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Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments
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The viability of the time quantified Metropolis Monte Carlo technique to describe the dynamics of magnetic
systems is discussed. Similar to standard Brownian motion, the method is introduced basing on the comparison
between the Monte Carlo trial step and the mean squared deviation of the direction of the magnetic moment.
The Brownian dynamics approach to the time evolution of a magnetic moment is investigated and expressions
for the mean square deviations are obtained. However, the principle difference between the standard Brownian
motion and the magnetic moments dynamics is the presence of the spin precession which constitutes the
reversible part of the dynamics. Although some part of the precession contributes to the diffusion coefficient,
it also gives rise to athermal, energy conserving motion which cannot be taken into account by Monte Carlo
methods. It is found that the stochastic motion of a magnetic moment falls into one of two possible regimes:
(i) precession dominated motiofii,) nonprecessional motion, according to the value of the damping constant
and anisotropy strength and orientation. Simple expressions for the diffusion coefficient can be obtained in
both cases for diffusion dominated motion, i.e., where the athermal precessional contribution can be neglected.
These simple expressions are used to convert the Monte Carlo steps to real time units. The switching time for
magnetic particles obtained by the Monte Carlo with time quantification is compared with the numerical
integration of the Landau-Lifshitz-Gilbert equations with thermal field contribution and with some well known
asymptotic formulas.
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[. INTRODUCTION could be found only in the energy minima and calculates the
energy barriers separating them, assuming the Arrhenius-
The problem of thermally induced magnetization reversaNeel law for the probability of transition. As a consequence,
is very important from both, a fundamental and an appliedhe method could be viable for barriers large enough to build
point of view. In magnetic recording applications recentlythe equilibrium statistics. The dynamical information is con-
this problem has become of particularly keen interest since itained in the Arrhenius-N& prefactor. This constant is nor-
is widely accepted that the superparamagnetic recording demally calculated using the Fokker-Planck equatidrand is
sity limit will shortly be achieved. Several methods of treat- known exactly only for a few simple cases.
ing the problem in different time scales exist already in the At intermediate time scales, say, up to 1 s, the correct
literature. precessional information may not be important. However,
On time scales less than 1 ns, one normally integrates th@ome dynamical information arising from the form of the
dynamical equation of motiofLandau-Lifshitz-Gilbertwith potential in which the particle is moving may still be neces-
the thermal field representing thermal fluctuations followingsary. The time quantified Metropolis Monte CaflbQMC)
Brown?! On large time scales up to the order of years, thealgorithn?'° has been designed to work in this intermediate
kinetic Monte Carlo(MC) method which is known in mi-  time scale regime. It has been applied, for example, to cal-
cromagnetics as the Charap methedn be used. This sta- culate the magnetization decay in a di-bit pattern as a func-
tistical method is equivalent to the solution of the two-leveltion of exchange parameter and gave a similar result in com-
Master equatioR* The method supposes that the systemparison to other method$. Consequently, it is very
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important to compare the integration of the Landau-Lifshitzserving part of the equation of motion. Hence, no spin pre-
equation and the statistic@nalytical asymptoleapproaches cession scenario can be simulated by means of this approach.
with the TQMC method where their respective time regimesOn the other hand, the random-walk-like motion which is
overlap. due to the coupling of the system of interest to the heat bath
Metropolis MC methods are well established in the con-is paramount. As a consequence, the MC procedure will
text of equilibrium thermodynamic$:**However, Metropo-  work for a magnetic system dynamics where and when its
lis MC is also viable to describe nonequilibrium dynamics.dynamics is similar to that of a simple random walk.
The most common example is a random walk of a Newton- The work of Nowak et al® introduced the so-called
ian particle in the presence of thermal fluctuations. It is wellMonte Carlo method with quantified time step by comparing
known'* that the dynamics of a Brownian partioleere we the fluctuation size produced by MC to that produced by the
consider as Brownian particle a Newtonian particle in anLangevin dynamics. However, it was assumed that the mag-
external potential with a random term added to the equatiometization fluctuations have the same simple time depen-
of motion to simulate the temperatiirgbeys a simple diffu- dence as the thermal force fluctuations by analogy to the
sion equation. For a small time step the Master equatiomesults for the Brownian particle. For magnetic systems this
which governs the MC procedure is equivalent to theidea is not straightforward due to the presence of precession
Fokker-Planck equatiot?. Kikuchi et al!® showed directly and in the present paper we calculate and analyze the diffu-
that for a Brownian particle in an external potential the Me-sion coefficient1.1) directly from the linearized equation of
tropolis MC could be viewed as a numerical method to solvemotion for magnetic moments. We also try to explain how
the corresponding Fokker-Planck equation. Although thifar a TQMC procedure can in general be applied for the
was not stated in the paper, but it may be deduced that if thwvestigation of a dynamical behavior and we establish in
fluctuation sizes within a MC step are chosen to match theletail the necessary conditions for its application. Unlike

diffusion property of a random walk, i.e., previous comparisons between MC and Langevin dynamics
) or analytical calculatior’§'’ we present our results in real
(x%)=2DAt, (1D time units corresponding to average switching time of mag-

whereD is the diffusion coefficient, the Metropolis MC pro- Netic particles which we choose as an example of essentially
cedure should adequately describe the dynamics. The corRonequilibrium dynamics. As far as we know, this has never
parison of the nonequilibrium probability functions obtained Peen done before. The main idea of the present paper is to
by the MC and the analytical solution was in complete agreeWOrK further on the method which is capable to calculate the
ment. Meiburg’ also presented in his paper direct compari-SW'tCh'ng processes of magnetic structures in the presence of
son of the simulation of the Reyleigh-Stokes flow obtainedi€mperature and is fast comparing to that of the molecular

by the MC and the molecular dynamics method. dynamics.

In magnetism, mainly Ising and Heisenberg models have
been investigated by MC to account for equilibrium proper- II. DIEEUSIONAL PROPERTIES OF A SINGLE
ties (critical phenomenondue to the broad variety of appli- MAGNETIC MOMENT IN A POTENTIAL WELL

cations of this class of models in statistical physics. For non- ) )
equilibrium dynamics, the MC method was used by As was mentioned above, th_e existence of the preces-
Gonzalezet al18-21to account for thermally induced collec-~ Sional motion makes the magnetic moment dynamics differ-
tive magnetization relaxation. It has been shown, for ex£nt from that of the Brownian particle. From the point of
ample, that MC produces the expected logarithmic time deView of the MC technique, it is important to find out under
pendence of magnetization after some waiting time. yvh|ch CO.nd.ItIOI’IS the statistical properties of the two dynam-

Therefore, Metropolis MC has recommended itself iniCS are similar and to c.:alculat'e the dlffu_s_lon .coeff|C|ehtL)
magnetism as a fast computational method producing physW_h'Ch could_be used in the_ time quantlflcatlor_l. Let us start
cally reasonable dynamics. The big disadvantage of the Mith some simple observations of the magnetic particle mo-
algorithm is that the time step is normally measured in mction governed by the Lgndau—Llfshltz—Gllbe.rt equation W|th_a
steps and the physical time involved in the calculations is_randc_)m f|(_ald representing thermal fluctuations. The equation
unknown. The connection to physical time—if there is one atS Written in the following form:
all—is in general an open problem which is settled up to now
only in certain very simple cases. For example, for a Brown- d .. - - -
ian motion, if we are able to present some simple formula for —=~MXH—-aMX[MXH], 2.1
the diffusion coefficienf1.1) calculated from the dynamical
equation and use it to quantify the time step corresponding tQ,here
a MC trial step, then the MC procedure should correctly
describe the statistical properties of the time evolution of the

. . . ’yOHk

system. Of course, the main difference between a simple T=——— 1, (2.2
Brownian particle and a magnetic moment is the presence of Ms(1+a®)
the precessional term. This difference is crucial and does not . . . . .
allow mere translation of the results from one system to an© is the gyromagnetic Eat'o’ and is the damping constant.
other. Genera”y Speaking, a Metropo"s MC Simu|at(ﬁ‘na The magnetic momeni is normalized to the saturation
canonical ensemblsimply does not include the energy con- valueMg, and the internal fieldd, given by

=

o
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R 5E* 0.020 m
H=—-——, (2.3 -
5M 0.015
is normalized to the anisotropy field,=2K/M4 whereK is A
the anisotropy value. The ener@/ =E/2KV, whereV is = ootod

the volume, contains all the necessary energy contributions: =
anisotropy, exchange, magnetostatic, and Zeeman. The ther- =
mal fluctuations are introduced as random field fluctuations, =
added to a total internal fiel2.3) and having statistical
properties given by

0.005

0.000

0.00E+000 2.00E-010 4.00E-010

(£)=0, (2.9 Time (Sec)

akgT FIG. 1. Temporal evolution of the mean squared deviation from
(£(0)¢5(n))= m‘sijéﬁ% (2.9 equilibrium. Average over 10000 trajectorid§V/kgT=4.16,
=0.1. Angle between the applied field and anisotropy axis/B.
wherei,j denote Cartesian components/,z. In what fol-
lows we will compare the results of the MC simulations with Statistical regime, i.e., when the time spent by a particle in a
the integration of the Landau-Lifshitz-Gilbert equation. ThepPotential well is enough to build an equilibrium statistics
majority of the results of this paper are related to one modlarge barrier case In Fig. 2 we present the equilibrium
ment, or an assembly of noninteracting moments, with Slistribution, that is, exclydlng the initial dynamical part, of
given anisotropy easy axis and external fielg,, applied at tﬂeMy compfolnent for aflxed”value of thé, componﬁnt for A
some angle to it. In this case ttzeaxis is assumed to be the cases of large and small damping. We see that in bot

parallel to the equilibrium magnetic moment direction andfnagfﬁa:]r;cea{agrt:fil”ebmﬁn ,fsosét'%rgr:zénu?necgo?rt]ger&ng]n’]em
the x axis to be in the plane containing the equilibrium di- q i d '

pends the majority of time near the nonthermal equilibrium

rection defined by the anisotropy axis and the external fiel osition corresponding to intervaM® ., = (MM, ).

" e ; ) Xy 2~
direction, and they axis 15 perpendicular to this plane. The This is in the spirit of the solution of the Fokker-Planck
total energy can be written as

equatiofi~® which assumes the equilibrium Boltzmann dis-
tribution even in the small damping case. Note that in the
(2.6) case presented in Fig. 2 the equilibrium distributions are in-
dependent of the value of the damping constant. If the tem-
P~ .. perature is not high, it is reasonable to assume that for most
WhereMXJ M. andn,, n, a.re prpjectlops of the magnetic gf the time the n?agnetic motion will satisfy the condition
momen'tM and the easy axis unit vectaron thex, z axes, AM,,,<1. In this case the linear approximation can be
respectively. In the Sec. IV of the present paper other exysed and the corresponding stochastic equations of motion

1 -
E* == (Mt M,Nn,)% =M Hgpp,

amples will be considered. can be solved exactly. The time corresponding to the large
magnetization deviation from the equilibrium will constitute
A. General observations on the stochastic motion of the a small part of the total escape time from one equilibrium
magnetic moment close to the potential minimum position to another.

Let us consider a magnetic moment with initial condition
at the equilibrium position. If thermal fluctuations were ab-
sent, no torques would exist and the moment would remain
at the zero temperature mechanical equilibrium. However,
the thermal field leads to the establishment of a finite-
temperature thermal equilibrium which is meaningful only in
a statistical sense. Figure 1 presents the mean squared devi8 20,000
tion of the moment'sM, and M, components from their
equilibrium values averaged over many realizations. It cang
be noticed that initially the mean squared deviation is linear
in time and could be viewed as the motion of a simple, free
Brownian particle. At longer times, the mean squared devia-
tions achieve their thermal equilibrium values which should
correspond to the stationary solutions of the Fokker-Planck 0 +—@e
equatiorr~® Note that these stationary values are different 0.3
for x andy components.

The existence of these equilibrium values does not mean
that the moment performs a precessional motisith some FIG. 2. Distribution of moment deviations of thecomponent
thermal perturbationaround some equilibrium stable cycles. for fixed y component, for two values af. KV/kgT=7.18. Angle
In what follows we will consider a particle in a so-called between the applied field =0.9K,V and anisotropy axis isr/2.

30,000 -

tatist

10,000 -
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B. Linearized equation of motion for a single magnetic where the random fluctuations possess the following statis-
moment tics:

It has been shown that once the temporal evolution of the akaT
second moments are known, then so are the diffusion coef- (fy=0; <fi(7-)fj(s)>:0-25ij5( 7—S); o= B
ficients and in principle, the statistical properties for the time KV
evolution of the Brownian particle can be investigated by, Eqs.(2.14 and(
TQMC. For a magnetic moment, in a general case no close,
equations exist? However, in many cases the linear approxi-
mation may be sufficient. We linearize the dynamical equa
tion of motion for one magnetic moment with energy given
by Eq.(2.6). Since the length of the magnetization vector is
a constant, this energy expression should contain an addﬂ'z
tional term3\ M2, where), is the Lagrange multiplier. :

2.19, m, andm, represent small magne-
zation fluctuations around the equilibrium values due to the
white noise torques$, or due to white noise field, . In this
particular system of coordinates the two noise representa-
tions lead to the same equations.

We first solve the nonstochastic homogeneous equations
10 and(2.11) using a trial solutionm;=e' and obtain the

. : igenvalues
The corresponding energy gradients are related to the e?—g
fective field values used in the Landau-Lifshitz-Gilbert equa- a(A+B) A—B\2
tion Nio=————= \/a2< ) —AB. (2.1
: 2 2
Hiﬁ:(Mxnx+Mznz)nx+Hx_)\LMxr (2.7) If a>a, where
Hf= =\ My, (2.8 2\AB
acr:m: (2.17)
HE=(M,n+ M, n)n,+H,— N M,. (2.9 _ , o
the eigenvalue is real and is given by
Taking into account that in the equilibrium state itNgg
=M,,=0 andM,,=1, we can linearize these expressions _ —a(A+B)
LY T : = T0w (2.18
in terms of small deviations,, m,, andm, from the equi- L2 2 ’

librium configuration. As a result, the linearized Landau- . . o
Lifshitz-Gilbert equation forx andy components will have Where w= Ja“[(A—B)/2]°~AB. Otherwise, it is complex
the form and given by

drnx —a(A+B)+_

5, =Am,—aBm,, (2.10 Np=——  Fio, (219

where o= JAB— o[ (A—B)/2)]?. Note thatw defines the
d_my ——Bm,—aA 2.11) precession frequency and depends on the damping parameter
dr My ' a. The second case is the most typical one, since the condi-
tion |A—B|<A,B, in our case sit®,<1, is easily fulfilled,

L B ) . .
where A=n;+Hy, and B=A—n, and Hy, is the equilib-  ggpecially in the case of strong anisotropy systémistively
rium internal field. large barriers

Assuming that the angle between the equilibrium direc- e now discuss the two regimes determined by the
tion and the anisotropy easy axis@g one can express the regjity/complexity of the eigenvalues, which we designate as

coefficientsA andB as precessional or nonprecessional according to whether the ei-
genvalues are complex or real. Our main goal is to find ana-
A=c0S'0)—Hap£0s @0+ ¢), (212 |ytically the regimes where the diffusion coefficient of a
magnetic particle is so simple as that of a Brownian particle
B=A—sir0,, (2.13  so that it can be implemented in TQMC.

whereg is the angle between the negatwexis and applied )
field. C. Precessional case

The thermal fluctuations are introduced to the system ac- In the case of complex eigenvalues we find the solution
cording to the fluctuation-dissipation theorétFinally we
obtain the following linearized Landau-Lifshitz-Gilbert —m,=e~ ¢ "{CScoswr+Clsinwr}+e ¢ "{C,(7)coswT
(LLG) equation with additive noise terms

+Cy(7)sinwT}, (2.20
dm, = fo C
5o =Amy—aBm+fy, @14 m=e7Choswr+Clsinwr}+e ¢ {Cs(r)coswr
dm, _ B Am +f 21 (et .
o7 =~ ~Bm—aAm+fy, 219 Wherea’ = a(A+B)/2 and
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- (B=Aa ® Note that in a general case there is no simple relation
Ci=——55x C1t zCa (222 which makes the system dynamics look similar to a simple
Brownian one. These expressions have various aspects. First,
- (B-Aa © they contain osci_llating funptions Which.are there due_ to Fhe
CZ:TCZ_ KCl, (2.23  fact the precession cone is asymmetric. These oscillations

disappear forr—oo and the final equilibrium solution is in-
The resulting two linear first-order ordinary differential dependent on the value of damping. The latter is consistent

equations forC, 7) andC; 7), corresponding to the so- with the fact that in the equilibrium the system statistics

lution of the nonhomogeneous equation, can be formally in-ShOUId corr_es_p_ond to the Boltzmann d_|str|but|on.
tegrated with the initial conditionssnx(r=0)=m2, m,(7 In two limiting cases the expressions take on a very

—0)—mO . . 2. simple form.
c_o(()e)ffi_crig%:[ In what follows we are interested in the diffusion (1) Strong anisotropyThe first case fulfills the conditions

A—B<A,B. This is a rather general case, since the equa-
tions imply sirfd,<1 which is easily satisfied in the case of a
24) relatively strong anisotropy. In this case we also havel

and finally the expressions become
where the first term comes from the solution of the homoge-

neous equation and describes the purely athermal preces- 2
sional motion while the second term includes thermal effects ((m,— m2)2>therm=<(my— m8)2>therm:_,
and configurational averaging.

The first term contains the elliptical motion and for short (2.28

times, (@' 7<1,w7<1) we find that it has a quadratic depen- aq for the spatial correlationgm,m,)=O(A—B)<((m,
dence -m2))2 . and can be neglected. For a time step which

0\2 0_2 fulfills 2’ 7<1 we obtain in this case a simple Brownian
My —m,)“~Am,7°. 2.2 ) .
(My—=my) T 2.29 dynamics solution

<(mx_ mg)2> = (mx_ m)? gtherm+ <( my— m2)2>thermr

(1_e72a'7).

For the second term we obtain o 0
((my— mx)2>therm: <(my_ my)2>therm: o’r, (229

1 , 1
((My=m) ) tpem= Uz(za_B+e_2a 7[ 2AB(1+ ) which is the formula used previously in the TQMC
implementatior:'° It is exactly the solution corresponding

B-A | . to a simple random walk. Note also that this solution could
Xl | po+ 2w X% SiNwT not be obtained if one removes the precessional term from
the consideration.
B—-A ) A (2) Small dampingThe other case which admits simpli-
t|l 5 azpaljcosri— o5 L fication isa<1 (' <w). Here we obtain
where oo o2 ot
) 1 ) A2 (A—B)a 2 - <(mx_mx) >therm:m(l_e )s (2.30
P e) 2w (229 o
_ 02 _ _a—2a'T
with a similar equation fot(my—m?)?) eqm. For the spatial ((mMy=my)Dtnerm=5_7 (1777 (23D
correlation function we get
so that forr— o
,|A-B s (A—B)a o2
(MM themr= %) (1 - )+4Na’—2+a;2) {((my—m)) >therm= A 232
<(my_m3)2>therm B
Aa , Coaln (A—B)a
Xz -ap-o +e A a2+ wd) This limiting value was checked by direct numerical simula-
(a'"+ %) tion using the Landau-Lifshitz-Gilbert equation with thermal
_ fluctuations introduced as a random field and a good agree-
a(A—B) . - S -
X|(1=p)Fs(1)—| 1= ——|Fs(7) |, ment with the analytical prediction was obtained. For short
20 times 7 such that 2' r<1 it is
2.2
(2.29 0o ,A+B
where <(mx_mx) >therm=0' ﬁﬂ (2.33
Fs(1)=wsin2w7— a’' cos 2w,
0v2 _ 2A+ B (2.34
Fo(7)=—(wC0S 207+ a’ sin 2w7). {(my=my)Dtperm= 7" 527 ‘
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The correlations between different components in this case (G+wlA)[(G—wlA)?+1]
are of the order ofr and in principle could be neglected. (mxmy>202 N 1—-e 27
However, the strong anisotropy or small damping is not !

enough for a magnetic particle dynamics to be described by (G—w/A)[(G+w/A)2+1] o
TQMC. Indeed, in order that a formula of the type of Eq. + %, (1-e 72"
(2.29 can be used for TQMC, and the particle motion could
be viewed as a simple random walk, the thermal term should 2G[G?— w?/A’+1] g
be larger than the a-thermal term so that the latter can be - (N1 Xyp) (1—e ™22,
neglected. This leads to the condition (2.4

Bm}r, Amjr<o?, (2.35  where G=a(B—A)/2A. For the limiting solution forr

—o0 we get
which is fulfilled if either « is large or, alternatively, the
temperature is large enough to destroy the influence of the 2 o?
precession. This condition we designate later as correspond- <mx>therm:ﬁv (2.42
ing to a diffusion dominated motion. It also requires that the
time stepr can not be chosen too large. ) a?
<my>therm: 2aA" (2.43

D. Nonprecessional case

consistent again with the Boltzmann distribution. Note that

In the case of real eigenvalues the general solutions of ththis is exactly the same expression as in the case of small
homogeneous stochastic differential equations can be fourss was also illustrated in Fig. 2. The correlation function
in a similar way as for the precessional case using the trial

functions

m,=C,e M7+ C,e 27,

my= ’éleihlr‘i‘ Ezei)\zf,

d?a|B—A|

(MM thernd 7— ) = By (2.44
(2.36 - . :
takes on a finite value for large times while the temporal
correlation function(m,(7)my,(7+A7)) goes to zero for
(2.37 AT—0,
For small timesr<1/A,,1/A, we obtain the normal dif-

whereh ;= a(A+B)/2+ w and\,= a(A+B)/2— w. To this  fusion coefficient
solutions we add the particular solutions of the inhomoge-

i i - & (M2 o= (M) porm= 727, (2.45
neous equations. Putting the coefficie@ts, andC, ,in Egs. x/ therm x/ therm
(2.36 and(2.37) as functions of time and substituting in Egs. Note that in the same approximation there is no contribution
(2.14 and (2.19 we find a solution of the stochastic inho- fom the athermal part. The latter means that in the case of

mogeneous equation

large damping there could be a complete analogy between
the Brownian particle and magnetic particle motions. How-

aB—A\ T T . . . . .
Cy(r)= zf f.(s)eMSdst f f,(s)e25ds, ever, the correlational part in this case is not small:
TR S 2a0?(B?—A?)
(2'3& <mxmy)= TT. (2.4@

C!B_)\l T AoS
Col7)= j fL(9)ehsds -

No—Ng

70

1J 7y

Hence, the final expression fémZ) is

(G—w/A)?+1
2\ _ 2
<mx>_0 { 2)\1

[G+w/A]?+1
S

(1_ 672)\17-)

A ij (s)er2%ds
27 A Y '

Since neitherw or B—A are small in this case, the correla-
tions are of the order afm?2).
(2.39
I1l. IMPLEMENTATION OF THE TIME QUANTIFIED
MONTE CARLO METHOD

In this paper we will consider only implementation based
on the use of the simplest diffusion coefficient of the form of
Eqg. (2.29. Other possibilities are currently under investiga-
tion and will be published elsewhere.

1—e 2o) Within a MC algorithm, it is convenient to make a trial
2\, step move in a certain cone of radi&s In a simple case
[G2— w2 A%+ 1] where the diffusion coefficierD is defined by properties of
_ (1—e~ Matran) the fluctuating forcegsee Eq.(2.29], we will compare the
(A1tAp) fluctuations which are established in the MC algorithm with

and for the correlations:

(2.40 the fluctuations within a given time scale associated with the
linearized stochastic LLG equation.
For this comparison, first we calculate the fluctuations

064422-6
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(M2) which are established within one step of the MC simu-  Note, that from the derivation above it follows that one
lation. The trial step of our MC implementation is a randomtime stepAt must be larger than the intrinsic time scale of
movement of the magnetic moment up to a certain maximunthe relaxation. This means that results from the MC method
opening anglgiinside the cone of the radiuR around the can only be interpreted on time scales that are clearly larger
current magnetization positipnin order to achieve this effi- than the microscopic time scale of tilecal) relaxation of
ciently we first construct a random vector with constantthe spin.
probability distribution within a sphere of radifsby use of The most interesting result of E(B.5) is the temperature
the rejection metho& This random vector is then added to (or barriej dependence on the trial radis If the barrier is
the initial moment and subsequently the resulting vector idarge, in theory this allows the introduction of a larger time
again normalized. Note that the probability distribution for stepA r as in the integration of the Landau-Lifshitz equation.
trial steps of sizer = ‘/Mx2+ |\/|y2 is pt=3~/R2—r2/(27-rR3) In principle, Eq.(3.5) allows the possibility to choose the
for 0<r<R. It is nonuniform but isotropic, so that the sym- trial step width for a MC simulation in such a way that 1 MC
metry condition is fulfilled. The acceptance probability usingStep corresponds to some microscopic time interval, ssay
a heat-bath algorithm is given by =10 ' s. However, there are of course restrictions for pos-
sible values of the trial step widtlR must be small enough
so that the truncated expansion in E§.3) is a good ap-
W g = E(S)—E(S)|’ (3.2 p_roximation. .On the other hanﬁ should not be too small
1+ex;{ ) since otherwise the MC algorithm needs too much computa-
kgT tion time to sample the phase space. Therefore, either one
has to choose such a value #dt so thatR takes on reason-
able values, or one chooses a reasonable constant valRe for
and uses EQq(3.5) to calculateAt as the real time interval
associated with the MC cycle. In the following we will use
the first method since it turns out to be very efficient to
changeR with temperature. Also, in this case it is much
2 _ 2 easier to control the fulfillment of conditiof8.4). However,
AB(r9)=KV(1+2Hyr 32 the alternative method yields the same redlilss long as
for the symmetric case where the field is parallel to the easgondition(3.4) is not violated.
axis. In order to calculate the fluctuations within one MC

step(MCS) we have to integrate over that part of the phase IV. COMPARISON OF THE TWO DYNAMICS AND
space which can be reached within one MCS, ' DISCUSSION

Wo

whereSandS'’ denote two different states of the system and
Wy iS a constant.

Assuming that the spin is close to i®cal) equilibrium
position,AE(r?) from Eq.(2.6) can be expanded for small
yielding

5 2m R r? In this section we compare the TQMC method and the
(M)= jo d@J’O rdr >-w(r)p(r) Langevin dynamics calculating the switching time of a mag-
netic particle. This time is defined as an avera@ear many
R? KV(1+2H,)R* . realization$ time necessary for the particle to change the
10 kB—T’LO(R ), 3.3 direction of the magnetization, i.e., until thé, component
changes its sign. Note that the switching time essentially is a
where the last line is an expansion for snfallThe second nonequilibrium quantity.

term can be dropped for sufficiently sm&) leading to the First of all we should clarify the conditions under which
condition the TQMC method was used previously basing on the analy-
sis presented in this paper. Most of the previously considered
R?<kgT/KV(1+2H,). (3.4  case?'! were under the conditions of the precessional re-

gime where it isa<a, [see EQ.(2.17)]. The parameters
By equalizing the fluctuations within a time intervat of  corresponding to Fig. 4 of the original TQMC papejive
the LLG equation and one MCS we find the relation the valuesA=0.877 andB=0.781, vielding a very large
value ofa,~17. Similar considerations are true for most of
10kgTa 20kgTay the magnetic recording applicatidhsince even if the local
=gy A= (1+a?)p (3.5 grain anisotropy is perpendicular to the applied field value,
s its value is normally sufficiently strong to assure that the
for the trial step widttR.° Equation(3.5) is the central result  condition|A—B|<A,B is fulfilled. This means that calcula-
of TQMC. It relates one MC step, performed using an algo-tions usually are made under the conditions of the preces-
rithm as explained before, with a real time interval of thesional motion where Eq(2.29 is valid and the TQMC
solution of the Langevin equation. Corresponding relationsmethod must work in the high damping limit.
for other trial step distributions or other acceptance prob- For a smaller damping one expects the precession itself to
abilities, as for instance following from a Metropolis algo- contribute significantly to the reversal process. The elliptical
rithm, can be derived as well. Also, in the same way the timemotion of the athermal part of Eq$2.20 and (2.21) can
step quantifications could, in principle, be taken from Eg.increase the distance of the magnetic moment from its equi-
(2.28 or E@gs.(2.33 and(2.349. librium position: an initial deviatiomng of the moment along

R2
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FIG. 3. Average switching time versus damping constant for a

magnetic moment in a field/2KV=0.42 applied under an angle of

0,7/20,/10/,7/4 to the easy axifrom top. Comparison between

Langevin dynamicgLD) and time-quantified Monte CarlMC)

2KV/kgT=72.

FIG. 4. Average switching time versus damping constant for a
magnetic moment in a field/2KV=0.42 applied under an angle of
720 to the easy axis for different temperatureK\VZkgT
=72,7.2,2.1(from top).

the hard axigin the following they axis withA=B) at time ~ We work in the small damping regime, the temperature must
7=0 leads after a quarter of the precession time to a devidl€ large enough to suppress the influence of the elliptical
tion from the equilibrium position along the easyaxis Precessional motion. . o _
which can be |arger than the Origina' distance and’ hence In prInCIple, since the time quantlflcatlon is not restricted
contributes to the escape from the local equilibrium position!o the use of Eq(2.33, some other ideas of how to include
Hence, the influence of precession can only be neglectelpe precessional term into the diffusional coefficient may ap-
when the distance does not grow due to the precession. Thgar in future. In our implementation of TQMC the axially
leads to the condition symmetric case is the only one where the method works for
all the damping parameter values. This is once again demon-
strated in Fig. 5. Also shown in Fig. 5 is that the MC ap-
proach correctly describes the Langevin dynamics even for
small barriers when the Fokker-Planck asymptote fails.
Similar results are presented in Fig. 6 for the nonpreces-
sional case where the conditiéxn—B<A,B is not fulfilled.
To model clearly this case we suppose that there is a hard

A
S(r=ml2w)=5)—e ™20 <g),

e
w

4.1

from which follows a condition for the damping constant

w
x> 7(A+B) IN(A/@). 4.2 axis anisotropy iry direction in addition to easy axis in ttze
e o direction. In this case the values #f and B can be very
In the limit of small « the latter simplifies to different since it is
2\/A/IB
a>mln(A/B). 4.3 A=1+H g (4.9

The implication of the condition above is illustrated in 10°L ' ' ' o ; G
Fig. 3 where results for the switching time of a magnetic T
moment in a field with different angles to the easy axis stem- 10" PO
ming from TQMC and Langevin dynamics simulations, re- @ _ ,f L /,4;—" ]
spectively, are compared. In the symmetric ca&éB=1) ° 10°F B E
the condition above is alway fulfilled so that the TOMC 3, 10?| _0..-5' //j/ ------ Asymptote ]
method works for all values of. The more asymmetric the 5 f 5 8 = i :
problem is, the bigger becomes that valuexcibove which 10 g7 “‘/Zr Asymptote
the TQMC method works correctly. Note that if one is inter- 10° 3‘5 /;gr/z—éé <4 LD k
ested in the long time behavior, for small driving fields, Jqﬂr ___f___g";mptote
where the energy barriers are large the TQMC method will ~ 10™ iﬁ * LD E
work even better since here it is usuafly=B. o . . . . R MG ]

The influence of precession can also be neglected when 19 0 2 4 6 8 10 12 14
the thermal fluctuations are large enough to destroy the pre- KV, T

cessional motion. This requires the conditith35 to be

satisfied. Figure 4 illustrates this condition where we present fiG. 5. Average switching time as a function of the energy

the sw!tching time as a function of the damping parameteparrier for various damping constamt=4,0.1,0.01(from top) in an
for various temperatures. If the temperature is fixed therexially symmetric case. Comparison between Langevin dynamics

will always exist a critical valuex., of the damping param-

eter where the conditiof2.35 is violated. Consequently, if (Ref. 5.
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FIG. 6. Average switching time versus damping constant for a FIG. 8. Average switching time vs energy barrier calculated
magnetic moment with an easy axis anisotrog§,2/kgT=100  with TQMC compared with Aharoni's asymptot&ef. 6 for the
and different additional hard axis anisotropies. The applied fieldaxially symmetric case. During the simulation the trial MC step size

H/2K,V=0.9 is parallel to the easy axis. R=0.111 was kept constant. The corresponding quantified time
step Atyc was increased proportionally to the barrier sixg,c
and =Scale< At where At =0.01 of the precession period is the
normal Landau-Lifshitz integration time step. The parameters of the
B=1+dy+Hgpp (4.5  simulationa=0.1, H4,=0.15.

{:‘erEdT: Kyﬂ/<KZ aindlf.cr an take on a?yt/hvalue depetr_ldlng ON TQMC was able to correctly describe the predicted behavior.
€ value olf,. In FIg. 6 we present Iné escape ime as a,,yever, one could expect the appearance of magnetization

function of the damping parameter for_several _values of thecorrelations due to the dynamic coupling, which should be
parametei — B defined by the perpendicular anisotray. — ayen into account in an improved MC time quantification

Note that the method fails if the value of, is increased  gopome for interacting systems. An attempt to introduce such
which we attribute to the fact that the correlatidnst taken correlations was taken in Refs. 27,28. Interestingly, even
Into accouc?t in the present implementatidrecome impor- without such correlations the TQMC correctly reproduces
tant according to Eq(2.46. the Langevin dynamics results for relatively large damping

Although the correct magnetization values were Calc“'values

lated for a noninteracting system TQMC, in the implementa- Finally, we should point out that sind@? in Eq. (3.5) is
tion presented above, has been successfully applied of inte, foportional to the time step and inversely proportional to

. '26 . .
acting systems as weff:*°As an example to that, in Fig. 7 0 'parrier heighKV/kgT, this allows one to use a big time

we present the switching time as a function of the e_xchanggtep for big barrier height, always when the conditi8r) is
constant in a linear chain of magnetic particles with easy ifilled. In Fig. 8 we present the switching time as a func-

an@sotropy axis parallel to the_ figld direction. As the Nearestinn of the barrier height. In this case the MC trial step was
neighbor exchange parameteis increased, the system un- kept constant to 0.111 and the time step was progressively

dergoes first a transition from isolated magnetic moments tQ ... <4 with the increment of the barrier height. The de-

a nucg?tion-propagty_ati?n mechanilsrgl ani for Stti” iarger Valyiations for the large barrier may be attributed to the fact that
ules OR fo; m:grr]? 1zation fﬁ"erS? hy co .erenb ro a(m finally the condition(3.4) fails. In the same figure we present
also Ref. 23 At this point, the switc Ing time becomes In- comparison Aharoni's asympt&téor the magnetization
dependent on the exchange constant. It is interesting, that ﬂ?@versal and note a good agreement between the approaches.

0 E ' ' ' ' V. CONCLUSIONS AND FUTURE WORK

] Since Langevin dynamics is useful for investigating only
P R & 8 8] fast relaxation processes, studies of thermal stability require
the development of more computationally efficient methods.
1 3 s E For intermediate time scales it is desirable to work with
o @ & ] methods based on MC algorithms but incorporating a time
[ a 2 | guantification. At the moment we have found no unigque way
R MC —eo— to implement TQMC in the general case. In the present paper
D . ..LD. '—A—I‘ we report only the simplest case of the diffusional coefficient
0.1 based on formul#2.29. We have found that this implemen-
0.01 0.1 1 10 100 ; : "
interaction J/2K.V tation for TQMC shoyld work prpwded several condlt.|ons.
(1) Diffusion dominated motioanThe pure precessional
FIG. 7. Average switching time versus strength of the nearestnotion should be small compared to the diffusion coeffi-
neighbor interaction in a chain of 16 momentk\2ksT=72, «  cient. The latter could be fulfilled either for high temperature
=0.1. The fieldH/2KVV=0.95 is parallel to the easy axis. or large damping value.

swtiching time ¢ [ns]
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(2) Uncorrelated motionThe spatial correlations between vestigation of interacting particle systems, along with the
magnetic moment components should be small compared tevelopment of methods suitable for systems undergoing
the diffusion coefficient. precession dominated motion.

In practice, we have found that the application of the method The method rests on a comparison with Langevin dynam-
is reasonable in a system of relatively large easy anisotropigs. Here, the coupling to the heat bath is added phenomeno-
and intermediate-to-hight damping value. The close to axilogically to the equation of motion leading to a damping
ally symmetric case is a special case when the MC procedurgonstanix, the microscopic evaluation of which is still miss-
gives perfectly the same answer as the dynamical equatiang. In this sense there is still a lack of an absolute micro-
integration. This is explained, probably, by the fact that inscopic time scale. Nevertheless, there is at least a nontrivial
this case the energy barrier is the same in all the directionsonnection between MC methods and Langevin dynamics. In
and, consequently, it does not matter for the particle at whichhis sense, our results also show that MC methods are viable
point of the space to cross it. However, in a nonaxially sym+o describe switching processes in magnetic systems and to
metric case there exist only two points in space where thgjve realistic dynamics. Finally and importantly, Metropolis
barrier is lowered and, consequently, the particle would gavionte Carlo with quantified time step constitutes a numeri-

preferably through them. The dynamical precession helps thgal method which is much faster than the integration of the
particle to explore more directions of the space, takes th@ynamical equation of motion.

system closer to the transition point and, then the noise helps

to overcome the barrier. Thus, the dynamical precession

plays a significant role in the switching process and reduces ACKNOWLEDGMENTS
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