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Abstract 

The transparent semiconductor Zn2SnO4 with cubic spinel structure and the isostructural 

Zn2TiO4 have been magnetically doped with Co2+. ZnCoSnO4 and ZnCoTiO4 exhibit 

ferrimagnetism below TN ≈ 13 K and TN ≈ 17 K. Ferrimagnetic moments are evident in M vs H 

curves below TN by small hysteresis. Fits to strictly linear Curie-Weiss plots above TN give eff 

≈ 4.86 B and ≈ 4.91 B for ZnCoSnO4 and ZnCoTiO4, above theoretical predictions. 

Impedance spectroscopy data from sintered ceramic can be fitted with a standard equivalent 

circuit model based on two RC elements for bulk and GB areas. The relative dielectric 

permittivity of the bulk is ≈ 20 and ≈ 30 for Zn2SnO4 and Zn2TiO4. The semiconducting 

ZnCoSnO4 and ZnCoTiO4ceramics exhibit bulk resistivity of ≈ 1 106 cm and ≈ 1 105 cm at 

560 K (287 ºC), and bulk activation energies of EA ≈ 1.2 eV and 1.1 eV.  
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I. Introduction 

The spinel compound Zn2SnO4 is a prominent candidate for applications in dye-sensitized solar 

cells as a transparent semiconducting electrode 1-4, and in the decomposition of benzene and 

methylene as a photocatalyst 5-7. For such applications Zn2SnO4 is considered a viable 

alternative to TiO2 based materials 8. Furthermore, the use of spinel Zn2SnO4 in Li-ion batteries 

as an anode material has been demonstrated 9,10. In the typical spinel structure the O2- anions 

are cubic closed packed, whereas the cations occupy tetrahedral A-site interstitials by a fraction 

of 1/3 and octahedral B-sites by 2/3. In Zn2SnO4 the Sn4+ cations occupy octahedral sites and 

the Zn2+ tetrahedral and octahedral [] sites by equal amounts, i.e. Zn[ZnSn]O4.  

In the work presented here, isovalent Co2+ magnetic doping of Zn2SnO4 and Zn2TiO4 by 

substitution of Zn2+ was studied in order to modify the optical absorption properties and 

increase the functionality of the material by adding a magnetic component to it. The end 

member spinel compounds Co2SnO4 and Co2TiO4 exhibit ferrimagnetic moments below TN = 

41 K and TN = 48 K respectively 11,12, which arise from the different magnetic moments of Co2+ 

on tetrahedral or octahedral sites. From an alternative point of view it may be regarded that the 

Co2+ magnetism in the ferrimagnetic spinels Co2SnO4 and Co2TiO4 was diluted by partial Zn2+ 

substitution.  

Stoichiometric ZnCoSnO4 and ZnCoTiO4 were synthesized by conventional ceramic 

processing and the structural, microstructural, magnetic and dielectric properties were 

investigated. Powder X-ray diffraction (XRD) was employed to demonstrate that the O2- 

sublattice of the spinel structure is ideally suited to accommodate Sn4+, Zn2+ and Co2+ cations. 

The valence state of Co was confirmed to be predominantly 2+ in ZnCoSnO4 and ZnCoTiO4 

from X-ray photoelectron spectroscopy (XPS) measurements, and the stoichiometry was 

checked using Energy Dispersive Spectroscopy (EDS).  
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Magnetic measurement data revealed strictly linear Curie-Weiss fits with Co2+ magnetic 

moments of eff ≈ 4.86 B and ≈ 4.91 B for ZnCoSnO4 and ZnCoTiO4, which is significantly 

above the maximum theoretical prediction of 4.19 B associated with Co2+ high spin on 

octahedral sites. This unusually high Co2+ high spin moment may be explained by an 

exceptionally high orbit contribution or an unusual anisotropy of the g-factors g|| and g┴. Field 

cooled and zero field cooled magnetization (M) vs temperature (T) curves deviate from each 

other below TN, typical for a glassy magnetic spin behaviour.  

Impedance spectroscopy measurements on ZnCoSnO4 and ZnCoTiO4 pressed and sintered 

pellets revealed insulating electronic conduction in both compounds. Intrinsic bulk and 

extrinsic grain boundary (GB) dielectric contributions were detected and analysed separately in 

terms of the resistivity and dielectric permittivity by fitting the dielectric data to a standard 

equivalent circuit model containing a series connection of two standard non-ideal RC elements 

or RQ elements, one each for bulk and GB contributions.  

 

II. Experimental 

ZnCoSnO4 and ZnCoTiO4 powders were synthesized using the conventional ceramic method 

of mixing and homogenizing the analytical grade ZnO (Merck, 99 %), CoO (Merck, 99.9%) 

and SnO2 (Merck, 99.9%) precursors in acetone using agate pestle and mortar. The mixed 

precursor powders were placed in an alumina crucible and calcined in a conventional Labtech 

LEF-115S muffle furnace for 24 hours at two different temperatures of 900 °C and 1000 °C in 

two separate sample batches. After calcination, the samples were again ground in an agate 

mortar and calcined a second time at 900 °C or 1000 °C for 12hr respectively to ensure complete 

homogeneity. For dielectric measurements the powders were pressed into pellets using a 1 ton 

uniaxial dye press and sintering of the green ceramic pellets was performed at 1000 °C and 
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1100 °C for the samples synthesized at 900 °C and 1000 °C respectively, i.e. the sintering 

temperature was always 100 °C above the synthesis to ensure optimum pellet compaction due 

to grain growth.  

XRD pattern from the synthesized powders were collected at room temperature on a Siemens 

D5000 powder diffractometer with CuK radiation at diffraction angles in the range of 5º ≤ 2 

≤ 80º with a counting time of 1 s over 0.02° (2θ) steps. The analysis of XRD patterns was 

performed using the Crystal Impact Match program with the PDF-2 database. The lattice 

parameters were calculated using the LeBail method in the Fullprof software. XPS spectra were 

recorded with a CLAM2 electron spectrometer under vacuum below 1 x 10-9 mbar, using Mg 

Kα radiation (1253.6 eV) and a constant pass energy of 200 eV and 20 eV for the wide scan 

and narrow scan spectra, respectively. All binding energies (BE ± 0.2 eV) were charge–

corrected to the C 1s signal of the adventitious contamination carbon layer, set at 284.6eV. The 

ceramic microstructure of sintered pellets was imaged using a JEOL JSM 6400 scanning 

electron microscope (SEM). The pellets had been polished, significantly thinned and thermally 

etched to obtain images representative of the bulk interior microstructure. Energy Dispersive 

Spectroscopy (EDS) was carried out for quantitative analysis of the stoichiometry using an 

INCAx-sight detector. The compositional EDS results were confirmed by Inductive-Coupled 

Plasma (ICP) spectroscopy using an ICP PERKIN ELMER mod. OPTIMA 2100 DV.  

A Quantum Design SQUID MPMS was used to measure the powder magnetisation M vs T 

curves between 5 K and 320 K during heating under ZFC and FC conditions under an applied 

magnetic field of H = 100 Oe. Furthermore, M vs H curves were measured at 5 K and 15 K 

below and above the ferrimagnetic transitions TN to detect possible magnetic hysteresis.  

The dielectric properties of the sintered pellets were measured by alternating current (AC) 

impedance spectroscopy using an Alpha Analyser Novocontrol system. Au electrodes were 

sputter deposited on both faces of the pellets and covered by Ag conductive paint. Prior to 
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measurement the short sides of the pellets were polished thoroughly to avoid short-circuiting. 

Impedance measurements were performed at a frequency (f ) range of 1 Hz – 10 MHz with 6 

measurement points per frequency decade using an applied AC voltage signal of 0.1 V 

amplitude under various T between 160 K and 560 K upon heating. The dielectric data were 

collected in terms of the real and imaginary parts (Z', Z'') of the complex impedance Z* = Z' + 

iZ'' under steady state conditions, where the selected T was stabilised for ≈ 10 minutes before 

taking data. Equivalent circuit fitting of the dielectric data was performed by using commercial 

Z-View software.  

 

III. Results & Discussion 

(A) Structural analysis  

Figure 1 demonstrates that the XRD patterns of all synthesized ZnCoSnO4 and ZnCoTiO4 

powders are strictly single phase and the crystal structure is a cubic spinel in the Fd3m space 

group. The unit cell parameters were calculated and are listed in Table I. Substitution of the 

Zn2+ cations with an ionic radius of 0.74 Å (VI) in the octahedral or 0.60 Å (IV) in the 

tetrahedral coordination, by Co2+ in the low spin (LS) or high spin (HS) configuration (VI: 0.65 

Å LS / 0.75 Å HS; IV: 0.58 Å HS) 13 leads to isostructural phase pure compounds due to the 

good match of ionic radii.  
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Figure 1. Powder XRD pattern for spinel ZnCoSnO4 and ZnCoTiO4 heat treated at different 

temperatures. No secondary phases are evident. Large background signals from the 

fluorescence of Co were subtracted from the data. 

 

Table I. Lattice parameters a calculated from powder XRD patterns for ZnCoSnO4 and 

ZnCoTiO4 heat treated at different temperatures. 

 ZnCoSnO4 ZnCoTiO4 

 900 °C 1000 °C 900 °C 1000 °C 

a (Å) 8.6446(1) 8.6465(1) 8.4457(1) 8.4467(1) 

 

Figures 2 a & b show the wide scan XPS spectra recorded from ZnCoSnO4 and ZnCoTiO4 

samples. Only the more intense photoemission lines are labeled. The features of the Co 2p3/2 

line were rather similar for all samples and Figure 2c shows the ZnCoTiO4 Co 2p3/2 line as a 

representative example.  
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Figure 2. Full XPS spectra for (a) ZnCoSnO4 and (b) ZnCoTiO4 heat treated at different 

temperatures. (c) Fits to the 2p Co peaks for ZnCoTiO4 treated at 1000 °C. No Co3+ traces were 

detected. 

 

The main photoemission line is centered at 780.1 eV and a strong shake-up satellite at 786. 2 

eV is observed. These spectral features and binding energy values are typical for Co2+ cations 

in spinel-related compounds 14. The existence of some Co3+ cations was considered by including 

the characteristic photoemission line at 779.5 eV into the fits. However, in all cases the quality 

of the fits did not improve as compared to only Co2+ cations and therefore, the presence of 

considerable amounts of Co3+ was discarded.  The ceramic microstructure of the bulk interior 

areas of sintered pellets is demonstrated in Figure 3, where a regular grain structure, and a 

narrow and uniform grain size distribution were evident in the secondary electron (SE) and 

backscattered (BE) SEM micrographs.  

ZnCoTiO4
(c)
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Figure 3. Secondary electron (SE) and backscattered electron (BSE) SEM micrographs for 

ZnCoSnO4 (a-d) and ZnCoTiO4 (e-h) ceramic pellets sintered at 1000 ºC and 1100 ºC as 

indicated. 
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This indicates that the sintered ceramic pellets may be well-suited for dielectric spectroscopy 

measurements. The results from quantitative EDS analysis are summarized in Table II. It is 

indicated that all atomic percentages (at. %) are approximately within the expected range 

considering the experimental error of EDS analysis of ≈ 2 %.  

 

Table II. Cation ratios in atomic percentage from quantitative analysis by EDS for ZnCoSnO4 

and ZnCoTiO4 heat treated at different temperatures. Uncertainties are in the range of ≈ 2%. 

 ZnCoSnO4 ZnCoTiO4 

Synthesis Temperature 900 °C 1000 °C 900 °C 1000 °C 

Zn (at. %) 31.6(6) 32.5(7) 33.0(7) 32.6(7) 

Co (at. %) 32.8(7) 32.4(6) 32.8(7) 33.6(7) 

Sn/Ti (at. %) 35.6(7) 35.1(7) 34.2(7) 33.8(7) 

 

(B) Magnetic properties 

The M vs T curves of ZnCoSnO4 and ZnCoTiO4 powder samples heat treated at 1000 °C (Figure 

4 a & b) indicate TN ≈ 13 and TN ≈ 17 respectively. These values are considerably lower as 

compared to the isostructural compounds Co2SnO4 and Co2TiO4 (TN = 41 K and TN = 48 K), 

which may well be a result of the diluted Co2+ magnetism by Zn2+ substitution. Figure 4 further 

indicates a separation of the ZFC and FC curves below TN, which is reminiscent of a glassy 

spin magnetic moment commonly observed in (anti)ferromagnetic and ferrimagnetic spinels 

11,15-17. The Figure 4 insets demonstrate that the deviations between ZFC and FC curves 

(maxima in the ZFC curves) occur at temperatures very close to the Neel transitions TN as 

indicated by the maxima in the differentiated FC curves, for both ZnCoSnO4 and ZnCoTiO4. 

Therefore, both compounds may enter into a glassy spin state just below TN, which had been 

observed previously in Co2SnO4 
11,18,19 . 
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Figure 4. Magnetization M (emu/g) vs T (K) plots collected under ZFC (open symbols) and FC 

(filled symbols) conditions for (a) ZnCoSnO4 (red symbols) and (b) ZnCoTiO4 (blue symbols) 

powders heat treated at 1000 °C. The figure insets show low T magnifications and the 

differentiated FC curves dM/dT vs T (brown and dark blue symbols). The maxima in the dM/dT 

vs T curves were regarded the transition temperatures TN, whereas the peaks in the ZFC curves 

indicate glassy spin behaviour below TN. 
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The magnetic data from ZnCoSnO4 and ZnCoTiO4 powders heat treated at 1100 °C show the 

equivalent TN transition temperatures, glassy spin behaviour and ferrimagnetism (data not 

shown). Therefore, it can be concluded that the magnetism in ZnCoSnO4 and ZnCoTiO4 

powders is not affected qualitatively by the differences in heat treatment. The ferrimagnetic 

moments were confirmed from the hysteretic M vs H curves at T = 4.2 K below TN, whereas 

above TN at 20 K and 40 K approximately linear behaviour is indicated in Figure 5 a & b. The 

ferrimagnetic moment arises from the different magnetic moments of the Co2+ cations situated 

at tetrahedral or octahedral sites, since the octahedral coordination entails orbit contributions, 

which are absent in the tetrahedral coordination 20. This ferrimagnetic moment detected here 

had been demonstrated previously in the end member compounds Co2SnO4 and Co2TiO4 
11,12. 
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Figure 5. Magnetization M (emu/g) vs applied magnetic field H (Oe) plots for (a) ZnCoSnO4 

and (b) ZnCoTiO4 powders heat treated at 1000 °C. Small hysteresis loops for T < TN indicate 

net ferrimagnetic moments.  

 

The magnetic behaviour of both ZnCoSnO4 and ZnCoTiO4 above TN in the paramagnetic 

regime is dominated by strictly linear susceptibility 1/ vs T Curie-Weiss plots, which indicate 
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fits to the Curie-Weiss plots and calculating the total effective magnetic moment eff leads to 

values in the range of ≈ 4.9 B that are significantly above the maximum values predicted. This 

is the case even by assuming an HS scenario and full octahedral occupation of Co2+ cations 

with the higher predicted HS moment of 4.16 B as compared to the predicted tetrahedral HS 

moment of 3.88 B. All eff values calculated from the strictly linear Curie-Weiss plots shown 

in Figure 6 are summarized in Table III. The theoretical predictions for the total eff values were 

calculated assuming a spin-only moment of the tetrahedral Co2+ cations, but both spin and orbit 

contributions for the octahedral Co2+ cations in the HS state. The possibility of a mixed 
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LS/IS/HS spin-state scenario on octahedral Co3+ lattice sites has been proposed previously in 

LaCoO3 perovskites (here in the Co2+ spinel only LS/HS mixing on octahedral sites would be 

possible) 21-26, but this scenario was discarded in this study due to the high eff values 

encountered.  

 

 

Figure 6. Curie-Weiss plots of 1/ vs T for ZnCoSnO4 and ZnCoTiO4 powders heat treated at 

1000 °C. Both curves show excellent linearity. 

 

Table III. Total efficient magnetic moment eff for ZnCoSnO4 and ZnCoTiO4 heat treated at 

different temperatures. Uncertainties are below 1%.  

 ZnCoSnO4 ZnCoTiO4 

Synthesis Temperature 900 °C 1000 °C 900 °C 1000 °C 

eff (B) 4.91(1) 4.91(1) 4.73(1) 4.91(1) 
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The detection of an increased magnetic moment in Co2+ magnetic cations may be interpreted in 

terms of an unusually high orbit contribution and strong spin-orbit coupling. However, the 

detected moment of eff ≈ 4.9 B is considerably higher than the predicted 4.16 B for a strictly 

octahedral occupation of Co2+, which in fact may be unrealistic. Due to a close match of the 

ionic radii on octahedral (Zn2+: 0.74 Ǻ; Co2+ HS: 0.75 Ǻ) and tetrahedral (Zn2+: 0.60 Ǻ; Co2+ 

HS: 0.58 Ǻ) sites, a good dispersion of Zn2+ and Co2+ on tetrahedral and octahedral sites is 

likely, which would imply an inversion parameter of the spinel structure near  ≈ 0.5. In this 

case the detected total eff would be ≈ 20% above theoretical predictions. It may be doubtful if 

this large increase can be explained by unusual orbit contributions only, and the alternative 

explanation of an unusual anisotropy of the g-factors g|| and g┴ may be considered as well 20. 

A possible Co2+ excess in the samples could be discarded from the EDS results presented in 

Table II. Furthermore, ICP spectroscopy data did not give any indications for Co2+ excess 

either.  

 

 (C) Dielectric properties 

Impedance spectroscopy data from ZnCoSnO4 and ZnCoTiO4 ceramic pellets sintered at 1000 

°C and 1100 °C are presented in Figure 7 in form of the complex impedance plots of Z'' vs Z'. 

The characteristic semicircles indicate different dielectric contributions, where the data from 

1100 °C treated ZnCoSnO4 ceramics (Figure 7b) shows the signs of two strongly overlapping 

semicircles, whereas the data from the 1100 °C sample indicate electronic homogeneity. On the 

other hand, the ZnCoTiO4 ceramics sintered at 1000 °C and 1100 °C both show the clear signs 

of two dielectric contributions (Figure 7 c & d), which can be clearly assigned to intrinsic bulk 

and grain boundary (GB) 27,28.  

 



17 
 

 

Figure 7. Complex impedance plane plots of Z'' vs Z' for ceramic ZnCoSnO4 sintered at (a) 

1000 °C and (b) 1100 °C, and ZnCoTiO4 sintered at (c) 1000 °C and (d) 1100 °C. Open symbols 

correspond to the data, solid squares and lines to the equivalent circuit fits. The circuit models 

are displayed in the panels. Excellent fits and bulk and GB dielectric contributions are evident. 
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Circuit Model File: C:\Research\Madrid\Experimental techniques\AC Impedance Spectroscopy\StannatesTitanatesDomingo\BAG3\Model2_500K.mdl

Mode: Run Fitting / Selected Points (0 - 29)

Maximum Iterations: 1000

Optimization Iterations: 1000

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

ZnCoSnO4

1000  C

ZnCoSnO4

1100  C

ZnCoTiO4

1000  C

ZnCoTiO4

1100  C

(a) (b)

(c) (d)

560 K 560 K

560 K560 K
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constituting atoms increases. Although this behaviour may be reminiscent of the formation of 

GB barrier layers in dielectric ceramics 29,30, the diameter of the GB semicircle in the1100 °C 

sintered ZnCoSnO4 ceramic is smaller as compared to the bulk and thus, the barrier effect may 

not be relevant for potential applications. The dielectric data presented in Figure 7 were fitted 

to a standard equivalent circuit model containing RC elements of ideal resistors and parallel 

non-ideal capacitors represented by Constant-Phase element (CPEs), i.e. R-CPE or RQ 

elements. In the case of two R-CPE elements, they were connected in series to obtain a valid fit 

and the resistance and capacitance of bulk and GB contributions were extracted 31. Figure 7 

indicates a good fit, which was reflected in low fitting errors (< 5%). The bulk and GB 

resistance and capacitance values extracted from the fits were normalized by the pellet 

geometry and plotted in form of the electrical resistivity  vs 1/T (Figure 8) and the relative 

dielectric permittivity  vs T (Figure 9), both on semi-logarithmic axes. The charge transport 

activation energies EA (eV), the  values and the resistivity obtained at 560 K are summarized 

in Table IV. The resistivity  vs 1/T plots in Figure 8 show good linearity for ZnCoSnO4 and 

ZnCoTiO4 ceramics sintered at 1100 °C, which indicates a conventional thermally activated 

electron charge transport. The EA values are indicated in Figure 8 and summarized in Table IV.  

All EA values are relatively large for electronic charge transport, but none of the typical signs 

of ionic charge transport were detected and the charge carriers may well be electrons. The EA 

values for the GB contributions are slightly higher, which indicates a lower concentration of 

charge carriers within the GB areas. Nevertheless, the nominal values of the GB resistance or 

resistivity are smaller as compared to the bulk values, which is evidenced in Figure 7 and 8 by 

the size of the respective semicircles and the resistance or resistivity values extracted. This can 

be understood by a geometrical effect of reduced thickness of the GB areas as compared to the 

bulk leading to lower resistance, whereas the effective resistivity within the GB areas may in 

fact be larger than in the bulk. 
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Figure 8. Resistivity vs 1/T for bulk and GB dielectric contributions obtained from equivalent 

circuit fits for ceramic ZnCoSnO4 and ZnCoTiO4 sintered at 1100 °C. Good linearity indicates 

thermally activated electron transport. The displayed activation energies EA (eV) were obtained 

from the respective Arrhenius plots. 

 

All data in Figures 7 & 8 were normalized to the same macroscopic pellet geometry to obtain 

the resistivity, which may not be adequate for the microscopically thin GB areas and the 

effective resistivity within GB areas may thus be significantly higher than the bulk, i.e. charge 

transport can be assumed to be hindered by the GBs. Figure 9 indicates an intrinsic bulk  ≈ 20 

and ≈ 30 for ZnCoSnO4 and ZnCoTiO4 ceramics sintered at 1100 °C, respectively. 
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Figure 9. Relative dielectric permittivity vs T for bulk and GB dielectric contributions obtained 

from equivalent circuit fits for ceramic ZnCoSnO4 and ZnCoTiO4 sintered at 1100 °C. 

 

The relative dielectric permittivity values for the 1000 °C sintered pellets are marginally higher 

in both cases. All  values are relatively low, especially for ZnCoTiO4. Quite often, Ti4+ on 

octahedral sites leads to larger permittivity values in complex oxides, e.g. ≈ 100 in CaCu3Ti4O12 

29 and TiO2 
32, or even to ferroelectricity, e.g. in BaTiO3 

33 and PbTiO3 
34. It can be concluded 

that ZnCoSnO4 and ZnCoTiO4 exhibit a dielectric permittivity that is typical for standard 

dielectric materials. The GB permittivity is higher than the bulk permittivity by a factor of ≈ 5 
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- 10 and ≈ 300 for ZnCoSnO4 and ZnCoTiO4 ceramics, respectively. Both values are in a typical 

range for extrinsic GB contributions 35.  

 

Table IV. Bulk and GB resistivity , activation energy EA and dielectric permittivity  for 

ZnCoSnO4 and ZnCoTiO4 ceramics sintered at different temperatures. 

 ZnCoSnO4 ZnCoTiO4 

Sintering Temperature 1000 °C 1100 °C 1000 °C 1100 °C 

 (560 K) Bulk (cm) 
5.96 105 

± 4 102 

1.04 106 

± 3 104 

7.05 104 

± 3 102 

1.04 105 

± 4 102 

 (560 K) GB (cm) -- 
6.39 105 

± 3 104 

1.11 104 

± 3 102 

 

1.05 104 

± 4 102 

EA Bulk (eV) 1.085(1) 1.032(8) 0.915(5) 0.915(3) 

EA GB (eV) -- 1.17(2) 1.04(2) 1.11(2) 

 Bulk 22.8(1) 17.4(4) 31.3(1) 28.0(1) 

 GB -- ≈ 120 ± 20 
≈ 10000 ± 

2000 

≈ 10000 ± 

4000 

 

IV. Conclusions 

The compounds ZnCoSnO4 and ZnCoTiO4 have been synthesized successfully and 

characterized comprehensively. Both compounds crystallize in a cubic spinel structure and 

exhibit ferrimagnetism below TN. The Co2+ spin states were suggested to be HS in both 

compounds above theoretical predictions. Electronic conduction was detected at elevated 

temperature and ZnCoSnO4 and ZnCoTiO4 may be regarded bad electronic insulators or high 

resistivity semiconductors. This work demonstrates that transparent semiconductors like 

Zn2SnO4 can be doped magnetically to increase their functionality. 
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