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Pion gas viscosity at low temperature and density
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By using chiral perturbation theory and the Uehling-Uhlenbeck equation we compute the viscosity of a pion
gas, in the low temperature and low density regime, in terms of the temperature and the pion fugacity. The
viscosity turns out to be proportional to the square root of the temperature over the pion mass. Next to leading
corrections are proportional to the temperature over the pion mass to 3/2.
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I. INTRODUCTION

The possibility of discovering the so-called quark-glu
plasma~QGP! at BNL RHIC ~Relativistic Heavy Ion Col-
lider! or in the future CERN LHC~Large Hadron Collider!
has triggered a lot of effort on the theoretical description
ultrarelativistic heavy ion collisions. The modern view
these collisions was set mainly by Bjorken@1# and it is based
on the hydrodynamic model already considered by Lan
@2#. In the last stages of the evolution of the central rapid
region the hadronic fluid is made mainly of pions. It has be
argued that this expanding pion gas can reach thermal e
librium much more efficiently than chemical equilibrium
since at low energies pion interactions are mostly elastic@3#.
In order to have an appropriate phenomenological desc
tion of the expanding pion gas it is needed to set the pro
hydrodynamic equations. In the pioneering work by Bjork
the hadronic gas~both in the confined and in the quark-gluo
plasma phases! was assumed to be a perfect relativistic flu
and accordingly viscosity and heat conductivity were n
glected. In order to check the validity of this assumption
the different regimes of the pion gas expansion we nee
compute the corresponding transport coefficients as a fu
tion of the temperature and density. This could make it p
sible to know in what physical situations they are relev
and the ideal fluid equations are not appropriate anymore
addition the expressions obtained for these coefficients
be used to set the correct relativistic version of the Nav
Stokes equations which applies when dissipative effects m
be taken into account in the pion fluid dynamics. Curiou
enough, the computation of these coefficients is also inter
ing from the fundamental point of view, since it can be do
completely from first principles.

In this work we will illustrate this by computing the vis
cosity of the pion gas at low energy and density. Our co
putation will rely just on standard kinetic theory and t
chiral symmetry properties of the strong interaction and t
our results can be considered model independent. In fact
results will depend only on the pion massMp and the pion
decay constantFp . The main points on which our computa
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tion is based are the following. First of all our computation
going to apply only at low temperature and density. At lo
temperatures hadronic matter is confined into hadrons an
very low temperatures the only excited modes are pions
vanishing baryonic numbernB density. Notice thatnB.0 is
supposed to be the case in the central rapidity region
heavy ion collisions. Moreover, the additional low-dens
condition allows us to consider the nonbaryonic hadro
matter as a pion gas.

At low temperatures most of the pion interactions occur
low energies. The low energy pion interactions are co
pletely determined by the chiral symmetry pattern of t
strong interactions. In the chiral limit~vanishing u and d
quark masses! the strong interaction dynamics is invaria
under the SU(2)L3SU(2)R chiral transformations. Howeve
this symmetry is supposed to be spontaneously broken to
diagonal or isospin group SU(2)L1R , the pions being the
corresponding Goldstone bosons. In the real world qua
masses are different from zero and then this symmetry bre
ing pattern is not exact resulting in a small value~when
compared with other hadrons! for the pion massMp . In any
case chiral symmetry determines completely the low ene
pion interactions in terms ofMp andFp ~Weinberg low en-
ergy theorems!. The corrections appearing at higher energ
can be computed in a systematic way by means of ch
perturbation theory@4#. In the chiral limit the pion scattering
amplitude goes to zero in the low energy limit. Out of th
chiral limit it is proportional toMp

2 /Fp
2 . In any case the

interaction is small in this regime. Therefore we arrive at t
conclusion that nonbaryonic hadronic matter at low tempe
ture and density can be described as a weakly interac
pion gas. Another important observation is that at low te
peratures~energies! most of the pion collisions are elastic
This fact implies in particular that the number of pions
conserved. Thus it is possible to introduce the correspond
pion chemical potentialm ~not to be confused with the mor
usual chemical potential associated to the baryonic numb!.
This makes it possible to consider the pion gas at ther
equilibrium at temperatureT for different values of the
chemical potentialm, or what it is the same, different pio
densities, and not only the case of chemical equilibrium c
responding tom50.

According to the previous discussion the simplest state
nonbaryonic hadronic matter at low temperatures and de
©2002 The American Physical Society11-1
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ANTONIO DOBADO AND SILVIA N. SANTALLA PHYSICAL REVIEW D 65 096011
ties is just a gas of weakly interacting pions in thermal eq
librium which could be described in a first approximatio
with a Bose-Einstein distribution. In addition, at very lo
temperatures the average pion energy is much smaller
the pion mass allowing for to have a nonrelativistic descr
tion of the pion gas. As discussed later, the low density c
dition will prevent the formation of the Bose-Einstein co
densate out of the pions, thus making the description of
hadronic matter in the mentioned regime especially simp

More generally it is possible to consider the case when
equilibrium is only local. In this case the temperature, d
sity ~or pion chemical potential!, and the overall velocity are
space-time functions. In this situation it is possible to hav
hydrodynamic description of the system as that considere
the Bjorken picture of heavy ion collisions. A departure fro
local equilibrium will give rise to dissipative processes li
viscosity, which is the main topic of this work. The evolutio
of the distribution functions outside equilibrium can be stu
ied by using the Uehling-Uhlenbeck equation, which is t
quantum version of the Boltzmann transport equation. T
computation of the transport coefficients such as viscosit
heat conductivity requires the solution of the transport eq
tion for different specific perturbations of the local equili
rium distribution.

As it was mentioned above, in this work we are interes
in the computation of the viscosity of the hadronic fluid wi
the approximations discussed in the previous paragraph
fact it is possible to have a good estimation of this magnitu
by neglecting quantum effects. In this case the equilibri
distribution function is just the Boltzmann distribution in
stead the Bose-Einstein distribution. Moreover the ela
scattering pion cross section is constant at low energies
as we will see it is given by

s5
23

384

Mp
2

pFp
4

. ~1!

In addition, at low temperatures we can use the nonr
tivistic approximation so that our problem is equivalent
the classical computation of the viscosity of a gas of h
spheres of radiusR so that s5pR2. By using the well
known result in this case~see, for instance,@5#! we find the
viscosity to be given by

h5
1920

368

Fp
4 p3/2

Mp
A T

Mp
. ~2!

This formula provides a nice estimation of the viscosity
the pion gas. However, it does not take into account
quantum effect that can be important at low temperatures
addition it does not include any dependence in the p
chemical potential, i.e., in the pion density.

In the following we will show how these effects can pro
erly be taken into account to find the pion gas viscosity
terms of the temperature and chemical potential~or density!
in the low temperature and density regime at the lead
order. We will also estimate the magnitude of the next
leading corrections.
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The transport coefficients for the hadronic matter ha
been considered several times in the literature. In partic
in @6# it is possible to find a lot of detailed computation
concerning these coefficients and also relaxation times in
confined phase. In the references quoted therein the re
can also find previous computations of the transport coe
cients for the QGP phase. In the very complete analysis
@6#, kaon and nucleon effects are also included and they c
sider both chiral and experimental phase shifts. Their wor
based on relativistic coupled transport equations in the n
degenerate limit and it is appropriate for moderate and r
tively high temperatures. As mentioned before in the wo
presented here we are interested in the very low tempera
regime where the nonrelativistic limit holds and, in additio
quantum effects cannot be neglected any more since they
essential. For this reason we will use the Uehling-Uhlenb
equation as the transport equation, which takes into acco
degeration effects, instead of the Boltzmann-like equat
considered in@6#. Therefore that work and that shown in th
paper can be considered in some sense as complement

The plan of the paper goes as follows. In Sec. II we
view the main equations of the nonrelativistic ideal pion g
to set the notation and for further reference. In Sec. III
describe briefly the fundamentals of the kinetic theo
needed to follow the present work and in Sec. IV we sh
how the hydrodynamic equations emerge from it. In Sec
we obtain the equations for the transport coefficients in te
of the appropriate solutions of the linearized transport eq
tions. In Sec. VI we simplify these equations to write them
useful form for finding explicit formulas for the viscosity. I
Sec. VII we give the cross section for the low energy elas
pion scattering obtained from the lowest order chiral pert
bation theory. In Sec. VIII we obtain the lowest order term
of the pion gas viscosity. In Sec. IX we show our numeric
results and discuss the magnitude of the next to leading
rections and in Sec. X we set the main conclusions of
work. Finally in the Appendix we study the properties of th
polynomials introduced in this work that play a role simil
to the standard Sonine polynomials in the more familiar cl
sic computations.

II. STATE EQUATION

In this section we review briefly the equation of state o
free nonrelativistic bosonic gas, which will provide our d
scription of the pion gas at low temperature and density. A
is well known @7#, for a large volume the pressure can
written as

P52
gT

2p2E0

`

dp p2 log@12eb[m2E(p)] #2
gT

V
log@12ebm#,

~3!

whereg is the number of pions (g53), T51/b is the tem-
perature,V is the volume,m is the pion chemical potential
andE(p) is the energy of a nonrelativistic pion in terms
the momentum, i.e.,pW 5MpvW , E(p)5p2/2Mp . The num-
ber density or the number of pions per unit of volume
given by
1-2



en
is
fi

th
e

a

s

-
b
he
im
e

n

e

s

ui-

of
lds

r of

e-

stant
n

PION GAS VISCOSITY AT LOW TEMPERATURE AND . . . PHYSICAL REVIEW D65 096011
n5
g

2p2E0

`

dp p2
1

e2b[m2E(p)]21
1

g

V

1

e2bm21
, ~4!

where the last term is the number of pions with zero mom
tum per unit of volume. When this term is not negligible it
responsible for the Bose-Einstein condensate. We thus de

n05
g

V

1

e2bm21
. ~5!

Clearly the above equations make sense only when
chemical potential satisfiesm<0. As a consequence, in th
thermodynamic limit, whereN,V→` with N/V constant, we
find two phases: In the first one~normal phase! m<0 and
n050. However, if we lower the temperature, keeping
fixed density,m increases untilm50. At that pointn0Þ0
and the ground state density starts to grow forming the Bo
Einstein condensate. Eventually, atT50, all pions are in the
ground state so thatn5n0. The critical temperatureTc where
the phase transition occurs can be found to be

Tc[
2p

Mp
S n

gz3/2
D 2/3

,

wherez3/2 is the Riemannz function evaluated at 3/2. There
fore the critical temperature can be made arbitrarily small
lowering the density. In this work we are interested in t
low temperature and the low density regime. In order to s
plify the analysis we will not consider the contribution of th
condensate. Thus for a given temperatureT, we will always
assume that the density will be low enough so thatT.Tc
and no significant fraction of pions will have zero mome
tum ~see@8# for a discussion of the pion condensate!.

In the following it will also be convenient to introduce th
fugacity

z[expS m

T D
and then the above equations for the density and the pres
can be written as

n5
g

2p2E0

` p2

z21e
p2

2MpT21
dp ~6!

and

P52
gT

2p2E0

`

p2 ln~12ze2p2/2MpT!dp. ~7!

Introducing the variablex5p2/(2MpT) we have

n5
g

4p2
~2MpT!3/2E

0

` x1/2

z21ex21
dx ~8!

and
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P5
g

6p2
~2MpT!3/2TE

0

` x3/2

z21ex21
dx, ~9!

where the integrals can be written in terms of thegn func-
tions @9# as

E xn

z21ex21
dx5G~n11!gn11~z! ~10!

with

gn~z!5(
l 51

`
zl

l n11

so that

gs~1!5zs

and

gs21~z!5z
dgs~z!

dz
.

Therefore we have for a nonrelativistic free pion gas at eq
librium at low temperature and density

n5gS MpT

2p D 3/2

g3/2~z! ~11!

and

P5gS MpT

2p D 3/2

Tg5/2~z!. ~12!

Thus the equation of state can be written as

P5nT
g5/2~z!

g3/2~z!
. ~13!

III. THE KINETIC THEORY FOR PIONS

The possibility of having a hydrodynamic description
the pion gas requires the definition of macroscopic fie
such as the velocityVW 5VW (rW,t), the pressureP5P(rW,t), the
number densityn5n(rW,t), the temperatureT5T(rW,t), and
others. In other words, it is needed to have a large numbe
pions in each volume elementdV. The statistical description
of the gas is based on the~one-particle! distribution function
f (rW,vW ,t) which gives the number of pions inside the phas
space volume elementdrW dvW at the instantt. In fact the
phase-space volume element is given bydrW dpW but in the
case considered here the difference amounts to a con
factor which we include in the definition of the distributio
function f. Thus the total number of pions will be given by

N5E f ~rW,vW ,t !drWdvW 5E n~rW,t !drW. ~14!
1-3
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As we are interested here in the behavior of the pion
at low temperatures and densities, most of the pion inte
tions will occur at low energies. Then the pion-pion intera
tions will be essentially elastic and the total number of pio
will be a conserved quantity. This in particular means tha
makes sense to introduce the chemical potentialm5m(rW,t)
related with the pion number even in the presence of lo
energy pion interactions. The evolution of the distributi
function is determined by the BBKGY~Bogoliubov, Born,
Kirkwood, Green, and Yvon! hierarchy@10#. This is a set of
N coupled equations for then-particle distribution functions
f (n)(rW1 ,vW 1 ,rW2 ,vW 2 , . . . ,rWn ,vW n ,t) with f 5 f (1) . However, for
low-density gases it can be a good approximation to trunc
the BBKGY hierarchy. For example, by using the Bogoli
bov ansatz, i.e., by writing the two-particle function in term
of an appropriate product of two one-particle functions~mo-
lecular chaos hypothesis!, it is possible to decouple the firs
BBKGY equation from the others to obtain the well know
Boltzmann equation. This equation was modified by Uehl
and Uhlenbeck in order to include the quantum statistic
fects ~see, for example,@11#!. For the bosonic case th
Uehling-Uhlenbeck equation reads

~] t1vW 1¹WrW! f 15C@ f 1#, ~15!

where

C@ f 1#5E dvW 2dsuF f 18 f 28S 11
f 1

A D S 11
f 2

A D
2 f 1f 2S 11

f 18

A D S 11
f 28

A D G ~16!

is the collision term or collision functional. The above equ
tion describes the irreversible space-time evolution of
~one-point! distribution functionf, this irreversible behavior
being a consequence of the truncation of the BBKGY hi
archy. As usual we use for short the notationf i5 f (rW i ,vW i ,t)
and f i85 f (rW i8 ,vW i8 ,t) with i 51,2. ds is the differential cross
section corresponding to the elastic scattering of two pi
with initial and final velocitiesvW 1 ,vW 2 and vW 18 ,vW 28 , respec-
tively. u is the relative velocity of the initial particlesu
5uvW 12vW 2u and, finally, the normalization constantA is given
by A5gMp

3 /(2p)3.
As it is the case of the Boltzmann equation, the Uehlin

Uhlenbeck equation typically drives the gas from arbitra
initial distributions to the equilibrium distributionf 0 which
is a fixed point of this equation in the sense that the collis
functional vanishes on it:

C@ f 0#50. ~17!

For a gas moving at a macroscopic velocityVW the equilib-
rium distribution corresponding to temperatureT and pion
chemical potentialm is given by

f 0~rW,vW ,t !5A~e1/T(Mp(vW 2VW )2/22m)21!21 ~18!
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from which the properties of free pion gas given in the p
vious section can be derived. The case of local equilibrium
also described by this distribution but having theVW , T, and
m parameters depending on the position and time. This c
corresponds to an ideal fluid. However, in order to descr
dissipative processes, such as viscosity or thermal con
tion, it is necessary to consider the case where the pion g
not even in local thermal equilibrium.

IV. HYDRODYNAMIC EQUATIONS

Given some magnitudec it is possible to compute its
statistical average by using the distribution function as

^c&5

E f cdrW

E f drW
5

E f cdrW

n~rW,t !
, ~19!

where n5n(rW,t) is the pion number density. This averag
can be understood as the corresponding macroscopic ma
tude in the hydrodynamic approach@12#. For example, the
macroscopic fluid velocityVW is given by

VW 5

E f vW dvW

E f dvW
5

1

nE f vdvW . ~20!

The equation governing the evolution of any of these m
nitudes~transport equations! can be obtained by multiplying
c1 by the Uehling-Uhlenbeck equation and then integrat

vW 1 so that

E dvW 1~] t1vW 1¹WrW! f 1c1

5E dvW 1dvW 2dsuc1@ f 18 f 28~11A21f 1!

3~11A21f 2!2 f 1f 2~11A21f 18!~11A21f 28!#.

~21!

The right-hand side term can be written in a more symme
fashion as

1

4E dvW 1dvW 2dvW 3dvW 4uTu2~c11c22c182c28!

3@ f 18 f 28~11A21f 1!~11A21f 2!

2 f 1f 2~11A21f 18!~11A21f 28!#, ~22!

whereuTu2 is defined through the relation

ds5
uTu2

uvW 12vW 2u
dvW 18dvW 28 . ~23!
1-4
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From this form of the collision terms it becomes appar
than it vanishes for any quantityc which is conserved in the
collision such as the total energy or momentum. On the o
hand, by using the definition of statistical average, the fi
term of Eq.~21! can be written as

] tn^c&1¹WrWn^cvW &. ~24!

Thus for conserved magnitudes this term vanishes. In o
to find the basic hydrodynamic equations it is useful to wr
the velocity asvW 5VW 1jW , i.e.,jW is the pion velocity relative to
the macroscopic velocityVW and therefore it averages to zer
Choosingc51, vW , andv2 ~corresponding to the conserva
tion of a constant, the momentum, and the energy in
elastic collision! we obtain the equations

c51→] tn1¹W nVW 50,

c5vW→] tnVi1¹jnViVj1¹jn^j ij j&50, ~25!

c5v2→] tn~V21^j2&!1¹inVi~V21^j2&!

1¹i2nVj^j ij j&1¹in^j ij
2&50.

In order to understand the meaning of the above equat
we can introduce the following macroscopic quantities:

Pi j 5Mpn^j ij j& ~26!

is the pressure tensor,

Q5
1

2
Mpn^j2& ~27!

is the internal energy density, and

qi5
1

2
Mpn^j ij

2& ~28!

is the energy~heat! flux. Due to the isotropy of the pion fluid
the pressure tensor can be taken as diagonal, i.e.,Pi j
5Pd i j . In this caseQ53P/2 andqi50. Thus ~by taking
VW 50 but not its derivatives, which can always be done! we
arrive to the standard ideal fluid equations, namely the c
tinuity equation

] tn1n¹iVi50, ~29!

the Euler equation

nMp] tVi1¹i P50, ~30!

and the energy conservation equation

] tQ1
5

3
Q¹iVi50. ~31!

In spite of the above equations for the ideal fluid, it is w
established that an irreversible flux of energy and momen
appear in an inhomogeneous gas. This flux gives rise to
well known dissipative processes of thermal conduction
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viscosity. For example, a small gradient of temperature p
duces a heat flow which in a first approximation can be w
ten as

qi52k¹iT, ~32!

wherek is a coefficient called thermal conductivity. In orde
to include momentum diffusion effects we add an extra te
to the isotropic pressure tensor:

Pi j 5Pd i j 1Pi j8 . ~33!

The requirement for this tensor to vanish for uniform tran
lations and rotations of the fluid makes it possible to write
to first order in the velocity derivatives as@13#

Pi j8 52hS ]Vi

]xj
1

]Vj

]xi
2

2

3 (
l 51

3
]Vl

]xl
d i j D 2z(

l 51

3
]Vl

]xl
d i j .

~34!

Thus it is needed to introduce two coefficientsh andz which
are usually called first and second viscosity coefficients. T
introduction of the dissipative effects does not modify t
continuity equation. However, the Euler equation become

] tnVi1¹jnViVj1
1

Mp
¹j Pd i j

5
1

Mp
¹jFhS ]Vi

]xj
1

]Vj

]xi
2

2

3 (
l 51

3
]Vl

]xl
d i j D

1z(
l 51

3
]Vl

]xl
d i j G , ~35!

which is known as the Navier-Stokes equation. The ene
conservation equation is in this case

] tS nV21
2

Mp
QD1¹iVi S nV21

2

Mp
QD1¹i

2

Mp
Vj Pd i j

5¹ik¹iT1
2

Mp
¹iVjFhS ]Vi

]xj
1

]Vj

]xi
2

2

3 (
l 51

3
]Vl

]xl
d i j D

1z(
l 51

3
]Vl

]xl
d i j G . ~36!

Thus the description of the dissipative flow of energy a
momentum requires the introduction of three transport co
ficients k, h, and z. In this work we will deal with the
computation of theh coefficient only~shear viscosity!, butk
andz can be computed in a similar way. In facth is the only
relevant transport coefficient whenever heat conductivity
be neglected~adiabatic flow! and the fluid is incompressible
In principle any fluid can be considered as incompressible
far as the fluid velocityV is small when compared with th
fluid sound speedvs and no external fields are presen
Therefore in the regimeV/vs!1 it is always possible to
neglect the second~bulk! viscosityz. However the bulk vis-
cosity must be taken into account in those circumstan
1-5
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where density cannot be taken as a constant. This is the
for instance, of shock waves and other phenomena where
fluid velocity is comparable with the sound speed.

V. COMPUTATION OF THE TRANSPORT COEFFICIENTS

As it has been mentioned above the description of
dissipative processes requires going beyond local equ
rium. Thus in order to compute the transport coefficients
have to consider a distribution functionf slightly perturbed
from the equilibrium distributionf 0, i.e.,

f 5 f 01d f 5 f 01 f 0
x

T
, ~37!

wherex is an arbitrary function of the velocities which rep
resents the inhomogeneous contribution to the distribu
function. This contribution will be assumed to be small in t
sense thatx/T!1 since we are interested only in the com
putation of the transport coefficients. Thex function must by
determined by solving the Uehling-Uhlenbeck equat
which can be linearized with respect tox. Then it is possible
to compute the transport coefficients from this function. F
example, the heat flux can be written as

qi5
1

2
MpE f 0S 11

x

TD v iv
2dvW . ~38!

Taking into account that this flux vanishes for a homog
neous gas and using the definition of the heat conducti
we have

2k¹iT5
Mp

2T E f 0xv iv
2dvW . ~39!

Now it is useful to write thex function as

x52¹iThi~vW !52¹iTv ih~v !. ~40!

Therefore

k¹iT5k i j ¹jT ~41!

with the tensor conductivityk i j being given by

k i j [
Mp

2T E f 0hv jv iv
2dvW . ~42!

For an isotropic gask i j 5kd i j , so that we have the following
equation for the heat conductivity:

k5
Mp

6T E f 0hv4dvW . ~43!

In a similar way it is possible to write the viscosity in term
of an h function. In order to do that we write the pressu
tensor in terms of the distribution function

Pi j 5MpE f 0S 11
x

TD v iv jdvW . ~44!
09601
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e
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For the present calculation it is enough to consider the c
VW 50 ~but not its derivatives!. Then the nonisotropic compo
nent of the pressure tensor can be written as

Pi j8 5
Mp

T E f 0xv iv jdvW . ~45!

On the other hand this tensor can be written as

Pi j8 522hVi j 1S 2

3
h2z DVhhd i j , ~46!

where we have introducedVi j 5(] iVj1] jVi)/2. For further
convenience we choose the perturbation to have the form

x5Vklhkl~vW !, ~47!

where hkl is a microscopic velocity dependent quanti
which can be written as

hkl5S vkv l2
1

3
v2dklDh~v !. ~48!

Therefore by equating the two forms ofPi j8 we find

2hVi j 5h i jkl Vkl , ~49!

where as far as we are interested only in the first visco
coefficient we have neglected thez contribution toPi j8 , and
h i jkl ~the viscosity tensor! is given by

h i jkl [
Mp

T E v iv j S vkv l2
1

3
v2dklD f 0~v !h~v !dvW . ~50!

Due to several symmetries of this tensor it can be written

h i jkl 5hS d ikd j l 1d i l d jk2
2

3
d i j dklD , ~51!

so that we have

h5
Mp

10TE v iv j S v iv j2
1

3
v2d i j D f 0~v !h~v !dvW . ~52!

As theh function depends only on the velocity modulus it
possible to perform the angular integrations

h5
4p

15T
AE

0

` 1

z21 expS Mpv2

2T D21

v6h~v !dvW . ~53!

In the following it will be useful to considerh as a function
of the adimensional variablex, i.e., h5h(x) defined as

x5
Mpv2

2T
. ~54!

At this point it is customary to develop theh(x) in terms
of the Sonine polynomials. However, it is more appropria
in our case to introduce a new family of orthogonal polyn
1-6
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PION GAS VISCOSITY AT LOW TEMPERATURE AND . . . PHYSICAL REVIEW D65 096011
mials Pr
s(z;x) since we are considering the Uehlin

Uhlenbeck as the transport equation~i.e., we have taken into
account quantum effects! instead of the more common Bol
zmann equation. The definition and the main properties
these new polynomials can be found in the Appendix.
terms ofPr

s the h function can be written as

h~x!5(
s50

`

BsPr
s~z;x!. ~55!

Therefore

h5
Mp

10T S 2T

Mp
D 5/2

AE
0

`

dx
x5/2

z21ex21
(
s50

`

BsPr
s~z;x!

~56!

and the distribution function can be written as

f 5 f 01
f 0

T
Vi j S v iv j2

1

3
d i j v

2D (
s50

`

BsPr
sS z;

Mp

2T
v2D .

~57!

For all the families of polynomials, i.e., for all ther val-
ues, we have exact conservation of the collision invaria
This fact makes it possible to chooser so that we get the
simplest integral. The appropriate value turns out to br
55/2 and then we get

h5
Ap3/2

2 S 2T

Mp
D 5/2

g7/2~z!B0 . ~58!

In this way the computation of the viscosity of the pion g
has been reduced to the computation of theB0 coefficient.

VI. SIMPLIFYING THE UEHLING-UHLENBECK
EQUATION

As discussed above the perturbed distribution funct
must be a solution of the Uehling-Uhlenbeck equation~15!.
In order to solve this equation it is quite convenient to wr
the left-hand side in terms of macroscopic quantities, as
temperature, velocity, density, and fugacity, and their deri
tives. This can be done by using the equation of state and
hydrodynamic equations as follows. First of all at lowe
order we have

] t f 1vW ¹W f .] t f
01vW ¹W f 0

5A] tS 1

z21expS E

TD21D
1AvW ¹W S 1

z21expS E

TD21D . ~59!

Thus the temporal derivative is
09601
f
n

s.

n

e
-

he
t

] t f
052

f 02z21 expS E

TD
A S 1

T
] tE2

E

T2
] tT2] t logzD ,

~60!

where the energyE is given by

E5
Mp

2
~vW 2VW !2 ~61!

so that we have

] t f
05

f 02

AzexpS 2
E

TD S ] t logz1
E

T2
] tT1

Mp

T
v i] tVi D .

~62!

In a similar way we can obtain

v j¹j f
05

f 02v j

AzexpS 2
E

TD S ¹j logz1
E

T2
¹jT1

Mp

T
v i¹jVi D .

~63!

Thus we have

] t f
01v j¹j f

05
f 02

AzexpS 2
E

TD S ] t logz1
E

T2
] tT

1
Mp

T
v i] tVi1v j¹j logz

1
E

T2
v j¹jT1

Mp

T
v iv jVi j D . ~64!

Here it is possible to use the state equation for the f
pion gas and the ideal fluid equations~Euler, continuity, and
energy conservation! to find

] t f
01v j¹j f

05
f 02

AzexpS 2
E

TD F1

T S E

T
2

5

2

g5/2~z!

g3/2~z! D v i¹iT

1S Mp

T
v iv j2

2

3

E

T
d i j DVi j G . ~65!

On the other hand, substituting expression~37! into Eq.~16!,
expanding to first order in the perturbationx, and taking
benefit from the equilibrium distribution function relation

f 1
08 f 2

08~11A21f 1
0!~11A21f 2

0!

5 f 1
0f 2

0~11 f 1
08!~11A21f 2

08!, ~66!

we obtain
1-7
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f 18 f 28~11A21f 1!~11A21f 2!2 f 1f 2~11A21f 18!~11A21f 28!

5
A2

T

z22eE/T

~z21eE1 /T21!~z21eE2 /T21!~z21eE18/T21!~z21eE28/T21!
DH xF12z expS 2

E

TD G J , ~67!
um
r
e

in

de
A
pr
lie
. I

b
oo
p

fie
e
th

in
ding

at-

ven

f

whereE5E11E25E181E28 and theD symbol is defined as

D@ f ~x!#[ f ~x18!1 f ~x28!2 f ~x1!2 f ~x2!. ~68!

Thus the whole collision term can be written as

C@ f 1#5
1

A2T
E dvW 2ds u z22 exp~E/T! f 1f 2f 18 f 28D

3H xF12z expS 2
E

TD G J , ~69!

where we have omitted the superindex 0 in the equilibri
distribution function. In this way the complete transpo
equation for the slightly unhomogeneous pion gas becom

f 1
2

ze2Mpv1
2/2T

F S Mpv1
2

2T
2

5

2

g5/2~z!

g3/2~z!
D v1 i¹iT

1MpS v1 iv1 j2
1

3
v1

2d i j DVi j G
5

1

AE dvW 2ds u z22eMp/2T(4U21u2)

3 f 1f 2f 18 f 28D@x~12ze2Mpv2/2T!#, ~70!

where we have definedUW 5(vW 11vW 2)/25(vW 181vW 28)/2, i.e., it

is the collision center of mass velocity. Once againuW 5vW 1

2vW 2 is the relative velocity of the incident pions. Thus,
particular, we have

E5
Mp

2 S 2U21
1

2
u2D . ~71!

VII. LOW-ENERGY PION CROSS-SECTION

In order to solve the above transport equation it is nee
to know the differential cross section for pion scattering.
we are interested in the low energy regime the most ap
priate approach is the chiral perturbation theory which re
on the chiral symmetry pattern of the strong interactions
particular the chiral Lagrangian approach suggested
Weinberg is quite useful and extended up to the one l
level by Gasser and Leutwyler. This chiral Lagrangian a
proach consists of a systematic expansion on the pion
derivatives and the pion mass which are considered to b
the same order. From the lowest order of this expansion,
pion elastic scattering amplitude is given by
09601
t
s

d
s
o-
s
n
y
p
-
ld
of
e

Ta1 ,a2 ,a
18 ,a

28
~s,t,u!5

s2Mp
2

Fp
2

da1a2
da

18a
28
1

t2Mp
2

Fp
2

da1a
18
da2a

28

1
u2Mp

2

Fp
2

da1a
28
da2a

18
, ~72!

where the standard Mandelstan variabless, t, andu are re-
lated bys1t1u54Mp

2 , the a subindices refer to the pion
isospin andFp is the pion decay constant. In the total isosp
basis there are three independent amplitudes correspon
to I 50,1,2 which are given by

T05
2s2Mp

2

Fp
2

,

T15
t2u

Fp
2

, ~73!

T25
2Mp

2 2s

Fp
2

.

The averaged modulo squared amplitude is given by

uTu25
1

(
I

~2I 11!
(

I
~2I 11!uTI u2 ~74!

which leads to

uTu25
1

9Fp
4 @21Mp

4 19s2224Mp
2 s13~ t2u!2#. ~75!

The relativistic differential cross section for elastic pion sc
tering is

ds5
uTu2

4uE1E2
d LIPS, ~76!

where the differential Lorentz invariant phase space is gi
by

d LIPS[C~2p!4d4~p11p22p182p28!

3
dpW 18

2~2p!3E18

dpW 28

2~2p!3E28
, ~77!

where the constantC51/2 takes into account the identity o
the final pions.
1-8
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PION GAS VISCOSITY AT LOW TEMPERATURE AND . . . PHYSICAL REVIEW D65 096011
As discussed above we are interested in the nonrelativ
regime where pW i5MpvW i , PW 52MpUW , and Ei5Mp

1Mpv i
2/2. In this limit it is convenient to write the cros

section in terms of the center of mass and relative veloci
UW , uW , anduW 8 defined as

uW 85vW 182vW 28 , u5u8. ~78!

After some standard calculations the nonrelativistic red
tion of the cross section can be found to be

ds5
23

768

Mp
2

pFp
4 S 12

3

2
U21

13

184
u2

1U2 cosu8
2U1u cosu8

2U cosu81u
D d cosu8 ~79!

whereu8 is the angle between byUW anduW 8.

VIII. LOWEST ORDER VISCOSITY FOR THE PION GAS

As we have seen in previous sections the perturbatio
the distribution function appropriate for the computation
the pion gas viscosity can be written as

x52Vi j S v iv j2
1

3
v2d i j D (

s50

`

BsP5/2
s ~z;x!, ~80!

where theBs coefficients must be obtained by solving th
linearized transport equation,B0 being the dominant one. In
order to do so let us consider for a while a tensorl kl which is
an arbitrary function onz andv̂1. For further convenience we
have defined the hat on any velocity as

v̂5AMp

2T
v. ~81!

By multiplying this tensor by the transport equation and
tegrating onv1 we have

E dvW 1l kl~z; v̂1!
f 1

2

ze2 v̂1
2 F S v̂1

22
5

2

g5/2~z!

g3/2~z! D v1 i¹iT

1MpS v1 iv1 j2
1

3
v1

2d i j DVi j G
52Vi j (

s50

`

Bs

1

AE dvW 1dvW 2ds l kl~z; v̂1!u z22

3e(2Û211/2û2) f 1f 2f 18 f 28DF S v iv j2
1

3
v2d i j D

3~12ze2 v̂1
2
!P5/2

s ~z; v̂2!G . ~82!

Now we choose the tensorl kl to be
09601
tic

s

-

of
f

-

l kl~z; v̂ !5S vkv l2
1

3
v2dklD ~12ze2 v̂2

!P5/2
t ~z; v̂2!.

~83!

Then, one of the two integrals appearing in the right-ha
side of the Eq.~82! vanishes, namely

E dvW 1l kl~z; v̂1!
f 1

2

ze2 v̂1
2 S v̂1

22
5

2

g5/2~z!

g3/2~z! D v1 i¹iT50.

~84!

Therefore the two sides of Eq.~82! are proportional toVi j
which is arbitrary. Thus one possible solution to the equat
is found by eliminating this tensor in both sides and then
contracting with the tensorsd ikd j l so that the right-hand side
of Eq. ~82! becomes

A2Vi j E dvW
MpS vkv l2

1

3
v2dklD 2

z21ev̂2
21

P5/2
t ~z; v̂2!

5Vi j A
2
5p3/2Mp

2 S 2T

Mp
D 7/2

g7/2~z!d0t . ~85!

In order to compute theBs coefficients we have to proceed i
a similar way with the right-hand side of Eq.~82!. For that
purpose we will take the low energy limit of the differenti
cross section which is just

ds5
23Mp

2

768pFp
4

d cosu8, ~86!

whereu8 belongs to the interval (0,p). Therefore at very low
energies the elastic pion scattering cross section can be
sidered as a constant, so that it is formally equivalent to
elastic scattering of rigid spheres of radius

R5
Mp

pFp
2
A 23

384
. ~87!

After the manipulations described below the right-hand s
of the transport equation can be written as the collision te
as

Vi j

23Mp
2 A3

768Fp
4 S 2T

Mp
D 11/2

(
s50

`

Bsbst~z!, ~88!

where we have defined

bst~z!5E
0

`

dUduE
0

p

du8duE
0

2p

df sinu8 sinu U2u3z22

3e2U211/2u2

)
a1 ,a2 ,a18 ,a28

~z21eva
2
21!21

3DF S vkv l2
1

3
dklv

2D ~12ze2v2
!P5/2

s ~z;v2!G
3DF S vkv l2

1

3
dklv

2D ~12ze2v2
!P5/2

t ~z;v2!G .
~89!
1-9
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Then the transport equation~82! can be written as

23MpA

1920p3/2Fp
4 S 2T

Mp
D 2

g7/2
21~z!(

s50

`

Bsbst5d0t . ~90!

Therefore by defining

Bs[
23MpA

1920p3/2Fp
4 S 2T

Mp
D 2

g7/2
21~z!Bs ~91!

the viscosity is given by

h5A2T

Mp

960p3Fp
4

23Mp
g7/2

2 ~z!B0 , ~92!

whereB0 is a solution of the equation system

(
s50

`

Bsbts~z!5d t0 ~93!

or

S b00~z! b01~z! b02~z! •••

b10~z! b11~z! b12~z! •••

b20~z! b21~z! b22~z! •••

A A A �

D S B0

B1

B2

A
D 5S 1

0

0

A
D .

~94!
ro
o
T
s

ec

rd

09601
In order to find the leading contribution to the viscosity w
can truncate the above system to find

B05
1

b00~z!
. ~95!

In this way the calculation of the viscosity has been redu
to the computation of the integralb00(z).

IX. RESULTS AND DISCUSSION

According to our previous discussion the viscosity of t
pion gas at low density and temperatures is given by
~92!, whereB0 is the solution of the equation system given
Eq. ~93! and the corresponding coefficients are defined in
~89!. Thus it is possible, at least in principle, to find th
viscosity as a function of the temperatureT and the fugacity
z ~or the pion chemical potential!. Alternatively it is also
possible to find the viscosity as a function of the temperat
and the pion number density. Due to the complicated in
grals appearing in the definition of thebst(z) functions it has
been possible to get numerical results only by Monte Ca
@14# integration. For the sake of simplicity most of the
numerical results have been obtained by using the appr
mation of Eq.~95! and the hard sphere cross section of E
~86!. In order to check the validity of these approximatio
we have computed the 434 matrix containing the first
bst(z) functions for the particular valuez51. The result and
the corresponding errors is
bst5S 277.260.7 24261 29963 2408614

24261 104368 239568 2800630

29963 239568 107006110 271006200

2408614 2800630 271006200 19900062000

D . ~96!
ave
Now we consider the submatrices 131, 232, 333,
and 434 and solve the corresponding system for the app
priate number ofB so that we can check the convergence
the results as the size of the truncation is increased.
results are shown in Table I. There we see that the error i
the order of 1.6%.

To take into account the velocity effects in the cross s
tion we will consider Eq.~79! instead of Eq.~86! in the
computation of thebi j integrals. Then we will have

bst5bst
0 1

T

Mp
bst

1 , ~97!

where bi j
0 is the leading term corresponding to the ha

sphere approximation and
-
f
he
of

-

b00
1 5E

0

`

dUduE
0

p

dudaE
0

2p

3df
sinu sina U2u3e2U211/2u2

~ev18
2
21!~ev28

2
21!~ev1

2
21!~ev2

2
21!

3S 13

92
u223U212U2 cosu

2U1u cosu

2U cosu1uD
3H DF S v iv j2

1

3
d i j v

2D ~12e2v2
!G J 2

. ~98!

At the zero order in the sense of the previous table we h

B05
1

b00
5

1

b00
0 1

T

Mp
b00

1

, ~99!
1-10



oach

PION GAS VISCOSITY AT LOW TEMPERATURE AND . . . PHYSICAL REVIEW D65 096011
TABLE I. Values forBi for low i in the hard spheres approximation, and the first orders in the appr
explained in the text.

B0 B1 B2 B3

Zero order 3.60831023

First order 3.63031023 1.49731024

Second order 3.64731023 1.65431024 3.98531025

Third order 3.66631023 1.76531024 4.70031025 9.90231026
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which at low temperatures can be written as

B05
1

b00
0 S 12

T

Mp

b00
1

b00
0 D , ~100!

so that

h5A2T

Mp

960p3Fp
4

23Mp
g7/2

2 ~z!
1

b00
0 S 12

T

Mp

b00
1

b00
0 D . ~101!

This formula can be applied provided

T!MpUb00
0

b00
1 U . ~102!

After a numerical integration we find, forz51, b00
1 5

2310640. By comparison with our previous resultb00
0

5277.260.7 we get the upper bound for the temperature

T!~0.9060.12!Mp , ~103!

which means that the hard sphere approximation is safe
vided the temperature is much smaller than the 90% of
pion mass. As we are working in a nonrelativistic framewo
this will always be the case and then no additional constr
on the applicability of our results is coming from the ha
sphere approximation.

Therefore in the following we will work at zero order an
in the hard sphere approximation. In this case the viscosit
given by

h~T,z!5AT
4096A2p2Fp

4

345Mp
3/2 @b00~z!#21F E

0

` x5/2

z21ex21
dxG 2

.

~104!

Some numerical results obtained from this formula are fou
in Table II for different values of the fugacityz. The classical
case is just the limit ofz going to zero. This corresponds to
classical gas of hard spheres of radius

R5
Mp

pFp
2
A 23

384
. ~105!

Because of the particular way we have performed our co
putations the particular casez50 is not numerically acces
sible. However, this case has been treated a long time
and it is possible to find an analytic result for the viscos
namely
09601
o-
e

nt

is

d

-

go
,

h5AT
5AMp

16ApR2
. ~106!

Thus we can check that our computations have the pro
z50 limit. In Fig. 1 we show the behavior ofb00 and the
viscosity, for constantT, in terms of the fugacity. From thes
plots we learn that the viscosity of the bosonic quantum
is smaller than that of the classical gas. This could be
pected because of the following heuristic argument: Af
some elastic collision the emerging particles have more
finity for occupied states than classical ones. Therefore
microscopic transfer of momentum is more effective in
classical gas than in a bosonic gas and then the viscosi
also larger. A pictorial view of this fact is displayed in Fig.

In many cases it is useful to have the viscosity as a fu
tion of the temperature and the density instead of the te
perature and the fugacity. The pionic density can be writ
in terms of the temperature and the fugacity as

n

T3/2
5

gMp
3/2

A2p2E0

` x1/2

z21ex21
dx. ~107!

This equation also defines implicitly the fugacity as a fun
tion of the density and the temperaturez5z(n,T). However,
due to the complexities of the above integral these functi
have only been computed numerically. In Fig. 3 we p
h/AT as a function ofn/T3/2. The computed points can b
fitted quite well in the plotted range with a polynomial,

f 1~x!5A1Bx1Cx2, ~108!

with constants A50.181460.0004, B5(22.4260.03)
31024, and C5(9.660.3)31028. Thus the function ob-
tained ~Fig. 3! for the viscosity versus the temperature a
the density is

TABLE II. Viscosity values computed in different physical re
gimes.

h (MeV3)

Quantum case (z51) AT 4.003105

Quantum case (z50.05) AT 1.403106

Classical case AT 1.93106
1-11



ity

on
is

tte
e
e
ic

ons
is-
ich
m-
al
n-

ty in
not
n
e-

the
ol-
e

hat
can
we
p of
ed
ns,

ad-

tu

f

al

to er

ANTONIO DOBADO AND SILVIA N. SANTALLA PHYSICAL REVIEW D 65 096011
h~T,n!5
4096A2p2Fp

4

345Mp
3/2

ATF0.181422.4231024
n

T3/2

19.631028S n

T3/2D 2G . ~109!

As it may be noticed in Fig. 4, the values of the viscos
cover the range from 106 to 107 MeV3 for the considered
densities and temperatures.

X. CONCLUSIONS

In this work we have computed the viscosity of the pi
gas, starting from first principles only. This computation
relevant for the hydrodynamic description of hadronic ma
at low energies and densities. The work relies on the us
the Uehling-Uhlenbeck equation, which is the quantum v
sion of the Boltzmann equation, and chiral symmetry, wh

FIG. 1. Plot of@b00(z)#21@*0
`x5/2/z21ex21dx#2 versusz. It can

be understood as a plot of the viscosity, for constant tempera
and in arbitrary units, versus the fugacity.

FIG. 2. ~a! Two particles, belonging to two different regions o
the gas with different average momentum~black and white!, before
an elastic collision.~b! Particles before the collision in the classic
case where they typically get a new momentum~represented in
gray!. ~c! Particles in the bosonic gas where they typically want
go to occupied states with the same momentum.
09601
r
of
r-
h

determines completely the structure of the pion interacti
at low energies. We have also found a formula for the v
cosity in terms of the temperature and the density wh
properly fits our numerical results. The interest of the co
putations is twofold. First it is useful to check when the usu
assumption of perfect fluid for the hadronic fluid is reaso
able enough. Second it can be used to include the viscosi
the Navier-Stokes equations when dissipative effects can
be neglected. The main limitation of our work is that it ca
be applied only in the nonrelativistic domain. As a cons
quence of that it cannot be used directly in the study of
events observed in the modern ultrarelativistic heavy ion c
liders such as RHIC or the future LHC. In any case w
understand that our work is interesting in order to show t
the computations of transport coefficients of the pion gas
be done in a complete model independent way. In fact
consider that the result presented here is just the first ste
a complete relativistic computation which could be appli
at higher energies and therefore in more realistic situatio
to improve the standard hydrodynamic description of h

re
FIG. 3. Numerical fit ofh/AT} f 1(n/T3/2).

FIG. 4. 3D plot of viscosity vs temperature and particle numb
density, given by Eq.~109!.
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ronic matter. Work is in progress in that direction.

ACKNOWLEDGMENTS

The authors want to thank A. Gomez Nicola and J.
Pelaez for reading the manuscript. This work has been
tially supported by the Ministerio de Educacio´n y Ciencia
~Spain! ~CICYT AEN 97-1693 and PB98-0782!.

APPENDIX

In this appendix we study the main properties of the fa
ily of orthogonal polynomialsPr

s(z;x) defined on the inter-
val (0,̀ ) with measure

dm r~z;x![
xr

z21ex21
, ~A1!

wherezP(01# and r .0. By definition the polynomials are
orthogonal for some givenr, or in other words,

~Pr
s ,Pr

s8!5E
0

`

dx
xr

z21ex21
Pr

s~z;x!Pr
s8~z;x!

5A~z;r ,s!dss8 . ~A2!
.

hy

09601
.
r-

-

For simplicity we define the polynomials so that they a
monic, i.e., the coefficient of the term of highest degree
each polynomial is taken to be one. Thus the first polynom
is always the unity and its norm is given by

Pr
051→~Pr

0 ,Pr
0!5E

0

`

dx
xr

z21ex21
5G~r 11!gr 11~z!.

~A3!

From the condition

~Pr
0 ,Pr

1!50 ~A4!

it is possible to compute the second polynomial which tu
out to be

Pr
1~z;x!5

gr 12~z!

gr 11~z!
~r 11!2x. ~A5!

The third polynomial is obtained from the condition
(Pr

0 ,Pr
2)50 and (Pr

1 ,Pr
2)50 which gives
Pr
2~z;x!5

~r 13!gr 12~z!gr 14~z!2~r 12!gr 13
2 ~z!

~r 12!gr 11~z!gr 13~z!2~r 11!gr 12
2 ~z!

~r 12!~r 11!1
~r 13!gr 11~z!gr 14~z!2~r 11!gr 12~z!gr 13~z!

~r 11!gr 12
2 ~z!2~r 12!gr 11~z!gr 13~z!

3~r 12!x1x2. ~A6!

Higher polynomials can be obtained in a similar way.
l

v-

-
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