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Pion gas viscosity at low temperature and density
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By using chiral perturbation theory and the Uehling-Uhlenbeck equation we compute the viscosity of a pion
gas, in the low temperature and low density regime, in terms of the temperature and the pion fugacity. The
viscosity turns out to be proportional to the square root of the temperature over the pion mass. Next to leading
corrections are proportional to the temperature over the pion mass to 3/2.
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[. INTRODUCTION tion is based are the following. First of all our computation is
going to apply only at low temperature and density. At low

The possibility of discovering the so-called quark-gluontemperatures hadronic matter is confined into hadrons and at
plasma(QGP at BNL RHIC (Relativistic Heavy lon Col- very low temperatures the only excited modes are pions for
lider) or in the future CERN LHQLarge Hadron Collider  vanishing baryonic numberg density. Notice thahg=0 is
has triggered a lot of effort on the theoretical description ofsupposed to be the case in the central rapidity region of
ultrarelativistic heavy ion collisions. The modern view of heavy ion collisions. Moreover, the additional low-density
these collisions was set mainly by BjorkgH and it is based condition allows us to consider the nonbaryonic hadronic
on the hydrodynamic model already considered by Landawhatter as a pion gas.

[2]. In the last stages of the evolution of the central rapidity At low temperatures most of the pion interactions occur at
region the hadronic fluid is made mainly of pions. It has beedow energies. The low energy pion interactions are com-
argued that this expanding pion gas can reach thermal equpletely determined by the chiral symmetry pattern of the
librium much more efficiently than chemical equilibrium strong interactions. In the chiral limitvanishingu and d
since at low energies pion interactions are mostly elg8fic ~quark massesthe strong interaction dynamics is invariant
In order to have an appropriate phenomenological descripinder the SU(2)X SU(2)x chiral transformations. However
tion of the expanding pion gas it is needed to set the propethis symmetry is supposed to be spontaneously broken to the
hydrodynamic equations. In the pioneering work by Bjorkendiagonal or isospin group SU(2)r, the pions being the
the hadronic gaboth in the confined and in the quark-gluon corresponding Goldstone bosons. In the real world quarks
plasma phasesvas assumed to be a perfect relativistic fluid masses are different from zero and then this symmetry break-
and accordingly viscosity and heat conductivity were nedng pattern is not exact resulting in a small val(ghen
glected. In order to check the validity of this assumption incompared with other hadronfor the pion mas$ .. In any

the different regimes of the pion gas expansion we need tease chiral symmetry determines completely the low energy
compute the corresponding transport coefficients as a fungion interactions in terms d¥1 . andF . (Weinberg low en-
tion of the temperature and density. This could make it posergy theoremys The corrections appearing at higher energies
sible to know in what physical situations they are relevantcan be computed in a systematic way by means of chiral
and the ideal fluid equations are not appropriate anymore. Iperturbation theory4]. In the chiral limit the pion scattering
addition the expressions obtained for these coefficients caamplitude goes to zero in the low energy limit. Out of the
be used to set the correct relativistic version of the Navierchiral limit it is proportional toM?2/F2. In any case the
Stokes equations which applies when dissipative effects mutteraction is small in this regime. Therefore we arrive at the
be taken into account in the pion fluid dynamics. Curiouslyconclusion that nonbaryonic hadronic matter at low tempera-
enough, the computation of these coefficients is also interesture and density can be described as a weakly interacting
ing from the fundamental point of view, since it can be donepion gas. Another important observation is that at low tem-
completely from first principles. peraturesenergies most of the pion collisions are elastic.

In this work we will illustrate this by computing the vis- This fact implies in particular that the number of pions is
cosity of the pion gas at low energy and density. Our com-conserved. Thus it is possible to introduce the corresponding
putation will rely just on standard kinetic theory and the pion chemical potentigl (not to be confused with the more
chiral symmetry properties of the strong interaction and thusisual chemical potential associated to the baryonic number
our results can be considered model independent. In fact odrhis makes it possible to consider the pion gas at thermal
results will depend only on the pion malk, and the pion equilibrium at temperaturel for different values of the
decay constarf ,. The main points on which our computa- chemical potentiaj, or what it is the same, different pion

densities, and not only the case of chemical equilibrium cor-
responding tqu=0.
*Electronic address: dobado@sagan.gae.ucm.es According to the previous discussion the simplest state for
"Electronic address: ssantall@fis.uc3m.es nonbaryonic hadronic matter at low temperatures and densi-
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ties is just a gas of weakly interacting pions in thermal equi- The transport coefficients for the hadronic matter have
librium which could be described in a first approximation been considered several times in the literature. In particular
with a Bose-Einstein distribution. In addition, at very low in [6] it is possible to find a lot of detailed computations
temperatures the average pion energy is much smaller thaoncerning these coefficients and also relaxation times in the
the pion mass allowing for to have a nonrelativistic descrip-confined phase. In the references quoted therein the reader
tion of the pion gas. As discussed later, the low density conean also find previous computations of the transport coeffi-
dition will prevent the formation of the Bose-Einstein con- cients for the QGP phase. In the very complete analysis of
densate out of the pions, thus making the description of thg6], kaon and nucleon effects are also included and they con-
hadronic matter in the mentioned regime especially simple.sider both chiral and experimental phase shifts. Their work is
More generally it is possible to consider the case when théased on relativistic coupled transport equations in the non-
equilibrium is only local. In this case the temperature, den-degenerate limit and it is appropriate for moderate and rela-
sity (or pion chemical potentialand the overall velocity are tively high temperatures. As mentioned before in the work
space-time functions. In this situation it is possible to have gresented here we are interested in the very low temperature
hydrodynamic description of the system as that considered iregime where the nonrelativistic limit holds and, in addition,
the Bjorken picture of heavy ion collisions. A departure from quantum effects cannot be neglected any more since they are
local equilibrium will give rise to dissipative processes like essential. For this reason we will use the Uehling-Uhlenbeck
viscosity, which is the main topic of this work. The evolution equation as the transport equation, which takes into account
of the distribution functions outside equilibrium can be stud-degeration effects, instead of the Boltzmann-like equation
ied by using the Uehling-Uhlenbeck equation, which is theconsidered if6]. Therefore that work and that shown in this
guantum version of the Boltzmann transport equation. Theaper can be considered in some sense as complementary.
computation of the transport coefficients such as viscosity or The plan of the paper goes as follows. In Sec. Il we re-
heat conductivity requires the solution of the transport equaview the main equations of the nonrelativistic ideal pion gas
tion for different specific perturbations of the local equilib- to set the notation and for further reference. In Sec. Ill we
rium distribution. describe briefly the fundamentals of the kinetic theory
As it was mentioned above, in this work we are interestecheeded to follow the present work and in Sec. IV we show
in the computation of the viscosity of the hadronic fluid with how the hydrodynamic equations emerge from it. In Sec. V
the approximations discussed in the previous paragraphs. lme obtain the equations for the transport coefficients in terms
fact it is possible to have a good estimation of this magnitudef the appropriate solutions of the linearized transport equa-
by neglecting quantum effects. In this case the equilibriuntions. In Sec. VI we simplify these equations to write them in
distribution function is just the Boltzmann distribution in- useful form for finding explicit formulas for the viscosity. In
stead the Bose-Einstein distribution. Moreover the elastiSec. VII we give the cross section for the low energy elastic
scattering pion cross section is constant at low energies araon scattering obtained from the lowest order chiral pertur-

as we will see it is given by bation theory. In Sec. VIII we obtain the lowest order terms
of the pion gas viscosity. In Sec. IX we show our numerical

23 M? results and discuss the magnitude of the next to leading cor-

o= 384 Z . (1) rections_ and _in Sec. X We_set the main conclusi(_)ns of our
mFo work. Finally in the Appendix we study the properties of the

polynomials introduced in this work that play a role similar

~ In addition, at low temperatures we can use the nonrelat the standard Sonine polynomials in the more familiar clas-
tivistic approximation so that our problem is equivalent tosjc computations.

the classical computation of the viscosity of a gas of hard
spheres of radiuR so thato=xR? By using the well

. . . . Il. STATE EQUATION
known result in this casésee, for instancg5]) we find the Q

viscosity to be given by In this section we review briefly the equation of state of a
free nonrelativistic bosonic gas, which will provide our de-
1920 Fj‘TqT3/2 [T scription of the pion gas at low temperature and density. As it
7368 M- VYM_ 2 is well known[7], for a large volume the pressure can be
” ” written as

This formula provides a nice estimation of the viscosity of T (= T
the pion gas. However, it does not take into account anyp— — g_J dp p2|og[1_el3[,u*E(p)]]_g_|og[1_el3u],
guantum effect that can be important at low temperatures. In 2m%Jo \
addition it does not include any dependence in the pion (3)
chemical potential, i.e., in the pion density. ) ) )

In the following we will show how these effects can prop- Whereg is the number of pionsg=3), T=1/8 is the tem-
erly be taken into account to find the pion gas viscosity inPerature)V is the volume,u is the pion chemical potential,
terms of the temperature and chemical poteritaldensity ~ @ndE(p) is the energy of a nonrelativistic pion in terms of
in the low temperature and density regime at the leadinghe momentum, i.e.f):va, E(p)=p%2M . The num-
order. We will also estimate the magnitude of the next tober density or the number of pions per unit of volume is
leading corrections. given by
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g 1 g 3/2

_9 [ g g o [
n_2772fodppze—B[M—E(p)]_1+Ve—ﬁu_l’ “) P= (@M, T)*T | ——dx )

where the last term is the number of pions with zero momenwhere the integrals can be written in terms of thefunc-
tum per unit of volume. When this term is not negligible it is tions[9] as
responsible for the Bose-Einstein condensate. We thus define

Xn
g 1 f fle—x—ldxzr(n+1)gn+l(z) (10

no—v m (5)
with
Clearly the above equations make sense only when the .
chemical potential satisfieg<0. As a consequence, in the z
thermodynamic limit, wher&l,V— o with N/V constant, we 9n(2)= 21 [n+1

find two phases: In the first on@ormal phaseu<0 and

no=0. However, if we lower the temperature, keeping asg that

fixed density,u increases untiju=0. At that pointny# 0

and the ground state density starts to grow forming the Bose- 0s(1)=¢s

Einstein condensate. Eventually,Tat 0, all pions are in the

ground state so that=n,. The critical temperatur&, where  and

the phase transition occurs can be found to be do.(2)
277( n )2/3 gsfl(z):z—dsz .

T=
¢ M, 19z

Therefore we have for a nonrelativistic free pion gas at equi-

where(s, is the Riemanrd function evaluated at 3/2. There- librium at low temperature and density

fore the critical temperature can be made arbitrarily small by M T\ 32

lowering the density. In this work we are interested in the n=g<—”) U/ 2) (11)
low temperature and the low density regime. In order to sim- 2

plify the analysis we will not consider the contribution of the
condensate. Thus for a given temperatieve will always ~and
assume that the density will be low enough so thatT,

32
and no significant fraction of pions will have zero momen- P=g< M’TT) TOsA2). (12)
tum (see[8] for a discussion of the pion condensate 2m
In the following it will also be convenient to introduce the ) .
fugacity Thus the equation of state can be written as
2)
—exd X p=nT22?. (13
Z—ex*’( T) 9a/A2)
and then the above equations for the density and the pressure IIl. THE KINETIC THEORY FOR PIONS

can be written as
The possibility of having a hydrodynamic description of

g (= p2 the pion gas requires the definition of macroscopic fields
n=-2J, I dp (6)  such as the velocity = V(rt), the pressur®=P(r,t), the
z e, T—1 number densityn=n(r,t), the temperaturd =T(r,t), and

others. In other words, it is needed to have a large number of
pions in each volume elemedV¥. The statistical description
of the gas is based on tliene-particle distribution function
P=_ g_-l—zj p2In(1—ze p2/2M,,T)dp_ 7) f(r,0,t) which gives the»nuamber of pions inside the phase-
2m°J0 space volume elemerdr dv at the instantt. In fact the
phase-space volume element is givendydp but in the
case considered here the difference amounts to a constant
(112 factor which we include in the definition of the distribution
n— g Z(ZMWT)S’ZI — 1dx ®) functionf. Thus the total number of pions will be given by
0z e~

and

Introducing the variablec=p?/(2M , T) we have

and N=f f(F,J,t)dFd5=f n(r,t)dr. (14)
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As we are interested here in the behavior of the pion gafrom which the properties of free pion gas given in the pre-
at low temperatures and densities, most of the pion interacsious section can be derived. The case of local equilibrium is

tions will occur at low energies. Then the pion-pion interac-a|so described by this distribution but having e T, and
tions will be essentia”y elastic and the total number of pionS,u parameters depending on the position and time. This case
will be a conserved quantity. This in particular means that itcorresponds to an ideal fluid. However, in order to describe
makes sense to introduce the chemical potentialw(r,t) dissipative processes, such as viscosity or thermal conduc-
related with the pion number even in the presence of lowtion, it is necessary to consider the case where the pion gas is
energy pion interactions. The evolution of the distributionnot even in local thermal equilibrium.

function is determined by the BBKGYBogoliubov, Born,

Kirkwood, Green, and Yvohhiera_rchy[_lO]._ Th?s is a set of IV. HYDRODYNAMIC EQUATIONS
N coupled equations for the-particle distribution functions
f(n)(Fl,Jl,Fz,Jz, e Tn0n,t) with f=f,. However, for Given some magnitude it is possible to compute its

low-density gases it can be a good approximation to truncatétatistical average by using the distribution function as
the BBKGY hierarchy. For example, by using the Bogoliu-

bov ansatz, i.e., by writing the two-particle function in terms j fd;dF J' ftde

of an appropriate product of two one-particle functignso- _ _

lecular chaos hypothesjst is possible to decouple the first ()= . n(r,t) (19
BBKGY equation from the others to obtain the well known f fdr '

Boltzmann equation. This equation was modified by Uehling
and Uhlenbeck in order to include the quantum statistic ef
fects (see, for example[11]). For the bosonic case the
Uehling-Uhlenbeck equation reads

i/vheren:n(F,t) is the pion number density. This average
can be understood as the corresponding macroscopic magni-
tude in the hydrodynamic approa¢h2]. For example, the

macroscopic fluid velocity is given by

(a+v1¥)f1=C[f], (15)
where f fodv 1
V= =—f fodv. (20)
e rer 1 f2 fd ;) n
C[fl]ZJ dv,dou| f;f5 1+K l—I—K v
1 5 The equation governing the evolution of any of these mag-
—fafo 1+ 1) 14+ (16)  nitudes(transport equationsan be obtained by multiplying

1 by the Uehling-Uhlenbeck equation and then integrating
is the collision term or collision functional. The above equa-v; So that
tion describes the irreversible space-time evolution of the
(one-poinj distribution functionf, this irreversible behavior doe( ot 5.5 f
being a consequence of the truncation of the BBKGY hier- valditoiWfig

archy. As usual we use for short the notatikmf(ﬂ Ui 1)

andf/=f(r! ,u/ ,t) with i=1,2. do is the differential cross =J dvdv,dougy[ fif5(1+A ;)

section corresponding to the elastic scattering of two pions

with initial and final velocitiesv;,v, andv},v}, respec- X(1+A™Hy) —fif(1+ATH)(I+ATHY)].
tively. u is the relative velocity of the initial particles (21)
=|v,—v,| and, finally, the normalization constahis given

by A:gMi/(Zﬂ-)S. The right-hand side term can be written in a more symmetric

As it is the case of the Boltzmann equation, the Uehling-fashion as
Uhlenbeck equation typically drives the gas from arbitrary
initial distributions to the equilibrium distributiof® which 1 . .,
is a fixed point of this equation in the sense that the collision Zf dv1dv,dv 3| T[*(y+ o= 1 — )
functional vanishes on it:
, X[F1fp(1+A ) (1+A,)

clr=o. 0 —f,f(L+ AT (1+A YY), (22
For a gas moving at a macroscopic veloc‘iiythe equilib-
rium distribution corresponding to temperatufeand pion
chemical potential is given by

where|T|? is defined through the relation

|T|?
g

. -y = ————dv}dv}. (23)
O,0,0=AETMA V0 1) =1 (1 or-vof
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From this form of the collision terms it becomes apparentviscosity. For example, a small gradient of temperature pro-
than it vanishes for any quantity which is conserved in the duces a heat flow which in a first approximation can be writ-
collision such as the total energy or momentum. On the otheten as
hand, by using the definition of statistical average, the first
term of Eq.(21) can be written as gi=—«ViT, (32

&tn<¢)+V}n<¢5). (24) Wh_ereK is a coefficient (_:alle_d thermal conductivity. In order
to include momentum diffusion effects we add an extra term
Thus for conserved magnitudes this term vanishes. In orddp the isotropic pressure tensor:
to find the basic hydrodynamic equations it is useful to write
the velocity ay=V+¢, ie.,isthe pion velocity relative to

the macroscopic veI00|ty and therefore it averages to zero. The requirement for this tensor to vanish for uniform trans-
Choosingy=1, v, andv? (corresponding to the conserva- lations and rotations of the fluid makes it possible to write it
tion of a constant, the momentum, and the energy in theo first order in the velocity derivatives &%3]

elastic collision we obtain the equations

Pij=P3&;+Pj. (33

3 3

o ol _ AV, . N 2o 5 > vV,
Y=1—9n+VnV=0, =7 ox " ax 3/ ax §|:1 %, 0

- (34
(ﬁ:vaathi+anViVj+an<§i§j>=0, (25)

5 5 5 5 5 Thus it is needed to introduce two coefficiemtand which
=0 =NV +(£)) +VinVi(V +(£%)) are usually called first and second viscosity coefficients. The

V.20V (£ £+ Vin(& £2) =0. introduction of the dissipative effects does not modify the

continuity equation. However, the Euler equation becomes
In order to understand the meaning of the above equations

we can introduce the following macroscopic quantities: anV+Vn\ViV. + M_WVJ Ps,

PIJ:MWn<§i§j> (26) 3
: 1 N N 2. GV
is the pressure tensor, = VMt % 3 |21 7|5”

T ] i =
Q= 5M.n(é) @7
= — 7Tn
2 é’El 7 i | (35

is the internal energy density, and o ) _
which is known as the Navier-Stokes equation. The energy

1 M _n(&82) 29 conservation equation is in this case
4i=5 MzNCs;
2

2
Vi ViPa

2 2
2, © 2,
is the energyheay flux. Due to the isotropy of the pion fluid &t(nv * M, QI+ WV (nv * Q 1

the pressure tensor can be taken as diagonal, Pg.,
=Pgj;. In this caseQ=3P/2 andq;=0. Thus(by taking

V=0 but not its derivatives, which can always be dowe
arrive to the standard ideal fluid equations, namely the con- 3y
tinuity equation V|
y eq +7, — G-
=1 X|

N, N, 2.3 v
7 === i

—+
X X 3|1(9x|

2
:ViKViT+ M_ﬂ.VIVJ

(36)

an+nV,V;=0, (29
Thus the description of the dissipative flow of energy and

the Euler equation momentum requires the introduction of three transport coef-

nM_a,V;+VP=0, (30) ficients K7, and ¢. In t_h?s work we will _deal_with the
computation of the; coefficient only(shear viscosity but «
and the energy conservation equation and{ can be computed in a similar way. In fagtis the only

relevant transport coefficient whenever heat conductivity can
be neglectedadiabatic flowy and the fluid is incompressible.
HQ+ §QViVi =0. (3D In principle any fluid can be considered as incompressible as
far as the fluid velocityv is small when compared with the
In spite of the above equations for the ideal fluid, it is well fluid sound speeds and no external fields are present.
established that an irreversible flux of energy and momentuntherefore in the regimé//v <1 it is always possible to
appear in an inhomogeneous gas. This flux gives rise to theeglect the seconbulk) viscosity {. However the bulk vis-
well known dissipative processes of thermal conduction and@osity must be taken into account in those circumstances
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where density cannot be taken as a constant. This is the cage&yr the present calculation it is enough to consider the case

for instanc.e, of shock waves qnd other phenomena where thg= 0 (but not its derivatives Then the nonisotropic compo-
fluid velocity is comparable with the sound speed. nent of the pressure tensor can be written as

V. MPUTATION OF THE TRANSPORT EFFICIENT M >
COMPUTATION O SPORT COEFFICIENTS P{J:?”f fOxviv;dv. (45)

As it has been mentioned above the description of the

dissipative processes requires going beyond local equilibop the other hand this tensor can be written as
rium. Thus in order to compute the transport coefficients we

have to consider a distribution functidrslightly perturbed , 2
from the equilibrium distributiorf®, i.e., Pij=—-2nV;+ 377 ¢ Vhndij » (46)
f=f0+ 5f:fo+foK (37) where we have introduced;; = (4;V;+ d;V;)/2. For further
T convenience we choose the perturbation to have the form

wherey is an arbitrary function of the velocities which rep- x=Vihy(v), (47)
resents the inhomogeneous contribution to the distribution

function. This contribution will be assumed to be small in thewhere h,, is a microscopic velocity dependent quantity
sense thaj/T<1 since we are interested only in the com- which can be written as

putation of the transport coefficients. Tdunction must by

determined by solving the Uehling-Uhlenbeck equation _ ot
which can be linearized with respectfo Then it is possible hia=| viw1= 3070 [h(v). (48)
to compute the transport coefficients from this function. For
example, the heat flux can be written as Therefore by equating the two forms Bf; we find
1 - 29Vii = mia Vi » (49
qi:fMﬂf £0 1+$ viv2dp. 39) 7Vij = Mijia Vi

where as far as we are interested only in the first viscosity
Taking into account that this flux vanishes for a homoge-Coefficient we have neglected tifecontribution toPy; , and
neous gas and using the definition of the heat conductivityzijki (the viscosity tensoris given by

we have
M, 1, 0 -
M nijklz?f UiUj vkv|—§v 5k| f (v)h(v)dv (50)
—kVT= 2—_|7_TJ fOxviv2du. (39
Due to several symmetries of this tensor it can be written as

Now it is useful to write they function as

2
x=—VTh(v)=—VTvh(v) (40) 77”“:7’(5‘k5“+5”5"k_§5”5k')’ (51
- i i -V i .
Therefore so that we have
WT =i VT (1) 77=&f ViV v»v<—1v25-- fo(v)h(v)dv. (52)
10T ) VivilViviT 3v i :

with the tensor conductivity;; being given by
As theh function depends only on the velocity modulus it is

M, R possible to perform the angular integrations
Kij= o7 fohvjvivzdv. (42
B 4 » 6 -
For an isotropic gag;; = x 3;; , SO that we have the following 7= 157 A o, M 02 v h(v)dv. (53
equation for the heat conductivity: z 7|71
= & ohu4do. (43) In the following it will be useful to considehn as a function
6T of the adimensional variabbe i.e., h=h(x) defined as
In a similar way it is possible to write the viscosity in terms M, v?
of an h function. In order to do that we write the pressure X= 7 (54)

tensor in terms of the distribution function
At this point it is customary to develop thgx) in terms
P, :wa £0 viv,-dJ. (44) of the Sonine polynomials. However, it is more appropriate

1+ X _ | :
in our case to introduce a new family of orthogonal polyno-

T
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mials Pj(z;x) since we are considering the Uehling- 02 E

Uhlenbeck as the transport equati@e., we have taken into 77z exr{ T) 1 E

account quantum effegtinstead of the more common Bolt- 9,f0=— A fﬁtE——zatT—ﬁt logz|,
zmann equation. The definition and the main properties of T

these new polynomials can be found in the Appendix. In (60)

s . .
terms of P; the h function can be written as where the energg is given by

- S( - M, - =
h(x)—g0 BsP3(z:X). (55) E= 5 (0-V)? (61)
Therefore so that we have
M 2T 5/2 o X5/2 f02 E M
_Vml e s m
n= 1OT(M7T) Afo dxz o1 SE BsP7(z;x) 9 f0=———— atlogz+§ﬁtT+ <Y,

(56) Az exp< — $>

and the distribution function can be written as (62)

In a similar way we can obtain
M
EBP(Z ﬁv) fozv»

0_ i
67 vVt _Ap(—E)
- . . zexp — =

For all the families of polynomials, i.e., for all theval- T

ues, we have exact conservation of the collision invariants. (63
This fact makes it possible to chooseso that we get the
simplest integral. The appropriate value turns out torbe

=5/2 and then we get

0

f
f:fo+ _V”

T Uin

E M.
Vj |OgZ+ '|T2VJT+ ?Uivjvi

Thus we have

02
2T\ 572 (?tf°+vjij°=—E
) Azex;{

E
A2 d;logz+ ﬁo"tT

="

M 97/2A2)Bo. (58

In this way the computation of the viscosity of the pion gas M
has been reduced to the computation of Baecoefficient. + Tviatvi +ov;Vjlogz

VI. SIMPLIFYING THE UEHLING-UHLENBECK E M
+—v;VT+ —l)il)jvij

EQUATION 7271 T (64)

As discussed above the perturbed distribution function
must be a solution of the Uehling-Uhlenbeck equatibs).
In order to solve this equation it is quite convenient to write
the left-hand side in terms of macroscopic quantities, as th
temperature, velocity, density, and fugacity, and their deriva-

Here it is possible to use the state equation for the free
pion gas and the ideal fluid equatiofiuler, continuity, and
gnergy conservatigrto find

tives. This can be done by using the equation of state and the , co_ ¢ ro_ f02 1/E 59522 o
hydrodynamic equations as follows. First of all at lowest t E\IT\T 2 032(2)
order we have Azexp —F
TOf~ 9.f04 0 M 2E
of+0VE=0,f0+ 0V N Tvivj_g?ﬁij>vij} 65
1
=Ad E On the other hand, substituting expressidi) into Eq.(16),
zlexy{? -1 expanding to first order in the perturbatign and taking
benefit from the equilibrium distribution function relation
s 1
+AvY = (59) 1) (1+A Y (1+A Y
_1 |
z ex"(T) 1 = £F0(1+ 2" ) (1+ A 1D, (66)
Thus the temporal derivative is we obtain
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SR

fIi(1+A ) (1+A ) —f,f(1+A ) (1+A))

A2 Z—2eE/T
= X

=— ; , A
T (Z— 1eEl IT_ 1)(2— 1eE2 IT_ 1)(2— 1eE1/T_ 1)(2— 1eE2/T_ 1)

whereE=E,+E,=E;+E; and theA symbol is defined as M2 M2
Ta, a,.a 'ar(S,t,u)= Wga a,0a’a,t < 0a,a’ Oa,a!
A[F(X)]=F(x)) + F(x}) — F(x1) — F(Xy). (68) rreTe S
_n2
Thus the whole collision term can be written as + u-Ms S S (72)
FZ aja;Yazals
w
1 -
C[f1]=7f dv,dou z‘zexer/T)flfzfiféA where the standard Mandelstan varialdest, andu are re-
AT lated bys+t+u:4M,zT, the a subindices refer to the pion
E isospin and- . is the pion decay constant. In the total isospin
X{X 1—zexp( - T) ] (69 basis there are three independent amplitudes corresponding
to 1=0,1,2 which are given by
where we have omitted the superindex 0 in the equilibrium 25— M2
distribution function. In this way the complete transport TO= T
equation for the slightly unhomogeneous pion gas becomes Fi
f2 M,vZ 5 t—u
L ( wU1__95/2(Z) 0y VT Ti= sy (73)
ze M2t \ 2T 2 g3/(2) F2
1 2M2—s
+M7T Ulivlj_§U§5ij)Vij T2: T; .
F7T
= Kf dv,do u z2eM 2TV +u?) The averaged modulo squared amplitude is given by
1
X £, F5A x(1—ze Ma2T)], (70) IT)P=————— > (21+1)|T'|2 (74)
> (21+1)
|

where we have defined = (v, +v,)/2=(v;+v})/2, i.e., it
is the collision center of mass velocity. Once agaiv,

—52 is the relative velocity of the incident pions. Thus, in
particular, we have

which leads to

1
|T|2=F[21Mf,+ 95— 24M2s+3(t—u)?]. (75

M, 1 &
E=—(2U2+—u2). (71) o , . -
2 2 The relativistic differential cross section for elastic pion scat-
tering is
VII. LOW-ENERGY PION CROSS-SECTION |-|—|2
In order to solve the above transport equation it is needed do= 4u E1E2d LIPS, (76

to know the differential cross section for pion scattering. As

we are interested in the low energy regime the most approvhere the differential Lorentz invariant phase space is given
priate approach is the chiral perturbation theory which reliedy

on the chiral symmetry pattern of the strong interactions. In

particular the chiral Lagrangian approach suggested by dLIPS=C(2m)*5*(pa+p,—P1—P3)
Weinberg is quite useful and extended up to the one loop -, -,

level by Gasser and Leutwyler. This chiral Lagrangian ap- > dpy dp; (77)
proach consists of a systematic expansion on the pion field 2(27)%E] 2(2m)°Ey’

derivatives and the pion mass which are considered to be of
the same order. From the lowest order of this expansion, theshere the constar® = 1/2 takes into account the identity of
pion elastic scattering amplitude is given by the final pions.
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As discussed above we are interested in the nonrelativistic . 1, ‘2 ~

- . - - . _ o _ — U .
regime where p;=M_,v;, P=2M_U, and E=M, IkI(ZaU)_(UkUI 30 0 |(1-ze " )Pg(Zv7).
+Mﬂvi2/2. In this limit it is convenient to write the cross (83
section in terms of the center of mass and relative velocitiesrhen one of the two integrals appearing in the right-hand
U, u, andu’ defined as side of the Eq(82) vanishes, namely

V=5 —5! . R . f2 (.. 5 z

u'=vi—vy, u=u’. (78) f 4ol (zi0 ) 1A2(v§__95/2( ))vliViTzo.

. L ze 1 2 g3A2)

After some standard calculations the nonrelativistic reduc- (84)

tion of the cross section can be found to be ) )
Therefore the two sides of E¢82) are proportional tdv;;

3 3 which is arbitrary. Thus one possible solution to the equation

M2 . oy . . :
o E 71— U2+ 1—u2 is found by eliminating this tensor in both sides and then by
768 7F? 2 184 contracting with the tensor&, ) so that the right-hand side
of Eq. (82) becomes

) 2U+ucosé’ 5

+U<“cosf'— |d cosé’ (79 1,
2U cosé’ +u M| vkvi— 3070
o AZVijf dv — Py(Z;02)
where#’ is the angle between by andu’. z e -1

5’773/2'\/'77. 2T 712
VIIl. LOWEST ORDER VISCOSITY FOR THE PION GAS :VijAzT(M_) 97/A2) Sot - (85

As we have seen in previous sections the perturbation of, order to compute thB, coefficients we have to proceed in
the distribution function appropriate for the computation of 5 gjmilar way with the right-hand side of E82). For that

the pion gas viscosity can be written as purpose we will take the low energy limit of the differential
L - cross section which is just
X:_Vij<vivj_§vz5ij)z BsPE(z:x), (80 23m2
s=0 o= 2 dcosé’, (86)
768mF

w

where theBg coefficients must be obtained by solving the

linearized transport equatioB, being the dominant one. In . o : .
energies the elastic pion scattering cross section can be con-

order t_o do so Iet_us con5|deAr for a while a teris@m{hlch IS" sidered as a constant, so that it is formally equivalent to the
an arbitrary function oz andv ;. For further convenience we  g|astic scattering of rigid spheres of radius

have defined the hat on any velocity as

e M- [23 .
.~ /& ~ nF2 V384 @7
[ 2TU.

(81)

wheref’ belongs to the interval (&). Therefore at very low

After the manipulations described below the right-hand side

By multiplying this tensor by the transport equation and in_of the transport equation can be written as the collision term
as

tegrating orv,; we have

£2
> ~ 1
J’ d01|k|(2;01)—7;2

ze

1

23MZA3 [ 2T\ 1127
{)2_§95/2(Z))v T Vij 768::17 (M_,.,) 520 Bsbsi(2), (88)
1 1ivi

2 93A2)

where we have defined

1 S T 2
2
+M, Ulivlj_§vlaii)vii} bst(z)=f dUduJ do'de| desing’ singU?uz 2
0 0 0
S N . .
=—V;; >, BSKJ dv dvodo | (Zv)uz 2 xg2u?rv2? ] (2 leva—1)"1
s=0 a;,ap,a;,a,
- - 1
202+ 1202 e o T.2s 1
Xe flefleA (U|UJ 3U 5lj> XA V| — §5k|v2)(1_zeUZ)PZ/Z(Z;UZ)
X (1-ze "HPELz0?) . (82 1o, ot o
XA vkv|—§5k|v (1—ze 7 )Pg(z;09)|.
Now we choose the tensby, to be (89

096011-9



ANTONIO DOBADO AND SILVIA N. SANTALLA

Then the transport equatidB82) can be written as

PHYSICAL REVIEW D 65096011

In order to find the leading contribution to the viscosity we
can truncate the above system to find

23M,A [ 2T)\? o )i Bbos (€0 )
oo aoea v | 922 sPst™ ot -
19207324 \ M, §50 By=r——. 9
T 0 bOO(Z) ( 5)
Therefore by defining In this way the calculation of the viscosity has been reduced
. 23M A ( 2T)2 Y. o to the computation of the integrabg(z).
=— | —| ¢ Z
19207324 \M ;| ST IX. RESULTS AND DISCUSSION
the viscosity is given by According to our previous discussion the viscosity of the
pion gas at low density and temperatures is given by Eq.
[2T 96071-3F:‘T ) (92), whereB, is the solution of the equation system given in
n= M, 23M, 972(2) Bo, (92) Eq.(93) and the corresponding coefficients are defined in Eq.
(89). Thus it is possible, at least in principle, to find the
where 5, is a solution of the equation system viscosity as a function of the temperatdreand the fugacity
. z (or the pion chemical potentjalAlternatively it is also
B possible to find the viscosity as a function of the temperature
520 Bsbis(2) = b1 (93) and the pion number density. Due to the complicated inte-
grals appearing in the definition of thg,(z) functions it has
or been possible to get numerical results only by Monte Carlo
[14] integration. For the sake of simplicity most of these
boo(z) boi(z)  box2) By 1 numerical results have been obtained by using the approxi-
bio(z) by(z) biAz) --- || By mation of Eq.(95) and the hard sphere cross section of Eq.
b b b = (86). In order to check the validity of these approximations
202) bx(2) bAz) - || B 0 we have computed the X4 matrix containing the first
: : : B : : b(z) functions for the particular value= 1. The result and
(94)  the corresponding errors is
|
277.2-0.7 —42+1 —99+3 — 408+ 14
o —42+1 10438 —395+8 —800*30 9
st'l —99+3  —395+8 10700110 —7100+200 (%6)
—408+14 —800+30 —7100+=200 19900a 2000
|
Now we consider the submatricesxl, 2X2, 3X3, N % ™ 27
and 4x 4 and solve the corresponding system for the appro- boo:J dUdUJ dedaJ
. 0 0 0
priate number of3 so that we can check the convergence of
the results as the size of the truncation is increased. The sin @ sina U2y3e2y?+ 12
results are shown in Table I. There we see that the error is of xd > > 5 v
the order of 1.6%. (e"1 —1)(e"2 —1)(e"1—1)(e"2—1)
_ To take_lnto account the vel_o<:|ty effects in the Cross sec- 13 2U + U cosf
tion we will consider Eq.(79) instead of Eq.(86) in the X| —=u?-3U%+2U?%cosf————
computation of thed;; integrals. Then we will have 92 2U cosf+u
1., 2 ]2
X1 A vivj—zgvT|(l-e - (98

0 T 1
bsi=bgi+ M_bst ) (97)

where b?j is the leading term corresponding to the hard
sphere approximation and
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TABLE I. Values for 5; for low i in the hard spheres approximation, and the first orders in the approach
explained in the text.

By B, B, B3

Zero order 3.608 102

First order 3.63610 3 1.497< 104

Second order 3.64710°° 1.654x 104 3.985x107°

Third order 3.666 10 ° 1.765<10" 4 4.700<10°° 9.902x 10 ©
which at low temperatures can be written as 5 /_Mw

n= T—z. (106
By T oo (100 16/7R
0~ 7o M Lo |
boo\ M= bg,

Thus we can check that our computations have the proper
so that z=0 limit. In Fig. 1 we show the behavior df,, and the
viscosity, for constant, in terms of the fugacity. From these

B 2T 960773Fj‘T ) 1 T béo plots we learn that the viscosity of the bosonic quantum gas
7= NM, 23v. 9'7/2(Z)b_(zgO 1= M bS) (10D s smaller than that of the classical gas. This could be ex-

pected because of the following heuristic argument: After
This formula can be applied provided some elastic collision the emerging particles have more af-
finity for occupied states than classical ones. Therefore the
microscopic transfer of momentum is more effective in a
: (102 classical gas than in a bosonic gas and then the viscosity is
also larger. A pictorial view of this fact is displayed in Fig. 2.

In many cases it is useful to have the viscosity as a func-
tion of the temperature and the density instead of the tem-
perature and the fugacity. The pionic density can be written
in terms of the temperature and the fugacity as

bO
T<M, |+

00|

After a numerical integration we find, far=1, bj,=
—310+40. By comparison with our previous resuf,
=277.2-0.7 we get the upper bound for the temperature

T<(0.90+0.12M ., (103
] ) ) ) n gM3/2 oyl
which means that the hard sphere approximation is safe pro- _ m f dx. (107)
vided the temperature is much smaller than the 90% of the T2 [272)o 77 le*—1

pion mass. As we are working in a nonrelativistic framework
this will always be the case and then no additional constrain+
on the applicability of our results is coming from the hard
sphere approximation.

Therefore in the following we will work at zero order an
in the hard sphere approximation. In this case the viscosity i
given by

his equation also defines implicitly the fugacity as a func-
tion of the density and the temperatare z(n, T). However,

d due to the complexities of the above integral these functions
Elave only been computed numerically. In Fig. 3 we plot
7l\T as a function of/T%2 The computed points can be
fitted quite well in the plotted range with a polynomial,
409627%F% 512

2
* X
_ -1
n(T,Z)—ﬁ—S NG [boo(2)] { fo i
(104

Some numerical results obtained from this formula are foundVith _ constants A=0.1814£0.0004, B=(—2.42+0.03)

4 _ _ g _
in Table Il for different values of the fugacity The classical ><.10 ' gnd Cf_(gft 9'3)><.10 ) Thushthe function ob-
case is just the limit of going to zero. This corresponds to a t@ined (Fig. 3 for the viscosity versus the temperature and

classical gas of hard spheres of radius the density is

f1(X)=A+Bx+Cx?, (108

M, 23 TABLE II. Viscosity values computed in different physical re-
= _WFi\ /@ (109  gimes.

. MeV?3
Because of the particular way we have performed our com- 7 ( )
putations the particular case=0 is not numerically acces- Quantum casez=1) JT 4.00x10°
sible. However, this case has been treated a long time agQuantum casez=0.05) JT 1.40x10°
and it is possible to find an analytic result for the viscosity,Classical case JT 1.9x10°
namely
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FIG. 1. Plot of{boo(2) ]~ [ [5x4z~ Ye*— 1dx]? versusz. It can FIG. 3. Numerical fit ofy/Tof,(n/T%?).

be understood as a plot of the viscosity, for constant temperature

and in arbitrary units, versus the fugacity. determines completely the structure of the pion interactions
at low energies. We have also found a formula for the vis-
cosity in terms of the temperature and the density which

40962 7w%F% . . .
6/2m properly fits our numerical results. The interest of the com-

T

n
0.1814-2.42x 10 *—

n(T.n)=———"—>— a2 -y -
345V, T putations is twofold. First it is useful to check when the usual
2 assumption of perfect fluid for the hadronic fluid is reason-
1 96x10°8 n (109 able enough. Second it can be used to include the viscosity in
' T3/2) | the Navier-Stokes equations when dissipative effects cannot

be neglected. The main limitation of our work is that it can

As it may be noticed in Fig. 4, the values of the viscositybe applied only in the nonrelativistic domain. As a conse-
cover the range from P0to 10/’ MeV? for the considered quence of that it cannot be used directly in the study of the
densities and temperatures. events observed in the modern ultrarelativistic heavy ion col-
liders such as RHIC or the future LHC. In any case we
understand that our work is interesting in order to show that
the computations of transport coefficients of the pion gas can

In this work we have computed the viscosity of the pionbe done in a complete model independent way. In fact we
gas, starting from first principles only. This computation isconsider that the result presented here is just the first step of
relevant for the hydrodynamic description of hadronic mattera complete relativistic computation which could be applied
at low energies and densities. The work relies on the use cit higher energies and therefore in more realistic situations,
the Uehling-Uhlenbeck equation, which is the quantum verto improve the standard hydrodynamic description of had-
sion of the Boltzmann equation, and chiral symmetry, which

X. CONCLUSIONS

00’ 000
°® SNe)
. 00
L 2 ofe _
>
TP QOO TP OOO g
® O o| 2
pC OO pC OO
% O O % OO

FIG. 2. (a) Two particles, belonging to two different regions of
the gas with different average momentdntack and whitg, before
an elastic collision(b) Particles before the collision in the classical
case where they typically get a new momentampresented in
gray). (c) Particles in the bosonic gas where they typically want to
go to occupied states with the same momentum.

n (10°MeV %)

FIG. 4. 3D plot of viscosity vs temperature and particle number
density, given by Eq(109.
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ronic matter. Work is in progress in that direction. For simplicity we define the polynomials so that they are
monic, i.e., the coefficient of the term of highest degree in
ACKNOWLEDGMENTS each polynomial is taken to be one. Thus the first polynomial

. is always the unity and its norm is given by
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0 0 po ” X!
P =1—(P/,P,)= . dx—_l=1“(r+1)gr+1(z).

(Spain (CICYT AEN 97-1693 and PB98-0782 71X
(A3)
APPENDIX
In this appendix we study the main properties of the fam-From the condition
ily of orthogonal polynomialsP;(z;x) defined on the inter-
val (0e) with measure (P°,PY)=0 (A4)
o
r
dur(z;X)= Sl 1’ (Al)  jtis possible to compute the second polynomial which turns
out to be
whereze (01] andr>0. By definition the polynomials are
orthogonal for some given or in other words, Ur+2(2)
Plz;x)= (r+1)—x. (A5)
r gr+1(z)

’ * X !
S Sy — S/ 5. S .
(PP} )—fo dx 1eX_lP,(z,x)P, (z;X)

The third polynomial is obtained from the conditions
=A(Zr,9) sg - (A2)  (P%,P%)=0 and P},P?)=0 which gives

(r +3)gr+2(z)gr+4(z)_(r+2)gr2+3(z) (r+3)9r+1(2)9r+4(2) = (r+1)9, 1+ 2(2) 9+ 3(2)
= > (r+2)(r+1)+ >
(I’ +2)gr+1(z)gr+3(z)_(r+ 1)gr+2(z) (r+1)gr+2(z)_(r+2)gr+1(z)gr+3(z)

X (r+2)x+x2. (AB)

P2(z;x)

r

Higher polynomials can be obtained in a similar way.
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