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We use the one-loop chiral perturbation theory ��-scattering amplitude and dispersion theory in the
form of the inverse amplitude method to study the quark-mass dependence of the two lightest resonances
of the strong interactions, the f0�600� (�) and the � meson. As the main results, we find that the ���
coupling constant is almost quark mass independent and that the � mass shows a smooth quark-mass
dependence while that of the � shows a strong nonanalyticity. These findings are important for studies of
the meson spectrum on the lattice.
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Although studied theoretically as well as experimentally
for many years, the spectrum of the lightest resonances in
QCD is still not understood from first principles. The only
known way to extract nonperturbative quantities from
QCD is the use of lattice QCD. However, current calcu-
lations are typically still done for relatively high quark
masses (see, e.g., Refs. [1,2]). Thus, in order to make
contact with experiment, appropriate extrapolation formu-
las need to be derived. This is typically done by using
chiral perturbation theory (ChPT), the low energy effective
theory of QCD [3,4]. ChPT predictions are model inde-
pendent and, in particular, provide, as an expansion, the
dependence of observables on the quark masses (or equiv-
alently the pion mass). The aim of this Letter is to predict
the quark-mass dependence of the � and the � mesons
from basic principles, namely, using ChPT to next-to-
leading order (NLO), unitarity, and analyticity in the
form of dispersion theory using the inverse amplitude
method (IAM) [5]. It is obtained from a subtracted disper-
sion relation of the inverse amplitude, whose imaginary
part in the elastic region is known exactly from unitarity.
All dependences on QCD parameters appear through the
ChPT expansion, which is used to calculate the low energy
subtraction points and the left cut. Hence, up to a given
order in ChPT, the approach has no model dependences.
For this work, we will use the NLO SU�2� elastic IAM
whose parameters are fitted to �� scattering data, and
therefore, our results are model independent only up to
NLO ChPT.

The use of dispersive methods also allows for a straight-
forward extension to the second Riemann sheet of the
complex plane where poles associated to resonances occur.
In this way, both � and � poles appear naturally without
any further assumptions and have the correct dependence
on QCD parameters up to the order of the ChPT expansion
used in the IAM. For instance, from a study of the leading
1=Nc behavior of the amplitudes, it was possible to con-
clude that the � is mostly of �qq nature whereas the � is
predominantly non- �qq [6].

In this Letter, we study how this different structure
encoded in the ChPT parameters gets reflected in the
quark-mass dependence. As we will see, also with respect
to the quark-mass dependence, the � behaves differently
than the �. We will show that for sufficiently large quark
(pion) masses, both states become stable poles on the
physical sheet; however, this limit is approached very
differently, only in part due to their different quantum
numbers.

Another motivation for this study is the Anthropic
Principle [7], i.e., the need for a subtle fine-tuning of
various parameters of the Standard Model. In order to
allow for an efficient triple � process, necessary for the
production of carbon, a NN interaction within 2% of the
known strength is necessary. Since the � meson plays a
central role in the NN interaction, this leads to bounds for
the sigma mass and, correspondingly, for the quark masses
[8]. This issue is particularly exciting, if the fundamental
constants were time dependent, as claimed in Ref. [9]. In
this context, the quark-mass dependence of the � was
studied in Ref. [10].

We are interested in �� elastic amplitudes projected on
partial waves tIJ of definite isospin I and total angular
momentum J. For simplicity, we will drop the IJ labels.
Note that the � (�) resonance appears as a pole in the
second Riemann sheet of the partial wave �I; J� � �0; 0�
[(1,1)]. Elastic unitarity implies

 Im t�s� � ��s�jt�s�j2; ) Im�t�s��1� � ���s�; (1)

where s is the usual Mandelstamm variable for the total
energy, ��s� � p=�2

���
s
p
� and p is the center of mass mo-

mentum. Consequently, the imaginary part of the elastic
inverse amplitude is known exactly.

In this Letter, we focus on the two lightest resonances of
QCD, the ��770� and the f0�600�. It is therefore enough to
work with the two lightest quark flavors u, d in the isospin
limit of an equal mass m̂ � �mu �md�=2. The pion mass is
given by an expansionm2

� � m̂� . . . [4]. Therefore, study-
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ing the quark-mass dependence is equivalent to studying
the m� dependence.

ChPT amplitudes are obtained as a series expansion t �
t2 � t4 � . . . with tk � O�pk�, where p stands generically
either for pion momenta or masses. The leading order, t2,
which is obtained at tree level from the O�p2� Lagrangian,
is just a polynomial fixed by chiral symmetry in terms of
the pion mass and its decay constant f�. The NLO term t4
has both one-loop contributions from the O�p2�
Lagrangian and tree level contributions from the O�p4�
Lagrangian. The latter depend on a set of low energy
constants (LEC), denoted by li, that absorb the one-loop
divergences through renormalization. Since these con-
stants are the coefficients of the energy and mass expan-
sion, the li have no quark-mass dependence. In contrast, f�
gets renormalized at NLO and thus depends explicitly on
the pion mass.

The ChPT series, being an expansion, satisfies unitarity,
Eq. (1), just perturbatively,

 Im t4�s� � ��s�jt2�s�j
2; ) Im

t4�s�

t2�s�
2 � ��s�; (2)

and cannot generate poles. Therefore, the resonance region
lies beyond the reach of standard ChPT. However, it can be
reached by combining ChPT with dispersion theory either
for the amplitude [11] or the inverse amplitude through the
IAM [12–14].

The IAM uses the ChPT series to generate resonances in
meson-meson scattering. In the elastic case, the IAM fol-
lows from dispersion theory [12,13] due to the fact that t
and 1=t have an almost identical analytic structure: both
have a ‘‘physical cut’’ from threshold to1 and a ‘‘left cut’’
from �1 to s � 0. In addition, the inverse amplitude may
have a pole whenever the amplitude vanishes. For the
�-channel, this happens at threshold to all orders, but for
scalar waves, it occurs at the so-called Adler zero sA, that
lies on the real axis below threshold, thus within the ChPT
region of applicability. Its position can be obtained from
the ChPT series, i.e., sA � s2 � s4 � . . . , where t2 van-
ishes at s2, t2 � t4 at s2 � s4, etc. . .. Thus, we can write a
dispersion relation for the inverse amplitude,

 

1

t�s�
�
s� sA
�

Z
RC
dz

Im1=t�z�
�z� sA��z� s�

� LC1=t � PC1=t;

(3)

where ‘‘LC’’ stands for a similar integral over the left cut.
To ensure convergence, we have made a subtraction pre-
cisely at sA. Since t2 is real on the real axis, we can
similarly write
 

t4�s�

t2�s�2
�
s� s2

�

Z
RC
dz

Imt4�z�=t2�z�
2

�z� s2��z� s�
� LCt4=t22

� PCt4=t22
:

(4)

We can now use unitarity, Eqs. (1) and (2), to find that the
integrand numerators are exactly opposite. Since the LC
integral is weighted at low energies, using NLO ChPT, we

also find LC�1=t� ’ �LC�t4=t
2
2�. Consequently, crossing

symmetry is satisfied just up to NLO. In the above rela-
tions, PC1=t and PCt4=t22

stand for the contributions of a
double and triple pole, respectively, which can be easily
calculated within ChPT. Their contribution is only relevant
around the Adler zero, where they diverge. Finally, we can
use ChPT to approximate �s� sA�=�z� sA� ’ �s�
s2�=�z� s2�. Altogether, we find
 

tmIAM�s� �
t22�s�

t2�s� � t4�s� � AmIAM�s�
;

AmIAM�s� � t4�s2� �
�s2 � sA��s� s2��t02�s2� � t04�s2��

s� sA
:

(5)

The usual IAM is recovered for AmIAM 	 0, which holds
exactly for all partial waves but the scalar ones. In the
original IAM dispersive derivation [12,13], AmIAM was
neglected, since it formally yields a NNLO contribution.
However, due to neglecting AmIAM, the IAM has a spurious
pole close to its Adler zero, which is only correct to LO
ChPT. As we will see, for large m�, the � pole splits into
two virtual poles below threshold, one of them moving
towards zero and eventually approaching the spurious pole
of the IAM. Thus, although the Adler zero ( ’ m�=

���
2
p

) is
very deep in the subthreshold region, we used the modified
IAM (mIAM) [5,15], which has no spurious pole, and
reproduces the Adler zero up to NLO. Switching from
the IAM to the mIAM influences only the mentioned
second � pole, and only when it is very close to the
spurious pole (this occurs when M� 
 1:5m�). Besides
this, the IAM and mIAM results are essentially the same.
For subtractions made at different low energy points,
AmIAM acquires additional NNLO terms, but their effect
is negligible [5].

Therefore, up to a given order in ChPT, the elastic
�m�IAM is built in a model independent way from the first
principles of unitarity and analyticity in the form of a
dispersion relation. The ChPT series is used only on the
Adler zeros and the left hand cut which is heavily weighted
at low energies, thus well within its region of applicability.
It is a dispersion integral for the inverse amplitude that
allows us to study the resonance region.

Although remarkably simple, the �m�IAM amplitudes
satisfy elastic unitarity, Eq. (1), exactly, and provide a very
good description of meson-meson scattering data simulta-
neously in the resonance and low energy regions [12–14].
Furthermore, the IAM generates the poles in the second
Riemann sheet associated to the resonances, namely � and
�. This description is obtained with values of the LEC
compatible with those of standard ChPT [13,14]. Actually,
the ChPT series up to NLO is recovered when Eq. (5) is
reexpanded at low energies. Thus, after a fit to data, we can
modify m� and follow the poles associated to � and � on
the second sheet.

As long as they fall within their uncertainties, the precise
values of the LECs lr3 and lr4 are not very relevant for
this study. We take from [4] 103lr3 � 0:8� 3:8,
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103lr4 � 6:2� 5:7. Then, we fit the mIAM to data up to the
resonance region and find 103lr1 � �3:7� 0:2, 103lr2 �
5:0� 0:4. All these LEC are evaluated at � � 0:77 GeV.

The values of m� considered should fall within the
ChPT range of applicability and allow for some elastic
�� regime to exist below K �K threshold. Both criteria are
satisfied, if m� 
 0:5 GeV, since we know SU(3) ChPT
still works fairly well with such a kaon mass, and because
for m� ’ 0:5 GeV, the kaon mass becomes ’ 0:6 GeV,
leaving a 0.2 GeV gap to the two-kaon threshold. For larger
values of m�, a coupled-channel IAM is needed, which is
feasible, but lies beyond our present scope, and lacks a
dispersive derivation.

Figure 1 shows, in the second Riemman sheet, the � and
� poles for the physical m�, and how they move as m�
increases. Note that, associated to each resonance, there are
two conjugate poles that move symmetrically on each side
of the real axis. In order to see more clearly that all poles
move closer to the two-pion threshold, which is also in-
creasing, all quantities are given in units of m� so that the
two-pion threshold is fixed at

���
s
p
� 2. Let us recall that, for

narrow resonances, their massM and width � are related to
the pole position in the lower half plane as ���������spole

p
’ M�

i�=2, and customarily this notation is also kept for broader
resonances. Hence, both �� and �� decrease for increasing
m�. In particular, �� vanishes exactly at threshold where
one pole jumps into the first sheet, thus becoming a tradi-
tional stable state, while its partner remains on the second
sheet practically at the very same position as the one in the
first. In contrast, when M� reaches the two-pion threshold,
its poles remain on the second sheet with a nonzero imagi-
nary part before they meet on the real axis and become
virtual states. As m� increases further, one of those virtual
states moves towards threshold and jumps onto the first
sheet, whereas the other one remains in the second sheet.
Such an analytic structure, with two very asymmetric poles
in different sheets of an angular momentum zero partial

wave, is a strong indication for a prominent molecular
component [16,17]. Differences between P-wave and
S-wave pole movements were also found within quark
models [18], the latter also showing two second sheet poles
on the real axis below threshold.

In the upper panel of Fig. 2, we show them� dependence
of M� and M� normalized to their physical values. The
bands cover the LEC uncertainties. Note, that significant,
additional uncertainties may emerge at the two loop level
for pion masses larger than 0.3 GeV—see, e.g., Ref. [19].
We see that both masses grow with increasing m�, but the
rise of M� is stronger than that of M�, and again we see
that around m� ’ 0:33 GeV, the � state splits into two
virtual states with different behavior. The upper branch
moves closer to threshold and thus has the biggest influ-
ence in the physical region, eventually jumping to the first
Riemann sheet. Note that the m� dependence of M� is
much softer than that suggested in the model of [8], shown
as the dotted line, which in addition does not show the
virtual pole splitting.

In the lower panel of Fig. 2, we show them� dependence
of �� and �� normalized to their physical values. The
decrease in �� is largely kinematical, following remark-
ably well the expected reduction from phase space as m�
and M� increase. In other words, the effective coupling of
the � to �� is almost m� independent. This was assumed
in the analysis of Ref. [20]; however, so far this assumption
has not been supported by theory. In sharp contrast to this
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FIG. 1 (color online). Movement of the � (dashed lines) and �
(dotted lines) poles for increasing pion masses (direction indi-
cated by the arrows) on the second sheet. The filled (open) boxes
denote the pole positions for the � (�) at pion massesm� � 1, 2,
and 3�mphys

� , respectively. Note, for m� � 3mphys
� , three poles

accumulate in the plot very near the �� threshold.
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FIG. 2 (color online). m� dependence of resonance masses
(upper panel) and widths (lower panel) in units of the physical
values. In both panels, the dark (light) band shows the results for
the � (�). The width of the bands reflects the uncertainties
induced from the uncertainties in the LEC. The dotted line
shows the � mass dependence estimated in Ref. [8]. The dashed
(continuous) line shows the m� dependence of the � (�) width
from the change of phase space only, assuming a constant
coupling of the resonance to ��.
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behavior is the one of ��. This suggests a strong pion mass
dependence of the � coupling to two pions, necessarily
present for molecular states [17,21].

Figure 3 is a comparison of our results for the m�
dependence of M� with some recent unquenched lattice
results [1], which deserves several words of caution. In
particular, our approach only ensures the m� dependence
contained in the NLO ChPT series—it is, e.g., lacking
terms of order m2

�p4 and higher. In addition, M� is the
‘‘pole mass’’ which, particularly for physical values, is
deep in the complex plane, while, due to the finite lattice
volume, the minimum energy with which pions are pro-
duced on the lattice is larger than the resulting M�. In our
formalism, we can mimic a narrow � by increasing the
number of colors [6]. We also show the result of rescaling
the IAM ChPT amplitudes from Nc � 3 to Nc � 10, which
effectively reduces �� by a factor of 3/10. Although this
narrowing effect is not exactly the same as that on the
lattice—it is more like quenching the lattice results, since
the largeNc expansion actually suppresses quark loops—it
is encouraging that making the � artificially narrower
yields a better agreement with the quark-mass dependence
of the lattice data. With these caveats in mind, our results
are in qualitative agreement with the lattice results.
Following Ref. [22], one may write M� � M0

� � c1m2
� �

O�m3
��, where the ci parameters are expected to be of order

one and 0:65 GeV 
 M0
� 
 0:80 GeV. This is confirmed

by a fit to lattice data [1]. From our approach, we predict
M0
� � 0:735� 0:0017 GeV. Furthermore, the IAM repro-

duces M� at the physical value of m�, where higher orders
in the � mass formula are ’ 15% [22]. Within that uncer-
tainty, we thus get the prediction c1 � 0:90� 0:11�
0:13 GeV�1. Although the quark-mass dependence of
our calculation is steeper than that of Ref. [1], the extracted
values are still consistent with the expectations mentioned
above—again we remind the reader that the m� depen-
dence included is correct only to NLO in ChPT.

To summarize, we presented a prediction for the quark-
mass dependence of the lightest resonances in QCD,
namely, the � and the�meson based on chiral perturbation

theory at next-to-leading order together with the inverse
amplitude method. We showed that the mass of the � has a
very smooth m� dependence, and its coupling to �� is
almost quark-mass independent—in Ref. [20], this was
only assumed without further evidence. The mass of the
�, on the other hand, shows a pronounced nonanalyticity
whenm� is varied. In addition, its effective coupling to��
is strongly m� dependent. This is interpreted as additional
evidence for a significant molecular admixture in the
sigma, consistent with previous analyses, and will be im-
portant for future chiral extrapolations of lattice data for
s-wave resonances.

We thank G. Colangelo, S. Dürr, V. V. Flambaum, U. G.
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FIG. 3. The gray band shows the m� dependence of � pole
mass from the IAM versus recent lattice results from [1]. The
dashed line is the IAM result for Nc � 10.
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