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Tuning the thermoelectric response of silicene nanoribbons with vacancies
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(Dated: February 17, 2020)

In this work, we present a thorough study of the thermoelectric properties of silicene nanoribbons
in the presence of a random distribution of atomic vacancies. By using a linear approach within
the Landauer formalism, we calculate phonon and electron thermal conductances, the electric con-
ductance, the Seebeck coefficient and the figure of merit of the nanoribbons. We found a sizable
reduction of the phonon thermal conductance as a function of the vacancy concentration over a
wide range of temperature. At the same time, the electric properties are not severely deteriorated,
leading to an overall remarkable thermoelectric efficiency. We conclude that the incorporation of
vacancies paves the way for designing better and more efficient nanoscale thermoelectric devices.

PACS numbers: 65.80.-g, 72.80.Ng, 73.63.−b

I. INTRODUCTION

Thermoelectric efficiency is achieved when the dimen-
sionless figure of merit ZT = S2σT/κ is high enough.1

In the definition of the figure of merit, S stands for the
Seebeck coefficient, and σ and κ are the electric and
thermal conductances at a temperature T , respectively
(see, e.g., Ref. 2). For instance, values of ZT larger than
unity represent a heat-to-electricity conversion efficiency
larger than 10%. Current thermoelectric materials dis-
play efficiency in the range of 5% to 20%. Thus, efficient
thermoelectric devices demand materials with strongly
suppressed thermal conductance to create a large tem-
perature gradient but still high electronic conduction to
minimize Joule heating. Both electrons and phonons con-
tribute to heat current and, consequently, thermal con-
ductance can be split as κ = κel + κph. Strategies for
enhancing thermoelectric efficiency seek to reduce both
contributions simultaneously without affecting electronic
conduction. In conventional metals, however, the classi-
cal Wiedemann-Franz law imposes a limit because the ra-
tio σT/κel is a universal constant. Therefore, a decrease
of κel is accompanied by a concomitant decrease of σ in
bulk metals. Hence, reducing the lattice thermal conduc-
tance κph by increasing phonon scattering is one of the
most promising routes to improve thermoelectric mate-
rials. Approaches such as nanostructuring, nanocompos-
ites and doping are found to enhance the thermoelectric
efficiency by simultaneously tuning various properties of
materials and, in particular, enhancing phonon scatter-
ing (see Refs. 3 and 4 for recent reviews).

In the last few years, several works have provided theo-
retical5–8 and experimental evidence9–12 that nanostruc-
turing yields thermoelectric efficiency unachievable with
bulk materials. On the one hand, quantum effects allow
thermoelectric devices to overcome the limitations aris-
ing from the classical Wiedemann-Franz law. Nanode-
vices with sharp resonances in the electron transmission
(such as Fano lineshapes) are good candidates for highly
efficient heat-to-electricity converters because the ratio
σT/κel increases well above the classical Wiedemann-

Franz limit.13–19 On the other hand, nanometer-sized ob-
jects exhibit a reduced lattice thermal conductance due
to an increased phonon scattering.20–23 Thus, nanostruc-
turing facilitates achieving large ZT and, consequently,
more efficient thermoelectric devices like refrigerators
and generators.24

Nanostructured graphene, such as nanoribbons and
nanorings, stand out because of the straightforward
way in which they exploit quantum interference effects.
Recently, we demonstrated theoretically that graphene
nanorings might be useful as thermoelectric devices.25

Thermal conductance can be greatly reduced in graphene
nanoribbons by rough edges,26 hydrogen-passivation27

and patterning.28–32 Unfortunately, lattice heat conduc-
tion, which is expected to be the most important con-
tribution to heat transport in carbon materials due to
the strong covalent sp2 or sp3 bonding, is still large
for thermoelectric applications. Thermal conductivity
in bulk graphene is as high as 2000− 4000 W/m K at
room temperature33 but it is largely reduced in narrow
nanoribbons (150 W/m K) and even more in nanorings
(100 W/m K) due to scattering of lattice vibration modes
at the bends.23

Bulk silicene, the silicon analog of graphene, exhibits
an in-plane thermal conductivity of 20 W/m K at room
temperature, according to equilibrium molecular dynam-
ics simulations34 (see Ref. 35 for a review on recent ad-
vances in silicene). This value is one order of magnitude
lower than that of bulk silicon. Graphene and silicene
share a common honeycomb lattice structure, but the
larger ionic radius of silicon compared to carbon induces
a buckling of the lattice.36,37 Buckling has an impact on
the vibrational modes of silicene that undergo phonon
softening and stiffening, thus reducing phonon heat con-
duction. Besides, in these systems, the presence of point
defects such as monovacancies and divacancies, generate
a significant diminution of the thermal conductance of
silicene sheets owing to phonon-defect scattering.34

In this paper, we study the thermal and thermoelectric
properties of silicene nanoribbons (SNRs) at low temper-
atures. We have calculated the thermal conductance κph
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2

when a random distribution of point defects (such as va-
cancies) in a diluted regime is created in the SNR. We
have then focused on the impact of vacancies concentra-
tion on the phonon thermal conductance of SNRs at dif-
ferent temperatures. We have found a sizable reduction
of κph as a consequence of the reduced phonon mean free
path. This decrease depends on the defect concentration
and temperature, especially in narrow SNRs. Further-
more, we have observed that the presence of vacancies
leads to an enhancement of the Seebeck coefficient, which
is mainly due to the quantum interference phenomena
within the device. These features affect the thermoelec-
tric conversion efficiency factor and, most importantly,
enhanced values of ZT arise at low defects concentra-
tion. In this sense, we suggest that point defects, such
as monovacancies, divancancies, or ad-atoms, might im-
prove the thermoelectric behavior of SNR by exploiting
interference effects and reducing the phonon mean free
path.

II. THEORETICAL MODEL

The system under study consists of a rectangular SNR
of width W and length L connected to the source and
drain leads, as shown schematically in Fig. 1. In or-
der to prevent topologically protected edge states that
appear at the Fermi energy in zig-zag nanoribbons, we
restrict ourselves to nanoribbons with fully hydrogen sat-
urated armchair edges (A-SNR) hereafter. The electronic
properties of these ribbons have been widely studied
by using both DFT calculations and single-band tight-
binding (TB) Hamiltonian.35,38–41 Both approximations
give reasonable quantitative (DFT) and qualitative (TB)
descriptions of the physical properties of SNR. In these
approaches, hydrogen saturated A-SNR behaves as semi-
conductor or semi-metallic, depending on the number of
silicon dimers along the transverse direction of the rib-
bon. Thus, for widths W = 3p and W = 3p+ 1 (p being
an integer number), A-SNRs behave as semiconductors
with a decreasing electronic gap as W increase; whereas
for W = 3p− 1 A-SNRs behave as semi-metallic, with a
zero energy gap at the charge neutrality point.40,41

In this context, and by adopting the single band TB
framework, we have considered a random distribution of
vacancies in the central region of a semi-metallic rib-
bon, which are represented with translucent circles in
Fig. 1. From the numerical point of view, for the elec-
tronic part of the calculations, the way to simulate va-
cancies in the lattice is by setting large on-site energy,
around 104 times the energy scale of the A-SNR. It pre-
vents electrons from occupying those sites. On the other
hand, for the phonon thermal conductance calculations,
we randomly removed atoms in the lattice by setting zero
to the inter-atomic potential between the vacancy and
the four nearest-neighbor atoms.

In order to study the thermal transport of the ribbons,
we have assumed the linear response approximation tak-

FIG. 1. Schematic view of the device. The central A-SNR is
connected to left (L) and right (R) leads of the same material.
The translucent circles represent the atomic vacancies on the
nanoribbon.

ing into account a small temperature difference between
both leads, TL and TR, respectively (with TL > TR). In
our study, we can neglect electron-phonon and phonon-
phonon interactions42,43 within the conductor because
these interactions are of higher order in comparison to
the harmonic interaction term, which we have used to
describe qualitatively ballistic thermal transport. In this
approximation, phonon transport can be calculated sim-
ilarly as the electronic counterpart. Thus, it is neces-
sary to solve the eigenvalue equation Kψ(r) = ω2Mψ(r),
where M is the diagonal mass matrix and K is the dy-
namical matrix of the system, which is calculated by us-
ing the finite difference method. Matrix elements of K
are given by Kiα,jβ = dFiβ/driα where Fjβ is the force
on the j-th atom in the β Cartesian direction due to
the displacement of the i-th atom in the α Cartesian
direction. In order to calculate the interatomic forces,
one needs to know the interaction potential, which is
here parameterized by a semi-empirical potential. In our
case, we have chosen the well-known Stillinger-Weber po-
tential.44 Under these assumptions, Landauer’s formula-
tion is flawless and reliable for calculating phonon trans-
port properties.45 The key magnitude then is the ribbon
width dependent phonon transmission TN (ω) through
the A-SNR (where N stands to the number of Si-atoms
dimers along the ribbon width) that will be addressed by
the non-equilibrium Green’s functions (NEGF) method.
This formalism is a useful and powerful method to study
dynamical processes in non-equilibrium many-body sys-
tems. To this end, the system is split into three spatial
regions, namely left contact, scattering region (conduc-
tor), and right contact. Landauer’s approach makes no
distinction between fermions and bosons, and, as a con-
sequence, transport equations are essentially the same in
both cases, except for the occupation functions of the
leads.

In this regard, the thermal current of phonons at a
temperature T can be calculated from the transmission
function TN (ω) as follows46,47

Jph =
1

2π

∫ ∞

0

h̄ω TN (ω)
[
nB(TL)− nB(TR)

]
dω , (1)
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where nB(T ) = 1/
(
eh̄ω/kBT − 1

)
is the phonon occu-

pation number at a given temperature T , and TL =
T + ∆T/2 and TR = T − ∆T/2. In the linear regime,
when ∆T is small, the phonon contribution to the ther-
mal conductance of the A-SNR, κph(T ) = Jph/∆T , is
given as

κph(T ) =
h̄2

2πkBT 2

∫ ∞

0

ω2TN (ω)
eh̄ω/kBT(

eh̄ω/kBT − 1
)2 dω .

(2)
This expression holds in the ballistic regime since it

is assumed that TN (ω) includes only the coherent part
of the transmission. For this purpose, we used Quantu-
mATK 2017.0.48 Phonon-phonon interaction is the ma-
jor limiting factor of the thermal conductance at high
temperatures (T > ΘS, where ΘS ' 640 K is the Debye
temperature in bulk silicene49) and it is not entering into
the calculation of TN (ω). Therefore, Eq. (2) will over-
estimate the value of the thermal conductance at high
temperature. Phonon-phonon interaction could be in-
cluded through a non-linear fit of the self-energy in the
NEGF equations, or they can be treated by the Boltz-
mann transport theory if needed. The main advantage of
Landauer’s formulation (besides its computational speed
in comparison to other approaches) is that no further ap-
proximations are needed. It is worth mentioning that all
curves presented in this work are averaged over a hundred
random realizations of disorder, avoiding any spurious re-
sults originated from statistical fluctuations.

III. RESULTS

We start our analysis by considering the confinement
effects on the phonon thermal transport properties of the
considered A-SNR. In Fig. 2, we show the phonon ther-
mal conductance κph as a function of temperature for
different values of the number of dimers N along the
transverse direction of the ribbon. As expected, the ther-
mal conductance κph shows higher values as the ribbon
width is increased because the number of allowed phonon
modes available for heat transport increases.50,51 The
thermal conductance at temperatures lower than 100 K
takes values in the range 0.1− 0.5 nW/K while at higher
temperatures, the value of the κph saturates. This trend
is due to the activation of different phonon modes as
temperature increases. At low temperature (lower than
100 K) only longitudinal and transverse acoustic phonon
modes contribute to the thermal conductance.50 As soon
as the temperature is increased, but still in the ballistic
regime condition, all phonons of the optical branches and
mostly the long-wavelength acoustic modes contribute
to κph and the conductance reaches a constant value.
It is worth mentioning that anharmonic terms, such as
phonon-phonon and electron-phonon interactions, are al-
ways present in the system; however, at temperatures
lower than T > ΘS = 640 K these effects play a minor
role and are considered perturbations of the second or-

der. At higher temperatures, they must be taken into
account, because the anharmonicity of these terms dom-
inates the thermal response of the sample. In that case,
the ballistic regime is no longer valid, and the calculated
phonon thermal conductance is overestimated.
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FIG. 2. Phonon thermal conductance as a function of temper-
ature for different A-SNR widths and for a length L ' 26 nm.

A. Impact of vacancies on the thermal conductance

During growth, synthesis, and physical manipulation
of materials at the nanoscale, it is common to observe
the occurrence of different kinds of defects in the nanos-
tructure, such as dislocations, Stone–Wales defects, va-
cancies, impurities or adatoms, among others. These
defects not only significantly affect the electronic prop-
erties of the material, but also act as phonon localiza-
tion/delocalization centers, with the consequent deteri-
oration of the thermal properties.34,52,53 By using first-
principles calculation, several authors have studied differ-
ent configurations of defects in silicene, considering sin-
gle vacancies, groups of vacancies (clusters), or even ex-
tended line of defects.54,55 In these works, it is shown that
due to silicene presents sp3 hybridization, the formation
energy of these defects is reduced, and consequently, the
defective silicene becomes a stable structure. This behav-
ior has been observed in other two-dimensional systems
as well, such as graphene, black phosphorous and MoS2

layers. Recent studies have shown that defects can dra-
matically reduce phonon transport in graphene,56 silicene
nanowires57 and silicene nanoribbons.34,58 For instance,
Li et al.34 have shown that a single vacancy in silicene
sheets, of a total of approximately 400 atoms, can dimin-
ish the thermal conductance about 78% in comparison
with a pristine sample. These results point out the rele-
vance of vacancies in thermal transport, being a suitable
mechanism to reduce the phonon thermal conductance in
nanometric systems.
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In this context, in what follows, we focus on the ef-
fects of a random distribution of single vacancy defects
in a diluted regime, on phonon thermal transport of nar-
row SNRs. We address the impact of the disorder po-
tential (Anderson-like potential caused by the random
distribution of defects) on the phonon thermal transport
properties. Despite the fact that single vacancies present
higher formation energy per atom in comparison to other
defects (such as divacancies or cluster of vacancies), this
atomic defect is stable under a wide range of tempera-
tures and, without loss of generality, it represents a con-
venient way to model a random distribution of defects
in the system. It is most important to mention that we
have compared the results with those corresponding to
divancacy defects, and we have not observed dramatic
differences in the general trends of the thermal conduc-
tance. Bearing these considerations in mind, we used the
Landauer’s formulation as given by Eq. (2). Results of
the average phonon thermal conductance 〈κph〉, over a
hundred of realizations, of a A-SNR of width N = 20
dimers and length L ' 26 nm are shown in Fig. 3 a), for
different concentrations of vacancies n = 0.1%, 1%, 3%
and 5%. We define the concentration of vacancies n as
the ratio between the number of removed atoms and the
total number of Si atoms in the pristine A-SNR and is
contained in the dynamical matrix K. In order to assess
the reduction of κph in the disordered system, for com-
parison, we have also included the pristine case in this
figure.

For all cases, a strong reduction of 〈κph〉 with respect
to the pristine A-SNR is observed in the whole temper-
ature range. The defect-phonon scattering59,60 mainly
cause this significant decrease. Similar effects have been
reported in silicene sheets, where κph decreases about
30% at temperatures greater than 200 K by the pres-
ence of only a single vacancy.34 At low temperatures, the
long-wavelength acoustic phonons dominate the thermal
transport, and 〈κph〉 takes values lower than to those in
pristine samples. Although the curves have the same
trend as a function of temperature, it is clear that for
concentrations above 1%, the reduction of 〈κph〉 could be
higher than 60%, reaching the saturation limit at temper-
atures around 300 K. It indicates that vacancies not only
reduce the mean-free-path of the optical phonons but also
affects the acoustic phonons as well. This behavior is well
reflected in the phonon transmission function presented
in Fig. 3 b). In this plot, it is possible to observe that
the acoustic branches (lower energy values) are less af-
fected, in comparison with the optical branches (higher
energy values) as the vacancy concentration increases.
This can be easily understood because both sub-lattices
vibrate almost in phase in an acoustic mode, at least over
regions smaller than the phonon wavelength, being less
affected at low energy. On the other hand, in the optical
branches, the sub-lattices vibrate out of phase. Hence,
even for high wavelengths (k → 0), optical modes are
sensitive to scales of the order of the lattice parameter
and, therefore, they are more affected by the disorder.

FIG. 3. a) Average phonon thermal conductance as a function
of temperature for an A-SNR of width N = 20 and length L '
26 nm. These curves correspond to averages over a hundred of
random realizations of the disorder. The standard deviation is
represented by the error bars. Panel b) phonon transmission
probability as a function of the phonon energy and for the
different vacancy concentrations n.

These results point out that the appearance of a low
concentration of randomly distributed vacancies may en-
hance the thermoelectric behavior of A-SNRs, as we will
discuss in the next section.

B. Thermoelectric properties of A-SNRs

In bulk metals, high values of the figure of merit ZT
cannot be obtained because of the Wiedemann-Franz law
is generally valid. However, in nanoscale systems, ther-
mal and electronic properties can be tuned independently
in order to achieve improved efficiency above this limit.
Therefore, the Wiedemann-Franz law may not hold at
the nanoscale thanks to interference effects, which in gen-
eral terms, modify the universal ratio between the elec-
tronic contribution to the thermal conductance and the
electronic conductance (reflected in the Lorentz number,
defined as the ratio of the electric and electron ther-
mal conductivities). Thus, it has been reported ZT

Page 4 of 8AUTHOR SUBMITTED MANUSCRIPT - JPCM-115438.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



5

values greater than 2.4 in tailored nanostructured ma-
terials such as superlattices,61 nanowires62 or quantum
dots.63 These high efficiencies are obtained by an ap-
propriated combination of phonon suppression and the
enhancement of the electronic properties of the device.
Therefore, nanostructures made of silicene sheets and sil-
icene nanoribbons seem to be good candidates to exhibits
this improved behaviour.51,58 In this context, in what
follows, we will focus on the thermoelectric response of
A-SNRs with vacancy defects. As we discussed above,
the random distribution of vacancies largely reduces the
phonon thermal conductance of the A-SNR, which is the
key ingredient to improve the thermoelectric efficiency of
the system.

To analyze the thermoelectric behaviour of the disor-
dered A-SNR, we have adopted the linear response ap-
proximation, in which an effective voltage drop ∆V and
a temperature difference ∆T are applied between the left
and right contacts. Within this approach, the electronic
current Ie and the heat current IQ are given by64

Ie = −e2L0∆V +
e

T
L1∆T , (3)

IQ = eL1∆V − 1

T
L2∆T , (4)

where e is the elementary charge, T is the absolute tem-
perature and Ln (with n = 0, 1, 2) are integrals defined
as

Ln(µ, T ) =
2

h

∫ ∞

0

T (E) (E − µ)n
(
−∂f(E, T )

∂E

)
dE .

(5)
Here h is the Planck constant, µ is the chemical poten-
tial, f(E, T ) is the equilibrium Fermi-Dirac distribution
and T (E) is the energy-dependent electron transmission
probability.

The electronic conductance is defined as σ = −Ie/∆V
and it can be obtained directly from equation (3)

σ(µ, T ) = e2L0 . (6)

The Seebeck coefficient S is calculated in the linear re-
sponse regime, namely |∆T | � T and |e∆V | � µ. It
is defined as the voltage drop induced by a temperature
gradient at zero electric current, S = ∆V/∆T |Ie = 0 [see
equation (3)], in the limit ∆T → 0. Thus

S(µ, T ) = − 1

eT

L1

L0
. (7)

The electron contribution to the thermal conductance
is defined as the ratio between the thermal current IQ and
the temperature gradient ∆T when the electric current
Ie is zero, κel = IQ/∆T |Ie=0. Written in terms of the
integrals (5), it is given by

κel(µ, T ) =
1

T

(
L2 −

L2
1

L0

)
. (8)

The total thermal conductance of the SNRs is obtained
as κ(µ, T ) = κel(µ, T ) + κph(T ). It should be stressed

that κph(T ) depends only on temperature but not on
the chemical potential µ. Finally, the thermoelectric ef-
ficiency is determined by the figure of merit

ZT (µ, T ) =
σS2T

κel(µ, T ) + κph(T )
. (9)

In Fig. 4 we show the results of the average values
(over a hundred of realizations) of the electron conduc-
tance, the Seebeck coefficient, the total thermal conduc-
tance 〈κtotal〉 = 〈κph〉 + 〈κel〉, the figure of merit and
the Lorentz number of the disordered SNR, for a fixed
temperature of 300K. These plots show the different
thermoelectric quantities for pristine (black lines) and
the disordered A-SNRs, with vacancy concentration of
1% (violet lines), 3% (light-green lines), 4% (mustard-
yellow lines) and 5% (red lines). The electronic conduc-
tance and the total thermal conductance as a function
of the chemical potential [Fig. 4 (a) and (b)] exhibit a
marked reduction at the center of the band (µ = 0) as
the concentration of vacancies increases. For instance,
for concentrations of 1% and 3%, the electronic conduc-
tance decreases about 45% and 80%, respectively. The
occurrence of Anderson electron localization65 explains
the overall decrease of the electronic conductance due to
the existence of a disordered potential landscape caused
by vacancies. We observed similar results in a previ-
ous work, where we calculated the electron localization
length λe for different vacancy concentration.66 In the
case of the total thermal conductance, the combination
of the reduction of the phonon mean-free-path due to
phonon-defect scattering and the Anderson electron lo-
calization (which affects the electron transmission func-
tion and consequently the electronic contribution to the
thermal conductance) generate the remarkable reduction
of 〈κtotal〉. On the other hand, due to the breaking of
electron-hole symmetry and the destructive quantum in-
terference effects within the conductor (Fano-like effect),
the Seebeck coefficient displays an enhancement of the
absolute maximum values as the vacancy concentration
increases, as shown in Fig. 4(c). The Seebeck coefficient
is sensitive to abrupt changes in the transmission func-
tion T (E) because, in the first order of approximation, it
depends directly on the derivative of T (E) with respect
to the energy, known as Mott’s formula.64,67 Thus, the
sharp reduction of the transmission probability through
the disordered conductor (which is very similar to the
conductance behavior) explains the enhancement of the
Seebeck coefficient. Finally, the figure of merit ZT does
not show a monotonic trend but reaches the highest val-
ues at a concentration of 3% [Fig. 4 (d)], which corre-
sponds to an optimal combination of the physical prop-
erties that determine the thermoelectric efficiency. We
calculate the Lorentz number for different vacancy con-
centrations, averaged over a hundred of random config-
urations. The average Lorentz number decreases as the
vacancy concentration increases. It is due to the reduc-
tion of the electronic contribution to the thermal conduc-
tance. The faster reduction of the thermal conductance
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on increasing the magnitude of disorder compared to the
electric conductance can be understood as follows. The
disorder has stronger impact on electron states of higher
energy, that become more spatially localized (Anderson
localization) due to their smaller wavelength. Therefore,
electron transmission at high energy is dramatically re-
duced while it is less affected at low energy. This change
in transmission compared to the pristine nanoribbon re-
sults in a decrease of L0 (see equation 5) and then a
reduction of σ is expected. However, the reduction of L2

is more pronounced due to the weighting factor (E−µ)2

in the integral appearing in equation 5. Hence, the ratio
L2/L0 (i.e. the Lorenz number) decreases with disorder,
as observed in Fig. 4 (e).

FIG. 4. (a) Electronic conductance, (b) total thermal con-
ductance, (c) Seebeck coefficient, (d) figure of merit and (e)
Lorentz number as a function of the chemical potential µ,
for a fixed temperature T = 300 K. Results are shown for a
pristine sample and disordered samples with vacancy concen-
trations of 1%, 3%, 4% and 5%.

We can gain insight into the above result by plotting
the maximum of the figure of merit, ZTmax, as a function
of temperature, as shown in Fig. 5(a). Again, ZTmax

reaches its highest value at a vacancy concentration of
3%. The behaviour of ZTmax can be explained by the
interplay between κel, κph and S. In our system, we
have confirmed that the Wiedemann-Franz law holds to

a large extend, i.e., κel/σT ' (π2/3)(kB/e)
2. Thus

ZT ' 3

π2

(
e

kB

)2
S2

1 + κph/κel
. (10)

In Fig. 5(b), we plot κph/κel as a function of the chem-

FIG. 5. a) Maximum figure of merit as a function of tem-
perature for concentrations of 1%, 3%, 4% and 5%. As a
comparison, the pristine case is also shown; b) Ratio κph/κel

as a function of the chemical potential at T = 300K for vari-
ous values of the concentration of vacancies. For comparison,
the result for the prinstine SNR is also shown (black line).

ical potential at T = 300K for various values of the con-
centration of vacancies. We can see that the maximum
of κph/κel decreases with the concentration of vacancies,
provided that the concentration does not exceed ∼ 1%.
The opposite behavior is observed at larger concentra-
tions. As the maximum of κph/κel begins to grow faster
than S2, ZT decreases with the concentration of vacan-
cies. Our simulations indicate that the optimum concen-
tration of vacancies is about 3%. Larger values of the
concentration worsen the thermoelectric efficiency of the
A-SNRs. It is worth noticing that for the whole range
of the concentration of vacancies studied in this work
κph < κel. Therefore, vacancy defects efficiently reduce
the lattice thermal conductance while electron thermal
transport is less affected.
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IV. CONCLUSIONS

In this work, we have investigated the thermoelec-
tric properties of silicene nanoribbons in the presence
of a random distribution of atomic vacancies in a di-
luted regime. We have obtained the phonon and electron
contribution to the thermal conductance, the electronic
conductance, the Seebeck coefficient, the figure of merit,
and the Lorentz number of these nanoribbons. Due to
the phonon-defect scattering within the conductor, which
suppresses some optical and acoustic vibrational modes,
we have found a significant decrease of the phonon ther-
mal conductance as a function of the defect concentra-
tion, over a wide range of temperature. Besides, due
to the break of electron-hole symmetry and the destruc-
tive quantum interference effects within the conductor,
we have obtained an enhancement of the Seebeck coeffi-
cient as the vacancy concentration is increased, reaching
an asymptotic value at concentrations above 5%. We

have observed that the figure of merit ZTmax exhibits
a maximum behavior for a concentration of 3%, which
corresponds to an optimal value of the factor S2/κtotal

in the diluted regime. Finally, the ratio between the
electron and the phonon thermal conductances reaches
an optimum value for a specific concentration, leading
to an overall remarkable thermoelectric efficiency. With
the above findings, we can conclude that the addition of
vacancies is a suitable method for designing better and
more efficient nanoscale thermoelectric devices based on
silicene.
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