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Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments
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The viability of the time quantified Metropolis Monte Carlo technique to describe the dynamics of magnetic
systems is discussed. Similar to standard Brownian motion, the method is introduced basing on the comparison
between the Monte Carlo trial step and the mean squared deviation of the direction of the magnetic moment.
The Brownian dynamics approach to the time evolution of a magnetic moment is investigated and expressions
for the mean square deviations are obtained. However, the principle difference between the standard Brownian
motion and the magnetic moments dynamics is the presence of the spin precession which constitutes the
reversible part of the dynamics. Although some part of the precession contributes to the diffusion coefficient,
it also gives rise to athermal, energy conserving motion which cannot be taken into account by Monte Carlo
methods. It is found that the stochastic motion of a magnetic moment falls into one of two possible regimes:
~i! precession dominated motion,~ii ! nonprecessional motion, according to the value of the damping constant
and anisotropy strength and orientation. Simple expressions for the diffusion coefficient can be obtained in
both cases for diffusion dominated motion, i.e., where the athermal precessional contribution can be neglected.
These simple expressions are used to convert the Monte Carlo steps to real time units. The switching time for
magnetic particles obtained by the Monte Carlo with time quantification is compared with the numerical
integration of the Landau-Lifshitz-Gilbert equations with thermal field contribution and with some well known
asymptotic formulas.
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I. INTRODUCTION

The problem of thermally induced magnetization rever
is very important from both, a fundamental and an appl
point of view. In magnetic recording applications recen
this problem has become of particularly keen interest sinc
is widely accepted that the superparamagnetic recording
sity limit will shortly be achieved. Several methods of trea
ing the problem in different time scales exist already in
literature.

On time scales less than 1 ns, one normally integrates
dynamical equation of motion~Landau-Lifshitz-Gilbert! with
the thermal field representing thermal fluctuations followi
Brown.1 On large time scales up to the order of years,
kinetic Monte Carlo~MC! method2 which is known in mi-
cromagnetics as the Charap method3 can be used. This sta
tistical method is equivalent to the solution of the two-lev
Master equation.2,4 The method supposes that the syst
0163-1829/2003/67~6!/064422~10!/$20.00 67 0644
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could be found only in the energy minima and calculates
energy barriers separating them, assuming the Arrhen
Néel law for the probability of transition. As a consequenc
the method could be viable for barriers large enough to bu
the equilibrium statistics. The dynamical information is co
tained in the Arrhenius-Ne´el prefactor. This constant is nor
mally calculated using the Fokker-Planck equation5–8 and is
known exactly only for a few simple cases.

At intermediate time scales, say, up to 1 s, the corr
precessional information may not be important. Howev
some dynamical information arising from the form of th
potential in which the particle is moving may still be nece
sary. The time quantified Metropolis Monte Carlo~TQMC!
algorithm9,10 has been designed to work in this intermedia
time scale regime. It has been applied, for example, to
culate the magnetization decay in a di-bit pattern as a fu
tion of exchange parameter and gave a similar result in c
parison to other methods.11 Consequently, it is very
©2003 The American Physical Society22-1
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important to compare the integration of the Landau-Lifsh
equation and the statistical~analytical asymptote! approaches
with the TQMC method where their respective time regim
overlap.

Metropolis MC methods are well established in the co
text of equilibrium thermodynamics.12,13However, Metropo-
lis MC is also viable to describe nonequilibrium dynamic
The most common example is a random walk of a Newt
ian particle in the presence of thermal fluctuations. It is w
known14 that the dynamics of a Brownian particle~here we
consider as Brownian particle a Newtonian particle in
external potential with a random term added to the equa
of motion to simulate the temperature! obeys a simple diffu-
sion equation. For a small time step the Master equa
which governs the MC procedure is equivalent to t
Fokker-Planck equation.15 Kikuchi et al.16 showed directly
that for a Brownian particle in an external potential the M
tropolis MC could be viewed as a numerical method to so
the corresponding Fokker-Planck equation. Although t
was not stated in the paper, but it may be deduced that if
fluctuation sizes within a MC step are chosen to match
diffusion property of a random walk, i.e.,

^x2&52DDt, ~1.1!

whereD is the diffusion coefficient, the Metropolis MC pro
cedure should adequately describe the dynamics. The c
parison of the nonequilibrium probability functions obtain
by the MC and the analytical solution was in complete agr
ment. Meiburg17 also presented in his paper direct compa
son of the simulation of the Reyleigh-Stokes flow obtain
by the MC and the molecular dynamics method.

In magnetism, mainly Ising and Heisenberg models h
been investigated by MC to account for equilibrium prop
ties ~critical phenomenon! due to the broad variety of appli
cations of this class of models in statistical physics. For n
equilibrium dynamics, the MC method was used
Gonzalezet al.18–21 to account for thermally induced collec
tive magnetization relaxation. It has been shown, for
ample, that MC produces the expected logarithmic time
pendence of magnetization after some waiting time.

Therefore, Metropolis MC has recommended itself
magnetism as a fast computational method producing ph
cally reasonable dynamics. The big disadvantage of the
algorithm is that the time step is normally measured in M
steps and the physical time involved in the calculations
unknown. The connection to physical time—if there is one
all—is in general an open problem which is settled up to n
only in certain very simple cases. For example, for a Brow
ian motion, if we are able to present some simple formula
the diffusion coefficient~1.1! calculated from the dynamica
equation and use it to quantify the time step correspondin
a MC trial step, then the MC procedure should correc
describe the statistical properties of the time evolution of
system. Of course, the main difference between a sim
Brownian particle and a magnetic moment is the presenc
the precessional term. This difference is crucial and does
allow mere translation of the results from one system to
other. Generally speaking, a Metropolis MC simulation~in a
canonical ensemble! simply does not include the energy co
06442
s

-

.
-

ll

n
n

n

-
e
s
e
e

m-

-
-
d

e
-

-

-
-

i-
C

s
t

-
r

to
y
e
le
of
ot
-

serving part of the equation of motion. Hence, no spin p
cession scenario can be simulated by means of this appro
On the other hand, the random-walk-like motion which
due to the coupling of the system of interest to the heat b
is paramount. As a consequence, the MC procedure
work for a magnetic system dynamics where and when
dynamics is similar to that of a simple random walk.

The work of Nowak et al.9 introduced the so-called
Monte Carlo method with quantified time step by compari
the fluctuation size produced by MC to that produced by
Langevin dynamics. However, it was assumed that the m
netization fluctuations have the same simple time dep
dence as the thermal force fluctuations by analogy to
results for the Brownian particle. For magnetic systems t
idea is not straightforward due to the presence of preces
and in the present paper we calculate and analyze the d
sion coefficient~1.1! directly from the linearized equation o
motion for magnetic moments. We also try to explain ho
far a TQMC procedure can in general be applied for
investigation of a dynamical behavior and we establish
detail the necessary conditions for its application. Unli
previous comparisons between MC and Langevin dynam
or analytical calculations16,17 we present our results in rea
time units corresponding to average switching time of m
netic particles which we choose as an example of essent
nonequilibrium dynamics. As far as we know, this has ne
been done before. The main idea of the present paper
work further on the method which is capable to calculate
switching processes of magnetic structures in the presenc
temperature and is fast comparing to that of the molecu
dynamics.

II. DIFFUSIONAL PROPERTIES OF A SINGLE
MAGNETIC MOMENT IN A POTENTIAL WELL

As was mentioned above, the existence of the prec
sional motion makes the magnetic moment dynamics dif
ent from that of the Brownian particle. From the point
view of the MC technique, it is important to find out und
which conditions the statistical properties of the two dyna
ics are similar and to calculate the diffusion coefficient~1.1!
which could be used in the time quantification. Let us st
with some simple observations of the magnetic particle m
tion governed by the Landau-Lifshitz-Gilbert equation with
random field representing thermal fluctuations. The equa
is written in the following form:

dMW

dt
52MW 3HW 2aMW 3@MW 3HW #, ~2.1!

where

t5
g0Hk

Ms~11a2!
t, ~2.2!

g0 is the gyromagnetic ratio, anda is the damping constant
The magnetic momentMW is normalized to the saturatio
valueMs , and the internal fieldHW , given by
2-2
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HW 52
dE*

dMW
, ~2.3!

is normalized to the anisotropy fieldHk52K/Ms whereK is
the anisotropy value. The energyE* 5E/2KV, whereV is
the volume, contains all the necessary energy contributio
anisotropy, exchange, magnetostatic, and Zeeman. The
mal fluctuations are introduced as random field fluctuatio
added to a total internal field~2.3! and having statistica
properties given by

^j i&50, ~2.4!

^j i~0!j j~t!&5
akBT

KV~11a2!
d i j d~t!, ~2.5!

where i , j denote Cartesian componentsx,y,z. In what fol-
lows we will compare the results of the MC simulations w
the integration of the Landau-Lifshitz-Gilbert equation. T
majority of the results of this paper are related to one m
ment, or an assembly of noninteracting moments, with
given anisotropy easy axis and external fieldHapp applied at
some angle to it. In this case thez axis is assumed to b
parallel to the equilibrium magnetic moment direction a
the x axis to be in the plane containing the equilibrium d
rection defined by the anisotropy axis and the external fi
direction, and they axis is perpendicular to this plane. Th
total energy can be written as

E* 52
1

2
~Mxnx1Mznz!

22MW •HW app, ~2.6!

whereMx , Mz and nx , nz are projections of the magneti
momentMW and the easy axis unit vectornW on thex, z axes,
respectively. In the Sec. IV of the present paper other
amples will be considered.

A. General observations on the stochastic motion of the
magnetic moment close to the potential minimum

Let us consider a magnetic moment with initial conditi
at the equilibrium position. If thermal fluctuations were a
sent, no torques would exist and the moment would rem
at the zero temperature mechanical equilibrium. Howe
the thermal field leads to the establishment of a fin
temperature thermal equilibrium which is meaningful only
a statistical sense. Figure 1 presents the mean squared d
tion of the moment’sMx and M y components from their
equilibrium values averaged over many realizations. It c
be noticed that initially the mean squared deviation is lin
in time and could be viewed as the motion of a simple, f
Brownian particle. At longer times, the mean squared de
tions achieve their thermal equilibrium values which sho
correspond to the stationary solutions of the Fokker-Pla
equation.5–8 Note that these stationary values are differe
for x andy components.

The existence of these equilibrium values does not m
that the moment performs a precessional motion~with some
thermal perturbation! around some equilibrium stable cycle
In what follows we will consider a particle in a so-calle
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statistical regime, i.e., when the time spent by a particle i
potential well is enough to build an equilibrium statisti
~large barrier case!. In Fig. 2 we present the equilibrium
distribution, that is, excluding the initial dynamical part,
theM y component for a fixed value of theMx component for
the cases of large and small damping. We see that in b
cases the particle mean position is in the nonthermal~i.e.,
mechanical! equilibrium. As a consequence, the mome
spends the majority of time near the nonthermal equilibri
position corresponding to intervalsMx,y,z

0 6A^(DMx,y,z)
2&.

This is in the spirit of the solution of the Fokker-Planc
equation5–8 which assumes the equilibrium Boltzmann di
tribution even in the small damping case. Note that in
case presented in Fig. 2 the equilibrium distributions are
dependent of the value of the damping constant. If the te
perature is not high, it is reasonable to assume that for m
of the time the magnetic motion will satisfy the conditio
DMx,y,z!1. In this case the linear approximation can
used and the corresponding stochastic equations of mo
can be solved exactly. The time corresponding to the la
magnetization deviation from the equilibrium will constitu
a small part of the total escape time from one equilibriu
position to another.

FIG. 1. Temporal evolution of the mean squared deviation fr
equilibrium. Average over 10 000 trajectories.KV/kBT54.16, a
50.1. Angle between the applied field and anisotropy axis isp/2.

FIG. 2. Distribution of moment deviations of thex component
for fixed y component, for two values ofa. KV/kBT57.18. Angle
between the applied fieldH50.9KzV and anisotropy axis isp/2.
2-3
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B. Linearized equation of motion for a single magnetic
moment

It has been shown that once the temporal evolution of
second moments are known, then so are the diffusion c
ficients and in principle, the statistical properties for the tim
evolution of the Brownian particle can be investigated
TQMC. For a magnetic moment, in a general case no clo
equations exist.22 However, in many cases the linear appro
mation may be sufficient. We linearize the dynamical eq
tion of motion for one magnetic moment with energy giv
by Eq. ~2.6!. Since the length of the magnetization vector
a constant, this energy expression should contain an a
tional term 1

2 lLM2, wherelL is the Lagrange multiplier.
The corresponding energy gradients are related to the

fective field values used in the Landau-Lifshitz-Gilbert equ
tion

Hx
eff5~Mxnx1Mznz!nx1Hx2lLMx , ~2.7!

Hy
eff52lLM y , ~2.8!

Hz
eff5~Mxnx1Mznz!nz1Hz2lLMz . ~2.9!

Taking into account that in the equilibrium state it isMx0
5M y050 andMz051, we can linearize these expressio
in terms of small deviationsmx , my , andmz from the equi-
librium configuration. As a result, the linearized Landa
Lifshitz-Gilbert equation forx and y components will have
the form

dmx

dt
5Amy2aBmx , ~2.10!

dmy

dt
52Bmx2aAmy , ~2.11!

where A5nz
21H0z and B5A2nx

2 and H0z is the equilib-
rium internal field.

Assuming that the angle between the equilibrium dir
tion and the anisotropy easy axis isQ0 one can express th
coefficientsA andB as

A5cos2Q02Happcos~Q01w!, ~2.12!

B5A2sin2Q0 , ~2.13!

wherew is the angle between the negativez axis and applied
field.

The thermal fluctuations are introduced to the system
cording to the fluctuation-dissipation theorem.23 Finally we
obtain the following linearized Landau-Lifshitz-Gilbe
~LLG! equation with additive noise terms

dmx

dt
5Amy2aBmx1 f x , ~2.14!

dmy

dt
52Bmx2aAmy1 f y , ~2.15!
06442
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where the random fluctuations possess the following sta
tics:

^ f k&50; ^ f i~t! f j~s!&5s2d i j d~t2s!; s25
akBT

KV
.

In Eqs.~2.14! and~2.15!, mx andmy represent small magne
tization fluctuations around the equilibrium values due to
white noise torquesf k or due to white noise fieldjk . In this
particular system of coordinates the two noise represe
tions lead to the same equations.

We first solve the nonstochastic homogeneous equat
~2.10! and~2.11! using a trial solutionmi5elt and obtain the
eigenvalues

l1,252
a~A1B!

2
6Aa2S A2B

2 D 2

2AB. ~2.16!

If a.acr , where

acr5
2AAB

uA2Bu
, ~2.17!

the eigenvalue is real and is given by

l1,25
2a~A1B!

2
6v, ~2.18!

wherev5Aa2@(A2B)/2#22AB. Otherwise, it is complex
and given by

l1,25
2a~A1B!

2
6 iv, ~2.19!

wherev5AAB2a2@(A2B)/2)]2. Note thatv defines the
precession frequency and depends on the damping param
a. The second case is the most typical one, since the co
tion uA2Bu!A,B, in our case sin2Q0!1, is easily fulfilled,
especially in the case of strong anisotropy systems~relatively
large barriers!.

We now discuss the two regimes determined by
reality/complexity of the eigenvalues, which we designate
precessional or nonprecessional according to whether th
genvalues are complex or real. Our main goal is to find a
lytically the regimes where the diffusion coefficient of
magnetic particle is so simple as that of a Brownian parti
so that it can be implemented in TQMC.

C. Precessional case

In the case of complex eigenvalues we find the solutio

mx5e2a8t$C1
0cosvt1C2

0sinvt%1e2a8t$C1~t!cosvt

1C2~t!sinvt%, ~2.20!

my5e2a8t$C̃1
0cosvt1C̃2

0sinvt%1e2a8t$C̃1~t!cosvt

1C̃2~t!sinvt%, ~2.21!

wherea85a(A1B)/2 and
2-4
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C̃15
~B2A!a

2A
C11

v

A
C2 , ~2.22!

C̃25
~B2A!a

2A
C22

v

A
C1 . ~2.23!

The resulting two linear first-order ordinary differenti
equations forC1,2(t) and C̃1,2(t), corresponding to the so
lution of the nonhomogeneous equation, can be formally
tegrated with the initial conditionsmx(t50)5mx

0 , my(t
50)5my

0 . In what follows we are interested in the diffusio
coefficient

^~mx2mx
0!2&5~mx2mx

0!atherm
2 1^~mx2mx

0!2& therm,
~2.24!

where the first term comes from the solution of the homo
neous equation and describes the purely athermal pre
sional motion while the second term includes thermal effe
and configurational averaging.

The first term contains the elliptical motion and for sho
times, (a8t!1,vt!1) we find that it has a quadratic depe
dence

~mx2mx
0!2;Amy

0t2. ~2.25!

For the second term we obtain

^~mx2mx
0!2& therm5s2S 1

2aB
1e22a8tH 1

2AB~11a2!

3F S rv1
B2A

2v
aa8D sinvt

1S B2A

2
a2ra8D cos 2vtG2

A

2v2aJ D ,

where

r5
1

2 H 12S A

v D 2

2S ~A2B!a

2v D 2J ~2.26!

with a similar equation for̂(my2my
0)2& therm. For the spatial

correlation function we get

^mxmy& therm5s2H A2B

4v2 ~12e22a8t!1
~A2B!a

4A~a821v2!

3S Aa

2
2a8r2v D1e22a8t

~A2B!a

4A~a821v2!

3F ~12r!Fs~t!2S 12
a~A2B!

2v DFc~t!G J ,

~2.27!

where

Fs~t!5v sin 2vt2a8 cos 2vt,

Fc~t!52~v cos 2vt1a8 sin 2vt!.
06442
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Note that in a general case there is no simple relat
which makes the system dynamics look similar to a sim
Brownian one. These expressions have various aspects.
they contain oscillating functions which are there due to
fact the precession cone is asymmetric. These oscillat
disappear fort→` and the final equilibrium solution is in
dependent on the value of damping. The latter is consis
with the fact that in the equilibrium the system statisti
should correspond to the Boltzmann distribution.

In two limiting cases the expressions take on a ve
simple form.

~1! Strong anisotropy. The first case fulfills the conditions
A2B!A,B. This is a rather general case, since the eq
tions imply sin2u0!1 which is easily satisfied in the case of
relatively strong anisotropy. In this case we also haver!1
and finally the expressions become

^~mx2mx
0!2& therm5^~my2my

0!2& therm5
s2

2a8
~12e22a8t!.

~2.28!

As for the spatial correlations,̂mxmy&5O(A2B)!^(mx

2mx
0)& therm

2 , and can be neglected. For a time step wh
fulfills 2a8t!1 we obtain in this case a simple Brownia
dynamics solution

^~mx2mx
0!2& therm5^~my2my

0!2& therm5s2t, ~2.29!

which is the formula used previously in the TQM
implementation.9,10 It is exactly the solution correspondin
to a simple random walk. Note also that this solution cou
not be obtained if one removes the precessional term f
the consideration.

~2! Small damping. The other case which admits simpl
fication isa!1 (a8!v). Here we obtain

^~mx2mx
0!2& therm5

s2

2aB
~12e22a8t!, ~2.30!

^~my2my
0!2& therm5

s2

2aA
~12e22a8t! ~2.31!

so that fort→`

^~mx2mx
0!2& therm

^~my2my
0!2& therm

5
A

B
. ~2.32!

This limiting value was checked by direct numerical simu
tion using the Landau-Lifshitz-Gilbert equation with therm
fluctuations introduced as a random field and a good ag
ment with the analytical prediction was obtained. For sh
timest such that 2a8t!1 it is

^~mx2mx
0!2& therm5s2

A1B

2B
t, ~2.33!

^~my2my
0!2& therm5s2

A1B

2A
t. ~2.34!
2-5
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The correlations between different components in this c
are of the order ofa and in principle could be neglected.

However, the strong anisotropy or small damping is n
enough for a magnetic particle dynamics to be described
TQMC. Indeed, in order that a formula of the type of E
~2.29! can be used for TQMC, and the particle motion cou
be viewed as a simple random walk, the thermal term sho
be larger than the a-thermal term so that the latter can
neglected. This leads to the condition

Bmx
0t, Amy

0t!s2, ~2.35!

which is fulfilled if either a is large or, alternatively, the
temperature is large enough to destroy the influence of
precession. This condition we designate later as corresp
ing to a diffusion dominated motion. It also requires that t
time stept can not be chosen too large.

D. Nonprecessional case

In the case of real eigenvalues the general solutions of
homogeneous stochastic differential equations can be fo
in a similar way as for the precessional case using the
functions

mx5C1e2l1t1C2e2l2t, ~2.36!

my5C̃1e2l1t1C̃2e2l2t, ~2.37!

wherel15a(A1B)/21v andl25a(A1B)/22v. To this
solutions we add the particular solutions of the inhomo
neous equations. Putting the coefficientsC1,2 andC̃1,2 in Eqs.
~2.36! and~2.37! as functions of time and substituting in Eq
~2.14! and ~2.15! we find a solution of the stochastic inho
mogeneous equation

C1~t!5
aB2l2

l22l1
E

t0

t

f x~s!el1sds1
A

l22l1
E

t0

t

f y~s!el2sds,

~2.38!

C2~t!5
aB2l1

l22l1
E

t0

t

f x~s!el1sds1
A

l22l1
E

t0

t

f y~s!el2sds.

~2.39!

Hence, the final expression for^mx
2& is

^mx
2&5s2H ~G2v/A!211

2l1
~12e22l1t!

1
@G1v/A#211

2l2
~12e22l2t!

2
2@G22v2/A211#

~l11l2!
~12e2(l11l2)t!J ,

~2.40!

and for the correlations:
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^mxmy&5s2H ~G1v/A!@~G2v/A!211#

2l1
~12e22l1t!

1
~G2v/A!@~G1v/A!211#

2l2
~12e22l2t!

2
2G@G22v2/A211#

~l11l2!
~12e2(l11l2)t!J ,

~2.41!

where G5a(B2A)/2A. For the limiting solution fort
→` we get

^mx
2& therm5

s2

2aB
, ~2.42!

^my
2& therm5

s2

2aA
, ~2.43!

consistent again with the Boltzmann distribution. Note th
this is exactly the same expression as in the case of smaa,
as was also illustrated in Fig. 2. The correlation function

^mxmy& therm~t→`!.
s2auB2Au

2A
~2.44!

takes on a finite value for large times while the tempo
correlation function^mx(t)my(t1Dt)& goes to zero for
Dt→`.

For small timest!1/l1 ,1/l2 we obtain the normal dif-
fusion coefficient

^mx
2& therm5^mx

2& therm5s2t. ~2.45!

Note that in the same approximation there is no contribut
from the athermal part. The latter means that in the cas
large damping there could be a complete analogy betw
the Brownian particle and magnetic particle motions. Ho
ever, the correlational part in this case is not small:

^mxmy&5
2as2~B22A2!

A2 t. ~2.46!

Since neithera or B2A are small in this case, the correla
tions are of the order of̂mx

2&.

III. IMPLEMENTATION OF THE TIME QUANTIFIED
MONTE CARLO METHOD

In this paper we will consider only implementation bas
on the use of the simplest diffusion coefficient of the form
Eq. ~2.29!. Other possibilities are currently under investig
tion and will be published elsewhere.

Within a MC algorithm, it is convenient to make a tria
step move in a certain cone of radiusR. In a simple case
where the diffusion coefficientD is defined by properties o
the fluctuating forces@see Eq.~2.29!#, we will compare the
fluctuations which are established in the MC algorithm w
the fluctuations within a given time scale associated with
linearized stochastic LLG equation.

For this comparison, first we calculate the fluctuatio
2-6
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^Mx
2& which are established within one step of the MC sim

lation. The trial step of our MC implementation is a rando
movement of the magnetic moment up to a certain maxim
opening angle~inside the cone of the radiusR around the
current magnetization position!. In order to achieve this effi-
ciently we first construct a random vector with consta
probability distribution within a sphere of radiusR by use of
the rejection method.24 This random vector is then added
the initial moment and subsequently the resulting vecto
again normalized. Note that the probability distribution f
trial steps of sizer 5AMx

21M y
2 is pt53AR22r 2/(2pR3)

for 0,r ,R. It is nonuniform but isotropic, so that the sym
metry condition is fulfilled. The acceptance probability usi
a heat-bath algorithm is given by

ws→s85
w0

11expS E~S8!2E~S!

kBT D , ~3.1!

whereSandS8 denote two different states of the system a
w0 is a constant.

Assuming that the spin is close to its~local! equilibrium
position,DE(r 2) from Eq.~2.6! can be expanded for smallr,
yielding

DE~r 2!5KV~112Hz!r
2 ~3.2!

for the symmetric case where the field is parallel to the e
axis. In order to calculate the fluctuations within one M
step~MCS! we have to integrate over that part of the pha
space which can be reached within one MCS,

^Mx
2&5E

0

2p

dwE
0

R

r dr
r 2

2
w~r !pt~r !

5
R2

10
2

KV~112Hz!R
4

kBT
1O~R4!, ~3.3!

where the last line is an expansion for smallR. The second
term can be dropped for sufficiently smallR, leading to the
condition

R2!kBT/KV~112Hz!. ~3.4!

By equalizing the fluctuations within a time intervalDt of
the LLG equation and one MCS we find the relation

R25
10kBTa

KV
Dt5

20kBTag

~11a2!ms

Dt ~3.5!

for the trial step widthR.9 Equation~3.5! is the central result
of TQMC. It relates one MC step, performed using an alg
rithm as explained before, with a real time interval of t
solution of the Langevin equation. Corresponding relatio
for other trial step distributions or other acceptance pr
abilities, as for instance following from a Metropolis alg
rithm, can be derived as well. Also, in the same way the ti
step quantifications could, in principle, be taken from E
~2.28! or Eqs.~2.33! and ~2.34!.
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Note, that from the derivation above it follows that on
time stepDt must be larger than the intrinsic time scale
the relaxation. This means that results from the MC meth
can only be interpreted on time scales that are clearly la
than the microscopic time scale of the~local! relaxation of
the spin.

The most interesting result of Eq.~3.5! is the temperature
~or barrier! dependence on the trial radiusR. If the barrier is
large, in theory this allows the introduction of a larger tim
stepDt as in the integration of the Landau-Lifshitz equatio

In principle, Eq.~3.5! allows the possibility to choose th
trial step width for a MC simulation in such a way that 1 M
step corresponds to some microscopic time interval, sayDt
510212 s. However, there are of course restrictions for p
sible values of the trial step width:R must be small enough
so that the truncated expansion in Eq.~3.3! is a good ap-
proximation. On the other handR should not be too smal
since otherwise the MC algorithm needs too much compu
tion time to sample the phase space. Therefore, either
has to choose such a value forDt so thatR takes on reason
able values, or one chooses a reasonable constant valueR
and uses Eq.~3.5! to calculateDt as the real time interva
associated with the MC cycle. In the following we will us
the first method since it turns out to be very efficient
changeR with temperature. Also, in this case it is muc
easier to control the fulfillment of condition~3.4!. However,
the alternative method yields the same results10 as long as
condition ~3.4! is not violated.

IV. COMPARISON OF THE TWO DYNAMICS AND
DISCUSSION

In this section we compare the TQMC method and
Langevin dynamics calculating the switching time of a ma
netic particle. This time is defined as an averaged~over many
realizations! time necessary for the particle to change t
direction of the magnetization, i.e., until theMz component
changes its sign. Note that the switching time essentially
nonequilibrium quantity.

First of all we should clarify the conditions under whic
the TQMC method was used previously basing on the an
sis presented in this paper. Most of the previously conside
cases9,11 were under the conditions of the precessional
gime where it isa,acr @see Eq.~2.17!#. The parameters
corresponding to Fig. 4 of the original TQMC paper9 give
the valuesA50.877 andB50.781, yielding a very large
value ofacr'17. Similar considerations are true for most
the magnetic recording applications11 since even if the local
grain anisotropy is perpendicular to the applied field val
its value is normally sufficiently strong to assure that t
condition uA2Bu!A,B is fulfilled. This means that calcula
tions usually are made under the conditions of the prec
sional motion where Eq.~2.29! is valid and the TQMC
method must work in the high damping limit.

For a smaller damping one expects the precession itse
contribute significantly to the reversal process. The ellipti
motion of the athermal part of Eqs.~2.20! and ~2.21! can
increase the distance of the magnetic moment from its e
librium position: an initial deviationmy

0 of the moment along
2-7
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the hard axis~in the following they axis withA>B) at time
t50 leads after a quarter of the precession time to a de
tion from the equilibrium position along the easyx axis
which can be larger than the original distance and, he
contributes to the escape from the local equilibrium positi
Hence, the influence of precession can only be negle
when the distance does not grow due to the precession.
leads to the condition

Sx~t5p/2v!5Sy
0 A

v
e2pa8/2v!Sy

0 , ~4.1!

from which follows a condition for the damping constant

a@
4v

p~A1B!
ln~A/v!. ~4.2!

In the limit of smalla the latter simplifies to

a@
2AA/B

p~11A/B!
ln~A/B!. ~4.3!

The implication of the condition above is illustrated
Fig. 3 where results for the switching time of a magne
moment in a field with different angles to the easy axis ste
ming from TQMC and Langevin dynamics simulations, r
spectively, are compared. In the symmetric case (A/B51)
the condition above is alway fulfilled so that the TQM
method works for all values ofa. The more asymmetric the
problem is, the bigger becomes that value ofa above which
the TQMC method works correctly. Note that if one is inte
ested in the long time behavior, for small driving field
where the energy barriers are large the TQMC method
work even better since here it is usuallyA'B.

The influence of precession can also be neglected w
the thermal fluctuations are large enough to destroy the
cessional motion. This requires the condition~2.35! to be
satisfied. Figure 4 illustrates this condition where we pres
the switching time as a function of the damping parame
for various temperatures. If the temperature is fixed th
will always exist a critical valueacr of the damping param
eter where the condition~2.35! is violated. Consequently, i

FIG. 3. Average switching time versus damping constant fo
magnetic moment in a fieldH/2KV50.42 applied under an angle o
0,p/20,p/10/,p/4 to the easy axis~from top!. Comparison between
Langevin dynamics~LD! and time-quantified Monte Carlo~MC!
2KV/kBT572.
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we work in the small damping regime, the temperature m
be large enough to suppress the influence of the ellipt
precessional motion.

In principle, since the time quantification is not restrict
to the use of Eq.~2.33!, some other ideas of how to includ
the precessional term into the diffusional coefficient may
pear in future. In our implementation of TQMC the axial
symmetric case is the only one where the method works
all the damping parameter values. This is once again dem
strated in Fig. 5. Also shown in Fig. 5 is that the MC a
proach correctly describes the Langevin dynamics even
small barriers when the Fokker-Planck asymptote fails.

Similar results are presented in Fig. 6 for the nonprec
sional case where the conditionA2B!A,B is not fulfilled.
To model clearly this case we suppose that there is a h
axis anisotropy iny direction in addition to easy axis in thez
direction. In this case the values ofA and B can be very
different since it is

A511Happl ~4.4!

a
FIG. 4. Average switching time versus damping constant fo

magnetic moment in a fieldH/2KV50.42 applied under an angle o
p/20 to the easy axis for different temperatures 2KV/kBT
572,7.2,2.1~from top!.

FIG. 5. Average switching time as a function of the ener
barrier for various damping constanta54,0.1,0.01~from top! in an
axially symmetric case. Comparison between Langevin dynam
~LD!, time-quantified Monte Carlo~MC!, and Brown’s asymptote
~Ref. 5!.
2-8
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and

B511dy1Happl. ~4.5!

Heredy5Ky /Kz andacr can take on any value depending o
the value ofKy . In Fig. 6 we present the escape time as
function of the damping parameter for several values of
parameterA2B defined by the perpendicular anisotropydy .
Note that the method fails if the value ofdy is increased
which we attribute to the fact that the correlations~not taken
into account in the present implementation! become impor-
tant according to Eq.~2.46!.

Although the correct magnetization values were cal
lated for a noninteracting system TQMC, in the implemen
tion presented above, has been successfully applied of i
acting systems as well.25,26As an example to that, in Fig. 7
we present the switching time as a function of the excha
constant in a linear chain of magnetic particles with ea
anisotropy axis parallel to the field direction. As the near
neighbor exchange parameterJ is increased, the system un
dergoes first a transition from isolated magnetic moment
a nucleation-propagation mechanism and for still larger v
ues ofJ to a magnetization reversal by coherent rotation~see
also Ref. 25!. At this point, the switching time becomes in
dependent on the exchange constant. It is interesting, tha

FIG. 6. Average switching time versus damping constant fo
magnetic moment with an easy axis anisotropy 2KzV/kBT5100
and different additional hard axis anisotropies. The applied fi
H/2KzV50.9 is parallel to the easy axis.

FIG. 7. Average switching time versus strength of the nea
neighbor interaction in a chain of 16 moments. 2KV/kBT572, a
50.1. The fieldH/2KV50.95 is parallel to the easy axis.
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TQMC was able to correctly describe the predicted behav
However, one could expect the appearance of magnetiza
correlations due to the dynamic coupling, which should
taken into account in an improved MC time quantificati
scheme for interacting systems. An attempt to introduce s
correlations was taken in Refs. 27,28. Interestingly, ev
without such correlations the TQMC correctly reproduc
the Langevin dynamics results for relatively large damp
values.

Finally, we should point out that sinceR2 in Eq. ~3.5! is
proportional to the time step and inversely proportional
the barrier heightKV/kBT, this allows one to use a big tim
step for big barrier height, always when the condition~3.4! is
fulfilled. In Fig. 8 we present the switching time as a fun
tion of the barrier height. In this case the MC trial step w
kept constant to 0.111 and the time step was progressi
increased with the increment of the barrier height. The
viations for the large barrier may be attributed to the fact t
finally the condition~3.4! fails. In the same figure we presen
for comparison Aharoni’s asymptote6 for the magnetization
reversal and note a good agreement between the approa

V. CONCLUSIONS AND FUTURE WORK

Since Langevin dynamics is useful for investigating on
fast relaxation processes, studies of thermal stability req
the development of more computationally efficient metho
For intermediate time scales it is desirable to work w
methods based on MC algorithms but incorporating a ti
quantification. At the moment we have found no unique w
to implement TQMC in the general case. In the present pa
we report only the simplest case of the diffusional coefficie
based on formula~2.29!. We have found that this implemen
tation for TQMC should work provided several conditions

~1! Diffusion dominated motion. The pure precessiona
motion should be small compared to the diffusion coe
cient. The latter could be fulfilled either for high temperatu
or large damping value.

a

d

st

FIG. 8. Average switching time vs energy barrier calculat
with TQMC compared with Aharoni’s asymptote~Ref. 6! for the
axially symmetric case. During the simulation the trial MC step s
R50.111 was kept constant. The corresponding quantified t
step DtMC was increased proportionally to the barrier sizeDtMC

5Scale3DtLL where DtLL50.01 of the precession period is th
normal Landau-Lifshitz integration time step. The parameters of
simulationa50.1, Happ50.15.
2-9
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~2! Uncorrelated motion. The spatial correlations betwee
magnetic moment components should be small compare
the diffusion coefficient.

In practice, we have found that the application of the meth
is reasonable in a system of relatively large easy anisotr
and intermediate-to-hight damping value. The close to a
ally symmetric case is a special case when the MC proce
gives perfectly the same answer as the dynamical equa
integration. This is explained, probably, by the fact that
this case the energy barrier is the same in all the direct
and, consequently, it does not matter for the particle at wh
point of the space to cross it. However, in a nonaxially sy
metric case there exist only two points in space where
barrier is lowered and, consequently, the particle would
preferably through them. The dynamical precession helps
particle to explore more directions of the space, takes
system closer to the transition point and, then the noise h
to overcome the barrier. Thus, the dynamical precess
plays a significant role in the switching process and redu
the switching time in comparison to a pure random walk

In principle, the use of TQMC is not restricted to formu
~2.29! and implementation of the current paper. In the futu
other implementations based on different diffusion coe
cient estimations which includes precession or TQMC w
correlations may appear. This work is currently in progre

We have found some evidence that the simple formu
apply also to the case of interacting moments, although
needs further investigation. Future work will involve an i
an

ett
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vestigation of interacting particle systems, along with t
development of methods suitable for systems undergo
precession dominated motion.

The method rests on a comparison with Langevin dyna
ics. Here, the coupling to the heat bath is added phenom
logically to the equation of motion leading to a dampin
constanta, the microscopic evaluation of which is still miss
ing. In this sense there is still a lack of an absolute mic
scopic time scale. Nevertheless, there is at least a nontr
connection between MC methods and Langevin dynamics
this sense, our results also show that MC methods are vi
to describe switching processes in magnetic systems an
give realistic dynamics. Finally and importantly, Metropo
Monte Carlo with quantified time step constitutes a nume
cal method which is much faster than the integration of
dynamical equation of motion.
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