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Alan Turing and the Origins of Complexity
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The 75th anniversary of Turing’s seminal paper and his centennial year anniversary occur in 2011 and 2012,
respectively. It is natural to review and assess Turing’s contributions in diverse fields in the light of new develop-
ments that his thoughts has triggered in many scientific communities. Here, the main idea is to discuss how the
work of Turing allows us to change our views on the foundations of Mathematics, much like quantum mechanics
changed our conception of the world of Physics. Basic notions like computability and universality are discussed
in a broad context, making special emphasis on how the notionof complexity can be given a precise meaning
after Turing, i.e., not just qualitative but also quantitative. Turing’s work is given some historical perspective
with respect to some of his precursors, contemporaries and mathematicians who took up his ideas farther.
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I. INTRODUCTION

At the year of this writing, 2011, it is 75 years that the sem-
inal paper by Alan Mathison Turing [1] was published. And
2012 will mark his centennial birthday. It looks like a good
occasion to review and assess his work and impact. To See
how useful and vital has become in so many aspects and disci-
plines. As time goes by, the importance and relevance of this
paper increasingly goes up. Turing transcends Mathematics
and goes into other disciplines like Physics, Engineering,etc.
His work started as an in-depth and profound study of the very
notion of what an algorithm is, discarding irrelevant things
and targeting the essence of a mechanical procedure with a

new notion of a theoretical machine. This so simple machine,
the Turing machine, however turns out to be extremely power-
ful and even universal. In this regard, Turing’s work parallels
Einstein’s work on special relativity, when Einstein went to
make precise and explicit definitions of elementary concepts
like distances, time intervals, clock synchronization andthe
definition of an inertial frame. Despite their simplicity, how-
ever the consequences of Einstein’s principles revolutionized
the whole Physics. Turing’s work is of a similar kind.

Turing made a gigantic effort to understand how human’s
mind work at the level of finding mechanical procedures to
compute things and devise appropriate definitions of what al-
gorithms are [1, 2]. His work represents a great deal of imag-
ination and creativity, which in turn has changed the notionof
creativity ever since, for creativity now can be made quantita-
tive using Turing’s work.

He invented the theory of computability. What is more im-
portant, this affects the way Mathematics must be understood
at a fundamental level, the calculus. And more. His results
have revolutionized the way we should address axioms, i.e.,
the very fundamentals of Mathematical disciplines. Questions
like when a set of axioms is complete or not, what to do when
they are not complete. Eventually, this leads to the very notion
of mathematical creativity.

Turing got a lot of recognition in Engineering Schools, like
Computer Science and many others. It is rather disappointing
to see that the figure of Turing and his work still does not have
a central, pivotal role in the curricula of Mathematics univer-
sity schools, which merits a word or two. Firstly, Turing’s the-
ory can be regarded as the fundamental of what a calculation
should be in Mathematics. It underlines all previous knowl-
edge on calculus and analysis in Mathematics in a way that it
was implicit before Turing. After Turing, it is systematized in
a way that it becomes mechanical and algorithmic: the holy
grail of any theory. Secondly, it affects the way axioms haveto
be considered in Mathematics. The big surprise is that Math-
ematics is not closed in the sense predicted by David Hilbert,
but it is an open system capable of increasing its amount of
knowledge by adding new axioms to a discipline.

And the same goes for Physics university schools, where
the part of computer science in the curricula is mostly reduced
to learning manuals of software instead of the fundamentalsof
computation. Manuals are changeable, version after version,
but Turing’s foundations on computability theory remain.
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Turing’s work has led to the development of 3 major disci-
plines:
Computability : it studies which problems can be computed
and which can not be computed. This goes to the very limits
of what is knowable.
Complexity: once a problem is computable, solvable, then
we need to know how difficult is to compute it. This quantifi-
cation can be made in different ways giving rise to different
notions of complexity: algorithmic complexity, computational
complexity and others that will be considered in Sect. III, VI.
Universality: the new paradigm is to use a TM, the basis of a
real computer, in order to solve problems. Then, we need to
know how general these machines, the Turing machines, can
be. Does every problem or reduced set of them require a par-
ticular TM? This is another fundamental discovery, the notion
of a Universal Turing Machine (UTM): a machine that can
simulate the functioning of any other TM. Here it is important
to study how many resources we need to create such a UTM.

These disciplines are part of computer science as envis-
aged by Turing and extends to many branches of science like
Physics, Mathematics, Engineering, etc. This extension will
increase with our better understanding of Nature and will ap-
ply to more descriptive sciences like Biology.

From Turing’s work it is apparent that with a finite set of
axioms it is not possible to cover Mathematics as a whole.
There are irreducible truths, axioms that are not self-evident
in the sense of Euclid or Hilbert, and must be added to as in-
dependent axioms. This makes a TOE (Theory of Everything)
of Mathematics impossible.

II. WHAT YOU CAN COMPUTE...

Turing was the first who separated software from hardware
in a very concrete way. He did that by first focusing on the
theoretical problem of having a well-defined notion of a com-
puting machine. Later in his years, he also got involved in
constructing computing machine in practice [3].

Turing first goal was to scrutinize all steps that a person re-
alizes during a calculation, like arithmetic, and separateirrel-
evant aspects from the relevant properties necessary to carry
out the calculation. In doing so, he realized that there were
two relevant ingredients: ’local information’ and ’state of
mind’. Local information means that at each calculation step,
only a small part of the whole operation is being performed.
State of mind means that the steps after a local calculation
is carried out, depend on the rules stored in the person’s mind
which defines the calculation itself. Turing realized that it was
enough to use a one-dimensional roll of paper or pad to write
the intermediate (local) calculations and that the rules ofthe
state of mind could be also stored in a table of operations. Af-
ter this analysis, Turing came up with a abstract construct of
his machine.
Turing Machine : it is a finite-state machine with 3 compo-
nents: i/ a doubly-infinite one-dimensional tape where sym-
bols from an alphabet were written or read from square cells;
ii/ a control unit that stores the set of instructions in a table
of specific operations; iii/ a head that scans one cell of the

tape at a time and reads or writes alphabet symbols onto the
tape depending on the instructions in the control unit. A more
formal mathematical definition with the concrete functioning,
examples and diagrams can be found in Galindo and Martin-
Delgado [4].

He was so convinced that this definition of machine repre-
sented the most general possible algorithm for calculus that
he formulated the basic principle of computation by means of
his construction:
Turing Hypothesis: (also known as the Church-Turing the-
sis):

“A function is computable, if and only if, it can be com-
puted by a Turing machine.”

Turing named his machine ‘a-machine’ for automatic ma-
chine [2]. In essence, this statement is more than a mathemat-
ical axiom, it is part of Physics for it is a principle that tells us
what we can compute in our Universe.

A basic and fundamental result of the notion of a
TM is that the set of TMs is countable, infinitely de-
numerable. It corresponds to bit-strings. LetX :=
{Λ, 0, 1, 00, 01, 10, 11, 000, . . .} be the set of finite strings of
binary bits, withΛ denoting the blank space symbol. The
size or number of bits is|x|. The set of infinite bit-strings
is denoted asX∞. A Turing Machine TM is an application
T : X × X → X that takes an input dataq ∈ X and a pro-
gramp ∈ X that acts on the input to produce an output string
T (p, q) = x ∈ X which is the result of the computation, as-
suming it halts. When the input data is empty, we simply write
T (p) = x, and when the output is simply stopping the com-
puter with no output, we writeT (p) : halts.

However, the notion of a TM is tight to the computation of
a given function or problem. Changing the function means
changing the TM. Here comes the notion of universality as a
property of a special TM that can compute what any other TM
can do.
Universal Turing Machine: denoted as UTM, it is construc-
tion based on set of instructions and states in the control unit
of a TM such that it can reproduce the functioning of any other
TM.

It is very remarkable that the definition of a TM allows for
this property of universality. The basic idea behind the UTM
is the observation that a TMT can be described by a bit-string
itself and supplied to another TMT ⋆ along with input data
q ∈ X. Thus,T ⋆(T, q) will produce the same result asT (q),
therebyT ⋆ simulating the functioning of any TMT .

In doing so, Turing was giving birth to programming and
compiling. A universal TM is the notion of a general-purpose
programmable computer of today. After Turing gave the first
construction of a UTM [1], other constructions have been pre-
sented depending on the number of states used by the machine
and the number of symbols in the alphabet [5, 6], including
small ones [7].

Von Neumann realized that Turing had achieved the goal
of defining the notion of universal computing machine, and
went on to think about practical implementations of this theo-
retical computer. It was clear that this was the crucial notion
of a flexible computer that was needed and was lacking thus
far. Therefore, the distinction between software and hardware
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is clear in Turing’s work and it is a consequence of it. Tur-
ing did not care about practical implementations at his time
because he wanted to isolate, to single out the very notion of
what a computer is, in theory. In doing so, he was inspired
by D. HIlbert and his ideas about a formal set of axioms from
which theorems would be provable by means of a mechanical
procedure. This led to the notion of TM and the solution of
Hilbert’s tenth problem.

As the title of his 1936 paper states, Turing wanted to give
a concrete definition of what a computable real number is. By
introducing the TM, he identified computable numbers with
those that a TM can really compute. Thus, a real number is
computable when its decimal digits are computable by finite
means.
Computable Numbers: a real numberx ∈ R is a computable
real if there exists a computable functionT (k), k ∈ N such
thatx is bounded by rational numbers:

k − 1

n
< x <

k + 1

n
, ∀n ∈ N. (1)

Fortunately, all algebraic numbers, as well as,π, e, and many
other transcendental numbers are computable reals.

In addressing non-computable problems in Sect.III, it is
useful to introduce a variant of Turing machine due to Chaitin
[8, 9] .
Chaitin Machine: it is a self-delimiting or prefix-free Turing
Machine, denoted CM.

This means that the TM knows when to stop by itself, with-
out needing an special mark indicator or blank character. For-
mally, it is an applicationC : X×X → X that is a TM acting
on programsp ∈ X and input dataq ∈ X, such that bothp and
q are self-delimiting strings, also called prefix-free. A setof
stringsS ⊂ X is prefix-free if∀s, s′ ∈ S, s is not included as
a prefix ins′. For example, the set of all bit strings up to size
2,X2 := {0, 1, 01, 10} is not prefix-free for0 is prefix of01.
However,S = {0, 10} is prefix-free.

An explicit construction of a Chaitin machine is as follows.
It has three elements: i/ a finite program tape; ii/ a doubly-
infinity work tape; iii/ a head with one arrow scanning the
program tape and another arrow scanning the work tape. The
alphabet is binary0, 1 and the blank space is not allowed to
mark the halting of the machine. The initial state of a CM is
the programp ∈ X stored in the program tape and with the
arrow head scanning the left-most square which is blank. As
for the work tape, it is occupied with the input dataq ∈ X

and the arrow head is scanning the left-most bit (initial bit) of
q. After the initial state, the CM starts operating like a TM:
the arrow head only moves on the program tape to the right,
while the arrow head can move left/right on the work tape;
the arrow head can read and erase the square of the work tape
being scanned. The CM will halt if the arrow head reaches
the right-most square of the program tape, giving a certain
output resultC(p, q) =: x ∈ X; otherwise,C(p, q) is not
defined and does not halt. Exactly as with ordinary Turing
machines, the CM moves step by step following a previously
given finite table that completely determines the computation
for the argument(p, q).

Notice that this construction of a TM is self-delimiting

since the read arrow head cannot read-off the right-most
square of the finite program tape. Also, in an ordinary TM,
a program that halts is necessarily prefix-free: it cannot be
extended into another program that halts.

There exists procedures to make a given set of bit-strings
into a self-delimiting set. For a bit-stringx we construct a new
bit-string by appending to it a prefix depending on its length
|x| =: n as follows:

xs := 0n1x. (2)

For instance, from the aboveX2 we constructXs
2 =

{010, 011, 00101, 00110} ⊂ X4, which is prefix-free. Thus,
the length increases only by an additive logarithmic term in
the transition from a bit-string to its self-delimiting presenta-
tion:

|xs| = |x|+ 2 log |x|, (3)

asymptotically. An important property is that universal
Chaitin Machines also exist: the universal CMU starts read-
ing a prefix-free programπC that indicates which CM to
simulate, followed by the binary program for that machine,
U(πCp) = C(p), with p also prefix-free. The whole input
program forU can also be made prefix-free.

III. ... AND WHAT YOU CAN NOT COMPUTE

It is a twist of destiny that in the same paper where Turing
shows what we can compute in a very precise and universal
way ... he also proves that there are things that we cannot
compute.

Gödel’s theorem on incompleteness [10] was a first shock
for the foundations of Mathematics as a complete formal log-
ical system. The latter was the attitude predominant before
and well represented by David Hilbert. Yet, the real impact
of Gödel’s was still under debate in the Mathematics com-
munity and there was the impression that they were a kind
of minor anomaly that would not affect the whole building
of the theory. Turing’s non-computability results were even
more demolishing for the fundamentals of Mathematics since
he showed that a very important example of Gödel’s results
was also at the heart of computation, algorithmic, something
very practical and with a lot of impact in the future.

It is easy to write programs, in pseudocode, that will never
halt:

while true, continue (4)

will loop forever. Another less evident example of looping
program is:

define n integer number;

let n = 1, then n =

{

n
2 if n ≡ 0 (mod 2),
3n+ 1 if n ≡ 1 (mod 2).

(5)

It produces the cycle1, 4, 2, 1 forever.
Thus, a skillful debugger may envisage the task of find-

ing all possible loops in programs and with a look-up table,
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to get rid of them. Or maybe, one has to study more and it
is necessary to classify families of loops etc. Turing’s proof
shows that this dream is impossible and does not depend on
how smart the debugger is. It is at the roots of computational
theory. In fact, we can guess that the purposed debugger may
easily run into unknown territory. For instance, we can use the
Collatz conjecture[11] to write the following simple program:

define n integer number;
if n = 1, stop;

while n 6= 1, let n =

{

n
2 if n ≡ 0 (mod 2),
3n+ 1 if n ≡ 1 (mod 2).

(6)

It has been checked that this program stops for very large val-
ues,n ≤ 20 × 258 [12], but it is unknown whether it halts
∀n ∈ N. The conjecture remains unproven. A modification
of it can has been proved to be undecidable [13], but the mod-
ification does not apply to the original conjecture.

A basic and fundamental result of the notion of a TM is
that the set of TMs is countable, infinitely denumerable. It
corresponds to bit-stringsX. This is the power of TMs ... and
also its weakness. Although we know that its cardinality is
infinity, after Cantor we know that not all infinities are alike.
In particular,|X| is an infinity equal to the infinity of the real
numbersN. This is easily obtained by seeing a bit-string as
the binary representation of an integer number in base 2:n =
∑∞

n=0 xn2
n.

Cantor’s diagonal method provides a clever way to see that
there are more real numbersR than natural numbersN [14–
16].
Cantor’s Diagonal Method: it is a technique in set theory to
create a new element which is not an element of a previously
given set of elements.

As an illustration, consider the following table where we
place eight bit-stringsS := {x1, x2, . . . , x8} ⊂ X. From
this, we can construct another elementx9 /∈ S: select the
diagonal of the table and negate each of its bits. Then, we get
x9 := 00000000 which is new.

x1 6 1 0 0 0 0 0 0 0
x2 0 6 1 1 0 0 0 0 0
x3 0 0 6 1 0 0 0 0 0
x4 0 0 0 6 1 1 0 0 0
x5 0 0 0 0 6 1 0 0 0
x6 0 0 0 0 0 6 1 1 0
x7 0 0 0 0 0 0 6 1 0
x8 1 0 0 0 0 0 0 6 1

(7)

The diagonal method is very general. It applies both to fi-
nite sets likeX, or infinite sets likeX∞: the set of infinite
bynary strings. A consequence of this is thatX

∞ has infinite
cardinality but it is uncountable. To show this, we proof it by
reductio ad absurdum. Assume thatX

∞ is countable so that
we make a table like (7) with infinite elements ordered by the
integersN. All elements are thus listed, but with the diagonal
we can create another bit-stringxd:

xd := (xi,i ⊕ 1)
∞
i=1 , (8)

wherexi,i is the ith bit of the ith listed element ofX∞. But
then,xd /∈ X

∞, which is a contradiction. The assumption that
X

∞ was a countable set is not true.
In fact, we can go on and prove that the set of real numbers

R is uncountable by establishing a bijection betweenX
∞ and

R. BothN andR are infinite sets, but of a different quality.
The cardinality ofN is denoted byℵ0. R has the cardinality
of the continuum.
Continuum Hypothesis (CH): it states that the cardinality of
R is ℵ1, the second transfinite cardinal introduced by Can-
tor, or equivalently, that every infinite subset ofR must apply
bijectively on eitherN or onR itself: 2ℵ0 = ℵ1.

In other words, there is no set with an intermediate car-
dinality betweenN andR, there is a gap. CH was intro-
duced by Cantor but was unable to prove it [16]. It is the first
of Hilbert’s twenty-three problems proposed in 1900. Gödel
proved that CH is consistent with axiomatic set theory [17],
but Paul J. Cohen also proved that the negation of CH is also
consistent with the axioms of set theory [18]. Thus, CH is
undecidable or non-computable. It is independent of standard
axiomatic set theory (Zermelo–Fraenkel set theory).
Non-Computable Numbers: a real number non-computable
by a TM.

The set of computable reals with a TM is quite small.
Given a TM with |S| internal states, it can compute about
(4|S| + 4)2|S| different numbers. Using Cantor’s diagonal
method, Turing was able to prove that there are uncountably
many noncomputable numbers. Most of the real numbers, the
continuum, is unaccessible to a TM.

The diagonal method has proved extremely useful in fun-
damental problems of Mathematics. Some instances are Rus-
sell’s paradox in set theory, Gödel’s first theorem of incom-
pleteness and Turing’s solution to the 10th Hilbert’s problem.
Halting Problem: There is no way to find whether a computer
will eventually halt.

A crucial assumption in Turing’s formulation of this prob-
lem is that there is no limit for the running time of the com-
puter. By computer is meant a TM. Under these circum-
stances, there is no mechanical procedure that can decide in
advance whether a computer will ever halt. A more formal
statement is the following:

Let H be the set of subsets, such that each subset corre-
sponds to a Turing MachinesTn, n ∈ N and all its programs
that halt when input onTn. Each program can also be labeled
with an integerm ∈ N. Thus, the allegedly total halting set is

H := {(n,m) ∈ N×N : Tn(m) halts}. (9)

In bit-string notationTn(m) := Trn(pm, 0),i.e., input data
q = 0, the programpm ∈ X is the bit-string of the natural
numberm and similarly for the bit-stringxr labeling TMs.
Each subset ofH is the halting set of a TMHn:

Hn := {m ∈ N : Tn(m) halts}. (10)

Now, we are in the situation of applying Cantor’s diagonal
method. The setH can be arranged as a table (7), withHn

being the rows. Let us define a ’diagonal’ setD as follows:

D := {n ∈ N : n /∈ Hn}. (11)
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By construction,D is a set of natural numbers that is different
from any halting setHn of any TM. Therefore, the original
goal of determining the setH of all halting machines cannot
be accomplished and thus, we can never know in general when
a TM will ever halt.

Turing did not use the terminology of ‘halting problem’ in
his 1936 paper [1, 2]. It seems that the first time this was used
was by Martin Davis [19, 20].

After Turing found an explicit and crucial example of a non-
computable problem, it was natural to ask wether more exam-
ples of this kind could be found. In 1962, T. Radó [4, 21]
proposed another interesting non-computable function.
Busy Beaver Function: it is the maximum number of digits
1s that appear as outputx in a TM T that runs over all pro-
gramsp that halt on no inputq = Λ:

ΣT := max|x(1)|
p:T (p)=x

, (12)

wher |x(1)| is the number of 1s inx ∈ X. There are several
variants of Busy Beaver functions that have the same prop-
erty of being non-computable and are more manageable def-
initions. For instance, as the maximum integer number that
can be named with a universal TMU with programs of a given
size|p| =: N . Thus, aN -th Busy Beaver function is denoted
ΣN and defined

ΣN := max k
p:|p|≤N,U(p)=k

. (13)

This is a well-defined functionΣN : N → N, but it is
noncomputable: it grows faster than any computable function
f(N), ΣN > f(N) for sufficiently largeN . Therefore,ΣN

cannot be bounded in the form ofΣN = O(f(N)). The proof
goes by reductio ad adsurdum: if it could be bounded, then
the halting problem would be computable. More examples of
non-computable functions can be obtained systematically by
means of the Algorithmic Information Theory (AIT) [22–24].

After Turing’s halting problem, we may ask: can we quan-
tify non-computability on mathematical grounds? G. Chaitin
has done a great deal of work [8, 9, 25, 26] by approaching
this issue from information-theoretical methods. He has de-
veloped the concept of what it known as Chaitin’sΩ number
that allows us to address this fundamental question. Thus, we
need to introduce some basic concepts and results from AIT.
Algorithmic Information Theory (AIT) : it is a part of Infor-
mation Theory that deals with the algorithmic complexity of
functions and problems. The algorithmic complexity of a pro-
gramp ∈ X refers to its program-size,i.e., bits of information
regardless the run-time that a machine like a TM takes to exe-
cute it. It is defined as the shortest program that can reproduce
a given stringx in a universal TM:

H(x) := min |p|
p:U(p)=x

. (14)

A first consequence of this definition is thatH(x) is not com-
putable itself, for two reasons: due to the halting problem,
we never know when the programs will halt and since it is a
minimization procedure. Moreover, it is not possible to com-
pute lower bounds toH(x). What is possible is to give upper

bounds. These are good enough to gain a great deal of insight
into a given problem. For instance, we can give an alternative
definition to the Busy Beaver function:

ΣN := max k
H(k)≤N

, (15)

where the algorithmic complexity (14) is defined for programs
p that computek = U(p) without input and halting.

Although non-computable, algorithmic complexity is well-
defined and it has very useful properties like subadditivity: the
joint complexity is bounded by the sum of the complexities of
the individuals:

H(x, y) ≤ H(x) +H(y) +O(1). (16)

This allows us to construct big programs out of small ones.
Another crucial property follows from a proper definition of
relative entropyH(y|x)

H(x, y) = H(x) +H(y|x∗) +O(1). (17)

Thus, the joint complexity of two bit-strings can be computed
knowing the absolute complexity of the first one plus the rel-
ative complexity of the second given the first one. The key
point for this result to hold true is the definition of relative
complexity of y given x, H(y|x∗): the size in bits of the
smallest self-delimiting program for calculatingy if we are
given for free, notx directly, butx∗, a minimum-size self-
delimiting program forx.

A fundamental property of Chaitin machines is that they
allows us to define halting probabilities for TMs, or the al-
gorithmic probability of a bit-string, also known as universal
probabilityPU (x) of a given stringx ∈ X:

PU (x) :=
∑

p:U(p)=x

2−|p|, (18)

which is the probability that a program randomly drawn as
a sequence of fair coin flipsp = p1p2 . . . will compute the
stringx. This is well-defined thanks to the prefix-free property
of CMs and results from AIT [8, 9, 25, 26].

A central theorem relates algorithmic complexities with al-
gorithmic probabilities:

H(x) = − logPU (x) +O(1). (19)

This relation tells us that near-minimum size programs for cal-
culating something, elegant programs, are essentially unique.
This is a mathematical formulation of Occam’s Razor. Essen-
tially, this relation tells us that AIT is equivalent to Probability
Theory, although this probability has to do with randomness
in programs, rather than statistical randomness but we shall
get back to this later.

The idea behind structural or logical randomness is lack of
structure or pattern in a program or bit-string. Thus, a pro-
gram or bit-string is random if it has no pattern or inner struc-
ture, consequently, it cannot be compressed. The only way
to address it is by printing the whole program as it is: there
is no theory behind it from which it can be derived. By the-
ory, we mean a simpler procedure to recover the bit-string,
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something compressible. Now, we can give a precise defini-
tion of randomness using information-theoretic notions like
algorithmic complexity. This was definded by Chaitin in AIT.
It is necessary to distinguish between finite bit-stringsx ∈ X

(|x| =: n < ∞, and infinite bit-stringsx ∈ X
∞, x = (xn)

∞
n=1

[25]:
i/ Random finite bit-strings:

H(x) ≈ n+H(n). (20)

ii/ Random infinite bit-strings:

H(xn) > n− c, c = const., ∀n. (21)

Notice thatn + H(n) is the greatest possible and also typi-
cal complexity of a finite bit-string. Equivalently, the relative
complexityH(x|n) ≈ n. As for infinite bit-strings, it is re-
quired that the partial series of bit-stringsxn always be as
random as possible.

It is possible to prove that the definition of randomness for
infinite strings from AIT (21) is equivalent to the statistical
definition of random real numbers in classical probabilistic
theory introduced by Martin-Löf [27] and Solovay [25]. This
is a very remarkable result since the origin of AIT randomness
is conceptually different and related to lack of logical structure
in a set of programs. It is very nice that both types of def-
initions produce exactly the same infinite random sequences
[28–30]. Moreover, for finite bit-strings AIT also providesa
definition of randomness.

We can now define Chaitin’sΩ number and use it to assess
logical randomness in Information Theory, the issue of non-
computability. The motivation is to define the halting proba-
bility of a TM, i.e.,

Ω :=
∑

x

PU (x), (22)

where the sum runs over prefix-free strings and the universal
computerU is a Chaitin machine. This way,Ω can be thought
of as an average on the Turing halting problem. It is possible
to give a more explicit expression as follows:

Ω :=
∑

p:U(p)=halts

2−|p|, (23)

It measures the probability that a randomly chosen programp
will halt when run in a universal TMU that halts. This fol-
lows from the definition ofPU (x). It is a well-defined prob-
ability for: i/ only self-delimiting programs are allowed;ii/
thus, the sum is convergent due to the Kraft inequality [31];
iii/ 0 < Ω < 1, because there are always programs that halt
and also programs that never halt. Alternatively, we can use
algorithmic complexity to define it:

Ω :=
∑

x

2−H(x). (24)

What is behindΩ is a very compact way of encoding the halt-
ing problem, or any other non-computable problem.

The ChaitinΩ number is a real number in(0, 1) which is
logically random (21): let us truncate it up to programs of
bit-sizeN ,

ΩN :=
∑

p:|p|<N

2−|p|. (25)

then, it is possible to prove thatH(ΩN ) > N − c, ∀N and
certain constantc. Ω is algorithmically random and incom-
pressible. TheseΩN are lower bounds to the actualΩ. This
truncation also produces an unbounded functionΩN that re-
flects its non-computability. Knowing the firstN bits of Ω,
i.e., the binary expansion ofΩN := 0.ω1ω2 . . . ωN then it is
possible to decide the truth ofN -bit theorems. By construc-
tion, knowingΩN enables us to decide all programs of length
|p| < N that halt. Now, for instance, it is possible to write
a program that searches for solution of the Collatz conjecture
(6) and halts only if a counterexample is found. Knowing suf-
ficiently long string bits ofΩ enables us to decide whether a
well-defined problem, according to a formal theory, is a theo-
rem, a non-theorem or independent.

After having faced the limits of computability, the natural
question is: can we go beyond? This depends on what is called
the Turing barrier [32–35], that is stated as follows.
Turing Barrier : there is no way whatsoever to beat the halt-
ing problem.

This notion has originated a line or resesearch called Hy-
percomputation. It speculates that it is possible to devisethe-
oretical or physical machines that can compute problems that
are non-computable by the TM model [36].

IV. PRECURSORS OF TURING ON COMPUTABILITY

The following list has, by no means, the intention of giving
a full account of all who might have been involved directly
or indirectly on investigations touching upon Turing’s work,
but simply to present some important facts that are interest-
ing in connection to his work and later developments. Due to
space constraints we cannot dwell upon the work of such as
Georg Cantor (the diagonal method [14], cardinalities [16]),
David Hilbert (the axiomatic method [37]),Émile Borel (nor-
mal sequences [38], the inaccessible number [39]) etc. that
nevertheless will appear mentioned along the way.

A. Gottfried W. Leibniz

Leibniz made a crucial discovery that today is taken for
granted but is a major breakthrough in computational theory:
the binary numeral system (base 2){0, 1} as a system for cal-
culus. He went on and fabricated a mechanical machine that
worked simple multiplication operations with this binary sys-
tem. He dreamt of human reason reduced to calculation and of
powerful mechanical engines to carry out those calculations.

Leibniz asked and thought about fundamental questions and
ideas about what is Science and Nature [40]. They play a
central role in modern scientific methodology. One of these
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questions he asked was: is there any difference between a
world without laws of nature and a world described by laws?
How can we tell the difference. Today this looks pretty ob-
vious after the enormous success of the scientific method for
about more than three hundred years. But Leibniz analysis
was made in 1686 [41] (another celebration in this year 2011)
one year before the Newton’s Principia were published [42].
The mechanistic view of the world was not predominant what-
soever.

In addressing those questions, Leibniz touched upon the
roots of what a physical law must be: simplicity must be the
key. To show this, he posed a very concrete mathematical ex-
ample. Suppose you are given a set of points in a plane that
they represent the experimental data you want to explain by a
law. It is well-known from interpolation techniques, like La-
grangian interpolation he anticipated, that we can always find
a function that fits a given finite number of points. How do we
know then, that a physical law exists behind them? Leibniz’s
answer is: only if the rule to fit the data is simple enough. His
basic principle is Occam’s Razor. With Turing, we know how
to quantify complexity for instance by means of the notion of
compression.

Leibniz also stated that the Universe has a duality relation-
ship between complexity vs. simplicity. On one side, Uni-
verse is extremely diverse and rich, complex. On the other
hand, it can be made out of very simple rules that we call
fundamental laws. Complexity out of simplicity, like in a
Beethoven’s symphony. In the computer’s era of today, we
have a typical example of this phenomenon: a laptop com-
puter can produce a fabulous number of complicated images,
movies, games etc. Yet, all there is underneath is Leibniz’s
binary system. In this way, he anticipated the notion of emer-
gent phenomena that is so influential and modern in theoreti-
cal physics.

B. Hermann K.H. Weyl

Weyl became interested in Mathematical Logic and the
foundations of Mathematics since his thesis supervisor was
David Hilbert in Gottingen. He wrote a thorough book [43] on
these topics in which he calls the attention of Leibniz’s unpub-
lished work [41] on the nature of a physical law and science.
Weyl discussed on the character of mathematical cognition,
the axiomatic method and natural science.

He declares that the problem of simplicity is of central im-
portance for the epistemology of the natural sciences. As an
example of the principle of simplicity in physics, he claims
that it is a sure sign of being on the wrong scent if one’s the-
ory suffers the fate of the epicycles of Ptolemy whose number
had to be increased every time the accuracy of observation im-
proved. The three laws of Kepler were much simpler and yet
agreed noticeably better with the observations than the most
complicated system of epicycles that had been dreamed up.

Weyl took Leibniz’s thoughts about complexity to the ex-
treme case and established that if we allow arbitrary high com-
plexity in a law of physics, then the law ceases to be a law ...
because then there is always a law. Thus, some sort of balance

has to be reached.
Admitting that the concept of simplicity appears to be so

inaccessible to objective formulation, he failed to come up
with a precise definition of complexity, see Sect.VI.

C. Kurt F. G ödel

In year 1931 Gödel surprised the great mathematicians of
his time by showing that Hilbert’s proposal of finding a com-
plete axiomatic formalization of Mathematics was impossible
[10]. This was shocking since it was like if the ultimate goalof
Mathematics, its reason of being, could not be achieved. Von
Neumann was the first to realize that Gödel was correct even
before his publication by attending a conference by Gödel in
Könisberg. Subsequently, Weyl and others had to concede as
well that he was right. Gödel was a great admirer of Leibniz
and studied his works thoroughly.

A common misconception about Gödel’s work is that it is
destructive towards Mathematics since it looks like an attack
at what Mathematics was understood to be: a well-defined
formal system to solve problems. Quite on the contrary, this
objective is still true after Gödel’s results, but has to berevised
and made precise by considering incompleteness as a key in-
gredient in Mathematics. Although people think that Gödel’s
theorem are bad news, a closer analysis reveals that they are
good news and positive results since it allows creativity tobe-
come a key role in the foundations of Mathematics and this
can be done in a rigorous way as it demands.

The heart of Gödel’s proof relies is using a self-reference
proposition like

’This statement is unprovable’ (26)

or equivalently, the liar’s paradox

’This statement is false’ or ’I’m lying’, (27)

to undermine the logical system of Hilbert and followers. The
latter was based on a set of axioms from which the proof of
theorems followed like a mechanical checker. Whichever op-
tion you take on the statement (26),(27), true or false, you
get the opposite. Then, Gödel went on performing a series
of transformations into that initial paradox, some of them in-
volving properties of prime numbers, and making it into def-
inite statements in number theory. And this was very clever
and imaginative. As such, one cannot ignore a statement in
number theory which is not provable. Hence, Gödel’s results
deserved to be taken seriously.

In year 1936 Turing gave a second and definitive surprise to
the community of mathematicians by proving the existence of
non-computable problems, providing an explicit example. His
result can be seen as an instance of Gödel’s result, but much
simpler to understand and, at the same time, playing a central
role in the theory of computation.

When time gives more perspective to Gödel’s work, it
will be considered similarly to what happened with the ad-
vent of non-Ecludian geometry in the XIX century, or more
plainly, how the discovery of irrational numbers shocked the
Pythagorean dreams.
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V. COMPUTABILITY AFTER TURING

The same applies for the farther developers of Turing’s the-
ory as with his predecessors, and with the same proviso on the
number of figures that should be mentioned. For instance, all
the recipients of the Turing award [44].

A. Tibor Rad ó

Radó made a great contribution in the theory of Turing
Machines in his late life 1962, three years before his death
and after having accomplished major contributions in other
fields of Mathematics: he solved the plateau problem, discov-
ered essentially unique triangulations of surfaces, and made
many other important contributions in conformal mappings,
real analysis, calculus of variations, subharmonic functions,
potential theory, partial differential equations, integration the-
ory, differential geometry, and topology.

He invented the Busy Beaver function [21], another exam-
ple of non-computable function after Turing (15).

B. Gregory J. Chaitin

Gregory J. Chaitin, together with Ray Solomonoff and An-
drei N. Kolmogorov, are the founding fathers of the subject
called Algorithmic Complexity, Kolmogorov Complexity, or
Algorithmic Information Theory (AIT) [22–24].

Chaitin approached the two fundamental discoveries by
Gödel 1931 and Turing 1936 and his assessment was that
they were just the tip of the iceberg. Those were not isolated
marginal results, but they were the natural case in Mathemat-
ics rather than the exception. Those results implied that in
some parts of Mathematics, it was possible to have lack of
structure, of patterns, a sort of randomness intrinsic to the the-
ory and not because we were unable to make it better. This
randomness means logical randomness, not statistical ran-
domness though they are related as we have seen in Sect.III.
Chaitin realized that logical randomness could be ubiquitous
in Mathematics and started off the development of AIT in a
form that can be considered it as the natural evolution of the
work by Turing.

Gödel’s theorem can be traced back to the ‘liar’s para-
dox’ (27) while Chatin’s halting probability is related to the
‘Berry’s paradox’:

‘The smallest positive integer
not definable in under eleven words’.

(28)

In principle, that proposition defines a certain positive inte-
ger since the set of words is finite while the set of integers is
infinite. However, as that proposition has only ten words, it
cannot be defined by that (28). This is the paradox. A simi-
lar situation arises in the definition of algorithmic complexity
(14): if algorithmic complexity were computable by a TM,
then similar paradoxes to (28) would appear. Berry’s paradox
was formulated by B. Russell inspired by a librarian at Oxford

whose name was G.G. Berry. Chaitin explains that he wanted
to show Gödel in 1974 how he could prove the incomplete-
ness theorem using Berry’s paradox instead of liar’s paradox
(27), but Chaitin was not able to meet Gödel.

He introduced theΩ number: the halting probability of a
Turing machines (24). It is a natural example of a random infi-
nite sequence of bits. Besides providing a connection with the
work of Turing,Ω makes randomness in Mathematics more
concrete and more believable. Chaitin has shown that this
logical randomness is at the very heart of pure Mathematics:
provable theorems are islands surrounded by vast oceans of
unprovable truths.

C. David E. Deutsch

David Deutsch culminated the formulation of a quantum
computer in a way that it is a well-established extension of
the work by Turing into the quantum world. R.P. Feynman
gave fundamental steps prior to him, as well as P. Benioff. A
precise definition of a quantum TM and its functioning can
be found in Galindo and Martin-Delgado [4]. Deutsch refor-
mulated the Church-Turing thesis into a version usually called
the Church-Turing-Deutsch principle:

“Every finitely realizable physical system can be perfectly
simulated by a universal model computing machine operating
by finite means.”

This is a farther extension of the Turing hypothesis into the
physical world.

Quantum versions of algorithmic complexity, Sect.III, has
been formulated [45–50], as well as quantum versions of the
Ω number [51, 52].

VI. NOTIONS AND DEFINITIONS OF COMPLEXITY

Complexity is a word, a password, that has proliferated in
a large number of scientific disciplines: ... Most of the times,
its use is rather vague, volatile and qualitative. After Turing, it
is important to realize that a rigorous, mathematical definition
of complexity can be given and made quantifiable.

A very primitive and inefficient way to assess complexity in
Mathematics is to define it in terms of how long or difficult is
to write the equations of a given theory. Naive as it may look,
its use is very extended in the scientific community. This is
not appropriate since this notion is very dependent on the lan-
guage we use to write equations, and this may change over the
times. A proper definition of complexity calls for something
more intrinsic.

If we want to quantify the complexity of a theory or dis-
cipline, we must seek how it relates to the experimental data
that it wants to explain. Thus, we consider the pair formed by
a given theory and its experimental data, and map it into an-
other pair which is a program that produces a certain output:

C : (theory, data) 7−→ (program, output). (29)

This latter pair is related to a computer that takes the program
and finds the output. We can call this a computational map-



9

pingC. With this mapping, now we can apply complexity the-
ory from computer science in order to find the complexity of
a certain theory or discipline. This is an information-theoretic
approach to study complexity by using Turing’s ideas in order
to make things more precise.

In Information Theory (IT), there are two major notions of
complexity: algorithmic complexity and computational com-
plexity.
Algorithmic Complexity : it cares about the program-size
complexity, i.e., bits of information regardless the runtime of
a computer, following the ideas of how a TM works. We have
explained it in detail in Sect.III.

This notion of complexity has no practical applications per
se. It is very useful to study the fundamentals of Mathematics
and its foundations.

Although algorithmic complexity is rather conceptual, it
may be also very inspiring in practical cases. There is an ex-
ample that captures the essence of this complexity: the lan-
guage used for storing image files. There are two basic proce-
dures: using bitmap graphics or vectorial graphics. The for-
mer corresponds to using all the bits of a given image and store
them by brute force. The latter is more elegant since it tries
to store the formula that generates a certain graphics. Thisis
more efficient and versatile since it preserves the image under
change of scale.

A recent new development by Chaitin is to use AIT con-
cepts and tools in order to give a mathematical proof of Dar-
win evolution theory [53]. With quantum versions of AIT,
like new quantumΩ numbers, it is possible to study quantum
effects in the theory of evolution [54].

For more practical purposes, the notion of computational
complexity is preferred. Once a problem is declared com-
putable, then we need to know if we can comput it efficiently
or we can not. This leads to the notion of computational com-
plexity.
Computational Complexity: it evaluates the resources
needed by a computer to solve a problem and how they scale
with the typical size of the problem. Time complexity refers
to how many steps are needed to solve a problem. Space com-
plexity refers to how much memory is needed to solve the
problem.

Many computational tasks can be decomposed in simpler
parts called decision problems.
Decision Problem: it is a problem defined by an algorithm
stated as a question whose answer is yes or not, equivalently,
1 or 0. For instance: ‘IsN a prime number?’, and the like.
Recall that we know from Sect.II that a Turing machineT is
the formal definition of an algorithm. The TM associated to
a decision problem is an applicationT : X → {0, 1}. Other
important problems like ‘search’ or ‘optimization’ can be de-
composed into decision problems. Now, with the notion of a
TM we can define precisely time complexity and space com-
plexity.
Time Complexity: Given a decision problem characterized
by a TMT , it is the number of stepst(N) that the TM takes
before it halts and solves the problem.N represents the size
of the input. One is normally interested in the study on the
scaling oft(N) for largeN , or finding good upper bounds.

Donald Knuth is an example of groundbreaking work on the
analysis and performance of algorithms [55].
Space Complexity: Given a decision problem characterized
by a TM T , it is the number of squaress(N) of the work
tape scanned by the TM before it halts. Similar considerations
apply as for time complexity.

It is very convenient to arrange sets of problems with the
same complexity behavior into complexity classes.
Complexity Class: is a set of decision problems that share
the same type of time or space complexity according to some
condition that is imposed on the problem, which defines the
class itself.

The most important class is the one that defines theoreti-
cally what an efficient algorithm is. This is the class P.
P : it is the class of decision problems that are solvable in
polynomial time. The time of the algorithm, or associated
TM, is bounded ast(N) ≤ cNk, for certainc ∈ R, k ∈ N.
The real constantc is called the overhead of the algorithm,
and it is convenient that the integerk be the lowest possible.
Arithmetic operations like adding or multiplying, or the Gauss
elimination method for solving linear equations are examples
of algorithms in P.
PSPACE : it is the class of decision problems that are solv-
able in polynomial memory space. Thus, the space of the al-
gorithm, or associated TM, is bounded ass(N) ≤ cNk, for
certainc ∈ R, k ∈ N.

The class P is theoretically a natural choice of what an effi-
cient algorithm is. The reason is for it is closed under opera-
tions that arise naturally in computation, like sum, product or
composition of polynomials that are again polynomials. On
the contrary, examples of inefficient algorithms are packedin
the class EXP.
EXP : it is the class of decision problems that takes an expo-
nential time to solve them,t(N) ≤ ep(N), for some polyno-
mial p. For example, trial division to determine whetherN is
a prime number is in EXP, and many brute force algorithms.

A central problem in solving problems in computer science
is the difference between finding a solution to a problem and
verifying that a certain instance is a solution of the problem.
For instance, the decision problem ‘isN a composite num-
ber?’ is very difficult to solve for arbitraryN . However, if
we are given a solution to this problem, sayM , then verifying
this instance is a matter of division and this takes polynomial
time. In this case, there are also polynomial algorithms to
check whetherN is composite, but not for finding its prime
factors. The general case can be casted in the form of a com-
plexity class.
NP : is the set of decision problems whose associated TM
T : X × X → {0, 1} is in class P.T (x, y) verifies whether
the problem defined by the bit-stringx once an instancey is
supplied. Additionally, the length of the verifiery must be
polynomially bounded:|y| ≤ p(|x|).

With the advent of quantum Turing machines, the field of
computational complexity has been revolutionized and en-
riched. New complexity classes can be defined substituting
the classical TM by a quantum version. For instance, the nat-
ural version of the class P for quantum computers is called
BQP, for the class of bounded quantum polynomial problems.
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Scott Aaronson has done systematic studies of a huge number
of both classical and quantum complexity classes [56]. Quan-
tum Turing machines can also be generated by sets of quantum
gates [57], what is known as the quantum circuit model. In-
terestingly, it is possible to study the quantum complexityof
many statistical classical systems when simulated on a quan-
tum computer and still find open problems [58, 59].

An example of complexity class relationship is P6= EXP.
Another is P⊂ NP and NP⊂ EXP.

P vs. NP Problem: Is P 6= NP?

This is considered the central problem in computational
complexity, and in computer science in general. Behind this
question is whether computational creativity can be automated
or not. Thus, at first it looks like the natural answer to this
problem is yes. However, there are neither proofs that P6= NP
or P= NP.

There is a third way to approach this problem. Notice that
this problem is considered as a problem in complexity theory,
not on computability. However, this is not the case. True as
it is that deciding whether a problem is either P or NP is a
complexity problem, the P vs. NP problem is equivalent to
construct a mechanical procedure to decide whether it is true
or false, and this is a problem on computability. Therefore,
we have to face also the possibility that it is non-computable.
This means that it would be an irreducible axiom that one may
or may not add to his theory of computer science and go on
to produce different types of theories, both equally valid and
sensitive. Thus, if this third-way were true, then the natural
choice P6= NP would be like Euclidean geometry, while the
non-natural choice P= NP would be like non-Euclidean ge-
ometry. But this is also a conjecture.

There is not accepted definition of what a complex system
is. Qualitatively, it is usually referred to a system compressed
of various parts, usually many, such that they are intercon-
nected somehow up to a certain degree, and the behavior of
the whole system cannot be anticipated from the behavior of
its individual parts. Remarkably, this is precisely the situation
that we basically have with a TMs working with simple binary
system given rise to both computable and non-computable be-
haviors, Sect.II, III. Thus, when the computational mapping
(29) can be applied to a certain system, arbitrary as it may be,
we may give a sufficient criterion for having complex behav-
ior by appealing to the notion of hard problem:

NP Hard Problem: when some problem, not necessarily in
NP, can be solved by an algorithm that can be reduced to one
capable of solving any problem in NP, then it is called NP-
hard. A problem that is both NP and NP-hard is called NP-
complete.

When some problem can be solved by an algorithm that
can be reduced to one that can solve any problem in NP, then
it is called NP-hard. A problem that is both NP and NP-hard is
called NP-complete. These problems are at least as hard as the
hardest problems in NP. Examples of NP hard problems are
the ‘subset sum problem’ and the ‘traveling salesman’. They
both are also NP complete. If P6= NP, then NP6= NP Hard,
otherwise, they are equal.

VII. SOME APPLICATIONS

A. A Practitioner’s Critique to Complexity Class P

The notion of an efficient algorithm is defined by means of
class P as explained in Sect.VI. There we saw that it is a good
theoretical definition for this class P is closed under natural
operations that occur in computations. However, theoretically
well-sounded as it may be, it runs into problems when deal-
ing with practical cases and real computers. For instance, an
algorithm with a time complexity growing liket(N) ∼ N100

would never catch the interest of any programmer. It would be
good to complement that notion of theoretical efficiency with
another of ‘practical efficiency’.

Let us consider the following practical situation. We are
given an algorithm whose time complexity is in P as it grows
like:

t(N) = c′Nk, (30)

wheret is now the real clock-time taken by the computer to
achieve the solution of a given problem whose size is charac-
terized byN . The integerk is fixed by the time complexity of
the algorithm, and the constantc′ takes into account the con-
version between theoretical time-steps and real time. Withthe
real computer we may have been able to obtain a certain set
of points, simulation data:

D = {t(1), t(2), . . . , t(Nmax)}, (31)

up to a maximum achievable sizeNmax, which will depend on
the technological resources available when obtaining the data
(31). It may so happen, and it is currently the case, that the
set of data is not enough to discover a law we are searching
for. This is another version of the situation thought by Leibniz
in Sect.IV. Thus, we need a bigger value ofNmax, but we are
limited by the technological resources of our time, i.e., the
time of the data (31). In order to assess how good the time
complexity (30) is, we need to compare with the estimated
improvement of the technological resources. An example of
this is Moore’s law for computers [60]. Following this, we
may have found that our technology to build real computers
behave as another power law with respect to the minimum size
ℓmin of the computer chips that run the computations. Thus,
the smaller the size the faster the computer:

t(Nmax) = c′′ℓ−α
min, (32)

wherec′′ is a constant andα a scaling exponent known exper-
imentally.

In order to discover the law, we need to increase the max-
imum current sizeNmax by a certain factorf > 1, such that
the set of data up tofNmax is now enough to determine the
pattern. The question in turn is how much we need to improve
our technology in order to achieve this. Thus, we can derive a
sort of uncertainty relation betweenNmax andℓmin:

Nk
maxℓ

α
min = c, (33)

with c := c′′/c′ a fixed constant. The integer exponentk is
fixed by the class P of the algorithm and we want to know
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how to improveNmax depending on the relative value ofα
w.r.t. k. Thus, we haveNmax = const/ℓ

α

k

min. A possible situ-
ation could be thatk = α, then a linear decrease in the chip
technology will yield an increase in the maximum size. A bet-
ter situation is whenk ≪ α since then the improvement will
be over previous pay off. However, the worst situation occurs
whenk ≫ α. In the limit case ofk → ∞, the maximum size
would be insensitive to any technological improvement.

Therefore, a practical criterion for the class P is to compare
the integerk with the technological scaling exponentα, i.e. k
vs. α, rather than the more theoretical criterion of comparing
k vs.∞.

Another important practical case we may face is the exis-
tence of technological barriers. For example, nowadays the
computer technology has reached the size of the nanometers.
Suppose we have a certain set of data like (31) obtained with a
class P algorithm, but we need to increase the maximum size
by a factorf > 1 such that then we need to go down well
beyond the size of amgstroms. Then, for those smaller sizes,
the computer leaves the classical behavior and enter the realm
of quantum mechanics, so that we may well need a quantum
computer to expand the range of data and be able to find our
law.

B. On the Halting Problem in Chess

The halting problem has many implications as we have
shown. It is a concept of practical use in games, specially
in advanced games like chess. There, it is important to make
sure that the rules of the game (axioms) will ensure that the
a match will terminate. Until 1929, players were not aware
that the set of rules known by then, allowed to produce never-
ending chess matches. In that year, Max Euwe, a mathemati-
cian later to become the fifth world chess champion of modern
history 1935-37 [61], settled the question by rediscovering the
Thue-Marston [62] sequence and its cube-free property.

In binary language, the Thue-Marston sequence is defined
by the following generating moves:

t0 = 0;
0 7→ 01; 1 7→ 10.

(34)

For instance, the first elements of the sequence are

t0 = 0,
t1 = 01,
t2 = 0110,

t3 = 01101001;
t4 = 0110100110010110.

(35)

An element of a sequence is cube-free if it contains no subse-
quence of the formppp, wherep is a finite non-empty element.

A chess match is divided in three parts: opening, middle-
game and final. The final part is characterized by the presence
of very few pieces on the board as compared to the opening.
Thus, a theory of the final in chess has been developed to great
extent: its complexity gets reduced. It had been known that

repetition of movements, a loop, may happen in certain situa-
tions. Rules were established to declare a draw when repeti-
tion of moves become endless. Euwe [63] used the cubic-free
property of the Thue-Marston sequence to show how to cir-
cumvent those rules. Thus, new rules had to be added to the
game. This is another instance of how axioms, i.e. rules, may
be changed a posteriori depending on the type of theory we
want to have.

When Bobby Fisher was an active chess player, he would
say “Gods put the middle game after the opening”, meaning
that the complexity of the middle game was so high that it was
unknown territory, where written manuals for openings were
useless, and he would feel at his best. After retirement, in the
1980’s Fisher sent a warning call saying that chess was be-
coming too technical, mechanical and with little room for cre-
ativity. He proposed to change the rules of the opening some-
how, interestingly enough, introducing some randomness in
chess. In particular, by randomizing the starting positionof
the main pieces in the first row of each player side. And this
happened way before a computer, Deep Blue, defeated the
World Chess Champion G. Kasparov in 1997. Many people
thought this to be unbelievable before year 2000. This does
not mean that computers are more intelligent than us, or intel-
ligent at all. It means that their brute force of calculationis
stronger than ours at playing chess.

C. Divertimento: On the Complexity of Music

Mozart composed many divertimentos, a musical form very
common in the Classical era prior to the success of the sonata
form by Haydn. We may produce a divertimento playing with
Turing’s ideas in music.

Music is more than a language, but as long as it is a lan-
guage, we can apply Turing’s results to it and prove some
amusing results which for music theorists may be surprising,
specially by the fact that they can be proved mathematically.
i/ There is an endless number of different musical composi-
tions.
ii/ There are musical compositions that cannot be composed.

Statement i/ implies that musical creativity is infinity, for
sure, while ii/ means that, nevertheless, it also has some limits.

To proof i/ we use a code such that the music symbols and
rules of composition are encoded with a given alphabetA.
This can be binary for instance. Then, we use the same code
alphabet to label all known compositions. This can be done
by lexicographic order, forming a table like (7). Now, apply-
ing the diagonal method we obtain another composition which
is certain to be new. Though it is unlikely that these mathe-
matical type of compositions would have pleased Mozart and
Haydn, it may produce a different reaction in B. Bartók, A.
Schöngberg, J. Cage, G. Ligeti, K. Stockhausen, I. Xenakis,
P. Boulez, C. Halffter... Nevertheless, what is remarkable, and
unimaginable before Turing, is that a computer could be of
help as a composition machine as they are used nowadays.

To proof ii/ we realize that each music composition is like
a TM. Thus, it may or may not halt. For instance, we can pro-
duce simple scores that repeat themselves forever. Accepting
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this proviso about endless compositions is essential. Suppose
now that we want to write a music composition that with our
language be equivalent to a program that finds when any other
musical composition will ever halt. Then, that score is impos-
sible to be written.

In the beginning of XX century, Arnold Schöngberg evalu-
ated the situation of classical music and judged that the tonal
system based on major and minor scales, Greek modes etc.
was absolutely worn out. Subjective as this may be, he went
on to search for new composition systems by relaxing the
rigidities of the old system. For instance, allowing all tones
in a dodecaphonic scale to play the same role, without dom-
inant or tonic tones. This produce non-tonal systems like the
twelve-tone method and many others to follow, even by intro-
ducing random methods and other tools from Mathematics,
like set theory. Again, that situation arose because creativ-
ity was judged to be exhausted, and a change or extension of
axioms was proposed instead, leading to controversy. Never-
theless, controversy is unavoidable here since music is more
than a language and personal taste plays a major role.

VIII. CONCLUSIONS

Turing has revolutionized the fundamental roots of what we
understand by scientific knowledge, and will continue to do
so as many applications of his works will come up. At the
same time, his scientific work still lacks the recognition that it
deserves in his own field of Mathematics. As he also founded
modern computer science, recognition came first mainly from
Engineering and Physics.

The part of Turing’s 1936 paper [1] devoted to computable
numbers has given rise to the development of the whole com-
puter technology. This is having a gigantic impact in our cul-
ture. The other part of Turing’s paper devoted to the solution
of Hilbert’s tenth problem, as a consequence of the previous
one, has helped us to deepen our knowledge about scientific
knowledge itself. This is best exemplified by the work of
Chaitin, who has formalized what is knowable and unknow-
able based on Turing’s work, and extending Gödel’s resultsin
a more systematic and accessible way. His conclusion is rather
shocking since it implies that logical randomness is common
even in Mathematics.

There is a parallelism between intrinsic randomness in
Mathematics and in Physics, and we can learn from it. In
Physics it appeared in 1920’s in Quantum Mechanics, and also
produced a shocking revolution that removed the holy grail of
classical Physics, determinism, from its central status ithad
been enjoying. Nowadays, Quantum Mechanics is a success-
ful theory and has been accepted both logically and due to its
unprecedented accurate experimental results. In Mathematics,
logical randomness appeared in 1930’s and it will so happen
that will become accepted.

After the work of Gödel, Turing and Chaitin it is certain
that a TOE of Mathematics is impossible. But, what about
Physics? Inasmuch as Physics inherits the language of Math-
ematics to express its laws and works out its consequences,

we may immediately deduce that the same applies to Physics
and there is no TOE for it. However, Physics is more than a
language and the ultimate word relies on experience, on the
natural law. Our physical knowledge is like a window in an
energy scale, ranging from some point in the infrared to some
point in the ultraviolet, i.e., large distance scales to small dis-
tance scales. From this finite window scale we may bet on two
possibilities: i/ that no TOE of Physics exists, since as we en-
large the energy window we will get new laws of Physics that
were not anticipated; ii/ that a TOE of Physics do exists and
from our current window of knowledge, or probably a better
one, we can deduce the whole range of physical laws in the en-
tire energy scale, i.e., Physics would be finite and closed asa
source of knowledge. Following Turing’s work, I believe that
option i/ is the correct one, and experience will tell us. The
non-existence of a TOE in Physics is good news for creativity
in contrast to reductionism.

Is it true that true randomness is only quantum? TheΩ
number is a real number whose binary expansion yields bits of
information that are true for no reason, they have no structure
or pattern, it is incompressible and its bits totally randomas
Chaitin has shown.

The following question may help to face this outcome situ-
ation not so dramatically. How can it be that Natural Sciences
like Physics, Mathematics, etc have become so successful if
we live in a world plagued by intrinsic randomness? A clue to
this question is to take the example of what type of real num-
bers are employed in successful theories. We will see that we
always have real numbers like

√
2, π, e, etc. Although they are

irrational with an infinite number of decimals, we have very
short algorithms that generate that series of decimals veryef-
ficiently. I.e., they are actually maximally compressible num-
bers.

This fact can be extrapolated to the whole structure of suc-
cessful theories of Nature: they are very simple, they can be
compressed, reduced to a simple set of axioms or laws of Na-
ture. The rest of the universe that remains unknown is due
in part because it is not compressible and we live in a small
region of the whole space of theories or knowledge. We may
divide our ’sphere of knowledge’ into three parts: i/ current
science (known); ii/ future science (to be known); and iii/ un-
knowable or irreducible.

Physicists are willing to find and adopt new physical princi-
ples, laws that expand their knowledge of the universe. Math-
ematicians, standard and formal ones, tend to stick rigidlyto
axioms and not to modify them. They should adopt a more
experimental attitude. With Turing, the fields of Mathematics
and Physics become more unified.
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