(G1) ∈ a.
Since a is radical, we conclude that g ∈ a, a contradiction. �

Now, we are ready to prove 3.5.

Proof of Proposition 3.5. By 2.9, there exists a semialgebraic subset C ⊂ M which is
closed in M , and a semialgebraic homeomorphism

ψ : C → T = {(x, y) ∈ R2 : 0 < y ≤ x ≤ 1} ∪ {p = (0, 0)}.
By 2.2, there exists c ∈ S∗(M) such that ZM (c) = C.

(i) Consider the semialgebraic functions g(x, y) = y and h(x, y) = x2 + y2 on T . Let
g1 = g ◦ ψ, h1 = h ◦ ψ ∈ S(C). Let G1, H1 ∈ S(M) be semialgebraic functions which
extend1 g1, h1 respectively. The semialgebraic functions G = G2

1 + c2 and H = H2
1 + c2

satisfy ZM (G) = ZM (H) = {ψ−1(p)}. Suppose, by way of contradiction, that there exist
` ≥ 2 and F ∈ S(M) such that H` = GF , and so (H|C)` = (G|C)(F |C). After composition
with ψ−1 we deduce the existence of f ∈ S(T ) such that h2` = g2f , that is, the quotient

f =
h2`

g2
=

(x2 + y2)2`

y2

is continuous on T , a contradiction. Therefore,  Lojasiewicz’s inequality does not hold for
M .

(ii) Since C is closed, it is enough, by 3.7, to find a fixed prime ideal in S(C) which
is not a z-ideal. Even more, the semialgebraic homeomorphism ψ : C → T induces a
ring isomorphism ψ∗ : S(T ) → S(C), f 7→ f ◦ ψ, and ZT (f) = ψ(ZC(ψ∗(f))) for every
f ∈ S(T ). Thus, we have just to prove the existence of a fixed prime ideal in S(T ) which
is not a z-ideal.

(3.5.1) We claim that:

p = {f ∈ S(T ) : ∃ ε > 0 | f extends continuously by 0 to T ∪ ((0, ε]× {0})}
is a fixed prime ideal of S(T ) which is not a z-ideal.

Indeed, it is clear that p is closed under addition. Next, let f ∈ p and g ∈ S(T ). Since
the origin p ∈ T , there exists a neighbourhood W of p in T on which g is bounded. Thus,
by 3.6, there exists ε > 0 such that fg extends continuously by 0 to T ∪ ([0, ε]×{0}), that
is, fg ∈ p, and so p ⊂ mp is a fixed ideal of S(T ). Moreover, p is not a z-ideal, because
the semialgebraic functions g1 = x2 + y2 and g2 = y satisfy ZT (g1) = ZT (g2) = {p} and
g2 ∈ p while g1 6∈ p.

1Recall the already mentioned semialgebraic version of the Tietze–Urysohn Lemma [DK].
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We check now that p is prime. Let h1, h2 ∈ S(T ) such that h1h2 ∈ p. Since 1/(1 + |h1|)
and 1/(1 + |h2|) are units in S(T ), it is enough to check that either f1 = h1/(1 + |h1|) or
f2 = h2/(1 + |h2|) lies in p. Note that both f1 and f2 are bounded functions.

Let X1 = ClR3(graph(f1)) and X2 = ClR3(graph(f2)), which are compact bidimensional
semialgebraic sets. By [BCR, 2.8.13], each Ci = Xi \ graph(fi) is a semialgebraic curve
whose projection onto the plane {z = 0} is the segment (0, 1]× {0}.

By [BCR, 2.9.10], each curve Ci ⊂ R × {0} × R is the disjoint union of finitely many
points pi` and a finite number of Nash curves Mik, each of them Nash diffeomorphic to
an open interval (0, 1). Note that each curve Mik is either contained in a vertical line
{(a, 0)} × R or it has just finitely many points with vertical tangent. Thus, there exist
just finitely many values a ∈ (0, 1] such that the line {(a, 0)} × R either passes through
one of the points pi`, or it contains some curve Mik, or it is the tangent line to some Mik

at one of its points. Denote by J the set of such values and let b ∈ (0, 1] \ J . Let us see
that we can extend continuously both functions f1, f2 to the point (b, 0). Fix i = 1, 2 and
observe that the line {(b, 0)} × R intersects the curve Ci into finitely many points. Let
π : R3 → R2 be the projection onto the first two coordinates.

Let δ > 0 be such that the closure B of the open ball B of center (b, 0) and radius δ
has the following properties:

(1) B1 = B ∩ {y ≥ 0} ⊂ ClR2(T ) \ {p}.
(2) There exists an index k such that the closed interval [b−δ, b+δ] is Nash diffeomor-

phic, via the projection onto the first coordinate, to a closed subset of the Nash
curve Mik.

This way, one can check that the restriction

ϕ = π|Z : Z = ClR3(π−1(B ∩ T ))→ π(Z) = B1

is a semialgebraic bijection and, Z being compact, ϕ is a semialgebraic homeomorphism.
Let q = (b, 0, s) = ϕ−1(b, 0). It is clear that fi can be continuously extended to the point
(b, 0) by setting fi(b, 0) = s.

Therefore, there exists a finite set J ⊂ (0, 1] such that both f1 and f2 can be continuously
extended to T ∪ ((0, 1] \ J)× {0}. Thus, they can be continuously extended to T ∪ I1 for
some interval I1 = (0, ε1] × {0} with ε1 > 0. Since f1f2 ∈ p, we may assume that f1f2

can be continuously extended by 0 to T ∪ I1. By the semialgebraicity of f1 and f2, we
may assume the existence of ε2 ∈ (0, ε1) such that the continuous extension of, say f1, to
T ∪ ((0, ε2]× {0}) vanishes identically on (0, ε2]× {0}, that is, f1 ∈ p. Consequently, p is
a fixed prime ideal of S(T ) which is not a z-ideal, as wanted. �

Our next aim is to develop a similar theory to approach the case of bounded semial-
gebraic functions. The existence of non-units in S∗(M) with empty zeroset will require
to generalize the z-filters used above to obtain a similar  Lojasiewicz’s inequality. It is
worthwhile mentioning that, in contrast with what happens for the ring S(M), this can
be done without the local compactness assumption on M .

(3.8) Filters in rings of bounded semialgebraic functions. Recall that a function
f ∈ S(M) is a unit if and only if ZM (f) = ∅. However, this is not longer true in the
bounded case, because given a bounded semialgebraic function with empty zeroset its
inverse in S(M) could be unbounded. Recall that in a general commutative ring with
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unity an element is a unit if and only if it occurs in no maximal ideal. This leads us to
handle all maximal ideals in S∗(M) and not only the ones corresponding to points in M .
Observe that, with the notations in 2.4, a function f ∈ S∗(M) is a unit if and only if
Zβ*

sM
(f) = ∅. The family of all sets Zβ*

sM
(f) for f ∈ S∗(M) is denoted by Zβ*

sM
. Recall

that a subset F of P(Zβ*
sM

) is a z∗-filter on M if it satisfies the following properties:

(i) ∅ 6∈ F.
(ii) Given Z1, Z2 ∈ F then Z1 ∩ Z2 ∈ F.

(iii) Given Z ∈ F and Z ′ ∈ Zβ*
sM

such that Z ⊂ Z ′ then Z ′ ∈ F.

Let a be an ideal of S∗(M). One can check almost straightforwardly that:

(i) The family Zβ*
sM

[a] = {Zβ*
sM

(f) : f ∈ a} is a z∗-filter on M .

(ii) If F is a z∗-filter, then J (F) = {f ∈ S∗(M) : Zβ*
sM

(f) ∈ F} is an ideal of S∗(M)

such that Zβ*
sM

[J (F)] = F.

Definition 3.9. An ideal a of the ring S∗(M) is a z∗-ideal if J (Zβ*
sM

[a]) = a, that is,

whenever there exist f ∈ a and g ∈ S∗(M) satisfying Zβ*
sM

(f) ⊂ Zβ*
sM

(g), we have g ∈ a.

Remark 3.10. Notice that the equality Zβ*
sM

[J (F)] = F implies that J (F) is a z∗-ideal

whenever F is a z∗-filter. Note also that each z∗-ideal is a radical ideal because Zβ*
sM

(f) =

Zβ*
sM

(fk) for all f ∈ S∗(M) and all k ≥ 1.

The analogous result to 3.4 concerning bounded semialgebraic functions is the following
Nullstellensatz, whose proof requires to state some preliminary results.

Corollary 3.11 (Nullstellensatz). Let M ⊂ Rn be a semialgebraic set and let a be an
ideal of S∗(M). Then J (Zβ*

sM
[a]) =

√
a, and a is a z∗-ideal if and only if a is a radical

ideal. In particular, each prime ideal of S∗(M) is a z∗-ideal.

Again, the crucial tool to prove the Nullstellensatz is a  Lojasiewicz inequality that in
this context takes the following formulation (equivalent to the one already stated in 1.3).

Theorem 3.12 ( Lojasiewicz’s inequality). Let M ⊂ Rn be a semialgebraic set and let
f, g ∈ S∗(M) be such that Zβ*

sM
(f) ⊂ Zβ*

sM
(g). Then, there exist h ∈ S∗(M) and a

positive integer ` such that g` = fh. In particular, |g|` ≤ supM (|h|)|f | on M .

Remarks 3.13. (i) As we have already observed in 1.2(ii), the existence of an integer ` ≥ 1
and a constant c > 0 such that |g|` ≤ cf on M guarantees, in our context, the existence
of h ∈ S∗(M) such that g2`+1 = hf .

(ii) The previous result plays an important role in the study of nonrefinable chains of
prime ideals in rings of bounded semialgebraic functions (see [Fe1] for further details). In
fact 3.12 is crucial to prove a useful criterion of primality of ideals of S(M) (see [Fe1, 5.4]),
strongly inspired in the corresponding result in [GJ, 2.9] concerning rings of continuous
functions.

On the other hand, it follows from [BCR, 7.1.23] that given a free maximal ideal m
of S(M), the family of prime ideals of S∗(M) containing the prime ideal m ∩ S∗(M)
constitutes a chain, and  Lojasiewicz’s inequality 3.12 is an essential tool to describe the
immediate successor of m ∩ S∗(M), that is, the smallest prime ideal of S∗(M) containing
properly m∩S∗(M). This is done in [Fe1, §6] and it is strongly inspired in the corresponding
result for rings of continuous functions developed in [M, 6] and [GJ, 14.25-27].
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Assume for a while that 3.12 is proved, and let us use it to prove the Nullstellensatz
3.11 as its straightforward consequence.

Proof of Corollary 3.11. Let g ∈ S∗(M) be such that Zβ*
sM

(g) ∈ Zβ*
sM

[a]. Then, there

exists f ∈ a such that Zβ*
sM

(f) = Zβ*
sM

(g). By 3.12, there exist a positive integer ` and

h ∈ S∗(M) such that g` = fh ∈ a, that is, g ∈
√
a. The rest of the statement follows from

3.10 nd the fact that all prime ideals are radical ideals. �

Therefore, we are led to prove 3.12. The proof we present here is inspired in [BCR,
2.6.4].

Proof of Theorem 3.12. As observed in 2.1 we may assume that M ⊂ Bn(0, 1). For each
u ∈ R, we define the semialgebraic subset Mu = {y ∈M : u|g(y)| = 1}. Let us see that:

(3.12.1) If Mu 6= ∅, then sup{1/|f(y)| : y ∈Mu} < +∞.

Otherwise, there exists a sequence {ym}m≥1 ⊂ Mu such that limm→+∞ f(ym) = 0.
Consider the graph Γ of the restriction h = f |Mu : Mu → R. Since Mu ⊂ Bn(0, 1)
is a bounded subset of Rn, its closure ClRn(Mu) is compact. Thus, we may assume,
after substituting {ym}m≥1 by one of its subsequences, if necessary, that there exists
limm→+∞ ym = y ∈ ClRn(Mu). Note that the point (y, 0) ∈ ClRn(Γ). Hence, by the Curve
Selection Lemma [BCR, 2.5.5], there exists a semialgebraic path γ : [0, 1]→ Rn+1 such that
γ(0) = (y, 0) and γ((0, 1]) ⊂ Γ. For each t ∈ [0, 1] we write γ(t) = (α(t), ν(t)) ∈ Rn × R.
Then, α : [0, 1] → Rn is a semialgebraic path such that α(0) = y, α((0, 1]) ⊂ Mu and
ν(t) = (f ◦α)(t) for all t ∈ (0, 1]. Hence, limt→0(f ◦α)(t) = 0, that is, f ∈ m∗α. This implies,
since Zβ*

sM
(f) ⊂ Zβ*

sM
(g), that also g ∈ m∗α or, equivalently, that limt→0(g ◦ α)(t) = 0.

But this is impossible because |g|Mu | ≡ 1/u ∈ R. This proves 3.12.1.

Next, consider the non necessarily continuous function,

v : R→ [0,+∞), u 7→ v(u) =

{
0 if Mu = ∅,

sup{1/|f(y)| : y ∈Mu} otherwise,

whose graph is semialgebraic. Note that the function v is identically 0 on (−∞, 0]. We
claim that:

(3.12.2) The restriction vr = v|[0,r] is bounded for every r > 0.

Indeed, assume, by way of contradiction, the existence of r > 0 and a sequence
{um}m≥1 ⊂ [0, r] such that v(um) > m for all m ≥ 1. Thus, by the definition of the
function v, there exists a sequence {ym}m≥1 such that 1/|f(ym)| > m and ym ∈ Mum

for all m ≥ 1. Since ClRn(M) is compact, we may assume that the sequence {ym}m≥1

converges to a point z ∈ ClRn(M), and so the sequence {(ym, f(ym))}m≥1 converges to
the point (z, 0). On the other hand, since [0, r] is compact, we may assume that {um}m≥1

converges to a point a ∈ [0, r], and |g(ym)|um = 1 because ym ∈Mum . Therefore,

lim
m→+∞

|g(ym)| = lim
m→+∞

1

um
=

1

a
.
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Since g is bounded, a cannot be 0 and this way the previous limit is well-defined. Next,
consider the semialgebraic set

T = {(u, y, f(y)) ∈ [0, r]×M × R : u|g(y)| = 1}.

The points (um, ym, f(ym)) ∈ T , and so (a, z, 0) ∈ ClRn(T ). By the Curve Selection
Lemma [BCR, 2.5.5] there exists a semialgebraic path ϕ = (ρ, η, µ) : [0, 1]→ R× Rn × R
such that ϕ(0) = (ρ(0), η(0), µ(0)) = (a, z, 0) and

ϕ|(0,1] =
( 1

|(g ◦ η)|(0,1]|
, η|(0,1], (f ◦ η)|(0,1]

)
.

Therefore, limt→0(f ◦ η)(t) = 0, that is, f ∈ m∗η, and so g ∈ m∗η, because Zβ*
sM

(f) ⊂
Zβ*

sM
(g). This means limt→0(g ◦ η)(t) = 0, which is impossible, because

lim
t→0

1

|(g ◦ η)(t)|(0,1]|
= a ∈ R.

This proves 3.12.2.

(3.12.3) On the other hand, by [BCR, 2.6.1], there exist c, s ∈ R and a positive integer
p ≥ 1 such that v(u) ≤ cup for every u such that |u| ≥ s and, as we have just seen, there
exists L > 0 such that 0 ≤ v|[−s,s] ≤ L. Now, let us prove that the function

h1 : M → R, y 7→ h1(y) =

{
gp(y)/f(y) if y ∈ DM (f),

0 if y ∈ ZM (f),

is bounded. Of course, it is enough to check that h1 is bounded on DM (f). Let y0 ∈
DM (f). If g(y0) = 0, then h1(y0) = 0. Thus, we may assume that g(y0) 6= 0, and denote
u0 = 1/|g(y0)|. Suppose first that |g(y0)| ≤ 1/s or, equivalently, u0 ≥ s. Then,∣∣∣gp(y0)

f(y0)

∣∣∣ ≤ 1

up0
sup{1/|f(y)| : y ∈Mu0} =

v(u0)

up0
≤ c.

Suppose now that |g(y0)| > 1/s, that is, u0 < s. Then,∣∣∣gp(y0)

f(y0)

∣∣∣ ≤ |g(y0)|p sup{1/|f(y)| : y ∈Mu0}

= |g(y0)|pv(u0) ≤ sup{|g(y)|p : y ∈M} · L.

Since g is bounded, we conclude that also the function h1 is bounded. Therefore, by
3.6, h = gh1 ∈ S∗(M), because ZM (f) ⊂ ZM (g) since Zβ*

sM
(f) ⊂ Zβ*

sM
(g). Finally, if

` = p+ 1 we get g` = fgh1 = fh, as wanted. �

Remark 3.14. The proof above shows that to get an equality of the form g` = fh, it suffices
to require that g ∈ m∗α for each semialgebraic path α : (0, 1]→M such that f ∈ m∗α.

We finish this work with an alternative proof of 1.1 obtained as an almost straightfor-
ward consequence of 3.12 and 3.14. Namely,

Alternative proof of Theorem 1.1. First, since M is locally compact, it is locally closed (see
2.8) and so, by [BCR, 2.2.9], M can be embedded in some Rm as a closed semialgebraic
subset. Thus, in what follows, we assume that M ⊂ Rn is a closed semialgebraic subset
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of Rn. Next, let f, g ∈ S(M) such that ZM (f) ⊂ ZM (g) and consider the bounded
semialgebraic functions on M

f1 =
f

(1 + ‖x‖)(1 + |f |)
∈ S∗(M) and g1 =

g

(1 + ‖x‖)(1 + |g|)
∈ S∗(M).

Taking 3.14 into account, to apply 3.12 to f1 and g1 it is enough to check that g1 ∈ m∗α for
each semialgebraic path α : (0, 1] → M such that f1 ∈ m∗α. Indeed, let α : (0, 1] → M be
a semialgebraic path such that f1 ∈ m∗α. If m∗α is a fixed maximal ideal of S∗(M), there
exists a point p ∈M such that m∗α = m∗p, and

0 = f1(p) =
f(p)

(1 + ‖p‖)(1 + |f(p)|)
because f1 ∈ m∗p. Hence, f(p) = 0 and so g(p) = 0, because ZM (f) ⊂ ZM (g). Thus,

g1(p) =
g(p)

(1 + ‖p‖)(1 + |g(p)|)
= 0,

that is, g1 ∈ m∗p = m∗α.

Next, if m∗α is a free ideal, the semialgebraic path α : (0, 1] 7→M cannot be extended to
a continuous semialgebraic path [0, 1] 7→M (see 2.5). Since M is closed in Rn this implies
that α cannot be extended to a semialgebraic path [0, 1] 7→ Rn. Thus, by 2.6, the semialge-
braic function ‖α‖ : (0, 1]→ R is unbounded. On the other hand, the semialgebraic func-
tion 1

1+‖α‖ : (0, 1]→ R being bounded, there exists, by 2.6, the limit limt→0
1

1+‖α‖ = c ∈ R.

In fact c = 0, because ‖α‖ : (0, 1]→ R is unbounded. Thus, using 2.6 once more,

lim
t→0

(g1 ◦ α)(t) = lim
t→0

( 1

1 + ‖α(t))‖

)( g(α(t))

1 + |g(α(t))|

)
= 0.

Therefore, also g1 ∈ m∗α and, by 3.12 and 3.14, there exist h1 ∈ S∗(M) and a positive
integer ` ≥ 1 such that g`1 = f1h1. Hence, g` = fh, where

h = h1
(1 + ‖x‖)`−1(1 + |g|)`

1 + |f |
∈ S(M),

and we are done. �
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Madrid, 28040 MADRID (SPAIN)

E-mail address: josefer@mat.ucm.es, jmgamboa@mat.ucm.es


