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Abstract

Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for
complex scalar field theory are investigated. The classical model has two coupling congtants,
Ao, associated to the two noncommutative extensiphs ¢ x ¢* x ¢ and ¢™* x ¢* x ¢ » ¢ of the
interaction term¢|4 on commutative spacetime. It is shown that the symmetric phase is one-loop
renormalizable for alh1 and 1o compatible with perturbation theory, whereas the broken phase is
proved to exist at one loop onlyib = 0, a condition required by the Ward identities for globall)
invariance. Explicit expressions for the noncommutative IR singularities in the 1PI Green functions
of both phases are given. They show that UV/IR duality does not hold for any of the phases and that
the broken phase is free of quadratic noncommutative IR singularities. More remarkably, the pion
selfenergy does not have noncommutative IR singularities at all, which proves essential to formulate
the Goldstone theorem at one loop for all values of the spacetime noncommutativity parameter
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1. Introduction

As is well known, in noncommutative field theory [1] the nonplanar parts of 1Pl Green
functions become singular when the noncommutativity spacetime parafrateroaches
zero [2]. The corresponding singularities are called noncommutative IR divergences and,
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for the theories usually considered, are quadratic, linear or logarithmi®inThey arise

from the contribution of large loop-momenta to nonplanar one-loop Feynman integrals
which, being finite for nonvanishing, become divergent # — 0. This simple but deep
observation, first made in Ref. [2], is known as UV/IR mixing and fgf* and gauge
theories [2—6] takes a much stronger form, which we will refer to as strong UV/IR duality.
Strong UV/IR duality states that the logarithmic noncommutative IR singularities in the
nonplanar part of a 1Pl Green function and the logarithmic UV divergences in its planar
part are in one-to-one correspondence. UV/IR duality in this strong form seems not to be
an artifact of perturbation theory, since in many instances it has been reobtained by taking
the infinite tension limit of a suitable string amplitude for an open bosonic string on a
magneticB-field [7].

Noncommutative IR singularities pose serious problems for the existence of noncom-
mutative field theories beyond one loop. They threaten renormalizability at higher loops
(since locality of UV counterterms may be spoitgdnd may introduce tachyonic states
[4,6,10] (associated to quadratic noncommutative IR singularities in 1PI two-point func-
tions). In noncommutative gauge theories [11], quadratic and linear noncommutative IR
singularities can be eliminated by introducing supersymmetry [4,6]. Indeed, in supersym-
metric gauge theories, the supersymmetric partners of the gauge field provide nonplanar
contributions which cancel the quadratic and linear noncommutative IR singularities in the
nonsupersymmetric theories [4,6]. The supersymmetric theories thus become free of tachy-
onic instabilities and are left with the milder noncommutative logarithmic IR singularities.
Furthermore, the results in Ref. [6] imply that supersymmeitrie 1 U (1) gauge theory
in the Yennie gauge becomes freeatifnoncommutative IR singularities at one loop.

The purpose of this paper is to study the noncommutative IR singularitiés(df
complex scalar field theory, to investigate whether they satisfy UV/IR duality in the strong
sense mentioned above, to explore spontaneous symmetry breaking as a mechanism to
eliminate noncommutative IR singularities and to analyze how this enters the Goldstone
theorem. To carry this investigation, we must first understand the UV renormalizability of
the model. Although the latter should be by now well established, in our analysis we have
found issues that have gone unnoticed in the literature and that are essential to understand
the model’s spontaneous symmetry breaking ant! {ts) global invariance at the quantum
level. We also report on them.

To be more explicit, consider complex scalar field theory on noncommutative Minkow-
ski spacetime, defined classically by the action

Ssym:/d4x[(au¢*)(8“¢) — Veym(M, 1, ¢, 9%)], (1.1)

whereg¢ is a complex scalar field and the potentiajm(M, A1, A2, ¢, ¢*) has the form

A A
Veym(M, 11, A2, ¢, ¢*) = M?||? + Zl P*xpx* xp + f P xdp*xpxp, (1.2)

1 As of today, the question of higher-loop renormalizability has been addressed mainky“d8] and the
Wess—Zumino model [9].
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with A1 andiz two different coupling constants. Note that in the action one must allow for
the two inequivalent noncommutative extensighis ¢ x ¢* x ¢ andg™ x ¢* x ¢ x ¢ of the
commutative interaction terig|*. The symbok denotes the Moyal product, defined for
functionsf (x) andg(x) as

(f *)(x) = f(x) exp(;a?9““£)g(x>,

whereg*¥ is a constant real antisymmetric matrix and our metric conventig,is=
diag+, —, —, —). We will restrict ourselves to magnetic-like matriée®*”, i.e., such
that9% =0 fori = 1,2, 3. For M2 > 0, the only field configuration that minimizes the
energy isgg = 0 and the action (1.1) with potential (1.2) defines the symmetric phase of
the classical theory. The glob&l(1) gauge transformations that leave invariant the action
take the formp — ¢/®¢, with « an arbitrary real constant. By contrast, fd? < 0, any

field configurationpg such thatgo|? = v2, with

_2M2
V=] ———,
AL+ A2

minimizes the energy and classical spontaneous symmetry breaking takes place. Indeed,
choosingpo = v and expanding about it as

¢ = %2 (T +io) +iv, (1.3)

the action can be written as
1 1
Spr = /d4x[§(aun)(8“n) + E(aﬂov)(a%v) — Vb,(M,xl,xz,n,o)}, (1.4)

where the potentid¥y (M, 11, A2, 7, o) has the form

1 v(k1+ A2)
Vor(M, A1, Ao, T, 0) = = (2M?) o2 + =222 227
r( 1,22 ) 2( ) o3

(T*xT*x0 +0 %0 *x0)

A Al — A2
—i—zn*n*a*o— T *0 *xTT xO
A A
1:—6 2(n*n*n*n+a*o*a*0) (1.5)

and M2 has been replaced with M2, so as to work with a positivé/2. The action (1.4)

with potential (1.5) defines the nonsymmetric or broken phase of the classical theory.
The globalt/ (1) transformations that leav&, invariant are obtained from — ¢/“¢ and

Eqg. (1.3); they read

ot =—a(o+ x/iv) do =am. (1.6)

As stated, we want to study the noncommutative IR singularities and their mixing with UV
divergences in both phases.

2 In this way we do not run into problems with unitarity [12].
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Our main results and the organization of the paper are as follows. In Section 2, we
consider the symmetric phase and show that it is one-loop renormalizable for arbitrary
A1 and iz compatible with perturbation theory, being not necessary to take 0. We
also give explicit expressions for the noncommutative IR singularities in the 1Pl Green
functions and prove that UV/IR duality in its strong form does not hold. Sections 3 to 5
are dedicated to study the broken phase. In particular, in Section 3, we demonstrate that
one-loop UV renormalization for the broken phase is consistent with the Ward identities
only if A2 = 0. In Section 4 we rederive the same result by analyzing the consistency of
the nonplanar sector of the theory with the Ward identities. Section 5 presents explicit
expressions for the noncommutative IR singularities in the 1Pl Green functions of the
broken phase. The expressions given there show that in the broken phase there are no
guadratic noncommutative IR singularities, that the selfenergy for the piondfiislffee of
all noncommutative IR singularities and that the strong version of UV/IR duality does not
hold. Also in Section 5 we show that the pion mass, defined as the zero of the selfenergy,
remains zero after one-loop radiative corrections, thus ensuring that the Goldstone theorem
holds true at one loop for arbitrary magneti¢’. Section 6 contains our conclusions.

Several related problems have been addressed in the literature. In Ref. [13] the broken
phase of the noncommutative glolda(~N) model, withN > 1 andi, =0, is considered
and it is shown that the pion selfenergy vanishes for vanishing external momentum.
Ref. [14] assumeg., = 0 and proves that globad (2) scalar field theory is one-loop
renormalizable. Whereas these papers deal with the igcase0, we focus on the case
A2 # 0 and on noncommutative IR singularities and their implications. As concerns
local models, Ref. [15] proves the consistency of UV renormalization with the BRS
identities for the local/ (1) model and calculates the beta functions. In turn, the one-loop
renormalizability of the local/ (2) andU (1) x U (1) models is shown in Ref. [16]. Itis
worth noting that in the local models; is excluded classically, Singg* x ¢* *x ¢ x ¢ is
not invariant under local gauge transformations, while our analysis here shows that in the
global model, = 0 follows from the symmetry requirements at the quantum level.

2. Thesymmetric phase: renor malization and noncommutative IR singularities

We first consider the symmetric phase, with classical action given by Eq. (1.1) and (1.2).
At one loop, the only 1PI Green functions with UV divergences are the field selfenergy
X (p) and the vertex" (p1, p2, p3, p4). To regularize the theory and to account for the
counterterms that will be necessary to subtract the UV divergences, we introduce an
invariant cutoffA by considering the ‘bare’ action

32\"
Sa.0 =/d4X[(3u¢S)(l+ F) (3" o) — Vsym(Mo, A10, A20, ¢0,¢8)}
n>2. (2.1)

Note that the quadratic UV divergences in the one-loop tadpole are not regularized if
n =1, so we must taka > 2. The potentialVsym(Mo, A1,0, 12,0, ¢0) IS as in Eq. (1.2)
but with the renormalized quantities?, A1, 12, ¢, ¢* replaced with bare quantities
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Mo, 10, A20. $o, ¢, defined by

1/2
go=2,"9, (2.2)
Z¢MO = Zy2M?, Zg)»lo:)\l-i-c”»l, Z;kzozkz—kﬁkz. (2.3)
The renormalization constan#y andZ,,. have the form

sM?
Zy =140z4, ZM2=1+W’

with 811, 812, 824 andsM? collecting all terms of order one or higher in The action
Sa.0 can be recast as

SA,0=8A,sym~+ Sct,sym

whereS 4 sym is given by

a2\"
SA,Sym=/d4x[(aM¢*)<1+ ﬁ) (9" ) — Vsym(M,kl,k2,¢,¢*)i| (2.4)
and the countertermsy sym read
SA1
Sct,sym=/d"'x[éz(p(auqﬁ*)(a“qﬁ) — SM%p*p — 2 ¢> *xprP* x

SA
AR *¢*¢} (2.5)

It is important to emphasize that anda, are different coupling constants, so there is no
reason for them to have the same running. In other wérdsandsi, may be different.
Egs. (2.4) and (2.5) provide the Feynman rules depicted in Fig. 1, where we have used the

A AN AN A
ACO p1 panrpz p4>+Azcog<p12p2)cos(p32p4)]

—@®— =i(p%zp —sM?)
p

AN AN A AN
m CO J21 szzrpz p4>+M2COS<1712172>COS<1732P4>}

Fig. 1. Feynman rules fo§ 4 sym andSct, sym.
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notation

p=0""py,  prq=0""puq,,  pop=-0""6,"pyp;.

Introducing sourcesp and Jg for the fields¢; and ¢o, we consider the generating
functional

Z[Jo, J§] = e<lo- o)

Z/[d¢0][d¢8] exp|:iSA,sym+iSct,sym+i/d4x (J5¢0+J0¢8):|-
(2.6)

For Jo we write Jo = Zfl/ZJ, so that/ogg = J¢* and similarly forJ. To find the Ward
identity associated to thé (1) global symmetry, we follow the standard procedure: change
variablesp — ¢/“¢ in the integral in Eq. (2.6), take into account that under this change
S4.0 remains invariant and define the effective actioj®, ¢*] as the Legendre transform

of W[J, J*]. This leads to the Ward identity

sr sr
/d4x <¢£ — ¢*3¢*) =0. (2.7)

Using for the effective action its expansion

o0
1
rig,¢°1= :ﬁ/d4x1-~-d4xnd4yl--~d4yn
n=1 :

X ¢(x1) -6 (1) - - ) T ™ (X1, o X0y V1 ooy Ym)

in fields, wherel"™ (x1, ..., x,; y1, ..., y») denotes the Green function efp-fields and
n ¢*-fields, and going to momentum space, we obtain the following set of Ward identities
for the 1PI Green functions:

F(n)(Pl, e P gl -, Gn) = F(n)(CIl’ cesqny Py -5 Pn)- (28)

The quantum theory is defined by the — oo limit of Z[Jo, J§1, or equivalently of
I'[¢,¢*]. Hence, for the symmetric phase of the quantum theory to exist, the large
limit must be well defined. This means that, while preserving the Ward identities, it must
be possible to choose order by order in perturbation theory the counterterms so as to cancel
the divergences that appear in the 1PI Green functions wihenoco. We are going to show
that this is the case at one loop for all valuesigfand 1, compatible with perturbation
theory.

As already mentioned, the only 1PI Green functions with UV divergences at one loop
are the field selfenerg¥ (p) and the verteX" (p1, p2; p3, pa). Let us first worry about the
selfenergy. Its one-loop contribution is given by

—iX1(p) = @ + ®—— = —i Tieg(p) +i(p®zp —8M?),  (2.9)

p p
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where the regularized selfenergy Xreq(p) reads

d* i+ (Lt

—i Xreg(p) = (21)% k2(1— fTZZ)n — M?2

Theo*'-independent part of this integral gives the one-loop planar contribetidfp(p)
to the field selfenergy, while the*-dependent part defines the nonplanar contribution
—i XNnp(p). Computing their limitA — oo (see the appendix for details), we have

 Se(p) (A +A2) ak 1
—i12p(p) =M
P 2m)* 21— Ly — 2
i A \[ A ) A2 )
and
)\2 d4k ikAp
—1XNp(p) =
m)* 21— & Koy — m2
iroM? K1(y/po pMZ)
N (2.11)
A—00 87T VvV Po pM
where
n—1 n
1 n\ I'(r)'2n—r)
= - - 2.12

and K, (-) is the third Bessel function of order. Note that, whenA — oo, the planar
contribution diverges quadratically and the nonplanar contribution remains finite provided
p o p #0.To cancel the UV divergences i Xp(p) and thus renderi X1(p) UV finite,

we adopt an MS type scheme and takestoy ands M?

1 A A2 A2
8z =0, SM? = — 16:2 ()\1-}- 22)|:n— —M2In<—>}. (2.13)

For the one-loop correction to the 4-vertex

—il1(pa, p2; p3, pa) = >©< iz @ >8<

= —ilveq(P1, P2; P3, P4) +

we proceed similarly. The regularized contributien/req(p1, p2, p3, pa) is the sum of
the first three diagrams and can be decomposed

—iTteg(p1, p2; p3. pa) = —iIp(p1, p2; p3, pa) — iINP(P1, P2; P3. p4) (2.14)
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in a planar part-i I'v(p1, p2; p3, pa) and a nonplanar parti I'np(p1, p2; p3, p4). The
planar contribution contains all the divergences that arise when oo, while the
nonplanar contribution is well defined far — oo and9#" # 0. After some calculations,
for the planar contribution we obtain

—iI'p(p1, p2; p3, pa)

. 2
i 2 A5 (mAszrpzAm

s — | (12422
A—>c>0167'[2|:< l~|—4>CO 2 )

A2 PLA P2 P3A pa A2
+x2<kl+4>cos< > )cos( > )]In<M>+fc (2.15)

where “f.c.” collects finite, regular contributions for nonexceptional configurations of
external momenta. In the MS type scheme that we have adopted, cancellation of UV
divergences requires taking1 andsiz as

Shy= 1 x2+’\2 In 4°
1= 162\ g M?

1 A2 A?
SA ——Xia| A I 2.16
2= 12 2( 1+4)”(M2> (2.16)

Thus far we have that the counterterifigsym with 8z, SM?2, a1 and si2 as in
Egs. (2.13) and (2.16) cancel the divergences that occur in the one-loop 1Pl diagrams
generated bys4 sym when A — oo, thus ensuring that thet — oo limit of I'[¢, ¢*]
exists at one loop. Furthermore, since by construckipp, ¢*] satisfies the Ward identity
(2.7) for all A, A1 and A, and since the divergent contributions far— oo in the 1PI
Green functions, given by Egs. (2.10) and (2.15), satisfy the Ward identities (2.8), the limit
A — oo preserves the Ward identities. Hence the symmetric phase of the quantum theory
exists at one loop. We stress that the symmetric phase is renormalizable at one loop for
all values ofr1 andip compatible with perturbation theory, and that there is no need to
assume., = 0. In other words, if one writes

A1+ 0k = Z11A1 + Z12A2,
A2+ 8k2 = Z21A1 + Z22A2,
the fact that\; and A, are different coupling constants means that there are no requisites

on theZ;; other than those arising from the Ward identities, and we have seen that these
do not impose any. From Egs. (2.16) we obtain

Z—1+1/\InA2 Z—l’\zlnA2
=7 16721\ M2 2= 96722\ Mm2)

1 2, [ A? 1 2um+xn, (A2
Zy1=———1In , Zp=14+ ——Inl — ),
A= 16n2 2 ( ) 2=t 162 2 M2
which are different among themselves. In Sections 3 and 4, we will see that for the broken
phase the Ward identities requitg = 0.
Once we know that the symmetric phase of the theory exists at one loop, we move on
to study the noncommutative IR singularities in the 1Pl Green functions. The one-loop
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nonplanar contribution (2.11) to the selfenergy is well definedfgr=£ 0. For6#* — 0,
however, it becomes singular. In fact, senditfgf — 0 in Eq. (2.11) and using the results
in the appendix, we have

lim  im [~ Znp(@, p)]

oV —0A

ix 1 M2

z_gzz{m+7[m(popzu?)_2|nz+2y_1]}. 2.17)
The origin of these noncommutative IR singularities can be understood by looking at the
integral expression for-i ZNP(p) in Eq. (2.11). AtA — oo, the integral is well defined
if 6V # 0, but diverges quadratically #*” = 0. The contribution to the integral from
arbitrarily high momenta* is curbed by the noncommutativity of spacetime, withpd p
acting as a regulator. This is precisely the UV/IR mixing argument [2], that#drand
gauge theories [2—6] goes beyond this observation for nonplanar integrals and states that
the logarithmic noncommutative IR singularities in the nonplanar part of a 1Pl Green
function and the logarithmic UV divergences in its planar part can be obtained from each
other by replacing; o p; <> 1/A2 for all the external momentg,. This stronger form
of UV/IR mixing does not hold here, since the planar pat®p(p) of the selfenergy has
UV logarithmic divergences proportional o, whereas the nonplanar pari Xnp(p)
does not have contributions proportionaktp[see Egs. (2.10) and (2.11)]. Without loss of
generality, we can take a reference frame in which all the componefts @inish except
for

62 = —p?1=9p. (2.18)

In this frame, and using the notatigrt* = (p°, ., p3) and p, = (pl, p?), Eq. (2.17)
takes the form

il2 1 M?
W[ez >+ —- |n(9M2)]

where the symbok denotes that the limi#*" — 0, A — oo has been taken and that

all finite contributions have been dropped. Besides the selfenergy, the four-vertex is the
only other 1PI Green function that may develop noncommutative IR singularities in its
nonplanar part. After some calculus, for the singular behavioar-at0O of its nonplanar

part, we obtain in the frame (2.18)

—iXNp(p) ~ —

—iI'np(p1, p2, D3, P4)

j 3 P1A p3+ p2 A pa
~ — Aol A A
16n2[Z<1+8 2) S( 2

3 5
+ (Z/\%~I—/\1A2+ ékg) cos(pl/z\pz) cos(]73 > )} In(9M )- (2.19)

It is clear that the replacemefitM? < 1/A? does not relate the noncommutative IR
singularities in this equation with the UV divergences in the planar part given in Eq. (2.15).
We conclude that UV/IR duality in its strong form does not hold.
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To finish our discussion of noncommutative IR divergences, we study if these introduce
perturbative tachyonic instabilities as in nonsupersymmetric gauge theories. The dispersion
relation up to one loop reads

p? — M? - 21(p) =0.

For external momenta” such thato/p o pM? « 1, where perturbation theory is valid,
the dominant part o1 (p) is the first term in Eq. (2.17), so we write

pP=M?+ + subleading terms

8n2pop
Sincep o p is positive definite, there are no perturbative tachyonic instabilities.

3. Thebroken phase: UV counterterms

We start writing an action analogous$g o for the symmetric phase which (i) generates
through perturbation theory finite Green functionstat> co, and (ii) is symmetric under
globalU (1) transformations. To this end, we combine Egs. (2.2) and (1.3) so that

1
V2
substitute the latter in Eq. (1.1), use Eq. (2.3) and repMé@avith —M2. This yields for
S4.0

1/2

bo=2, [ (n+i0)+iv}, (3.1)

$4,0=384,br + Sctbr.
whereS 4 pr is given by
2

Sab =/d4x L9 1+a—2 n(aﬂn)+}(a (142 n(a%—)
abr 2" A2 2" A2

- Vbr(M,)\l,)\Z,jT,U)], (32)
the countertermsSe; pr read
4 [8z¢ 8z¢ 81 5, 82 o
Setbr= | d*x 7(a,m)(aﬂn) + 7(8#6)(8“6) —V2v810 — STi- S0
v(6A1 + 6A2) (7w n <o) 6)\171’ .
_— * * O O*x0 %0 )— —TT % O *x0
N 4
SA1— SA2 Sh1+8A2
———— T *xO0O *x7T 0O — 7(7‘[*7‘[ * JT % JT +O‘*O’*O’*O’)
8 16
(3.3)
andsy ands; take the form
02
s1=8M°+ — 841+ 832), (3.4)

3
Sp=8M?+ §v2(5x1+5/\2). (3.5)
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m T i
= 2
P pz(l—ﬁ—z)”
ag ag i
_____ e
b p2(1— %)" —2M?
D1 v _ iv(x + i) co PLAP2
ol N R A 2
. D s
P .
y 3iv A
p2 =——(A A co u
5 N ﬁ(l+ 2) >
P3
\\ q2 //
N ¥
N i PiNgG2+P2Aq1 . PLA P2 q1 N g2
q1 =—=(A Ao)co ——————=———= ) —iAcCO CO:!
= gt AR ) oo P22 oo 112
/
Y4t
AN by, - Dy
N e
NI i P1A P2+ p1AP3+P2AP3
P x . ., =—=(A1+A2)|co
s N 2)[ { 2 )
/// \\
s p2 N
+co PLADP2+P1AP3—DP2ADP3
2
+Cos(p1Apz—p1Ap3—p2Ap3)]
2

Fig. 2. Feynman rules faf 4 py.

It is straightforward to check that, pbr and Sct pr are both invariant under tHé (1) global
transformations (1.6) and that their Feynman rules are those shown in Figs. 2 and 3.
Introducing real source,; andJ, for the fieldsr ando through

1 1
JZE(JH +i‘]0’)7 J*Zﬁ(-’ﬂ_i]ﬁ)

and substituting in Eq. (2.6), we have for the generating functional for the Green functions
of the fieldsr ando

Z[Jn, JO’] = eGC[-]n,JJ]

:/[dn][do]exp{isA,b,+iSCLb,Jrifd“x[Jﬂn —~ JU(a+f2v)]}.

To obtain the Ward identity that controls the gloli&ll) symmetry at the quantum level,
we follow the usual method: make the change (1.6) in the integral that defings J, ],
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®— = —iv2v81
--@®-- =i(p%z4 — 1)
LA
—@— =i(p?z5— 52
LA
D1 v iv P1LAD2
//v/®\\ = —3(3)\14-3)»2) COS( > >
. :’[B N
P o PLAD2
P2 —
> = \/_(8)»1 +38A2) cos( > >

AN i PLAG2+ P2 AqL PLA P2 qAG
qQ1 . = =(8A SAp)coyf ———=——=———=) —idrqCO co
e = 50 +orgyco PR LA ) i cof PLL oo £722)
7
Y4t
\\ p}/’ p4
Nvor i PLA P2+ PLAP3+ P2 AP3
41 /®\ D3 pgz—§(5A1+8A2)[cos< > >
///’ \‘\\ \
// pZ \\
1 co PLADP2+P1IAP3— P2/ D3
2
+Cos(p1Apz—p1Ap3—p2Ap3>}
2

Fig. 3. Feynman rules faS¢t pr.

note thatS pr and Scepr remain invariant under such a change and define the effective
actionI'[r, o] as the Legendre transform &f[J,;, J,]. This yields the identity

/d“x(oi—; —n—) I/d“ (3.6)

If we denote byl ™™ (x1, ..., x,; ¥1, ..., ym) the 1P1 Green function of 7 -fields andn
o -fields, the effective action can be written as

I'[m, o] Z

X 7 (x1) - T ()0 (V1) - -0 ) T ™ (X1, - Xn3 Y1 -+ Yim)-

/d4x1-~-d4xn d4y1~-~d4ym
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Substituting this in Eqg. (3.6) and going to momentum space, we obtain the following set of
Ward identities for the 1P1 Green functions:

m]"("+l’m_1)(171, ce s PnsQmi Qs -+ - s Gm—1)
. nl—v(nfl,m%»l)(pl’ ey Pn=1,q1s - -+ s qm> Gm+1)
= —vV2ur "D (py, P 0iga - ) 37)

It is important to note the zero momentum insertion on r.h.s. of the identities, since it will
play a key part in our analysis in Section 4. The same comments made for the symmetric
phase concerning the quantum theory apply here. Namely, for the broken phase of the
guantum theory to exist, one must make sure that it is possible to take order by order in
perturbation theory the counterterms so as to render the imit co of all 1Pl Green
functions finite, while preserving the Ward identities. In this section we show that this is
possible at one loop only ¥; = 0.

The 1PI Green functions with UV divergences for— oo in their planar parts are, in
the notation introduced above,

r®v ).
r9p),
re2,
r®Y(pq, p2; q), p1+p2+q=0,
r°dqi, g2, 93), q1+q2+q3=0,

r“9py, p2, p3, pa),  p1+p2+ps+pa=0,
r(py, p2; g1, q2), pP1+ p2+q1+g2=0,
r® 1, q2. g3, ), q1+4q2+q3+qa=0. (3.8)

By the UV/IR mixing argument, these are also the only 1PI the Green functions whose
nonplanar parts may develop singularities &at—> oo when 6# — 0. According to
Eq. (3.7), these functions satisfy the Ward identities

r@©.Dn 0) = 220 (0), (3.9
F(Z’O)(p) _ F(O’Z)(p) — _\/ivp(z»l)(p’ 0; —p), (3.10)
2r'®Y(p,q1: 42 = I'*¥(p,q1.42) = —V2vT ??(p, 0; 1, g2). (3.11)
3r@D(py. pa; p3) =v20I 49 (p1, p2. p3. 0). (3.12)
3r'®?(p1.q1: g2.43) — % (p1. q1. 92, 43) = V20 *¥(p1, 0; g1. 42, 43).
(3.13)
r“9(pi1, pa. p3.q) = 3r'*? (pa. p2: pa. q) = =20l *D(p1. p2. p3.0: q).
(3.14)

We first look atr"©1 (0). At one loop, it is given by

ka '\»)Tk
—ir®Yo = + + ?:-irrg%D(O)—i 2081, (3.15)
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where the regularized contributien Fregl) (0) has the form

v(,\l + Az) / d*k
(

1
—irOb) = —iFF(,O’l)(O) 5y |:D (k) ) (k):| (3.16)

reg

and we have defined

) k2 n

D,(k) =k (1— ?> , (3.17)
2\ n

Dg(k)=k2<1— %) —2M>. (3.18)

Note thati Frfa%l) (0) is purely planar and is quadratically divergenttat> co. To compute
its large A limit we use Egs. (A.2) and (A.3) in the appendix and obtain

—ir %Y ) =i, P (0)

reg
2 2
fzv(xlﬂz){/‘— - §Mz[l ( A ) —fo:|}, (3.19)

June 167r2 1 2 2M?

with fo asin Eq. (2.12). It follows that, foF %1 (0) to be finite,5; must be modulo finite
terms

M+ A2 3, [ A?
§1=— —~M?In[ =—5 ) |. 3.20
1= " 162 [n—l 2 n(21\42 (3.20)

Next we consider the pion selfenerdgi>? (p). At one loop, it receives contributions
from the following 1PI diagrams

e i O
") = et +U+®
=—iGY(p) +i(p?6zy — 81). (3.21)
Using the Feynman rules, the contributieﬂl’r%c’)(p) can be written as the sum

~iL&0(p) = —irg?%(p) - i N2 () (3.22)

of a planar part—iFP2 % (p) and a nonplanar paittzFN2 9 (p), given by
—ir%(p) _}/ d%% Trr+ o 2
~in3%p | T 4) @0 Datk) | costp Ak

n 1 { 2)1 }
Dy (k) | (A2 — A1) cosSp A k)

2M? (A1 + 12) { 1 H
D (k+ p)Dy (k) | cos(p A k)

At A — oo, the planar contribution diverges, while the nonplanar contribution remains
finite if 6#Y £ 0 [3]. From Egs. (A.2), (A.3) and (A.4) we obtain for the largelimit of

(3.23)
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the planar contribution
; 2
. ~(2,0) i A2\ A
—i s ——— 1A el DR
e (p)A—>oo 167'[2{( 1t )n

2
- Lle)LZMZ[In<A—> - fo] + A1+A2M2f(l72)},

(3.24)

where f (p?) has the form

2y _1_ _Z_MZ) <_P_2)
f(pH=1 (1 2 in(1- 57 )- (3.25)

Since the UV divergences in the pion selfenergy are those in its planar part and are given
by Eq. (3.24), for the selfenergy to be finite, ands; must be modulo finite terms

824 =0, (3.26)

. 2 2
Sy = —— [(AHB) A —3““2len(/‘ )] (3.27)

1672 2 )n—-1 2 2M2
Egs. (3.20) and (3.27) imply

a2 =0. (3.28)

In other words, ifA2 # 0, there are no counterterms that consistently subtract the UV
divergences in—iFl(O’l)(O) and—iFl(Z’o)(p). Note that the structure of the counterterms in
Sct.br» and in particular of those fori "% (0) and—i I"?9 (p), results from demanding
globalU (1) invariance, so the conditiorp = 0 is a requirement of globdl (1) invariance.

We now seth, = 0 and compute the UV divergences in the other Green functions on
the list (3.8). Every 1PI Green functidi®-" on this list is at one loop the sum

romm = pimm  pnm (3.29)

of three terms. The term§.”" and =™ collect the planar and nonplanar contributions
of the corresponding 1PI diagrams formed with the Feynman rules$ fex, while the

(m,n)

term I';; " is the counterterm contribution provided By pbr. At nonvanishing external

momenta, only the planar pafﬁ’"’”) becomes divergent fan — oco. Computing these
divergences and summing to them the counterterm contribution we obtain

1672|{n—-1 2 2M2
+i(q?8z¢ — 82) +f.c., (3.30)
—il”l(z’l)(pl, P2;q)
v prAp2\[ A2 42
—Co In — (8A1+ 68X f.c., 3.31
Ao 2 2 )[167# onz) ~ Ot | F e

. (0.3
—1F1< (41, 92, 43)
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3iv qi1Nq2 )»% A?
—co In — (A1 + 86X f.c., 3.32
Ao 2 2 )| Tenz"\2az) O T2 F (3.82)
—iFl(4’O)(p1, P2, P3, P4), —iFl(O’4)(p1, P2, P3, pa)
i A2 A2
— ~t9(p1, p2. P3)| 7y N[ =5 | — (821 +822) | +f.C., (3.33)
A—>0c0 2 167'[2 2M2

(2.2
—1F1< 2 (p1, p2; 41, 42)

i PiAG2+pargi\[ A A?
—> ——Co In — (6A1 — SA
5( 2 )[167# omz) ~ (Or k)

. (P1APp2 ang\[ M A2
+zcos< > )cos( > )[16n2|n<2M2 x| +f.c, (3.34)

wherety (p1, p2, p3) stands for

P1LAp2+ p1 A p3+ p2 A p3
to(p1, p2, p3) = COS( 5 )
A\ AN — A\
+C05(p1 P2+ p1Ap3—p2 p3>
2
A\ — AN — A\
n Cos(m pP2—p1 . p3—p2 p3>. (3.35)

Note that to calculate the UV divergences of the Green functions above, among all the
1PI1 one-loop diagrams that contribute to a given Green function, we only need to consider
those with at most two internal lines. The reason is that 1Pl one-loop diagrams with three
or more internal lines contain at least three propagators and thus their planar contributions
are finite by power counting at — oo.

For—il“l(o’z) (¢) in Eq. (3.30) to be finitejzy ands, must be given, modulo finite terms,
by éz4 =0 and

o[ AT L (A
In turn, modulo finite terms, Egs. (3.4), (3.5), (3.20) and (3.36) yield #6f ands1 + 822

A A2 M2 A?
SM? = l[ ——In<—>]

C16n2|n—-1 2 \2M?2
A2 A2
Sh+ o= —2_In[ =— ). 3.37
LHohe=Te ”<2M2) (3:37)
The latter equation and (3.34) imply
Sxr2 =0, (3.38)
22 A2
Shi=—In[ — ). 3.39
1= Ton2 ”<2M2) (3.39)

To determine the finite terms #V/2, 8z4 andsry, three renormalization conditions should
be specified.
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4. Thebroken phasell: Ward identities

In this section we rederive the conditiaa = 0 from the Ward identities (3.9)—(3.14).
So let us assume thap # 0 and recall that the identities hold for all, A1, 22 and all
81, 82, 811, §A2. With this in mind we look at the identity (3.9). Using the expressions for

Fl(o’l)(O) andFl(z’O)(p) in Egs. (3.15) and (3.21), the terms withcancel and we are left
with

290 = v2u[12%0) + ;3% (0)]. (4.1)

The contributionFPO’l)(O) on the l.h.s. is given in Eq. (3.16), while fd?éz’o)(O) and
F,\(,ZF;O)(O) on the r.h.s. we have from Eg. (3.23) that

(2 0 d* a1+ A2 3)»1+)»2i|
@= (27T)4|: Dy (k) Dy (k) (4-2)
20 A2 [ d% 1
il (0)= / (27_[)4 D, (k) 4.3)

It is clear from Egs. (3.16), (4.2) and (4.3) that Eq. (4.1) is satisfied. This is no surprise
since, as stated, the Ward identities hold for arbitraryi1, 2. The key point is that

the identity (4.1) holds because there is a contribum?,fﬁo)(O) to the r.h.s. which is
proportional toip, diverges atA — oo and is nonplanar. This indicates a mismatching

in the planarA — oo divergent contributions to both sides of the identity, or equivalently a
mismatching in the UV divergencédo subtract the UV divergences, we then have to add
different counterterms to the right- and left-hand sides, in contradiction with the statement
that the counterterms satisfy the Ward identities for arbitiarandA,. Hence, to have a
consistent subtraction procedure, we must get rid of the unwanted divergent contribution
F,\(,ZF;O)(O), and this implies taking, = 0. Note that after setting, = 0 we are left with

lim 390 =
A—>00

The argument just given generalizes to the other identities as follows. The invariance
for arbitrary 8, 82, A1 anddiz of St pr under globalU (1) transformations implies that
the counterterms in Fig. 3 satisfy the Ward identities. This means that the counterterm
contributions to both sides of the identities cancel, so the identities become relations among
planar and nonplanar parts of Green functions like that in Eq. (4.1)AAs oo, the
planar contributions to the I.h.s. of these relations become singular, while the nonplanar
contributions remain finite. Thus, the divergences that ariseAfor oo on the l.h.s.
are of planar type. These divergences must be matched by only planar divergences on
the r.h.s.; otherwise the UV divergences on the |.h.s. would not be balanced by the UV
divergences on the r.h.s. and their subtraction would require different counterterms for each
side. If all theA — oo divergent contributions to the r.h.s. are to be planar, the nonplanar

3 This mismatching was calculated explicitly in Section 3 [see Egs. (3.19) and (3.24)]. The argument given
here precisely avoids computing it.
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contributions to this side should remain finite fdr— oo. This, however, is not granted,
since on the r.h.s. of the identities one of the external momentg sasanishes and the
nonplanar contributions given by nonplanar Feynman integrals with nonplanarity factor
ek~re pecome divergent at — oo if p, = 0. Hence, we must find conditions that rid the
r.h.s. of the Ward identities of nonplanar contributions whichfoe 0 become divergent
at A — oo. Note that what we have precisely proved in our analysis above of the identity
(3.9) is that the condition, = O ensures the finiteness 6}%0)(0) at A — oo. Setting
A2 =0, we have checked that all the nonplanar contributions to the r.h.s. of the identities
(3.10)—(3.14) are finite for arbitrany, so no further condition is required.

The quantum theory being defined as the lasgkmit of the theory at finiteA implies
that the Green functioﬂl(o’l) (0) on the l.h.s. of the Ward identity (3.9) must be computed
at A — oo and the functionl“l(z’o)(p) on the r.h.s. atA — oo, p — 0. In our analysis

above of the identity (3.9), for the r.h.s. we have firstset 0 in Fl(z’o)(p) and then sent

A — o0. Settingp =0 led to Egs. (4.2) and (4.3), and sending~> oo to the discussion

that follows them. There is, however, one other way to compute the renormalized Green
function Fl(z,())(p) at A — oo, p — 0; namely, to takeA — oo at nonvanishing and

then sendp to zero. For the quantum theory to be well defined, both procedures must
yield the same result. Let us see that this is the case. To this end we consider again
the Ward identity (3.9) and take first — oo and thenp — 0. The only contribution

to the L.h.s. of the identity is th@-independent planar piecﬁfo’l)(O), whose largeA

limit gives a divergent contribution (which will be canceled by a suitable counterterm).
The r.h.s., in turn, receives contributions frdréz’o)(p) and F,\%O)(p). Taking A — oo

at nonvanishing in the planar contributiod}(,z’o)(p) gives Eg. (3.24), and sending in
it p to zero yields aA-divergentp-independent contribution. Proceeding similarly with
the nonplanar contributiom“,\(lﬁ;o)(p), and after using the results in the appendix, we

obtain

. . @0, \_  iA2 2 2 2 _ 1
,!ino/xlinooFNP (p) = 16ﬂ2{—pop+M [In(ZM pop)—In2+y It

(4.4)

Summing the planar and nonplanar contributions to the r.h.s. of the identity, we get a
A-divergentp-independent term (which will eventually be canceled by the appropriate
counterterm) and a singulagrdependent piece/p o p which will not be cancelled by a
counterterm and is not on the I.h.s., since the I.h.s does not depgndioravoid this mis-
matching of singulap-dependent contributions so that the Ward identity holds, we must
eliminate suchp-dependence from the r.h.s., hence we must fgke- 0. Furthermore,
only after settingh, = 0, the planar contributions to both sides of the identity, given by
Egs. (3.24) and (3.19), match and the counterterm is the same for both sides of the identity
(see Section 3). Thus, sendirig— oo in I’,\(,%O)(p) and thenp — 0 leads torp = 0 and
gives

i fm_ 1% =0
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We have repeated this analysis for the other Ward identities (3.10)—(3.14) and checked
that, fori, = 0 and arbitrary.1, the Green functions on the r.h.s. are free of divergences
in p. and yield the same nonplanar contributions as if one firstjgets0 and then sends
A — o0, p. denoting the vanishing external momentum.

The difference with the Ward identities for the symmetric phase is the zero momentum
insertion on the r.h.s. of the identities. At— oo, the zero momentum insertion produces
UV divergences proportional to, that, being nonplanar, cannot be locally subtracted. The
conditioniz = 0 sets such divergences to zero. Noting that

(1) the Ward identities hold for altt, A1 and thati,, and
(2) the only breakings at — co may arise from divergent contributions, and these
preserve the identities if, =0

we conclude that the Ward identities hold for— oo if A2 = 0. This ensures the one-loop
existence of the quantum broken phasexpe 0.

5. TheBroken phasell1: noncommutative IR divergences and the Goldstone
theorem

Here we give explicit expressions for the behaviour of the nonplanar parts of the Green
functions in Eq. (3.8) at sma#l*¥ and show that there is no UV/IR duality in the strong

sense. From Section 3 we know thq(to’l) (0) does not have nonplanar contributions,
0.1
R0 =

The nonplanar part orl(z"’)(p) is given by Eq. (3.23) with., = 0. Using formulas (A.5),
(A.9) and (A.11) to calculate its behaviour for largeand smalb*", we obtain
_ , 20, q_ iM M
eﬁllvm—>0A|En [-ilNe" ()] = 167127f(p )

with f(p?) as in Eq. (3.25). For the nonplanar parts of the other Green functions on the
list (3.8), after some calculations and using the results in the appendix, we have

(5.1)

02 (4 ~ M2 2
—ilp~ (@)~ _1Ty126M In(oM?), (5.2)
R (pn. por )~ — % cof PEAP2) gy (o2 5.3
iIyp " (p1, P2; Q) ﬁ > 1622 (0M?), (5.3)
() q1Nq2 2
—il'yp (ql,qz,qa)~—7 co > )167123In(9M ), (5.4)

. ~(4,0 0,4
—ll‘,ﬁp )(pl,pz,pa, pa) ~ —tFNp )(Pl D2, P3, P4)
2

i
~ —Ele(l’l, D2, P3)T&123 |n(9M ) (5.5)

Pl/\P4+P2/\P3>
2

i 3In(eM?), (5.6)

. ~(2,2) . o
—il'yp (pl,pz,P3,p4)~—§co e
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wherety (p1, p2, p3) is as in Eq. (3.35).

Comparing these expressions with Egs. (3.19), (3.24) and (3.30)—(3.34), we see that
the noncommutative IR singularities and the UV divergences cannot be obtained from
each other by replacing?M? < 1/A2, thus showing that there is no UV/IR duality in
the strong sense. We also note that, unlike the symmetric phase, there are no quadratic
noncommutative IR divergences. Indeed, the selfenergy ofottiield only contains
logarithmic noncommutative IR divergences, and the selfenergy of tfield does not
develop any noncommutative IR singularity at all. It is also clear from the equations above
that the noncommutative IR singularities satisfy the Ward identities. This is no surprise,
since we know from Section 4 that the Ward identities hold and takitig— 0 amounts
to settingp; — 0 as external momentum configuration.

We finally want to study if the Goldstone theorem holds at one loop. To do this, we
need the renormalized pion selfenergy. As is usual in the commutative case, we take as one
of the renormalization conditions that the vacuum expectation value of thesfiedthains
equal to its classical value, i.ég) = v. This is equivalent t(}iFl(l’o) =0, which together
with Egs. (3.15) and (3.19) completely specififesas

spm o[ A% 3l A f

YT en2 -1 2 amz) 0|
Substituting this in Eq. (3.21), using (3.22)—(3.24) and summing the tree-level and one-
loop contributions, we obtain for the renormalized pion selfenergy

r M2
FR<2’O)(]7) = pz — r‘;ﬂ? (]72) - FNP(P), (57)

where f(p?) is as in Eq. (3.25) and
Ive(p) = lim [E%(p)
A—00

is the largeA limit of the nonplanar contributioﬂ“,fuz:;o)(p) to the pion selfenergy. To
computel np(p), we use Egs. (A.5), (A.6) and (A.7) in the appendix for the three terms in
(3.23) and obtain

A1 [ 1 _2M2K1(,/2popM2)}
16n2| pop V2po pM?2

9] 1
A M? (d
——l—/%/d(x exp{toc(l—a)pz—ZtaMZ—%}. (5.8)
0

I'ne(p) =

16n2 2

If we define the mass squared as the valug®for which the selfenergy vanishes, to

find the pion mass, we must solve the equaﬂéﬁo)(p) = 0. Note in this regard that the
renormalized pion selfenergy is a regular functionpdf M2 and p o p, so the equation

FFEZ’O)(p) = 0 may in principle havé*’-dependent solutions with*” 0 andp" # 0. To
solveI‘ng’o)(p) =0, we proceed by iteration and, since at tree level the solutipA is 0,
we write p2 = 113p? + O (A2). Substituting this in Eqg. (5.7) and noting tha{p?) — 0
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for p2 — 0, we are left with
5p2= FNp(pZZO). (5.9)

Setting p2 = 0 in the second line in Eq. (5.8) and performing the integral, it is
straightforward to see that the two lines in Eq. (5.8) cancel each other, sbnp@i? =

0) = 0. The solution tcTng’o)(p) =0, up to ordery, is thenp? = 0 and the Goldstone
theorem is preserved by one-loop radiative corrections. Note that the fact that the
renormalized pion selfenergy is free of noncommutative IR singularities is essential for
the Goldstone theorem to hold at one loop. Had the selfenergy developed noncommutative
logarithmic IR singularities, these would have entered the masg @&, making it ill

defined for smalb.

6. Conclusion and discussion

We have studied the one-loop renormalizability, the noncommutative IR singularities
and the UV/IR mixing in both the symmetric and the broken phases of noncommutative
global U (1) scalar field theory. We have considered the general case of two interaction
terms in the classical actiong¢* x ¢ x ¢* x ¢ and r2¢* x ¢* x ¢ x ¢, and used as
regulator an invariant cutof. For the symmetric phase, we have shown that the quantum
theory exists at one loop for all values of the coupling constantsdi, compatible with
perturbation theory, and that there is no need to fake 0. We have also given explicit
expressions for the noncommutative IR singularities and checked that UV/IR duality does
not hold in its strong form.

As concerns the broken phase, we have seen that the Ward identities imply that the
guantum theory exists at one loop onlyjf vanishes. This is so because the Ward identities
have a zero-momentum insertion term that for larggields UV divergent contributions
proportional tox, that cannot be locally subtracted. To have a renormalizable theory, one
must get rid of such contributions, and this requikes= 0. We have also given explicit
expressions for the noncommutative IR singularities in the 1Pl Green functions of the
broken phase and shown that there is no strong UV/IR duality. The situation as concerns
noncommutative IR singularities, UV/IR duality and the Ward identities is different to
those cases previously studied in the literature. Consider for exaififegauge theory:
since UV/IR duality holds and the UV divergences are consistent with the Ward identities,
the logarithmic noncommutative IR singularities satisfy the Ward identities. For the case at
hand, however, the UV divergences satisfy the Ward identities, there is no UV/IR duality
and, yet, the noncommutative IR singularities satisfy the Ward identities.

Comparing the symmetric and the broken phases, we have seen that after spontaneous
symmetry breaking the theory does not have quadratic noncommutative IR divergences.
Furthermore, the pion selfenergy is free of noncommutative IR singularities of any type,
which makes possible to formulate the Goldstone theorem far*dll Had UV/IR hold,
the pion selfenergy would have contained noncommutative logarithmic IR singularities
In(@M?) and these would have spoiled the theorem. Since the interactiongtes »
¢* x ¢ for which the broken phase makes sense at one loop is also invariant under local
U (1) gauge transformations, it would be interesting to investigate the implications of
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noncommutative IR singularities and UV/IR mixing for the Goldstone theorem in local
models [15,16].
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Appendix A

In the computations we have performed in Sections 2 to 5 we have encountered the
following integrals:

d4k eiqu
IJT = T A 1~ 1N
D= | @ni Dy
d4k eiqu
IG 9 M = ——’
@M= | GniD,®
( ) / d4k eiq/\k
IJTJT ) = E)
TP (27)% Dy (k) D (k + p)
d4k ek
]O‘ﬂ s o M = )
@P-M= | i D, Dyt + )
d4k P
Iso (g, p, M) = . A.l
@ P-M= | G0 D, Dy + 1) (A1)

We are interested in their largé limit. To compute it, we proceed as follows. We first
Wick rotate to euclidean space, make the chahge kA and definep* = p*/A and

M= M/A. The integrals above then become functions of the dimensionless variables
gt A, p* andM. Next we use algebraic identities like

1 ! [1 ﬁ2+2ﬁk]
14+ (k+p)2  1+k2 1+ (k+ p)?

or

1 B 1 1 2": (n ) (kZ)r+1
K2(1+k2)" +2M2 "~ k2 +2M? =\ r ) K2A+k)" +2M2
to decompose every integral in a sum of integrals, whose limi¢ oo we study employing
Lebesgue’s dominated convergence theorem. Finally we use Schwinger parameters to

compute the integrals that give nonvanishing contributiond at- oo and rotate back
to Minkowski spacetime. Following this procedure we obtainget 0

[;(0) — ——

ey B A.2
A—00 167'[2”—1’ ( )
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: 2 2
1, (0, M) A::O—ﬁ{n{l—mz[m( A ) fo:|} (A.3)

i [ 2 2l
R T "”( A2)+1_Z_; mj’

Ion (0, p, M) — — |n< A7 )+f(p2) —fo}
e A—00 167'[2 2M2 ’
loo ©p M) = 15 n( A )= #?) - p) (A%)
A—>oo 1672 2M?
where fo and f (p?) are as in Egs. (2.12) and (3.25) ang?) reads

— 2/p2 41
=2 /1 8m2/p2I (Vl M/~ + )
8”) R Wi

Forg # 0, the results for,; andl, are relatively simple,
1
Asoo A2 goq’
iM? K1(v/2q 0 gM?)
NI

whereas fot,, ;, I, andI,, we have

Inz(q, p) ] : ® 1

Iz (q) — (A.5)

Io(q. M) — (A.6)

i dt
lon(q, p, M) ¢ — 16712/ /daexp[tot(l—a)p — 2te M?
los (g, p, M) 0 0

q o

4t

4 _ iocg A p:|, (A7)
with
0 forl;,,
6 - {

a forl,,, (A.8)
1 forl,,.

To study the noncommutative IR singularities in the 1PI Green functions we need only the
expressions att — oo, 6*¥ — 0. They can be easily computed and turn out to be

iM? 1 1 1
lim I|m I,(q, M — = — ZIn(2g o gM? —In2—Z= A9
lim, (g, M)= 8712|:qqu2 5N(2q0qM°) +y 2], (A.9)
. . 2
J@OAI@oolm(q,p) 16712[|n( goqp)+2In2—2y +1], (A.10)

. . 2 _ _ _
lim §im_Lox(q. p. M) = 16ﬂz[lﬂ(Zqqu) f(p?)—2(n2—y) 1},

J@OAlywloa(q,p,M) 16n2['ﬂ(qqu) g(p)—In2+y 1]- (A.11)

Note, e.g., that substitution of Egs. (A.5), (A.9) and (A.11) in (3.23) yields Eq. (4.4).
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