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Abstract. Let X HRn be a real analytic manifold of dimension 2. We study the
stability index of X, s�X�, that is the smallest integer s such that any basic open subset of X

can be written using s global analytic functions. We show that s�X � � 2 as it happens in
the semialgebraic case. Also, we prove that the HoÈrmander-èojasiewicz inequality and the
Finiteness Theorem hold true in this context. Finally, we compute the stability index for
basic closed subsets, s, and the invariants t and t for the number of unions of open (resp.
closed) basic sets required to describe any open (resp. closed) global semianalytic set.

Introduction

In this paper we study the complexity of systems of inequalities in a paracompact real
analytic manifold of dimension 2, namely, how to describe global semianalytic sets as eco-
nomically as possible, i.e., using the minimum number of global analytic functions in their
description.

The problem was settled by BroÈcker at the beginning of the 80s, who introduced the
invariants s (resp. s) for the number of inequalities required to describe open (resp. closed)
basic sets and t (resp. t) for the number of required unions of open (resp. closed) basic
pieces. BroÈcker and Scheiderer found, see [BroÈ ] and [Sch], that if V is an a½ne algebraic

variety of dimension n over a real closed ®eld R then s�V� � n and s�V� � 1

2
n�n� 1�. Also,

BroÈcker gave bounds for the invariants t�V� and t�V� which depend only on the dimension
of V, cf. [BroÈ ]. After that, Andradas, BroÈcker and Ruiz found the same results for compact
real analytic manifolds, see [An-BroÈ-Rz1] and [An-BroÈ-Rz2]. The same authors found
s�X0� � n for a real analytic set germ X0 of dimension n and they also gave bounds for the
invariants s, t and t. Finally, the exact value of s�X0� in arbitrary dimension and that of
t�X0� in dimension 2 has been determined by Andradas and DõÂaz-Cano, cf. [DC1], [DC2]
and [DC-An].

However, very little is known in the case of a global non-compact analytic set X,
where the real spectrum does not behave as well as in the previous cases. The only known
result was that if X is a non-compact analytic manifold of dimension 1, s � s � t � t � 1,
cf. [An-Be].
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Here we study the invariants s, s, t and t in case X is a two dimensional paracompact
real connected analytic manifold and in our way to do that we compute also the values of s,
s, t and t for singular global analytic curves, which turn out to be also 1. Our approach to
the problem is to exploit the interplay between orderings of the ®eld of meromorphic
functions on X and global semianalytic sets given by the Artin-Lang property for two
dimensional paracompact real connected analytic manifolds shown in [Ca1]. For the
manipulation of the orderings we attach to each ordering of the ®eld of meromorphic
functions on X an ultra®lter of global closed semianalytic sets. This method has already
been used in [An-Be], [Ca1], [Ca2] and [Jw].

We start by showing that s�X� � 2. After that, HoÈrmander-èojasiewicz inequality is
found to be valid in this context. Using it we show that s�X� � t�X� � 3 and t�X� � 2 by
means of the pasting lemmas proved in §3.

We want to thank the referee for his useful comments.

1. Preliminaries

Let X be a paracompact real connected analytic manifold of dimension 2. We denote
by O�X� the ring of global analytic functions on X and by K�X � (or simply K if X is clear
from the context) its quotient ®eld. By Grauert's theorem, when needed we will assume that

X is a submanifold of Rn and O�X� � O�Rn�
I

where I is the ideal of analytic functions

on Rn which vanish on X. We denote by Ob�X � the ring of bounded analytic functions on X.

A subset S HX is called global semianalytic if it can be written in the form

S � Sp
i�1

fx A X j fi�x� � 0; gi1�x� > 0; . . . ; giji�x� > 0g

where fi; gij A O�X �. The boundary of S will be denoted by BdS. In the few occasions that
the Zariski topology is used we will add the index Z in the notations.

A subset of X of the form fx A X j f �x� > 0g (resp. fx A X j f �x�Z 0g) with f A O�X �
is called principal open (resp. closed ). A ®nite intersection of principal open (resp.
closed) sets is called basic open (resp. closed ). We denote by s�X � (resp. s�X �) the smallest
integer such that every basic open (resp. closed) set is an intersection of at most s�X� (resp.
s�X �) principal open (resp. closed) sets. If no such integer exists then s�X� :�y (resp.
s�X � :�y). The invariant s�X� is called the stability index of X.

We also de®ne the invariant t�X� (resp. t�X �) as the smallest integer such that
every set S which is a ®nite union of basic open (resp. closed) sets can be written as a union
of at most t�X� (resp. t�X�) basic open (resp. closed) sets. As before t�X � :�y (resp.
t�X � :�y) if no such integer exists.

To any ordering b of K, we will associate the ring Wb, de®ned as the convex hull of
R in K with respect to b, that is,
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Wb :� f f A K j ÿr <b f <b r; for some r A R�g:
Wb is the minimal b-convex valuation ring of K, has residue ®eld R and its maximal ideal,
denoted by nb, is made up from the elements of K which are in®nitesimals with respect to
b, that is,

nb :� f f A K j ÿr <b f <b r; Er A R�g:
We denote by Ub the set of units of Wb, that is, Ub �Wbnnb; Gb and ob stand respectively
for the value group and the associated valuation of Wb. We have Ob�X �HWb and the
center of Wb in Ob�X�, mb :� nb XOb�X �, is a maximal ideal in Ob�X � since the residue
®eld of Wb is R.

We shall denote by C the family of closed global semianalytic subsets of X. Since C is
closed under ®nite unions and intersections, it makes sense to consider ®lters in C. In par-
ticular, given the ordering b of K, the family

Ub :� fY A C jY X f ÿ1�ÿ1; 1�3j; Ef A mbg
is a ®lter of sets of C which is maximal and will be called the ultra®lter attached to b. It can
be checked that Ub de®nes indeed a unique point in the Stone-CeÃch compacti®cation of X

(see [Jw]).

The usefulness of the ®lter Ub is given by the following important

Lemma 1.1. Let f A Ob�X � and suppose that f jY > 0 for some Y A Ub. Then f A b,
and for each n A N there exist u; g A Ob�X� such that u A Ub, ujY > 0 and uf � gn.

Proof. See [Ca2], Lemma 2 or [An-BroÈ-Rz2]. r

By b we shall denote not only the ordering of K but also the cone of positive func-
tions de®ned by it, so f A b means f >b 0.

Remark 1.2. If the zero set of f A O�X � is not in Ub then for each n A N there exist
u; g A K with u A Ub such that uf � gn. Indeed, since Z� f � B Ub and Ub is an ultra®lter
then there must exist Y A Ub such that Z� f �XY � j. Thus we can write Y � Y1 WY2

with Y1 � fx A Y j f �x� > 0g and Y2 � fx A Y j f �x� < 0g. Notice that Y1 and Y2 are
closed sets so one of them must be in Ub. Suppose Y1 A Ub (otherwise we change f by ÿf ),
that is, f jY1

> 0. Thus by Lemma 1.1 we have uf � gn for some u A Ub, g A K.

We ®nish this section by recalling that for any ®eld K its stability index s�K� (i.e. the
stability index of its space of orderings Specr K) is given by the so called Stability Formula
due to L. BroÈcker, cf. [An-BroÈ-Rz2], Corollary V.1.6:

s�K� � supfs j there is a fan F H Specr A with KF � 2sg;

2. Generic stability index

In this section we compute the stability index of the ®eld K of meromorphic func-
tions on X. By the stability formula above, we have to determine the size of the fans in
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Specr K. One special type of fans are those made up from the orderings of Specr K with
the same minimal convex valuation ring W. We will call FW to these fans, that is,

FW :� fa A Specr K jWa �Wg:

The number of elements of these fans can be computed by the formula KFW �K
GW

2GW

� �
.

Of course, not all fans are of this type, but every fan in Specr K is contained in the union of
two fans of this type, cf. [Ma], 1.3, 3.1 and 3.5. Thus, computing the number of elements of
the fans FW will bound the generic stability index s�K�.

We classify the orderings of Specr K in three types:

A) Orderings b A Specr K whose attached ultra®lter Ub does not contain any proper
analytic set. We will say that Ub has dimension 2 for it is the dimension of all sets in Ub.

B) Orderings b A Specr K whose attached ultra®lter Ub contains proper analytic sets
but no discrete sets. In this case we will say that Ub has dimension 1 for this is the minimum
of the dimensions of the sets in Ub.

C) Orderings b A Specr K whose attached ultra®lter Ub contains a discrete set. We
will say that Ub has dimension 0.

We start by counting the elements of Fb in case Ub has dimension 2.

Proposition 2.1. Let b A Specr K and suppose that dimUb � 2. Then b is the only

ordering with that ultra®lter Ub and Gb is divisible. In particular,
Gb

2Gb
� f0g and KFWb

� 1.

Proof. Let f A Ob�X�. Since dimUb � 2 we must have Z� f � B Ub so by Remark 1.2
we can write uf � gn for some u A Ub. This implies that o� f � � no�g� A nGb. In general,
each f A K can be expressed as a quotient of bounded analytic functions, so o� f � A nGb,

Ef A K. Thus, Gb is divisible and KFb �K
Gb

2Gb

� �
� 1.

Moreover this shows that the ordering b can be characterized as follows: If
f A Ob�X �, then f >b 0 if and only if there is Y A Ub such that f jY > 0. In conclusion, if
dimUb � 2 then the ultra®lter Ub de®nes uniquely the ordering b. r

For the second type of orderings we need the following result, cf. [Ca1], Proposition
3.3. We recall that a function f changes sign at x if both sets fy A X j f �y� > 0g and
fy A X j f �y� < 0g induce not empty set germs at x. We denote by Z� f �c the set of points
where f changes sign.

Proposition 2.2. Let f A O�X �. There exists a unique function (up to units) f 0 A O�X �
such that:

a) f � f 0
Pr

1

A2
i , with Ai A O�X�. In particular, f changes sign i¨ f 0 does.
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b) Z� f 0� �Z� f �c.

c) Ex A Z� f 0�, JÿZ� f 0�x� � f 0xO�Xx�; thus f 0 changes sign at all points of Z� f 0�.

With this at hand we can prove the

Proposition 2.3. Let b A Specr K and suppose dimUb � 1. Then
Gb

2Gb
is isomorphic to

a subgroup of
Z

2Z
. In particular, KFWb

Y 2.

Proof. First suppose that Z� f �c B Ub. Factoring f as in Proposition 2.2 we can

write f � f 0
Pr

1

A2
i , with Z� f 0� B Ub. By Remark 1.2, this implies f 0 � uh2, with u a unit in

Ub. Therefore f � uh2
Pr

1

A2
i so o� f � A 2Gb.

Let f ; g B 2Gb. In particular we have that Z� f �c, Z�g�c A Ub. Then

Y �Z� f �c XZ�g�c A Ub

and fg does not change sign along Y. It follows that Z� f g�c B Ub so that

o� f g� � o� f � � o�g� A 2Gb:

Thus
Gb

2Gb
H

Z

2Z
and we are done. r

Finally, it remains to see what happens when dimUb � 0. Before we recall a few facts
about the orderings of K. Let S denote the family of open global semianalytic subsets of
X. This family is closed under ®nite unions and intersections so we can consider ®lters of
sets of S.

The ultra®lters of S are closely related to the orderings of K. In fact, the ultra®lter
theorem, cf. [Ca-An], Theorem 2.2, says that there exists a one-to-one correspondence be-
tween the orderings of K and the ultra®lters of S. More precisely, if b A Specr K
then nb � fS A S j f f1 > 0; . . . ; fr > 0gHS for some f1; . . . ; fr A bg is an ultra®lter of S.

Conversely, if n is an ultra®lter of S then b � f

g
j f ; g A O�X� and f f g > 0g A n

� �
is an

ordering of K.

We remember also the tilde map which assigns to any global semianalytic set S HX

the constructible set ~S of Specr K de®ned by the same formula. Although the tilde map is
not bijective, two global semianalytic sets S and T have the same tilde image, that is,
~S � ~T , if and only if they are generically equal, cf. [Ca-An], Proposition 2.4.

Proposition 2.4. Let b1; . . . ; b8 A Specr K and suppose that U � Ub1
� � � � � Ub8

and
dimU � 0. Then they are not a fan.

In particular, for any b A Specr K, KFWb
Y 4.
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Proof. Let nb1
; . . . ; nb8

be the maximal ®lters of S corresponding to b1; . . . ; b8. Since
bi3bj, for i3j, there are basic open sets Bi A nbi

such that Bi XBj � j, for i3j.

Notice that we can reduce to a multilocal problem: If D A U is a discrete set then for
each p A D take a neighborhood U�p; ep� of p of arbitrarily small radius ep. Let he A O�X �
be such that

S
p AD

U p;
ep

2

� �
H fhe > 0g and Xn S

p AD

U�p; ep�H fhe < 0g:

Such a he can be constructed by approximating a Cy�X � function with the same
property, cf. [H], Chapter 2. By Lemma 1.1, he A bi, for all i, since all these orderings have
the same attached ultra®lter U. In particular, B 0i :� fhe > 0gXBi A nbi

, for any i and any e,
and replacing Bi by B 0i we may consider the Bi's in an arbitrarily small ball of the discrete
set D.

This also shows that Di :� Bi XD A U. Therefore replacing, if necessary, D by

D 0 :� T8
i�1

Di we can suppose that all the Bi's are adherent to the discrete set D, that is,

Bi XD � D.

Now, for any disjoint sets B1 A nb1
and Bi A nbi

, dim�B1 XBi�p � 0 or 1 for each
p A D. Thus, we have D � fp A D j dim�B1 XBi�p � 0gW fp A D j dim�B1 XBi�p � 1g A U
and as U is an ultra®lter one and only one of these two sets is in U. Hence we distinguish
two cases:

Case 1. For any i � 2; . . . ; 8, there exist pairwise disjoint basic open sets Bi A nbi

such that the discrete set D 0i :� fp A D j dim�B1 XBi�p � 0g is in U. In this case we change

D by
T8
2

D 0i A U.

Let p A D and let B1;p; . . . ;B8;p be the basic open semianalytic set germs of B1; . . . ;B8

at p. Since t�Xp� � 2, cf. [DC2], we can write B2;p W � � � WB8;p � C1;p WC2;p, for some
basic open set germs C1;p and C2;p. Now take hi;p A O�Xp� separating B1;p and Ci;p, i.e.,
B1;p H fh1;p > 0gW fpg and Ci;p H fh1;p < 0gW fpg. Such a function exists since B1;p and
Ci;p are basic of dimension 2, cf. [BroÈ ], Proposition 8.9 for the semialgebraic case and
[DC1] for semianalytic set germs.

Hence we have B1;p H fh1;p > 0; h2;p > 0gW fpg and

B2;p W � � � WB8;p � C1;p WC2;p H fh1;p < 0gW fh2;p < 0gW fpg:

Now, by [Ca-An], Lemma 4.3, there exists lp A N such that if h 0i;p � hi;p mod m
lp
p (where mp

is the maximal ideal of O�Xp�) then B1;p H fh 01;p > 0; h 02;p > 0gW fpg and

B2;p W � � � WB8;p H fh 01;p < 0gW fh 02;p < 0gW fpg:

Now we use Cartan's Theorem B to produce global analytic functions H1 and H2

such that at each p A D their germs coincide with h1;p and h2;p, respectively, till order lp (see
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[Ca-An], Proposition 3.6.d). Hence it follows that H1 and H2 separate locally B1;p from
B2;p; . . . ;B8;p at each p A D. Replacing, if necessary, each Bi by U XBi for some open
neigborhood U of D small enough we can conclude that H1 and H2 separate globally B1

from B2; . . . ;B8 and, therefore, b1 from fb2; . . . ; b8g. This shows that b1; . . . ; b8 are not
a fan.

Case 2. There exist some i A f2; . . . ; 8g such that for all disjoint sets B1 A nb1
and

Bi A nbi
the set D 0 :� fp A D j dim�B1 XBi�p � 1g is in U. In this case we shall suppose

i � 2 and change D by D 0.

Assume now U is an open global semianalytic neighborhood of �B1 XB2�nD. We
claim that U A nb1

. For otherwise U 0 :� Int�XnU� A nb1
, since nb1

is an ultra®lter, and
de®ning B 01 :� B1 XU 0 A nb1

we will have dim B 01 XB2 � 0, against the hypothesis. Sym-
metrically U A nb2

.

Let us denote g1
p ; . . . ; g

rp
p the half-branches of �B1 XB2�p. Clearly

�g1
p W � � � W grp

p �X �B3 W � � � WB8�p � fpg;

so using again Cartan's Theorem B we can ®nd a global analytic function f whose germ at
each p A D is positive on �g1

p W � � � W g
rp
p � and negative on �B3 W � � � WB8�p except for p.

Then f f > 0g A nb1
X nb2

but f f < 0g A nb3
X � � � X nb8

which is impossible for 8-element
fans. r

Once computed the number of elements of the fans FWb
we can determine the generic

invariants s and t.

Theorem 2.5. Let X be a paracompact real connected analytic manifold of dimension

2 and let K be its ®eld of meromorphic functions. Then s�K� � 2 and t�K� � 2.

Proof. By the stability formula we have to show that for any fan F H Specr K,
KF Y 4. Since F HFWb

WFWb 0 for some b; b 0 A F , by the preceding propositions we have
to see that if KFWb

�KFWb 0 � 4 then FWb
WFWb 0 is not a fan (unless FWb

� FWb 0 ). We can
suppose that dimUb � dimUb 0 � 0.

If the ultra®lters Ub and Ub 0 coincide then by Proposition 2.4, FWb
WFWb 0 is not a

fan. If, on the other hand, Ub3Ub 0 then there are discrete disjoint sets DHUb and
D 0HUb 0 . Now, let FWb

� fb � b1; . . . ; b4g and denote by nbi
the corresponding ultra®lters

of S. Then, similarly to Proposition 2.4, there exist basic open sets Bi A nbi
and function

germs fp such that (possibly after taking a smaller D A Ub and renumerating the elements of
FWb

) any function germ gp equal to fp up to order su½ciently high separates B1;p WB2;p

from B3;p WB4;p, Ep A D. De®ning fp � ÿ1 for p A D 0 and using Cartan's Theorem B we
®nd a global analytic function which separates two orderings from the other six showing
that FWb

WFWb 0 is not a fan.

Concerning the invariant t, as Specr K is a space of orderings with stability index 2,
Corollary IV.7.9.a) of [An-BroÈ-Rz2] says that t�K� � 2. r

After this, using Proposition 2.2 we get the
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Theorem 2.6. Let X be a paracompact real connected analytic manifold of dimension

2. Then s�X� � 2, that is every basic open subset of X can be written with two inequalities.

Proof. Let B � f f1 > 0; . . . ; fr > 0g be a basic open set and consider its image
~B under the tilde map. By the previous theorem, ~B � fb A Specr K j f >b 0; g >b 0g
for some f ; g A O�X �, so de®ning B 0 :� fx A X j f �x� > 0; g�x� > 0g, B and B 0 verify
~B � eB 0, therefore they are generically equal, that is, they di¨er in something of codi-
mension at least 1. We can suppose that f and g verify properties a) and b) of Proposition
2.2 since otherwise we change f and g by the functions f 0 and g 0 associated by that propo-
sition. A straightforward computation checks that BHB 0. Now, if B 0HB the result
follows. Otherwise, B 0nB will be contained in a global analytic set of dimension 1,
so we will have, B 0nBz � fr � 0g for some non-negative r A O�X �. As B 0nBHBdB

we have fr � 0gHBdB
z
, but a basic open set does not intersect its Zariski boundary,

cf. [BroÈ ], Proposition 2.2, so fr � 0gXB � j. Now, it is immediate to check that
B � f f r > 0; g > 0g and we are done. r

3. HoÈrmander-èojasiewicz inequality

The following is a generalization of a result stated by Bochnak and Risler, cf.
[Bo-Rs], for analytic manifolds. We will say that a germ xp A O�Xp� is elliptic if xp does not
change sign and its zero set is an isolated point, namely p.

Proposition 3.1. Let X HRn be a coherent analytic set and let D be a discrete subset
of X. We ®x for each p A D a non-negative analytic germ rp A O�Xp� such that Z�rp� � fpg.
Then there exists an analytic function x A O�X� which is a sum of squares of meromorphic

functions over X such that Z�x� � D and xpO�Xp� � rpO�Xp�, Ep A D.

Proof. If X is an analytic manifold, i.e. smooth, it is known, cf. [Bo-Rs], Lemma 1,
that there exists x A O�X � such that Z�x� � D and Ep A D, xpO�Xp� � rpO�Xp�. In these
conditions x is a sum of squares of meromorphic functions, cf. [Bo-Ku-Sh], Theorem 1.

In the general case, as rp A O�Xp� is non-negative then rph2
p � g2

1;p � � � � � g2
s;p, for

some hp; gi;p A O�Xp� and Z�hp�HZ�rp�, cf. [An-BroÈ-Rz2], Proposition VIII.2.8. Let us
de®ne cp :� rph2

p and let g 01;p; . . . ; g 0s;p A O�Rn
p � be representatives of

g1;p; . . . ; gs;p A O�Xp� �
O�Rn

p �
J�Xp� :

If r A O�Rn
p� is a positive equation of Xp then c 0p � r� g 021;p � � � � � g 02s;p is a representative of

cp which is elliptic as a germ in O�Rn
p �. In the same way we can take a representative of h2

p ,
which will be denoted as b 0p, elliptic in O�Rn

p � (remember that Z�hp�HZ�rp�).

Now, we can apply the result for analytic manifolds to ®nd a sum of squares of
meromorphic functions x 00 A O�Rn� such that Z�x 00� � D and x 00pO�Rn

p � � c 0pO�Rn
p �, Ep A D.

Analogously, there exists H A O�Rn� which is also a sum of squares of meromorphic func-
tions such that Z�H� � D and HpO�Rn

p � � b 0pO�Rn
p �, Ep A D. Let x1 and h1 denote the

classes of x 00 and H in O�X � � O�Rn�
J�X �, where J�X � � f f A O�Rn� j f jX � 0g. We have that
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x :� x1

h1
A K�X� is an analytic function in XnD and for each p A D,

xp �
x1;p

h1;p
� up

cp

h2
p

� uprp A O�Xp�;

where up is a unit of O�Xp�. Thus x de®nes a global section of the sheaf OX of analytic
functions and, since X is coherent, a global analytic function whence the result follows. r

Now, we state the HoÈrmander-èojasiewicz inequality in the following useful form (see
[B-C-R], Lemma 7.7.10, for the semialgebraic case).

Proposition 3.2. Let X be an analytic manifold of dimension 2 and let T HX be a
global closed semianalytic set. Given f ; g A O�X � there exist p; q A O�X� such that the fol-

lowing hold:

a) p > 0, qZ 0 on X.

b) sign�pf � qg� � sign f over T.

c) fq � 0g � f f � 0gXT
z
.

Proof. The global analytic set Y :� f f � 0g has the irredundant decomposition

Y �
� S

i A I

Ai

�
W

� S
j A J

fxjg
�

, where I and J are subsets of Z, the Ai's are irreducible global

analytic sets of dimension 1 and
S

j A J

fxjg is a discrete set. We introduce the following de®-

nitions (see Figure 1):

Y1 :� S
i A I1

Ai, where I1 :� fi A I j dim Ai XT � 1g.

Y2 :� S
i A I2

Ai, where I2 :� fi A I j dim Ai XT � 0g.

Y1

D 0
Y3

D 00T

D

Y2

Figure 1
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Y3 :� S
i A I3

Ai, where I3 :� fi A I jAi XT � jg.

D :�
� S

j A J

fxjg
�
XT , D 0 :�

� S
j A J

fxjg
�
nD, D 00 :� Y2 XT .

We note that Y1, Y2 and Y3 are global analytic sets of dimension 1 and that D,
D 0 and D 00 are discrete sets. Also notice that Y � Y1 WY2 WY3 WDWD 0 and that
Y 0 :� f f � 0gXT z can be written as Y 0 � Y1 WDWD 00.

First of all, using Proposition 3.1, we factor f as f � f 0HDH 0
D 0 , where HD, H 0

D 0 A O�X �
are sums of squares of meromorphic functions whose zero set are respectively D and D 0,
and f 0 A O�X � does not vanish at any point of DWD 0.

For each x A X we have f 0x � h1;xh2;xh3;x where Z�h1;x� � Y1;x, Z�h2;x� � Y2;x and
Z�h3;x� � Y3;x. The germs hi;x are determined up to units and, of course, if x B Yi then hi;x

is a unit. Now, let F be the sheaf de®ned as

Fx � h2
1;xO�Xx� if x A Y1,

O�Xx� if x B Y1.

�
Since F is coherent there exists a ®nite number of global sections g1; . . . ; gt A O�X �

which generate each stalk Fx, x A X , cf. [Co]. Setting F :� f 02 � g2
1 � � � � � g2

t , we

have Z�F� � Y1. Also, the fraction
F

f
is analytic on Tn�DWD 00� for if x A Y1 XT

and x B DWD 00 then x A Y1n�Y2 WY3� and therefore f 0x � h1;x, gi;x � ai;xh2
1;x for some

ai;x A O�Xx� and

Fx

fx
� h2

1;x�1� a2
1;xh2

1;x � � � � � a2
t;xh2

1;x�
h1;xHD;xH 0

D 0;x
A O�Xx�:

Suppose now that x A D 00. Then Yx � Y1;x WY2;x so f 0x � h1;xh2;x for in this case
Y3;x � j and h3;x is a unit. We apply the HoÈrmander-èojasiewicz inequality for semi-
analytic set germs, cf. [DC-An], Proposition 1.1, to h2;x; 1x (the germ at x of the
function identically equal to 1) and Tx obtaining p 0x; q

0
x A O�Xx� such that p 0x > 0, q 0x Z 0,

sign�p 0xh2;x � q 0x� � sign h2;x on Tx and Z�qx� � Y2;x XTx
z � fxg. Thus the germ q 0x is

elliptic for each x A D 00. Now, by Proposition 3.1 there exists a sum of squares of
meromorphic functions Q A O�X�, such that Z�Q� � D 00 and Qx � q 0xux, Ex A D 00, where
the ux's are units.

We de®ne the function G on T as

G �
FHDQ2g

f

���� ���� if x A TnD 00,

0 if x A D 00.

8<:
It can be checked that G is a continuous function on T. Indeed, if x A TnD 00 then

F

f
is

analytic and so G is continuous; if x A D 00 then
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FxHD;xQ2
xgx

fx
� h2

1;x�1� a2
1;xh2

1;x � � � � � a2
t;xh2

1;x�HD;xq 02x u2
xgx

h1;xh2;xHD;xH 0
D 0;x

:

Furthermore, from the proof of the local HoÈrmander-èojasiewicz inequality it follows that

jq 0xjY bjh2;xj on Tx for some constant b, that is,
jq 0xj
jh2;xj Y b (on Tx) hence the quotient above

tends to 0 on Tx, from which the continuity of G follows.

Now, by Tietze's theorem G can be extended to a continuous function of all of X, that
can be supposed to be non-negative, which we shall denote by G 0. Set G 00 :� G 0 � 1 and
take an analytic approximation of G 00, p A O�X� such that p�x� > G 0�x�, Ex A X , cf. [H].

Finally, we put q :� FHDQ2 so that fq � 0g � f f � 0gXT
z
. Thus we have

qg

f

���� ���� < p on T

and, in particular, sign �pf � qg� � sign f on T ®nishing the proof. r

From this we obtain HoÈrmander-èojasiewicz inequality in the form of [An-BroÈ-
Rz2], III.1.12. De®nining h f ; gi�x� :� sign f �x� � sign g�x�, where sign A fÿ1; 0; 1g, we
can state

HL. Let T A C and f ; g A O�X� such that f f � 0gXT H fg � 0g. Then there exists

f 0 A O�X� such that:

a) sign f 0 � sign f on T,

b) sign f 0 � sign g on f f � 0g and

c) h f ; gi�x� � h f 0; f 0fgi�x�, Ex A X .

Proof. Take f 0 � pf � qg as in Proposition 3.2. Thus, we have condition a).

On the other hand, as T X f f � 0gH fg � 0g then T X f f � 0gz
H fg � 0g, that

is, fq � 0gH fg � 0g. Thus if g30 then q > 0. Now, on f f � 0g it is f 0 � qg so
sign f 0 � sign g and we get condition b).

Finally, as sign A fÿ1; 0; 1g it is straigthforward to check case by case that condition
c) is veri®ed. r

With these tools we get the pasting lemmas similarly to [An-BroÈ-Rz2], Lemmas V.2.8
and V.2.13, which will allow us to pass from generic to non-generic bounds by induction.

Lemma 3.3. Let X be an analytic manifold of dimension 2, Y HX an analytic set of

dimension 1 and BHX a closed global semianalytic set. Assume that

BnY � fa1 Z 0; . . . ; ak Z 0gnY and BXY � fb1 Z 0; . . . ; bl Z 0gXY

for suitable ai; bi A O�X�. Then there exist c1; . . . ; cm A O�X �, mY k � l, such that

B � fc1 Z 0; . . . ; cm Z 0g. r
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Lemma 3.4. Let X be an analytic manifold of dimension 2 and S HX an open global

semianalytic set. If Y HX is an analytic set of dimension 1 and B1; . . . ;Bl are basic open sets
such that

SnY � �B1 W � � � WBm�nY and S XY � �Bm�1 W � � � WBl�XY

then S � B 01 W � � � WB 0l for some basic open sets B 0i HX . r

As a consequence we also get the

Finiteness Theorem. Let X be an analytic manifold of dimension 2 and let S HX be

an open (resp. closed ) global semianalytic set. Then S can be written as a union of basic open
(resp. closed ) sets.

Proof. We do the open case. The closed one follows by complementation. Now, S is
generically equal to a union of basic open sets, i.e.

SnY � �B1 W � � � WBm�nY

and S XY is open in Y. By Theorem 4.4 below S XY � f f > 0gXY so that by Lemma
3.4, S � B 01 W � � � WB 0m WB 0m�1. r

4. Computation of the complexity invariants

In order to use the above pasting lemmas we need to know the invariants s, s, t and t

of analytic sets of dimension 1.

We recall that every irreducible complex analytic set has an essentially unique nor-
malization, see [Gr-Rm], Chapter VIII and [Nar], Chapter VI, and that in the real case it is
also possible to de®ne the normalization in a satisfactory way (at least for a coherent ana-
lytic set) and compatible with the normalization of its complexi®cation, cf. [G-M-T],
Chapter IV.3.

Theorem 4.1. Let Y HRn be an irreducible analytic set of dimension 1 and let

p: Y 0 ! Y be its normalization. Then the quotient ®elds of O�Y� and O�Y 0�, denoted
respectively by K�Y� and K�Y 0�, are isomorphic.

Proof. The normalization p: Y 0 ! Y induces an injective map p�: O�Y� ,! O�Y 0�
that can be extended to p�: K�Y� ,!K�Y 0�. We are to see that p� is the isomorphism we
seek for.

First, we have that p: Y 0npÿ1�D� ! YnD is an analytic isomorphism for some dis-
crete subset DHY . Thus, for f 0 A O�Y 0� we can de®ne f A O�YnD� by composition as
f � f 0 � �pjY 0npÿ1�D��ÿ1. Now, let p A D and let Yp � Y1;p W � � � WYr;p be the decomposition
of Yp in irreducible analytic set germs. As p is a surjective map in dimension 1 then there
exists a neigborhood U of p such that pÿ1�U� �W1 W � � � WWr, cf. [Gr-Rm], Theorem
VIII.1.2, and the restriction of p to each Wi induces the normalization of Yi;p. The total
quotient ring of O�Yp�, denoted as K�Yp�, is isomorphic to the direct product

Q
K�Yi;p�
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and thus the restrictions of f 0 to each Wi de®nes an element of K�Yp�. Therefore, the germ

fp A K�Yp� is well de®ned and then can be written as fp � gp

hp

, with gp; hp A O�Yp�.

In this way we obtain a global section in the sheaf of meromorphic functions of Y
and, being Y a coherent analytic set, it de®nes a meromorphic function. In conclusion, the
map p� is bijective and therefore an isomorphism from K�Y� to K�Y 0�. r

In particular, this isomorphism shows that the Artin-Lang property is valid for irre-
ducible one-dimensional analytic sets for it is valid in the case of an analytic manifold of
dimension 1, cf. [An-Be]. Moreover, we have the following

Theorem 4.2. Let Y HRn be an irreducible analytic set of dimension 1. Then

s
ÿ
K�Y �� � t

ÿ
K�Y�� � 1.

Proposition 4.3. Let Y HRn be a global irreducible analytic set of dimension 1.

a) Any open semianalytic set is basic global and s�Y� � 1.

b) Any closed semianalytic set is basic global and s�Y� � 1.

Proof. a) Let B be a semianalytic open set. Then it is global, cf. [Ca-An], Lemma
3.1, and by the previous theorem it is generically equal to B 0 � f f > 0g, for some
f A O�Y�. Thus, D :� B 0nB is a discrete set and multiplying f by a non-negative function
vanishing at D we can suppose B 0HB.

Now, D 0 :� BnB 0 is a discrete set and each p A D 0 is in the interior of B 0, that is, fp is
elliptic at each point of D 0. By Proposition 3.1 there exists f 0 A O�Y� such that Z� f 0� � D 0

and f 0pO�Yp� � fpO�Yp�, Ep A D 0. Thus, f 00 � f

f 0
A O�Y � and B � f f 00 > 0g.

b) For closed sets the result follows by complementation. r

For the applications we need the values of s�Y�, s�Y�, t�Y � and t�Y� when Y is non-
irreducible. We still have:

Theorem 4.4. Let Y HRn be an analytic set of pure dimension 1, possibly reducible.
Then s�Y� � s�Y � � t�Y� � t�Y� � 1.

Proof. We can suppose Y � Sy
1

Yi, where each Yi is an irreducible analytic set of

dimension 1 and the family fYigy1 is locally ®nite. Let ri A O�Rn� denote a positive equa-
tion of YnYi and let B � fg1 > 0; . . . ; gs > 0gXY , with gi A O�Rn�, a basic open set of
Y. By Proposition 4.3, Bi :� BXYi can be written as Bi � fhi > 0gXYi for suitable
hi A O�Rn�. Now, the function germs fx :� P

i A Jx

hi;xri;x, with Jx :� fi j x A Yig, de®ne a

global section of the sheaf OY . Since Y has dimension 1 it is coherent and therefore
this section de®nes a global analytic function f A O�Y�. Thus, B and B 0 :� f f > 0g di¨er
in a discrete set and using the same argument of Proposition 4.3 we can conclude
B � f f 00 > 0gXY , so that s�Y � � 1.
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In a similar way it can be shown that s � t � t � 1. r

Once known the invariants s, s, t and t in dimension 1, we can apply the pasting
lemmas to compute the complexity invariants in any paracompact analytic manifold of
dimension 2, following the pattern of [BroÈ ], Theorems 7.6, 9.4 and Proposition 9.7 and
pointing out that the examples [An-BroÈ-Rz2], VI.7.2.b) and VI.7.2.e) apply in our case.

Proposition 4.5. Let X HRn be an analytic manifold of dimension 2. Then s�X � � 3,
t�X � � 2 and t�X � � 3. r
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