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The 75th anniversary of Turing’s seminal paper and his cerdtyear anniversary occur in 2011 and 2012,
respectively. Itis natural to review and assess Turing'gritoutions in diverse fields in the light of new develop-
ments that his thoughts has triggered in many scientific conities. Here, the main idea is to discuss how the
work of Turing allows us to change our views on the foundatiohMathematics, much like quantum mechanics
changed our conception of the world of Physics. Basic netiitke computability and universality are discussed
in a broad context, making special emphasis on how the nofi@omplexity can be given a precise meaning
after Turing, i.e., not just qualitative but also quantitat Turing’s work is given some historical perspective
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I. INTRODUCTION

A. A Practitioner’s Critique to Complexity Class B_] 1

with respect to some of his precursors, contemporaries atdematicians who took up his ideas farther.

new notion of a theoretical machine. This so simple machine,
the Turing machine, however turns out to be extremely power-
ful and even universal. In this regard, Turing’s work pagtzl|
Einstein’s work on special relativity, when Einstein weat t
make precise and explicit definitions of elementary coreept
like distances, time intervals, clock synchronization dmel
definition of an inertial frame. Despite their simplicityouu-
ever the consequences of Einstein’s principles revoligezh
the whole Physics. Turing’s work is of a similar kind.

Turing made a gigantic effort to understand how human'’s
mind work at the level of finding mechanical procedures to
compute things and devise appropriate definitions of what al
gorithms arel[1.]2]. His work represents a great deal of imag-
ination and creativity, which in turn has changed the notibn
creativity ever since, for creativity now can be made quanti
tive using Turing’s work.

He invented the theory of computability. What is more im-
portant, this affects the way Mathematics must be undedstoo
at a fundamental level, the calculus. And more. His results
have revolutionized the way we should address axioms, i.e.,

0the very fundamentals of Mathematical disciplines. Questi

like when a set of axioms is complete or not, what to do when

T they are not complete. Eventually, this leads to the veripnot

of mathematical creativity.

Turing got a lot of recognition in Engineering Schools, like
Computer Science and many others. It is rather disappgintin
to see that the figure of Turing and his work still does not have
a central, pivotal role in the curricula of Mathematics wamiv
sity schools, which merits a word or two. Firstly, Turing'et
ory can be regarded as the fundamental of what a calculation
should be in Mathematics. It underlines all previous knowl-
edge on calculus and analysis in Mathematics in a way that it
was implicit before Turing. After Turing, it is systematizan

At the year of this writing, 2011, itis 75 years that the sem-& way that it becomes mechanical and algorithmic: the holy
inal paper by Alan Mathison Turingl[1] was published. And grail of any theory. Secondly, it affects the way axioms Have
2012 will mark his centennial birthday. It looks like a good be considered in Mathematics. The big surprise is that Math-
occasion to review and assess his work and impact. To Se&matics is not closed in the sense predicted by David Hilbert
how useful and vital has become in so many aspects and disdiuit it is an open system capable of increasing its amount of
plines. As time goes by, the importance and relevance of thisnowledge by adding new axioms to a discipline.
paper increasingly goes up. Turing transcends Mathematics And the same goes for Physics university schools, where

and goes into other disciplines like Physics, Engineegng,

the part of computer science in the curricula is mostly reduc

His work started as an in-depth and profound study of the veryo learning manuals of software instead of the fundameafals
notion of what an algorithm is, discarding irrelevant tting computation. Manuals are changeable, version after versio
and targeting the essence of a mechanical procedure withkaut Turing’s foundations on computability theory remain.
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Turing’s work has led to the development of 3 major disci-tape at a time and reads or writes alphabet symbols onto the
plines: tape depending on the instructions in the control unit. Aenor
Computability : it studies which problems can be computedformal mathematical definition with the concrete functiomi
and which can not be computed. This goes to the very limitexamples and diagrams can be found in Galindo and Martin-
of what is knowable. Delgadol[4].

Complexity: once a problem is computable, solvable, then He was so convinced that this definition of machine repre-
we need to know how difficult is to compute it. This quantifi- sented the most general possible algorithm for calculus tha
cation can be made in different ways giving rise to differenthe formulated the basic principle of computation by means of
notions of complexity: algorithmic complexity, computaial  his construction:

complexity and others that will be considered in SECt[TIl, V Turing Hypothesis: (also known as the Church-Turing the-
Universality: the new paradigm is to use a TM, the basis of asis):

real computer, in order to solve problems. Then, we need to “A function is computable, if and only if, it can be com-
know how general these machines, the Turing machines, cgsuted by a Turing machine.”

be. Does every problem or reduced set of them require a par- Turing named his machine ‘a-machine’ for automatic ma-
ticular TM? This is another fundamental discovery, theaoti  chine [2]. In essence, this statement is more than a mathemat
of a Universal Turing Machine (UTM): a machine that canical axiom, it is part of Physics for it is a principle thatlgelis
simulate the functioning of any other TM. Here it is impofttan what we can compute in our Universe.

to study how many resources we need to create sucha UTM. A bpasic and fundamental result of the notion of a

These disciplines are part of computer science as envisfM is that the set of TMs is countable, infinitely de-
aged by Turing and extends to many branches of science likumerable. It corresponds to bit-strings. L&t :=
Physics, Mathematics, Engineering, etc. This extensidh wi {A,0,1,00,01,10, 11,000, ...} be the set of finite strings of
increase with our better understanding of Nature and will apbinary bits, withA denoting the blank space symbol. The
ply to more descriptive sciences like Biology. size or number of bits isz|. The set of infinite bit-strings

From Turing’s work it is apparent that with a finite set of is denoted a&>. A Turing Machine TM is an application
axioms it is not possible to cover Mathematics as a whole7" : ¥ x ¥ — X that takes an input daia € X and a pro-
There are irreducible truths, axioms that are not self@awid gramp € X that acts on the input to produce an output string
in the sense of Euclid or Hilbert, and must be added to as in7’(p, q) = = € X which is the result of the computation, as-
dependent axioms. This makes a TOE (Theory of Everythingguming it halts. When the input data is empty, we simply write
of Mathematics impossible. T(p) = z, and when the output is simply stopping the com-

puter with no output, we writ&(p) : halts.
However, the notion of a TM is tight to the computation of
[l.  WHAT YOU CAN COMPUTE... a given function or problem. Changing the function means
changing the TM. Here comes the notion of universality as a

Turing was the first who separated software from hardwar@roperty of a special TM that can compute what any other TM
in a very concrete way. He did that by first focusing on thecan do.
theoretical problem of having a well-defined notion of a com-Universal Turing Machine: denoted as UTM, it is construc-
puting machine. Later in his years, he also got involved intion based on set of instructions and states in the contiibl un

constructing computing machine in practice [3]. of a TM such that it can reproduce the functioning of any other
Turing first goal was to scrutinize all steps that a person reTM.
alizes during a calculation, like arithmetic, and sepairasd- It is very remarkable that the definition of a TM allows for

evant aspects from the relevant properties necessaryp carthis property of universality. The basic idea behind the UTM
out the calculation. In doing so, he realized that there werds the observation that a TV can be described by a bit-string
two relevant ingredients: ’local information’ and ’'staté o itself and supplied to another TMI™ along with input data
mind’. Local information means that at each calculatiopste ¢ € X. Thus, 7*(T', ¢) will produce the same result d5q),

only a small part of the whole operation is being performedtherebyl™ simulating the functioning of any TKI".

State of mind means that the steps after a local calculation In doing so, Turing was giving birth to programming and
is carried out, depend on the rules stored in the person’d mincompiling. A universal TM is the notion of a general-purpose
which defines the calculation itself. Turing realized thatas  programmable computer of today. After Turing gave the first
enough to use a one-dimensional roll of paper or pad to writeonstruction of a UTM[1], other constructions have been pre
the intermediate (local) calculations and that the rulethef sented depending on the number of states used by the machine
state of mind could be also stored in a table of operations. Afand the number of symbols in the alphatét |5, 6], including
ter this analysis, Turing came up with a abstract constrfict osmall ones[[7].

his machine. Von Neumann realized that Turing had achieved the goal
Turing Machine: it is a finite-state machine with 3 compo- of defining the notion of universal computing machine, and
nents: i/ a doubly-infinite one-dimensional tape where symwent on to think about practical implementations of thisthe
bols from an alphabet were written or read from square cellstetical computer. It was clear that this was the crucialoroti

ii/ a control unit that stores the set of instructions in aléab of a flexible computer that was needed and was lacking thus
of specific operations; iii/ a head that scans one cell of thdar. Therefore, the distinction between software and hardw
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is clear in Turing’s work and it is a consequence of it. Tur-since the read arrow head cannot read-off the right-most
ing did not care about practical implementations at his timesquare of the finite program tape. Also, in an ordinary TM,
because he wanted to isolate, to single out the very notion & program that halts is necessarily prefix-free: it cannot be
what a computer is, in theory. In doing so, he was inspirecextended into another program that halts.
by D. Hllbert and his ideas about a formal set of axioms from There exists procedures to make a given set of bit-strings
which theorems would be provable by means of a mechanicahto a self-delimiting set. For a bit-stringwe construct a new
procedure. This led to the notion of TM and the solution ofbit-string by appending to it a prefix depending on its length
Hilbert's tenth problem. |z| =: n as follows:

As the title of his 1936 paper states, Turing wanted to give
a concrete definition of what a computable real number is. By zs = 0"1z. )

introducing the TM, he identified computable numbers WlthFor instance, from the abov&, we constructX; —

those that a TM can reall_y compute. Thus, a real ””mb.e'f I?010,011,00101,00110} C X4, which is prefix-free. Thus,
computable when its decimal digits are computable by f'n'tethe length increases only by an additive logarithmic term in

means. " ) | o
. the transition from a bit-string to its self-delimiting senta-
Computable Numbers areal number € R is acomputable 9 g

real if there exists a computable functi®iik), £ € N such tion:
thatz is bounded by rational numbers: lzs| = || + 2log |z], (3)
k-1 k+1 asymptotically. An important property is that universal
n srs n ’ Vi €N (1) Chaitin Machines also exist: the universal @Mstarts read-

ing a prefix-free programre that indicates which CM to
simulate, followed by the binary program for that machine,
U(rep) = C(p), with p also prefix-free. The whole input
program forU can also be made prefix-free.

Fortunately, all algebraic numbers, as wellasg, and many
other transcendental numbers are computable reals.

In addressing non-computable problems in Sett.lll, it is
u[léselgful to introduce a variant of Turing machine due to Chaiti

9] .

Chaitin Machine: it is a self-delimiting or prefix-free Turing . .. AND WHAT YOU CAN NOT COMPUTE
Machine, denoted CM.

This means that the TM knows when to stop by itself, with-
out needing an special mark indicator or blank character. Fo
mally, it is an applicatio’ : X x X — X thatis a TM acting
on program® € X and input datg € X, such that botlp and
q are self-delimiting strings, also called prefix-free. A eét
stringsG C X is prefix-free ifvs, s’ € &, sis notincluded as
a prefix ins’. For example, the set of all bit strings up to size
2,X9 :={0,1,01, 10} is not prefix-free fol is prefix of01.

Itis a twist of destiny that in the same paper where Turing
shows what we can compute in a very precise and universal
way ... he also proves that there are things that we cannot
compute.

Godel's theorem on incompleteness|[10] was a first shock
for the foundations of Mathematics as a complete formal log-
ical system. The latter was the attitude predominant before
- . ! and well represented by David Hilbert. Yet, the real impact
However,& = {0, 10} is prefix-free. of Godel's was still under debate in the Mathematics com-

An explicit construction of a Chaitin machine is as follows. . ) . .
o . T munity and there was the impression that they were a kind
It has three elements: i/ a finite program tape; ii/ a doubly- . o
e -~ . . of minor anomaly that would not affect the whole building
infinity work tape; iii/ a head with one arrow scanning the

. of the theory. Turing’s non-computability results were reve
program tape and another arrow scanning the work tape. The S Lo

AU ; more demolishing for the fundamentals of Mathematics since
alphabet is binary, 1 and the blank space is not allowed to

mark the halting of the machine. The initial state of a CM ishe showed that a very important example of Gddel's results

. ; was also at the heart of computation, algorithmic, somethin
the progranp € X stored in the program tape and with the very practical and with a lot of impact in the future.

arrow head scanning the left-most square which is blank. As Itis easv to write proarams. in pseudocode. that will never
for the work tape, it is occupied with the input datae % halt: y brog NP '

and the arrow head is scanning the left-most bit (initig)l bit

g. After the initial state, the CM starts operating like a TM: while true, continue (4)

the arrow head only moves on the program tape to the right,

while the arrow head can move left/right on the work tape;will loop forever. Another less evident example of looping

the arrow head can read and erase the square of the work tapegram is:

being scanned. The CM will halt if the arrow head reaches ) )

the right-most square of the program tape, giving a certain ~ define n integer number

output resultC(p,q) =: = € X; otherwise,C(p,q) is not letn — 1. then n — {g if n=0(mod2) (5)

defined and does not halt. Exactly as with ordinary Turing - T I3n+1 ifn=1 (mod 2)

machines, the CM moves step by step following a previously

given finite table that completely determines the compaitati It produces the cyclé, 4,2, 1 forever.

for the argumentp, q). Thus, a skillful debugger may envisage the task of find-
Notice that this construction of a TM is self-delimiting ing all possible loops in programs and with a look-up table,
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to get rid of them. Or maybe, one has to study more and itvherez; ; is the ith bit of the ith listed element 6¢>°. But
is necessary to classify families of loops etc. Turing’sgfro then,z; ¢ X°°, which is a contradiction. The assumption that
shows that this dream is impossible and does not depend gb> was a countable set is not true.
how smart the debugger is. It is at the roots of computational In fact, we can go on and prove that the set of real numbers
theory. In fact, we can guess that the purposed debugger md@ is uncountable by establishing a bijection betw&éh and
easily run into unknown territory. For instance, we can igset R. Both N andR are infinite sets, but of a different quality.
Collatz conjecturdd1] to write the following simple program: The cardinality ofN is denoted byr,. R has the cardinality

of the continuum.

_ define n  integer number Continuum Hypothesis (CH):. it states that the cardinality of

if n=1, stop e R is X;, the second transfinite cardinal introduced by Can-

hil L let R if n =0 (mod 2) 6) tor, or equivalently, that every infinite subsetRfmust apply
whilen 7 1, let n = 3n+1 ifn=1(mod2) bijectively on eitheiN or onR itself: 2% = ;.

In other words, there is no set with an intermediate car-
It has been checked that this program stops for very large vafinality betweenN and R, there is a gap. CH was intro-
ues,n < 20 x 258 [12], but it is unknown whether it halts duced by Cantor but was unable to prove it [16]. It is the first
¥n € N. The conjecture remains unproven. A modificationof Hilbert's twenty-three problems proposed in 1900. Gode
of it can has been proved to be undecidablé [13], but the modproved that CH is consistent with axiomatic set theory [17],
ification does not apply to the original conjecture. but Paul J. Cohen also proved that the negation of CH is also
A basic and fundamental result of the notion of a TM is consistent with the axioms of set theofy|[18]. Thus, CH is
that the set of TMs is countable, infinitely denumerable. Itundecidable or non-computable. It is independent of stahda
corresponds to bit-strings. This is the power of TMs ... and axiomatic set theory (Zermelo—Fraenkel set theory).
also its weakness. Although we know that its cardinality isNon-Computable Numbers a real number non-computable
infinity, after Cantor we know that not all infinities are aik by a TM.
In particular,|X| is an infinity equal to the infinity of the real ~ The set of computable reals with a TM is quite small.
numbersN. This is easily obtained by seeing a bit-string asGiven a TM with |S| internal states, it can compute about
the binary representation of an integer number in base=2:  (4]S| + 4)?/! different numbers. Using Cantor’s diagonal
S 2™ method, Turing was able to prove that there are uncountably
Cantor’s diagonal method provides a clever way to see thahany noncomputable numbers. Most of the real numbers, the

there are more real numbeRsthan natural numbens [14—  continuum, is unaccessible to a TM.
[16]. The diagonal method has proved extremely useful in fun-

Cantor's Diagonal Method: it is a technique in set theory to  damental problems of Mathematics. Some instances are Rus-
create a new element which is not an element of a previousigell's paradox in set theory, Godel's first theorem of ineom

given set of elements. pleteness and Turing’s solution to the 10th Hilbert’s pewil

As an illustration, consider the following table where we Halting Problem: There is no way to find whether a computer
place eight bit-string® := {1, 29,...,25} C X. From  will eventually halt.
this, we can construct another element ¢ &: select the A crucial assumption in Turing’s formulation of this prob-
diagonal of the table and negate each of its bits. Then, we gé&m is that there is no limit for the running time of the com-
zg := 00000000 which is new. puter. By computer is meant a TM. Under these circum-

stances, there is no mechanical procedure that can decide in
advance whether a computer will ever halt. A more formal

21| A]0]0]0]0]0]0]0 statement is the following:

22 |0 A]1]0]0]0]0)0 Let H be the set of subsets, such that each subset corre-
z3||0|0]A]0]0]0]0]0 sponds to a Turing Machinds,, n € N and all its programs
zg||0]0]OJA]1]0]0]0 7) that halt when input off,,. Each program can also be labeled
z5|[0]0]0]0]A[0]0]O0 with an integern € N. Thus, the allegedly total halting set is
6|00 ]0]0|0O|A|1]0

z7|[0]0]0]0]0]0]A]0 H :={(n,m) € N x N : T,(m) halts}. 9

28| 1]0]0]0]0J0]O0]A In bit-string notationT},(m) := T, (pm,0),i.e., input data

The diagonal method is very general. It applies both to fi-d = 0. the progranp,, € X is the bit-string of the natural

nite sets likeX, or infinite sets likeX>: the set of infinite Numberm and similarly for the bit-string:,. labeling TMs.

bynary strings. A consequence of this is tRat has infinite ~ Each subset off is the halting set of a TM{,.:

cardinality but it is uncountable. To show this, we proofyt b H = EN:T halts 10
reductio ad absurdum. Assume tht is countable so that ni= {m $Tn(m) - (10)
we make a table likd{7) with infinite elements ordered by theNow, we are in the situation of applying Cantor’s diagonal
integersN. All elements are thus listed, but with the diagonal method. The seff can be arranged as a tatlé (7), wiil,

we can create another bit-string: being the rows. Let us define a 'diagonal’ €etas follows:

Tq = (T ®1),2,, (8) D:={neN:n¢H,}. (11)



5

By constructionD is a set of natural numbers that is different bounds. These are good enough to gain a great deal of insight
from any halting sef{,, of any TM. Therefore, the original into a given problem. For instance, we can give an alteraativ
goal of determining the sef of all halting machines cannot definition to the Busy Beaver function:
be accomplished and thus, we can never know in general when
a TM will ever halt. Yy = g}%ﬁ%’ (15)
Turing did not use the terminology of ‘halting problem’ in -
his 1936 papet [1]2]. It seems that the first time this was used/here the algorithmic complexity{1L4) is defined for progeam
was by Martin Davis [19, 20]. p that compute: = U (p) without input and halting.
After Turing found an explicitand crucial example of anon-  Although non-computable, algorithmic complexity is well-
computable problem, it was natural to ask wether more examdefined and it has very useful properties like subadditiig
ples of this kind could be found. In 1962, T. Rado [[4] 21] joint complexity is bounded by the sum of the complexities of

proposed another interesting non-computable function. the individuals:
Busy Beaver Function it is the maximum number of digits
1s that appear as outputin a TM T that runs over all pro- H(z,y) < H(x)+ H(y) + O(1). (16)

gramsp that halt on no inpug = A: _ )
This allows us to construct big programs out of small ones.

Y = max|z(1)], (12)  Another crucial property follows from a proper definition of
pT(p)=a relative entropyH (y|z)
wher|z(1)| is the number of 1s in: € X. There are several H(z,y) = H(z) + H(y|z") + O(1). 7)

variants of Busy Beaver functions that have the same prop-

erty of being non-computable and are more manageable deThus, the joint complexity of two bit-strings can be complte
initions. For instance, as the maximum integer number thaknowing the absolute complexity of the first one plus the rel-
can be named with a universal TMwith programs of a given  ative complexity of the second given the first one. The key
size|p| =: N. Thus, aN-th Busy Beaver function is denoted point for this result to hold true is the definition of relagiv

¥ and defined complexity of y given z, H(y|z*): the size in bits of the
smallest self-delimiting program for calculatingif we are
YN = Tj@@k Y (13) given for free, notr directly, butz*, a minimum-size self-
PPN U= delimiting program forr.
This is a well-defined functioy : N — N, but it is A fundamental property of Chaitin machines is that they

noncomputable: it grows faster than any computable functio allows us to define halting probabilities for TMs, or the al-
f(N), Xn > f(N) for sufficiently largeN. ThereforeX y gorithmic probability of a bit-string, also known as unisal
cannot be bounded in the formBfy = O(f(NV)). The proof  probability Py () of a given stringe € X:
goes by reductio ad adsurdum: if it could be bounded, then
the halting problem would be computable. More examples of Py(z):= Y 27 (18)
non-computable functions can be obtained systematicglly b p:U(p)=x
means of the Algorithmic Information Theory (AIT) [22424]. B

After Turing’s halting problem, we may ask: can we quan-Wh'Ch is the prob_ab|llf[y that a program ra_mdomly drawn as
tify non-computability on mathematical grounds? G. Cimaiti @ Séquence of fair coin flips = pip, ... will compute the
has done a great deal of wolK [8,[9] 25 26] by approachin&tr'”gx- This is well-defined thanks to the prefix-free property
this issue from information-theoretical methods. He has def CMs and results from AIT([g) @@6]- N _
veloped the concept of what it known as Chaitiftsumber A cen_tral theor_e_m relates algorithmic complexities with al
that allows us to address this fundamental question. Theis, wdorithmic probabilities:
need to introduce some basic concepts and results from AIT.
Algorithmic Information Theory (AIT) :itis a part of Infor- H(z) = —log Py(w) + O(1). (19)
mation Theory that deals with the algorithmic complexity of Thjs relation tells us that near-minimum size programs ér ¢
functions and problems. The algorithmic complexity of a-pro ¢yjating something, elegant programs, are essentialtyueni
gramp € X refers to its program-size,i.e., bits of information 1js js 3 mathematical formulation of Occam’s Razor. Essen-
regardless the run-time that a machine like a TM takes to exgqq|ly, this relation tells us that AIT is equivalent to Pdility
cute t. Itis defined as the shortest program that can ree@du Theory, although this probability has to do with randomness

a given stringe in a universal TM: in programs, rather than statistical randomness but we shal
R get back to this later.
)= z:T]UIr(]p)lﬂ. (14) The idea behind structural or logical randomness is lack of

structure or pattern in a program or bit-string. Thus, a pro-
A first consequence of this definition is thd{x) is not com-  gram or bit-string is random if it has no pattern or innerstru
putable itself, for two reasons: due to the halting problemfure, consequently, it cannot be compressed. The only way
we never know when the programs will halt and since it is ato address it is by printing the whole program as it is: there
minimization procedure. Moreover, it is not possible to eom is no theory behind it from which it can be derived. By the-
pute lower bounds té/ (x). What is possible is to give upper ory, we mean a simpler procedure to recover the bit-string,
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something compressible. Now, we can give a precise defini- The ChaitinQ2 number is a real number if9, 1) which is
tion of randomness using information-theoretic notioke li logically random[(2IL): let us truncate it up to programs of
algorithmic complexity. This was definded by Chaitin in AIT. bit-size NV,
It is necessary to distinguish between finite bit-strings X
% =: n < oo, and infinite bit-strings: € X, z = (2,,)%%, Qo= » 277 (25)
I: pilpl<N
i/ Random finite bit-strings:
then, it is possible to prove thdf (2y) > N — ¢, VN and

H(xz)~n+ H(n). (20)  certain constant. (2 is algorithmically random and incom-
pressible. Thes@y are lower bounds to the actual This
i/ Random infinite bit-strings: truncation also produces an unbounded funcfiopthat re-
flects its non-computability. Knowing the firé{ bits of 2,
H(x,) >n —c, ¢ = const,Vn. (21)  i.e., the binary expansion 6y := 0.w1ws ...wy thenitis

. . ) _ possible to decide the truth df-bit theorems. By construc-
Notice thatn + H(n) is the greatest possible and also typi- tion, knowing$2y enables us to decide all programs of length
cal complexity of a finite bit-string. Equivalently, theaéve || < N that halt. Now, for instance, it is possible to write
complexity H (z[n) ~ n. As for infinite bit-strings, it is re- 3 program that searches for solution of the Collatz conjectu
quired that the partial series of bit-strings always be as (g) and halts only if a counterexample is found. Knowing suf-
random as possible. ficiently long string bits of2 enables us to decide whether a

Itis possible to prove that the definition of randomness forye|l-defined problem, according to a formal theory, is a theo
infinite strings from AIT [21) is equivalent to the statistic rem, a non-theorem or independent.
definition of random real numbers in classical probabdisti  After having faced the limits of computability, the natural
theory introduced by Martin-L6f[27] and Solovay [25]. Bhi question is: can we go beyond? This depends on whatis called
is a very remarkable result since the origin of AIT randonsnes the Turing barrier[32=35], that is stated as follows.
is conceptually different and related to lack of logicalisture  Turing Barrier : there is no way whatsoever to beat the halt-
in a set of programs. It is very nice that both types of def-jng problem.
initions produce exactly the same infinite random sequences Thijs notion has originated a line or resesearch called Hy-
[2€-130]. Moreover, for finite bit-strings AIT also provides  percomputation. It speculates that it is possible to detvise

definition of randomness. . oretical or physical machines that can compute problents tha
We can now define Chaitin® number and use it to assess are non-computable by the TM model[36].

logical randomness in Information Theory, the issue of non-
computability. The motivation is to define the halting preba

bility of a TM, i.e., IV. PRECURSORS OF TURING ON COMPUTABILITY

2= Z Py(z), (22) The following list has, by no means, the intention of giving
* a full account of all who might have been involved directly

r indirectly on investigations touching upon Turing’s \kpor

ut simply to present some important facts that are interest
(j}ng in connection to his work and later developments. Due to
space constraints we cannot dwell upon the work of such as
Georg Cantor (the diagonal method|[14], cardinalities }16]

o _ David Hilbert (the axiomatic method [37]Emile Borel (nor-
€= Z 271, (23) mal sequences [B8], the inaccessible numbédr [39]) etc. that

piU(p)=halts nevertheless will appear mentioned along the way.

where the sum runs over prefix-free strings and the univers
computer/ is a Chaitin machine. This wa$), can be thought
of as an average on the Turing halting problem. It is possibl
to give a more explicit expression as follows:

It measures the probability that a randomly chosen program
will halt when run in a universal TMJ that halts. This fol-
lows from the definition ofPy (z). It is a well-defined prob-
ability for: i/ only self-delimiting programs are allowed/
thus, the sum is convergent due to the Kraft inequality [31]; Leibniz made a crucial discovery that today is taken for
i’ 0 < Q < 1, because there are always programs that hal@ranted but is a major breakthrough in computational theory
and also programs that never halt. Alternatively, we can us#he binary numeral system (base{) 1} as a system for cal-

A. Gottfried W. Leibniz

algorithmic complexity to define it: culus. He went on and fabricated a mechanical machine that
worked simple multiplication operations with this binagss
0= Z 9—H(z) (24) tem. He dreamt of human_ reason reduced to calculation and of
- powerful mechanical engines to carry out those calculation

Leibniz asked and thought about fundamental questions and
What is behind is a very compact way of encoding the halt- ideas about what is Science and Natlre [40]. They play a
ing problem, or any other non-computable problem. central role in modern scientific methodology. One of these



guestions he asked was: is there any difference betweenkheas to be reached.

world without laws of nature and a world described by laws? Admitting that the concept of simplicity appears to be so
How can we tell the difference. Today this looks pretty ob-inaccessible to objective formulation, he failed to come up
vious after the enormous success of the scientific method fawith a precise definition of complexity, see Sect.VI.

about more than three hundred years. But Leibniz analysis

was made in 1686 [41] (another celebration in this year 2011)

one year before the Newton’s Principia were publisted [42]. C. KurtF. G odel
The mechanistic view of the world was not predominant what-
soever. In year 1931 Godel surprised the great mathematicians of

In addressing those questions, Leibniz touched upon thhis time by showing that Hilbert's proposal of finding a com-
roots of what a physical law must be: simplicity must be theplete axiomatic formalization of Mathematics was impolssib
key. To show this, he posed a very concrete mathematical e10]. This was shocking since it was like if the ultimate gofl
ample. Suppose you are given a set of points in a plane thalathematics, its reason of being, could not be achieved. Von
they represent the experimental data you want to explain by Bleumann was the first to realize that Godel was correct even
law. It is well-known from interpolation techniques, likeal  before his publication by attending a conference by Gadel i
grangian interpolation he anticipated, that we can alwan fi Koénisberg. Subsequently, Weyl and others had to concede as
a function that fits a given finite number of points. How do wewell that he was right. Godel was a great admirer of Leibniz
know then, that a physical law exists behind them? Leibniz’sand studied his works thoroughly.
answer is: only if the rule to fit the data is simple enough. His A common misconception about Godel’s work is that it is
basic principle is Occam’s Razor. With Turing, we know how destructive towards Mathematics since it looks like ancitta
to quantify complexity for instance by means of the notion ofat what Mathematics was understood to be: a well-defined
compression. formal system to solve problems. Quite on the contrary, this

Leibniz also stated that the Universe has a duality relationobjective is still true after Godel's results, but has tadased
ship between complexity vs. simplicity. On one side, Uni-and made precise by considering incompleteness as a key in-
verse is extremely diverse and rich, complex. On the othegredient in Mathematics. Although people think that Gé&del
hand, it can be made out of very simple rules that we caltheorem are bad news, a closer analysis reveals that they are
fundamental laws. Complexity out of simplicity, like in a good news and positive results since it allows creativityee
Beethoven’s symphony. In the computer’s era of today, weeome a key role in the foundations of Mathematics and this
have a typical example of this phenomenon: a laptop comean be done in a rigorous way as it demands.
puter can produce a fabulous number of complicated images, The heart of Godel’s proof relies is using a self-reference
movies, games etc. Yet, all there is underneath is Leibniz'proposition like
binary system. In this way, he anticipated the notion of emer

gent phenomena that is so influential and modern in theoreti- This statement is unprovable’ (26)
cal physics. or equivalently, the liar's paradox
"This statement is false’ or 'I'm lying’ (27)

B.  Hermann K.H. Weyl to undermine the logical system of Hilbert and followerseTh

latter was based on a set of axioms from which the proof of

Weyl became interested in Mathematical Logic and thetheorems followed like a mechanical checker. Whichever op-
foundations of Mathematics since his thesis supervisor wagion you take on the statemehi{2E))27), true or false, you
David Hilbert in Gottingen. He wrote a thorough bobki[43] on get the opposite. Then, Godel went on performing a series
these topics in which he calls the attention of Leibniz'suinp  of transformations into that initial paradox, some of them i
lished work [41] on the nature of a physical law and sciencevolving properties of prime numbers, and making it into def-
Wey! discussed on the character of mathematical cognitiorinite statements in number theory. And this was very clever
the axiomatic method and natural science. and imaginative. As such, one cannot ignore a statement in

He declares that the problem of simplicity is of central im- number theory which is not provable. Hence, Godel's result
portance for the epistemology of the natural sciences. As adeserved to be taken seriously.
example of the principle of simplicity in physics, he claims Inyear 1936 Turing gave a second and definitive surprise to
that it is a sure sign of being on the wrong scent if one’s thethe community of mathematicians by proving the existence of
ory suffers the fate of the epicycles of Ptolemy whose numbenon-computable problems, providing an explicit examplis. H
had to be increased every time the accuracy of observation imesult can be seen as an instance of Godel's result, but much
proved. The three laws of Kepler were much simpler and yesimpler to understand and, at the same time, playing a dentra
agreed noticeably better with the observations than thé mosole in the theory of computation.
complicated system of epicycles that had been dreamed up. When time gives more perspective to Godel's work, it

Weyl took Leibniz’s thoughts about complexity to the ex- will be considered similarly to what happened with the ad-
treme case and established that if we allow arbitrary high-co vent of non-Ecludian geometry in the XIX century, or more
plexity in a law of physics, then the law ceases to be a law ..plainly, how the discovery of irrational numbers shocked th
because then there is always a law. Thus, some sort of balanBgthagorean dreams.
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V. COMPUTABILITY AFTER TURING whose name was G.G. Berry. Chaitin explains that he wanted
to show Godel in 1974 how he could prove the incomplete-

The same applies for the farther developers of Turing’s theD€SS theorem using Berry’s paradox instead of liar's parado
ory as with his predecessors, and with the same proviso on tH&Z), but Chaitin was not able to meet Godel. -
number of figures that should be mentioned. For instance, all He introduced theé2 number: the halting probability of a

the recipients of the Turing award [44]. Turing machined (24). Itis a natural example of a random infi-
nite sequence of bits. Besides providing a connection \ui¢h t

work of Turing, 2 makes randomness in Mathematics more
A. Tibor Rad6 concrete and more believable. Chaitin has shown that this
logical randomness is at the very heart of pure Mathematics:

Rado made a great contribution in the theory of Turingprovable theorems are islands surrounded by vast oceans of
unprovable truths.

Machines in his late life 1962, three years before his death
and after having accomplished major contributions in other
fields of Mathematics: he solved the plateau problem, discov C. David E. Deutsch
ered essentially unique triangulations of surfaces, andema
many other important contributions in conformal mappings,
real analysis, calculus of variations, subharmonic flomgj
potential theory, partial differential equations, int&tpn the-
ory, differential geometry, and topology.

He invented the Busy Beaver functidn[21], another exam
ple of non-computable function after Turiig{15).

David Deutsch culminated the formulation of a quantum
computer in a way that it is a well-established extension of
the work by Turing into the quantum world. R.P. Feynman
gave fundamental steps prior to him, as well as P. Benioff. A
precise definition of a quantum TM and its functioning can
be found in Galindo and Martin-Delgadd [4]. Deutsch refor-
mulated the Church-Turing thesis into a version usualliedal
the Church-Turing-Deutsch principle:

“Every finitely realizable physical system can be perfectly
. . simulated by a universal model computing machine operating
Gregory J. Chaitin, together with Ray Solomonoff and An- by finite means.”

drei N. Kolmogorov, are the founding fathers of the subject “1ps is a farther extension of the Turing hypothesis into the
called_ Alg_orlthmlc C_ompIeX|ty, Kolmogorov Complexity, or physical world.
Algorithmic Information Theory (AIT) 4]. Quantum versions of algorithmic complexity, SEck.Il, has

Chaitin approached the two fundamental discoveries by aap, formulated [45-50], as well as quantum versions of the
Godel 1931 and Turing 1936 and his assessment was th?ztnumberIEZ].

they were just the tip of the iceberg. Those were not isolated
marginal results, but they were the natural case in Mathemat

ics rather than the exception. Those results implied that in . NOTIONS AND DEFINITIONS OF COMPLEXITY
some parts of Mathematics, it was possible to have lack of

structure, of patterns, a sort of randomness intrinsicedtile- Complexity is a word, a password, that has proliferated in

ory and not because we were unable to make it b?“?f- Th'§ large number of scientific disciplines: ... Most of the tane

randomness means logical randomness, not statistical ra%-
[

q thouah th lated " i Sect| S use is rather vague, volatile and qualitative. Afteriigrit
C(r)]m_r;ess lloug th ?{ are rleae(zj as we adeste)en L _etc. ‘important to realize that a rigorous, mathematical dedini
haitin reafized that logical randomness could be UDIGIITo complexity can be given and made quantifiable.

in Mathematics and started off the development of AIT in a

; that b idered it as th wral luti f th A very primitive and inefficient way to assess complexity in
V(J(r)rrrll( b;TSﬁgg € considered it as the natural evolution ol thg, athematics is to define it in terms of how long or difficult is

. to write the equations of a given theory. Naive as it may look,
Godel's theorem can be traced back to the ‘liar’'s para d g y y

s . o . o its use is very extended in the scientific community. This is
fjox m, ) while C,:hatm s halting probability is related toe not appropriate since this notion is very dependent on the la
Berry’s paradox’:

guage we use to write equations, and this may change over the
times. A proper definition of complexity calls for something
(28)  more intrinsic.
If we want to quantify the complexity of a theory or dis-
In principle, that proposition defines a certain positiviein Cip"'?e' we must see.k how it relates to the exper?mental data
ger since the set of words is finite while the set of integers iéhaF it wants to expl{_;un. Thus_, we consider the pair f‘.’rmed by
infinite. However, as that proposition has only ten words, it2 given theory and its experimental data, and map it into an-

cannot be defined by th4f(28). This is the paradox. A simiother pair which is a program that produces a certain output:

lar situation arises in the definition of algorithmic comypteg ¢ - (theory data — (programoutpub. 29

(I4): if algorithmic complexity were computable by a TM, ( ¥ datd (programoutput (29)
then similar paradoxes tb (28) would appear. Berry’s paradoThis latter pair is related to a computer that takes the rogr
was formulated by B. Russell inspired by a librarian at Odfor and finds the output. We can call this a computational map-

B. Gregory J. Chaitin

‘The smallest positive integer
not definable in under eleven words’
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ping €. With this mapping, now we can apply complexity the- Donald Knuth is an example of groundbreaking work on the
ory from computer science in order to find the complexity ofanalysis and performance of algorithrns [55].
a certain theory or discipline. This is an information-thetit ~ Space Complexity Given a decision problem characterized
approach to study complexity by using Turing's ideas in ordeby a TM T, it is the number of squareg N) of the work
to make things more precise. tape scanned by the TM before it halts. Similar considenatio
In Information Theory (IT), there are two major notions of apply as for time complexity.
complexity: algorithmic complexity and computational com It is very convenient to arrange sets of problems with the
plexity. same complexity behavior into complexity classes.
Algorithmic Complexity : it cares about the program-size Complexity Class is a set of decision problems that share
complexity, i.e., bits of information regardless the ramiof  the same type of time or space complexity according to some
a computer, following the ideas of how a TM works. We havecondition that is imposed on the problem, which defines the
explained it in detail in Se€tlll. class itself.
This notion of complexity has no practical applications per The most important class is the one that defines theoreti-
se. It is very useful to study the fundamentals of Mathematic cally what an efficient algorithm is. This is the class P.
and its foundations. P : it is the class of decision problems that are solvable in
Although algorithmic complexity is rather conceptual, it polynomial time. The time of the algorithm, or associated
may be also very inspiring in practical cases. There is an ex¥M, is bounded ag(N) < c¢N*, for certainc € R, k € N.
ample that captures the essence of this complexity: the larFhe real constant is called the overhead of the algorithm,
guage used for storing image files. There are two basic procend it is convenient that the integkibe the lowest possible.
dures: using bitmap graphics or vectorial graphics. The forArithmetic operations like adding or multiplying, or the @G
mer corresponds to using all the bits of a given image and storelimination method for solving linear equations are exaapl
them by brute force. The latter is more elegant since it trieof algorithms in P.
to store the formula that generates a certain graphics.i$his PSPACE: it is the class of decision problems that are solv-
more efficient and versatile since it preserves the imagemund able in polynomial memory space. Thus, the space of the al-
change of scale. gorithm, or associated TM, is bounded#sV) < c¢N*, for
A recent new development by Chaitin is to use AIT con-certainc € R, k € N.
cepts and tools in order to give a mathematical proof of Dar- The class P is theoretically a natural choice of what an effi-
win evolution theory[[53]. With quantum versions of AIT, cient algorithm is. The reason is for it is closed under opera
like new quantuni2 numbers, it is possible to study quantum tions that arise naturally in computation, like sum, praohrc
effects in the theory of evolutioh [54]. composition of polynomials that are again polynomials. On
For more practical purposes, the notion of computationathe contrary, examples of inefficient algorithms are packed
complexity is preferred. Once a problem is declared comthe class EXP.
putable, then we need to know if we can comput it efficientlyEXP : it is the class of decision problems that takes an expo-
or we can not. This leads to the notion of computational comnential time to solve thent(N) < V), for some polyno-
plexity. mial p. For example, trial division to determine wheth€ris
Computational Complexity: it evaluates the resources a prime number is in EXP, and many brute force algorithms.
needed by a computer to solve a problem and how they scale A central problem in solving problems in computer science
with the typical size of the problem. Time complexity refers is the difference between finding a solution to a problem and
to how many steps are needed to solve a problem. Space cowerifying that a certain instance is a solution of the praonle
plexity refers to how much memory is needed to solve theFor instance, the decision problem 3 a composite num-

problem. ber?’ is very difficult to solve for arbitraryv. However, if
Many computational tasks can be decomposed in simplawe are given a solution to this problem, sa#; then verifying
parts called decision problems. this instance is a matter of division and this takes polyradmi

Decision Problem it is a problem defined by an algorithm time. In this case, there are also polynomial algorithms to
stated as a question whose answer is yes or not, equivalentsheck whetherV is composite, but not for finding its prime

1 or 0. For instance: ‘IsN a prime number?’, and the like. factors. The general case can be casted in the form of a com-
Recall that we know from SeLi.|l that a Turing machifiés plexity class.

the formal definition of an algorithm. The TM associated toNP : is the set of decision problems whose associated TM
a decision problem is an applicatidh: X — {0,1}. Other T : X x X — {0,1} is in class PT'(z,y) verifies whether
important problems like ‘search’ or ‘optimization’ can be-d the problem defined by the bit-stringonce an instance is
composed into decision problems. Now, with the notion of asupplied. Additionally, the length of the verifigr must be

TM we can define precisely time complexity and space compolynomially bounded}y| < p(|z|).

plexity. With the advent of quantum Turing machines, the field of
Time Complexity: Given a decision problem characterized computational complexity has been revolutionized and en-
by a TMT, it is the number of stepg V) that the TM takes riched. New complexity classes can be defined substituting
before it halts and solves the problel. represents the size the classical TM by a quantum version. For instance, the nat-
of the input. One is normally interested in the study on theural version of the class P for quantum computers is called
scaling oft(N) for large N, or finding good upper bounds. BQP, for the class of bounded quantum polynomial problems.
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Scott Aaronson has done systematic studies of a huge number VIl. SOME APPLICATIONS

of both classical and quantum complexity classes [56]. Quan

tum Turing machines can also be generated by sets of quantum A, A Practitioner’s Critique to Complexity Class P
gates|[57], what is known as the quantum circuit model. In-

terestingly, it is possible to study the guantum complesity The notion of an efficient algorithm is defined by means of

many statistical classicgl systems when simulated on a-qual|5ss P as explained in SECE.VI. There we saw that it is a good
tum computer and still find open problerhs|[58, 59]. theoretical definition for this class P is closed under retur
An example of complexity class relationship isAEXP.  operations that occur in computations. However, theaatiyic
Another is PC NP and NPC EXP. well-sounded as it may be, it runs into problems when deal-
P vs. NP Problem: Is P # NP? ing vvjth pra_cticallcases and rgal computers. For instante, a
o , , _ algorithm with a time complexity growing likg V) ~ N100
This is considered the central problem in computationalyoy|d never catch the interest of any programmer. It would be
complexity, and in computer science in general. Behind thigyood to complement that notion of theoretical efficiencyhwit
question is whether computational creativity can be autetha g other of ‘practical efficiency’.
or not. Thus, at first it looks like the natural answer to this | ot s consider the following practical situation. We are

prolg)lerlr\wui;s yes. However, there are neither proofs thati®P  giyen an algorithm whose time complexity is in P as it grows
or P= NP. like:

There is a third way to approach this problem. Notice that N — & NF 30
this problem is considered as a problem in complexity theory t(N) = c'N%, (30)

not on computability. However, this is not the case. True asyheret is now the real clock-time taken by the computer to
it is that deciding whether a problem is either P or NP is agchijeve the solution of a given problem whose size is charac-
complexity problem, the P vs. NP problem is equivalent toterized byN. The integet: is fixed by the time complexity of
construct a mechanical procedure to decide whether it és truihe algorithm, and the constarittakes into account the con-
or false, and this is a problem on computability. Thereforeyersion between theoretical time-steps and real time. Wih

we have to face also the possibility that it is non-compwabl real computer we may have been able to obtain a certain set
This means that it would be an irreducible axiom that one mayf points, simulation data:

or may not add to his theory of computer science and go on

to produce different types of theories, both equally vatid a D = {t(1),2(2), ..., t(Nmax }, (31)
sensitive. Thus, if this third-way were true, then the naltur
choice P# NP would be like Euclidean geometry, while the
non-natural choice P- NP would be like non-Euclidean ge-
ometry. But this is also a conjecture.

up to a maximum achievable si2é,,x, Which will depend on

the technological resources available when obtaining ¢ie d

(31). It may so happen, and it is currently the case, that the

set of data is not enough to discover a law we are searching
There is not accepted definition of what a complex systenor. This is another version of the situation thought by Ingib

is. Qualitatively, it is usually referred to a system congsed  in Sec{IV. Thus, we need a bigger valueMfay, but we are

of various parts, usually many, such that they are intercontimited by the technological resources of our time, i.eg th

nected somehow up to a certain degree, and the behavior gfne of the data[{31). In order to assess how good the time

the whole system cannot be anticipated from the behavior aomplexity [30) is, we need to compare with the estimated

its individual parts. Remarkably, this is precisely theation  improvement of the technological resources. An example of

that we basically have with a TMs working with simple binary this is Moore’s law for computerﬁbo]_ Following this, we

system given rise to both computable and non-computable benay have found that our technology to build real computers

haviors, SedLlITll. Thus, when the computational magpin behave as another power law with respect to the minimum size

(29) can be applied to a certain system, arbitrary as it may b, ;. of the computer chips that run the computations. Thus,

we may give a sufficient criterion for having complex behav-the smaller the size the faster the computer:
ior by appealing to the notion of hard problem:
t(Nmax) - C”éia (32)

NP Hard Problem: when some problem, not necessarily in min’

NP, can be solved by an algorithm that can be reduced to ongherec” is a constant and a scaling exponent known exper-
capable of solving any problem in NP, then it is called NP-imentally.

hard. A problem that is both NP and NP-hard is called NP- In order to discover the law, we need to increase the max-
complete. imum current sizeéVmax by a certain factoyf > 1, such that

When some problem can be solved by an algorithm thath€ Set of data up tg Nmax is now enough to determine the
can be reduced to one that can solve any problem in NP, the?ftteérn. The question in turn is how much we need to improve
itis called NP-hard. A problem that is both NP and NP-hard is2Ur technology in order.to achieve this. Thus, we can derive a
called NP-complete. These problems are at least as hard as "t Of uncertainty relation betweenax and/min:
hardest problems in NP. Examples of NP hard problems are NE_go = (33)
the ‘subset sum problem’ and the ‘traveling salesman’. They aemn
both are also NP complete. If$£ NP, then NP NP Hard,  with ¢ := ¢”/c’ a fixed constant. The integer exponénis
otherwise, they are equal. fixed by the class P of the algorithm and we want to know
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how to improveNmax depending on the relative value of  repetition of movements, a loop, may happen in certain situa
W.r.t. k. Thus, we haveVyay = Conswim_ A possible situ-  tions. Rules were established to declare a draw when repeti-
ation could be that = «, then a linear decrease in the chip tion of moves become endless. Eule [63] used the cubic-free

technology will yield an increase in the maximum size. A bet-property of the Thue-Marston sequence to show how to cir-

ter situation is whert < « since then the improvement will cumvent those rules. Thus, new rules had to be added to the
be over previous pay off. However, the worst situation oscur 9ame. This is another instance of how axioms, i.e. rules, may
whenk > a. In the limit case of: — oo, the maximum size be changed a posteriori depending on the type of theory we
would be insensitive to any technological improvement. want to have. _ _

Therefore, a practical criterion for the class P is to corapar  When Bobby Fisher was an active chess player, he would
the integerk with the technological scaling exponenti.e. k.~ Say “Gods put the middle game after the opening”, meaning
vs. o, rather than the more theoretical criterion of comparingthat the complexity of the middle game was so high that it was
k VS. 0o. unknown territory, where written manuals for openings were

Another important practical case we may face is the exisuseless, and he would feel at his best. After retiremenhen t

tence of technological barriers. For example, nowadays thé980's Fisher sent a warning call saying that chess was be-
computer technology has reached the size of the nanometef@Ming too technical, mechanical and with little room fae-cr
Suppose we have a certain set of data [k (31) obtained with &tiVity- He proposed to change the rules of the opening some-
class P algorithm, but we need to increase the maximum siZ&0W, interestingly enough, introducing some randomness in
by a factorf > 1 such that then we need to go down well chess. In particular, by randomizing the starting positén
beyond the size of amgstroms. Then, for those smaller sizefe main pieces in the first row of each player side. And this
the computer leaves the classical behavior and enter tha reaNappened way before a computer, Deep Blue, defeated the
of quantum mechanics, so that we may well need a quantutyyorld Chess Champion G. Kasparov in 1997. Many people

computer to expand the range of data and be able to find odfought this to be unbelievable before year 2000. This does
law. not mean that computers are more intelligent than us, dr inte

ligent at all. It means that their brute force of calculatien
stronger than ours at playing chess.

B. On the Halting Problem in Chess

. N C. Divertimento: On the Complexity of Music
The halting problem has many implications as we have ety

shown. It is a concept of practical use in games, specially N .
in advanced games like chess. There, it is important to make Mozartcomposed many divertimentos, a musical form very

sure that the rules of the game (axioms) will ensure that th§°mmon in the Classical era prior to the success of the sonata
a match will terminate. Until 1929, players were not aware '™ by Haydn. We may produce a divertimento playing with

that the set of rules known by then, allowed to produce never! U"ng’s ideas in music. o

ending chess matches. In that year, Max Euwe, a mathemati- MUSIC is more than a Ia_ngtjage, but as long as it is a lan-
cian later to become the fifth world chess champion of moder@U@9€, we can apply Turing’s results to it and prove some
history 1935-37[61], settled the question by rediscovgtire ~ 2@MUsIng results which for music theorists may be surprising
Thue-Marston[62] sequence and its cube-free property. specially by the fact that they can be proved mathematically

In binary language, the Thue-Marston sequence is define't'tﬁ There is an endless number of different musical composi-
ions.

by the following generating moves: ! . »
i/ There are musical compositions that cannot be composed.
to = 0; Statement i/ implies that musical creativity is infinityrfo
0 01; 1+ 10. (34)  sure, while i/ means that, nevertheless, it also has somitsli
To proof i/ we use a code such that the music symbols and
For instance, the first elements of the sequence are rules of composition are encoded with a given alphalet
This can be binary for instance. Then, we use the same code
to =0, alphabet to label all known compositions. This can be done
t; =01, by lexicographic order, forming a table likel (7). Now, apply
to = 0110, (35) ingthe diagonal method we obtain another composition which
t3 = 01101001; is certain to be new. Though it is unlikely that these mathe-
t4 = 0110100110010110. matical type of compositions would have pleased Mozart and

Haydn, it may produce a different reaction in B. Bartok, A.
An element of a sequence is cube-free if it contains no subseschongberg, J. Cage, G. Ligeti, K. Stockhausen, I. Xenakis
guence of the formpp, wherep is a finite non-empty element. P. Boulez, C. Halffter... Nevertheless, what is remarkzadoie
A chess match is divided in three parts: opening, middle-unimaginable before Turing, is that a computer could be of
game and final. The final part is characterized by the presendelp as a composition machine as they are used nowadays.
of very few pieces on the board as compared to the opening. To proof ii/ we realize that each music composition is like
Thus, a theory of the final in chess has been developed to greafT M. Thus, it may or may not halt. For instance, we can pro-
extent: its complexity gets reduced. It had been known thatluce simple scores that repeat themselves forever. Aocepti
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this proviso about endless compositions is essential. &ep we may immediately deduce that the same applies to Physics
now that we want to write a music composition that with ourand there is no TOE for it. However, Physics is more than a
language be equivalent to a program that finds when any othéanguage and the ultimate word relies on experience, on the
musical composition will ever halt. Then, that score is ispo natural law. Our physical knowledge is like a window in an
sible to be written. energy scale, ranging from some point in the infrared to some
In the beginning of XX century, Arnold Schongberg evalu- point in the ultraviolet, i.e., large distance scales tolsdis-
ated the situation of classical music and judged that thalton tance scales. From this finite window scale we may bet on two
system based on major and minor scales, Greek modes efmossibilities: i/ that no TOE of Physics exists, since as we e
was absolutely worn out. Subjective as this may be, he werarge the energy window we will get new laws of Physics that
on to search for new composition systems by relaxing thavere not anticipated; ii/ that a TOE of Physics do exists and
rigidities of the old system. For instance, allowing allésn from our current window of knowledge, or probably a better
in a dodecaphonic scale to play the same role, without domene, we can deduce the whole range of physical laws in the en-
inant or tonic tones. This produce non-tonal systems like thtire energy scale, i.e., Physics would be finite and closea as
twelve-tone method and many others to follow, even by introsource of knowledge. Following Turing’s work, | believe tha
ducing random methods and other tools from Mathematicspption i/ is the correct one, and experience will tell us. The
like set theory. Again, that situation arose because ereati non-existence of a TOE in Physics is good news for creativity
ity was judged to be exhausted, and a change or extension of contrast to reductionism.
axioms was proposed instead, leading to controversy. Never |s it true that true randomness is only quantum? The
theless, controversy is unavoidable here since music i® momumber is a real number whose binary expansion yields bits of
than a language and personal taste plays a major role. information that are true for no reason, they have no stractu
or pattern, it is incompressible and its bits totally randasn
Chaitin has shown.
Viil. - CONCLUSIONS The following question may help to face this outcome situ-
ation not so dramatically. How can it be that Natural Scisnce
Turing has revolutionized the fundamental roots of what welike Physics, Mathematics, etc have become so successful if
understand by scientific knowledge, and will continue to dowe live in a world plagued by intrinsic randomness? A clue to
so as many applications of his works will come up. At thethis question is to take the example of what type of real num-
same time, his scientific work still lacks the recognitioatttt  bers are employed in successful theories. We will see that we
deserves in his own field of Mathematics. As he also foundediways have real numbers liké2, 7, e, etc. Although they are
modern computer science, recognition came first mainly fronmirrational with an infinite number of decimals, we have very
Engineering and Physics. short algorithms that generate that series of decimalsefery
The part of Turing’s 1936 paper [1] devoted to computableficiently. 1.e., they are actually maximally compressiblam
numbers has given rise to the development of the whole conbers.
puter technology. This is having a gigantic impact in ourcul  This fact can be extrapolated to the whole structure of suc-
ture. The other part of Turing’s paper devoted to the sofutio cessful theories of Nature: they are very simple, they can be
of Hilbert's tenth problem, as a consequence of the previougompressed, reduced to a simple set of axioms or laws of Na-
one, has helped us to deepen our knowledge about scientifigre. The rest of the universe that remains unknown is due
knowledge itself. This is best exemplified by the work of in part because it is not compressible and we live in a small
Chaitin, who has formalized what is knowable and UnknOW-region of the whole space of theories or know|edge_ We may
able based on Turing's work, and extending Godel's results divide our 'sphere of knowledge’ into three parts: i/ cutren
amore systematic and accessible way. His conclusion isrrathscience (known); ii/ future science (to be known): and iiit u
shocking since it implies that logical randomness is commorknowable or irreducible.

even in Mathematics. o . Physicists are willing to find and adopt new physical princi-

There is a parallelism between intrinsic randomness irples, Jaws that expand their knowledge of the universe. Math
Mathematics and in Physics, and we can leamn from it. Inematicians, standard and formal ones, tend to stick rigilly
Physics it appeared in 1920's in Quantum Mechanics, and alsgsjoms and not to modify them. They should adopt a more
produced a shocking revolution that removed the holy gffail 0 experimental attitude. With Turing, the fields of Matherosti
classical Physics, determinism, from its central statbg@d  5ng Physics become more unified.
been enjoying. Nowadays, Quantum Mechanics is a success-
ful theory and has been accepted both logically and due to its
unprecedented accurate experimental results. In Matlesnat
logical randomness appeared in 1930’s and it will so happen
that will become accepted.

After the work of Godel, Turing and Chaitin it is certain ~ M.A.M.-D. thanks the Spanish MICINN grant FIS2009-
that a TOE of Mathematics is impossible. But, what aboutl0061, CAM research consortium QUITEMAD S2009-ESP-
Physics? Inasmuch as Physics inherits the language of Matii594, European Commission PICC: FP7 2007-2013, Grant
ematics to express its laws and works out its consequenceldp. 249958, UCM-BS grant GICC-910758.
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