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In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities
verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc.,
provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number
generators. We point out that they can be further exploited as control variates to reduce statistical errors. The
strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the two-
dimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
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I. INTRODUCTION

Monte Carlo simulation �1,2� is one of the handful of
general methods in the theoretical physicist toolbox that can
be applied to nonperturbative problems. In spite of this, it is
a very inefficient method; the computational effort needed to
get yet another decimal significant figure grows by a factor
of 100.

Yet, there are alternatives to brute force when more accu-
racy is needed. A classical strategy consists of looking for
statistical estimators of the sought quantities, which have the
same expectation value as the commonly used naive estima-
tors, but a reduced variance. The multihit method �3� �and
later developments �4�� for the Polyakov loop in lattice QCD
is a conspicuous example of such an improvement. Now, the
numerical error is proportional to the square root of variance
for the considered estimator. It follows that reducing the
variance by a factor of 2 reduces as well in the same factor
the numerical effort needed to achieve the desired statistical
accuracy. Even a modest factor of variance reduction can be
a significant improvement; the CPU time needed in applica-
tion to lattice gauge theory or to condensed-matter physics
�think for instance of spin-glass simulations �5�� often lies in
the range 10−104 processor years.

Here we propose a general road to variance reduction
based on known identities between exact mean values. In
spite of its usefulness, this strategy, known as control vari-
ates in the mathematical literature �6,7�, is still not com-
monly used in the framework of Monte Carlo simulations in
Physics �at the practical level, it only requires standard
Monte Carlo data-analysis tools�. In fact, it is fairly common
to find in field theory or in statistical mechanics that a par-
ticular linear combination of nontrivial expectation values
vanishes exactly �we provide specific examples below�.
There are different ways of finding such identities;
Schwinger-Dyson equations exploit invariances of the inte-
gration measure �8�; Callen identities are derived by integrat-
ing in the functional integral some variable while holding all
the others fixed �9� �multihit operators �3,4� belong to this
category�; Guerra relations are somehow specific to disor-
dered systems �10�; in models where a cluster method works
�11� cluster estimators with the same expectation value than
their spin counterparts can be found �see, e.g., �12� and ref-

erences therein�. It is fair to say that for any problem ame-
nable to a path-integral formulation, each of the above strat-
egies will provide at least one identity—the vanishing of a
precise linear combination of expectation values of nontrivial
observables.

Researchers performing Monte Carlo simulations are
acutely aware of the advantages provided by mean-value
identities. If the numerically obtained expectation values do
not verify them within errors, this will most probably be due
to a thermalization bias �13,14� or to a failure of the used
pseudo-random-number generator �15� �or to a programming
bug!�. We remark here that mean-value identities provide
statistical estimators with reduced variance as well. The
method is exemplified in the standard benchmark of the two-
dimensional Ising model at its critical point.

We note finally that in previous work �16,17� covariance
error reduction was presented for the finite-size scaling
analysis of phase transitions. Indeed, covariance analysis im-
proves the computation of the critical temperature and the
leading scaling-correction exponent from the data on finite
lattices �16�. It provides as well the optimal combination of
different estimates of the sought critical exponent �each in-
dividual estimate being previously extrapolated to infinite
volume� �17�. As we discuss in Sec. II D, covariance error
reduction �specially as presented in Ref. �17�� is a particular
case of the present approach.

The layout of the rest of this paper is as follows. In Sec. II
we recall the error-reduction strategy in a general setting
�without reference to any specific model�. The reader merely
interested in a practical recipe may proceed directly to Sec.
II C. In Sec. III, we briefly describe the model and the ob-
servables, as well as the used mean-value identities. We
present our numerical results in Sec. IV while our conclu-
sions are in Sec. V. In the Appendix we present some tech-
nical results which are specific for the Swendsen-Wang clus-
ter algorithm as applied to the Ising model.

II. COVARIANCE ERROR REDUCTION

We first discuss the problem as if the exact covariance
matrix were accessible �Sec. II A�. The effects of time cor-
relations are described in Sec. II B. Real-life complications
arise from the fact that the covariance matrix needs to be
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estimated from a finite sample of Monte Carlo data, which
fortunately does not induce any significant bias, Sec. II C.
Finally, we discuss in Sec. II D how the general approach
relates with the problem of finding the optimal linear com-
bination of several estimates for the very same expectation
value. We discuss some of the very counterintuitive features
of this problem as well.

A. Minimal error

Let A, B1, B2 , . . . ,BR be stochastic variables. We assume
that a set of mean-value identities appropriate for the prob-
lem at hand tells us that �Bi�=0 for i=1,2 , . . . ,R. We assume
as well that �A2� and all the �Bi

2� are finite. We wish to profit
from the covariance between A and the Bi to obtain the best
determination �in the sense of minimal variance� of �A�.

Before going on, it is useful to note that the operation of
computing the covariance between real-valued stochastic
variables X and Y,

�XY � ��X − �X���Y − �Y��� , �1�

has the structure of a scalar product. Indeed the four follow-
ing properties are easy to establish: �i� it is symmetric, �XY
=�YX, �ii� it is linear on each of its arguments, �X��1Y1+�2Y2�
=�1�XY1

+�2�XY2
, �iii� �XX�0, and �iv� if �X�=0 and �XX

=0 it follows that X=0 with probability one. For later use,
we introduce the correlation coefficient between X and Y,

rXY �
�XY

��XX�YY

. �2�

Using the Bi, it is straightforward to define stochastic vari-
ables with expectation value �A�,

Ã��1,�2, . . . ,�R� = A + 	
i=1

R

�iBi. �3�

Our task is to find the coefficients 
�i
��i=1

R that minimize the Ã
variance,

�ÃÃ = �AA + 2	
i=1

R

�i�ABi
+ 	

i=1

R

�i
2�BiBi

, �4�

that has a minimum at

�i
� = − 	

i,i�=1

R

��−1�i,i��ABi�
, �ii� = �BiBi�

�5�

In the following, we will denote the optimal random vari-
able as

A� = Ã��1
�, . . . ,�2

�� , �6�

whose variance is

�A�A� = �AA − 	
i,i�=1

R

�ABi
��−1�ii��ABi�

. �7�

Note that rescaling any of the Bi, Bi→�iBi, would leave A�

unchanged. For R=1, Eq. �7� reads

�A�A� = �AA�1 − rAB
2 � . �8�

In particular, whether A and B are correlated or anticorrelated
is immaterial.

In a nutshell, we face a standard problem of best approxi-
mation in an Euclidean space; we are decomposing the fluc-
tuating part of A, A− �A�, on its components parallel and
orthogonal with respect to the linear space generated by

Bi�i=1

R . The best approximation, A�, is found when the par-
allel component is made to vanish. The minimal variance is
the norm squared of the orthogonal component. If we com-
pute in a Monte Carlo simulation A� rather than A, we are
rewarded with a CPU gain factor of �AA /�A�A�.

B. Covariance and time correlations

The stochastic variables X ,Y ,Z , . . ., considered in Sec.
II C are actually Monte Carlo time averages. Indeed, the
Monte Carlo dynamics can be regarded as a Markovian ran-
dom walk in configuration space �2�. Let � be one of such
spin �or gauge-field� configurations, and let �t=0, �t=1 , . . ., be
the time sequence of configurations visited by the random
walker. We consider functions of the fields configuration
X ,Y ,Z , . . . �observables hereafter� and use the shorthand
X�t�=X���t��, t=0,1 , . . . ,T−1. Hence, our stochastic vari-
able X will be �and similarly for Y ,Z , . . .�

X =
1

T
	
t=0

T−1

X�t�. �9�

The Markovian random walk in configuration space is
fully determined by a transition matrix, P�t+1�t

, namely, the
conditional probability of reaching �t+1 from �t in a single
step. The transition matrix verifies the balance condition
with respect to the equilibrium distribution function 	���,

	��t+1� = 	
�t

P�t+1�t
	��t� . �10�

In this work, we shall always consider that at t=0, equilib-
rium has been already reached. Thus, the expectation value
for X is the Boltzmann average for X.

It is convenient to consider the equilibrium �symmetrized�
time-correlation function for two real observables, X and Y
�autocorrelation if X=Y�,

CXY�t� =
1

2
�X�0�Y�t� + X�t�Y�0�� − �X��Y� . �11�

Note that CXY�t�=CYX�t�=CXY�−t� and that it is bilinear in X
and Y. CXY�0� is named static covariance, since it can be
computed from equal-time expectation values. CXY�t� allows
one to compute �XY, since one straightforwardly obtains
from Eq. �9� that

�XY =
1

T2 	
t,t�=0

T−1

CXY�t� − t� . �12�

We define the integrated correlation time �autocorrelation
time, 
int,X, if X=Y� as
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int,XY =
	t=−�

t=�
CXY�t�

2�CXX�0�CYY�0�
. �13�

Now, a standard argument �2� tells us that if 	t=1
� t�CXY�t��

��, the covariance of X and Y is

�XY =
2
int,XY�CXX�0�CYY�0�

T
+ O�T−2� . �14�

For instance, the rAB in Eq. �8� is just

rAB =

int,AB

�
int,A
int,B
. �15�

Hence, the effectiveness of a particular control variate, B,
does depend on the autocorrelation and correlation times of
the chosen Monte Carlo algorithm �18�.

We finally recall some well-known results �2�. CXY�t� can
be computed from the tth power of the transition matrix and
the equilibrium distribution as

CXY�t� = 	
�t,�0

1

2
�X��0�Y��t� + X��t�Y��0��


 ��P��t�0

�t� − 	��t��	��0� . �16�

At this point, an analogy with quantum mechanics is in or-
der. Up to now, we have been working in the Schrödinger
picture, where the probabilities evolve in time while the op-
erators remain constant. Yet, it is best to work in an equiva-
lent Heisenberg picture where only observables evolve in
time. We define a time transformation, P, that transforms the
observable X in the observable PX. The value taken by PX
for the configuration � is a conditional expectation value,

PX��� = E�X��t+1���t = �� = 	
��

X����P���. �17�

Mind that if the Monte Carlo dynamics is composed of con-
secutive steps �in the Swendsen-Wang dynamics, for in-
stance, one first update the bonds, then the spins: PSW

=PspinPbond�, the evolution operators in the Heisenberg pic-
ture appear in reversed order �e.g., PSW= PbondPspin�. We in-
troduce a scalar product for equal-time real observables
�X ,Y���X�t�Y�t��. The correlation function is

CXY�t� =
�X,P�t�Y� + �P�t�X,Y�

2
− �X��Y� . �18�

Thus the problem of computing correlation times is reduced
to the spectral analysis of the operator P.

C. Practical recipes

In a Monte Carlo calculation, the stochastic variables A
and Bi discussed in Sec. II A are directly related to some
functions of the spin �or gauge-field� configuration, A and
Bi, where i=1,2 , . . . ,R. One stores in disk T consecutive
measurements of these functions 
A�t� ,B1

�t� , . . . ,BR
�t��t=1

T . We
assume that autocorrelation times in Eq. �13� for these mea-
surements are finite. Their Monte Carlo averages

Ā =
1

T
	

t

A�t�, B̄i =
1

T
	

t

Bi
�t�, i = 1,2, . . . ,R , �19�

are just instances �i.e., disorder realizations� of the random
variables A and Bi.

Let us form N data blocks 
Aj ,Bi,j� j=1
N by averaging sets of

T /N consecutive measurements 
A�t� ,B1
�t� , . . . ,BR

�t��. The ba-
sic assumption underlying the Monte Carlo error analysis
�19� is that, provided that T /N is large enough as compared
to Monte Carlo autocorrelation times, the 
Aj ,Bi,j� j=1

N are
identically distributed and statistically independent for differ-
ent j. Furthermore, one assumes that T /N is so large that the
blocked data are not only independent but also Gaussian dis-
tributed,

Aj = �A� + � j
A�N�AA,

Bi,j = � j
Bi�N�BiBi

, i = 1,2, . . . ,R . �20�

The � are Gaussian random numbers, with zero mean and
covariance matrix,

�� j
A� j�

A � = � j j�,

�� j
A� j�

Bi� = � j j�rABi
,

�� j
Bi�

j�

Bi�� = � j j�rBiBi�
, �21�

where � j j is the Kronecker’s delta. Note as well that one gets

exactly the same numbers for Ā and B̄i either by averaging
over j the 
Aj ,Bi,j� or using Eq. �19�. For later use, we define
also the jackknife blocks as �see, e.g., �19��

Aj
JK =

NĀ − Aj

N − 1
,

Bi,j
JK =

NB̄i − Bi,j

N − 1
, i = 1,2, . . . ,R . �22�

Our statistical estimators for the covariances are

�AA = 	
j=1

N
�Aj − Ā�2

N�N − 1�
= 	

j=1

N �Aj
JK − Ā�2

N/�N − 1�
,

�ABi
= 	

j=1

N
�Aj − Ā��Bi,j − B̄i�

N�N − 1�
= 	

j=1

N �Aj
JK − Ā��Bi,j

JK − B̄i�
N/�N − 1�

,

�BiBi�
= 	

j=1

N �Bi,j − B̄i��Bi�,j − B̄i��

N�N − 1�
= 	

j=1

N �Bi,j
JK − B̄i��Bi�,j

JK − B̄i��

N/�N − 1�
.

�23�

At variance with the numbers �AA, �ABi
, or �BiBj

, our estima-
tors �AA, �ABi

, or �BiBi�
are random variables. It is straight-

forward to show that their expectation values are the sought
covariances, but they are subject to statistical errors whose
�relative� size is of order 1 /�N. In fact, since one needs to
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keep the data-block size T /N as large as possible to ensure
the correctness of Eq. �20�, the typical number of blocks is
kept low, say N
100. Incidentally, the second equality in
each one of Eq. �23� is an algebraic one; we get the same
numerical covariance estimates from the standard or the
jackknife blocks.

At this point, we may trade the inaccessible minimization
Eqs. �5� and �6� by the computable

A� = A − 	
i,i�=1

R

��̄−1�ii��ABi�
Bi, �̄ii� = �BiBi�

. �24�

The very same procedure is performed block by block, thus
obtaining 
Aj

�� j=1
N . Errors are computed in a standard way

from these blocks.
The reader might question the validity of Eq. �24� because

the vanishing of �Bi� does not imply �	i���̄
−1�ii��ABi�

Bi�=0.

This is specially worrying since, as we said above, the rela-
tive errors for �ABi

or �BiBi�
are 
10% in real-life calcula-

tions. The way out is in Eqs. �20� and �21�. If in a particular
simulation one finds the Gaussian fluctuations

� j

A ,� j
B1 , . . . ,� j

B1� j=1
N , the sign-reversed fluctuations 
−� j

A ,
−� j

B1 , . . . ,−� j
B1� j=1

N are just as probable. One immediately no-
tices that the covariance estimators, Eq. �23�, are invariant
under sign reversal of fluctuations. This means that �̄ABi

, the

matrix �̄, and its inverse are also invariant, while the Bi
transform to −Bi. Hence, if the probability distribution func-
tion of 
� j

A ,� j
B1 , . . . ,� j

B1� j=1
N is invariant under sign reversal,

it follows that the expectation value for A� in Eq. �24� is still
�A� �according to Rubinstein �7�, this fact was first noticed
for the particular case of Gaussian distributed fluctuations in
�20��. However, even in the absence of sign-reversal invari-
ance, the bias induced is of order 1 /T while the statistical
error is of order 1 /�T.

As for functions of expectation values, let us explain the
procedure by considering the second moment correlation
length Eq. �30� that depends on the expectation values of two
variables, m�0� and m�k�min�. One first transforms using Eq.
�24� the estimates and the jackknife blocks of each of the
needed quantities, e.g., m��0�, m��k�min�, and

mj

JK,��0� ,mj
JK,��k�min�� j=1

N . Then we use Eq. �30� to obtain our
best estimate of the correlation length from m��0� and
m��k�min�. To estimate the errors, we first form N jackknife
blocks by computing the correlation length from each of the
N pairs 
mj

JK,��0� ,mj
JK,��k�min��, then use the standard formu-

las �19�.

D. Several observables with the same expectation value

Given a set of random variables A1 ,A2 , . . . ,AR+1 with a
common expectation value, �Ai�=a, one may wonder how to
get the best possible estimate of a. This was precisely the
case considered in �16,17�. We only discuss here the relation-
ship with the �closer in spirit� approach of �17�, where the Ai
were estimates of the critical exponent � for an Ising model
at its critical point. The obvious way of addressing the prob-
lem is considering a linear combination

Ã�p1,p2, . . . ,pR+1� = 	
i=1

R+1

piAi, 	
i=1

R+1

pi = 1, �25�

then minimizing �ÃÃ. This is a particular case of the optimi-
zation problem that we have already discussed at length in
Secs. II A and II C. In fact, note that pR+1=1− p1− p2− ¯

−pR and then, keeping an eye on Eq. �3�, we write A
�AR+1, with 
�i= pi ,Bi=Ai−AR+1�i=1

R .
However, this optimization problem produced some coun-

terintuitive results �17�. All five computed � estimates for the
two-dimensional Ising model lied above the exact value. In
spite of this, the improved estimate was below the exact
value. This apparent paradox can be easily explained in our
language by considering the simpler case R=1 �so we have
A1 and A2�. Using the results reviewed in Sec. II A one easily
finds that the minimal squared error is

�A�A� =
�A1A1

�A2A2
�1 − rA1A2

2 �

�A1A1
+ �A2A2

− 2rA1A2
��A1A1

�A2A2

. �26�

Hence, if rA1A2
tends to one and if �A1A1

��A2A2
an errorless

estimator exists. In fact, in the rA1A2
→1 limit we have A1

=a+���A1A1
and A2=a+���A2A2

with � the same Gaussian
random number for both variables �of course ���=0 and
��2�=1�. In other words, if for a particular simulation A1 lies
below �above� a, the same will be true for A2. In spite of this,
if we write pA1+ �1− p�A2=a+����A2A2

+ p���A2A2
−��A1A1

�� and set p=��A2A2
/ ���A1A1

−��A2A2
�, an exact an-

swer is found. Note, however, that the problem becomes ill
conditioned when �A1A1

approaches �A2A2
. In fact, if the two

variances coincide we gain nothing by considering A2 in ad-
dition to A1, since in this case one would have A1=A2 with
probability 1.

III. MODEL, OBSERVABLES, AND MEAN-VALUE
IDENTITIES

We shall put to work the strategy in Sec. II, in the stan-
dard benchmark, the Ising model in two dimensions, for
which many exact results exist, including exact computations
of some quantities in finite systems �21� that can be directly
confronted with the Monte Carlo simulation. The spins Sx�

are placed in the nodes of a square lattice of side L with
periodic boundary conditions. The interaction is restricted to
lattice nearest neighbors, with the partition function being
�	
Sx�� : summation over the 2L2

spin configurations�

Z = 	

Sx��

exp�� 	
�x�−y��=1

Sx�Sy�� . �27�

The system undergoes a second-order phase transition at �c
=log�1+�2� /2.

The main functions of the spins that we are considering
are the energy and the Fourier transform of the spin field at
zero and minimal momenta �k� = �0,0� or k�min= �2	 /L ,0��

e =
1

L2 	
�x�−y��=1

Sx�Sy�, m�k�� =
1

L2	
x�

Sx�e
ik�·x� . �28�
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From m�k�� we define the magnetic susceptibility

� = L2��m�0��2� , �29�

the second moment correlation length �22� �we gain statistics
by averaging �m�k�min��2 over �2	 /L ,0� and �0,2	 /L��

� =���m�0��2� − ��m�k�min��2�

4 sin2	

L
��m�k�min��2�

, �30�

and the renormalization-group invariant ratio

U4 =
��m�0��4�
��m�0��2�2 . �31�

Our first mean-value identity comes from the Fortuin-
Kasteleyn formulation �see, e.g., �2,19� for details�. Given a
decomposition of the lattice in N connected components
�clusters�, each containing nc spins, it is easy to show that
�see the Appendix for a quick review�

� =
1

L2�	
c

nc
2� . �32�

Hence, our first control variate is

BSW = �m�0��2 − 	
c

nc
2

L4 . �33�

A second control variate comes from a Callen identity �9�.
Let the local field acting over site x� be

hx� = 	
�x�−y��=1

Sy� . �34�

Then, if �x� −y���1,

�Sx�Sy�� = �tanh��hx��tanh��hy��� . �35�

Hence,

BCI =
1

L4 	
�x�−y���1

�tanh��hx��tanh��hy�� − SxSy� , �36�

which can be computed with O�L2� operations as

BCI =
1

L4��	
x�

tanh��hx���2
− �	

x�
Sx��2

− 	
x�

�tanh2��hx�� − 1�

− 	
�x�−y��=1

�tanh��hx��tanh��hy�� − Sx�Sy��� . �37�

Finally, a Schwinger-Dyson equation �15� provides a third
control variate,

BSD = 1 −
1

L2	
x�

e−2�hx� . �38�

IV. RESULTS

We have simulated the model on systems L=16, 128, and
512 using the Swendsen-Wang algorithm �11�. For each lat-

tice size, we traced clusters 106 times taking measurements
each time that the clusters were traced. We discarded the first
10% of measurements for thermalization �which, on the view
of the autocorrelation times for this model and algorithm
�19�, is extremely conservative�, hence formed N=100 data
blocks of 9000 measurements each �we expect to be well in
the Gaussian fluctuations regime�. The jackknife error was
used throughout for error computations. The used programs
were minor modifications of the sample programs in �19�.

As in Sec. II C, we name Bi �i=SW,CI,SD� the block
average of consecutive Monte Carlo measurements of Bi.
The results of the analysis using BSW and/or BCI as control
variates are shown in Table I. We detect no bias when com-
paring with exact results or with previously published �and
more precise� computations. When using the two control
variates together, a CPU factor gain larger than 2 is achieved
for �, �e�, and � for all values of L. This gain is largest for
L=16 and deteriorates somewhat in going to L=128, but
then stabilizes and does not significantly deteriorate further
when going to L=512. For instance, for L=512 the CPU
gain in the computation of the susceptibility is a factor 2.3
when comparing with the standard spin estimate �Eq. �29��
or a factor 2.0 when comparing with the cluster estimate �Eq.
�32��.

Rather smaller gains are obtained by using BSW and/or BCI
individually; for instance, in the � computation using BSW
alone, the CPU gain factor is 2.8 for L=16, but it deteriorates
to 1.56 for L=128 and 1.42 for L=512. The fact that we do
significantly better by combining the two control variates
�rather than using only one of them� suggests that the or-
thogonal component of BCI with respect to BSW is sizeable
�and that this component still strongly correlates with the
squared magnetization�.

There are some interesting issues regarding the usefulness
of BSW as a control variate for �. This is an instance of the
problem considered in Sec. II D; we are after the optimal
linear combination between Eqs. �29� and �32�. In the Ap-
pendix we show that the optimal choice is very close to the
cluster-based susceptibility, Eq. �32� �the optimum is exactly
Eq. �32� if successive measurements are separated by a time
interval of many autocorrelation times, so that they are es-
sentially statistically independent�. This statement can be re-
worded as the use of the spin-based susceptibility via the
control variate BSW barely improves the cluster-based sus-
ceptibility �the usefulness of BSW decreases with growing
autocorrelation times, Eq. �A17��.

A related, yet different, issue is the temperature evolution
of the efficiency of the cluster estimator for �. At �c, Table I,
errors for the spin- and cluster-based estimates are similar.
This is in marked contrast with the situation in the paramag-
netic scaling region ����c, 1���L�, see, e.g., �23�. In Eq.
�A16�, we give the �squared� ratio of statistical errors for the
two estimators in terms of an autocorrelation time and of
several expectation values of the static cluster-size distribu-
tion. At �c, a giant cluster dominates sums such as that in Eq.
�32�, see Table II in the Appendix. As a consequence, the
squared error ratio at �c, Eq. �A16�, is 
1+ 1.15


int,C
, never very

large since 
int,C�1 /2, and decreasing with growing L due to
critical slowing down. On the other hand, in the scaling re-
gion the largest cluster is not dramatically large, and a major
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�static� variance reduction is achieved by averaging over the
sign of the different clusters at a fixed time. This gain is at
the level of a single measurement. Yet, Eq. �A16�, the ben-
efits remain after that the Monte Carlo time averaging.

As for the benefits of including BSD in the covariance
reduction procedure, they are marginal at the critical point
�the CPU gained when adding BSD to 
BSW,BCI� is less than
a 10%�. Nevertheless, in the scaling region it can pay to
consider BSD. For instance, in a L=512 lattice at �=0.42,
where �
12, we obtain a CPU gain factor of 1.23 for the
cluster estimator of the susceptibility and 1.6 factor for the
energy.

V. CONCLUSIONS

For any problem amenable to a path-integral formulation
there are well-known strategies �Schwinger-Dyson �8�,
Callen �9�, etc.� to obtain identities, which imply the vanish-
ing of a precise linear combination of expectation values of
nontrivial observables. More often than not, researchers per-
forming Monte Carlo simulations compute the quantities ap-
pearing in the identities, since the extra CPU costs are neg-
ligible and the identities provide important consistency tests.

In particular, they allow one to easily detect problems as
frightening as programming bugs, failure of the used pseudo-
random-number generator, or thermalization bias. What we
have pointed out here is that using the general and simple
control variates strategy �6,7�, these identities provide as
well a significant error reduction in the final outcome of
Monte Carlo simulations. This comes at a negligible CPU
cost. The method has been exemplified in the standard
benchmark, the two-dimensional Ising model at criticality.

We note nevertheless that less trivial applications of this
technique already exist. In particular, we have found that a
Schwinger-Dyson equation, providing a now standard ther-
malization test in spin-glass simulations �14�, can gain an
error-reduction factor of one half on some final quantities
�e.g., the correlation length� �24�.
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APPENDIX: ON CLUSTER ESTIMATORS

We will answer here two related questions. �1� Why do
the control variate BSW improve so little the cluster estimate

TABLE I. Comparison of numerical results for the quantities defined in Eqs. �28�–�31�, namely, the
internal energy, the magnetic susceptibility, the correlation length, and the dimensionless ratio U4, as obtained
in the two-dimensional Ising model at its critical point, for different lattice sizes. For the susceptibility we
show also the cluster estimate, Eq. �32�, that improves less than a 20% in terms of CPU time over the
standard estimator Eq. �29�. In contrast, the covariance improved estimates obtained from the mean-value
identities �Eqs. �33� and �36�� do save more than a factor of 2 in computer cost. To check for the possibility
of a bias induced by the covariance error reduction, we compare also with exact results �for the internal
energy� or with independent and longer Monte Carlo simulations.

L �e� � � U4

16

Standard 1.45339�47� 139.719�155� 14.601�31� 1.16502�74�
Cluster 139.713�127�
BSW improved 1.45334�32� 139.700�93� 14.597�19� 1.16510�51�
BCI improved 1.45316�24� 139.652�104� 14.590�25� 1.16524�63�
BSW and BCI improved 1.45319�18� 139.666�73� 14.594�18� 1.16517�50�
Others 1.453065… �21� 139.546�77� �23� 14.566�14� �23� 1.16586�34� �12�
128

Standard 1.419052�100� 5316.6�76� 115.77�28� 1.16789�89�
Cluster 5317.7�70�
BSW improved 1.419101�94� 5321.7�60� 115.97�21� 1.16735�75�
BCI improved 1.419047�79� 5316.4�68� 115.77�26� 1.16791�86�
BSW and BCI improved 1.419095�66� 5321.4�51� 115.96�19� 1.16736�71�
Others 1.419076… �21� 5318.1�28� �23� 115.81�13� �23� 1.16763�32� �12�
512

Standard 1.415407�36� 60180�94� 463.62�115� 1.16809�89�
Cluster 60168�88�
BSW improved 1.415397�34� 60134�80� 462.99�92� 1.16852�76�
BCI improved 1.415429�26� 60230�78� 464.14�101� 1.16768�78�
BSW and BCI improved 1.415421�24� 60183�62� 463.51�76� 1.16812�64�
Others 1.415429… �21� 60209�34� �23� 463.82�51� �23� 1.16782�30� �12�

L. A. FERNANDEZ AND V. MARTIN-MAYOR PHYSICAL REVIEW E 79, 051109 �2009�

051109-6



of the susceptibility �Eq. �32��? �2� Why, at the critical point,
do the susceptibility cluster estimator barely improve over
the spin one �Eq. �29��? Both questions are specific to the
Swendsen-Wang dynamics for ferromagnetic systems �25�.

Under a simplifying assumption, question �1� is addressed
in Appendix A, Sec. 1, while question �2� is considered in
Appendix A, Sec. 2. The assumption is that successive mea-
surements are separated by a time interval of many autocor-
relation times, so that they are essentially statistically inde-
pendent. The assumption is removed in Appendix A, Sec. 3
�largely inspired in Ref. �26��. Yet, the static variance ratio
computed in Appendix A, Sec. 2 still plays a prominent role
in the general case.

1. BSW for independent measurements

For independent measurements, time-correlation func-
tions, Eq. �11�, vanish for all times t�0. Hence, we only
need to compute a static covariance.

Let M�L2m�0� be the extensive magnetization �recall
Sec. III�. At time t in the Swendsen-Wang dynamics, the
lattice will be decomposed in Nt connected components, of
size nc

t with c=1,2 , . . . ,Nt �the ordering is such that n1
t

�n2
t �n3

t
¯�. All the spins belonging to cluster c are given a

common sign, Sc
t . The value Sc

t = �1 is chosen with 50%
probability, independently for each cluster c �25�.

The spin estimator for M2 is

Mt
2 = 	

c,c�=1

Nt

nc
t nc�

t Sc
t Sc�

t . �A1�

On the other hand, if one averages Eq. �A1� over the 2Nt

equivalent choices for the Sc
t = �1, only the diagonal terms

c=c� survive. Hence, the natural cluster estimator for �M2�
is the Monte Carlo average of

Ct = 	
c=1

Nt

�nc
t �2. �A2�

It is illuminating to write Eq. �A1� as

Mt
2 = �M2� + �C

t + �S
t , �A3�

�C
t = Ct − �M2� , �A4�

�S
t = 	

c�c�

nc
t nc�

t Sc
t Sc�

t , BSW,t =
�S

t

L4 . �A5�

Of course, ��C
t �= ��S

t �=0, but the statistical independence of
Sc

t also implies ��C
t �S

t �=0. Therefore,

�CC = ��C
2�, �M2M2 = ��C

2� + ��S
2� . �A6�

Let us try to improve C using BSW as control variate. We
find CCBSW

�0�= ��C
t �S

t � /L4=0. It follows that the improved
estimator C� obtained using BSW as control variate is just C.
Using the language of Sec. II D, with no time correlations,
the optimal linear combination between L2�m�0��2 and
L−2	cnc

2 is just L−2	cnc
2.

2. Static variance

Under the independent measurement assumption, the
�squared� error ratio for the spin �Eq. �29�� and cluster �Eq.
�32�� susceptibility estimators equals the static variance ratio

R2 =
CM2M2�0�

CCC�0�
. �A7�

To relate R2 with the cluster size distribution, we start
from Eq. �A3� and a trivial relation between CM2M2�0� and
the dimensionless ratio U4, Eq. �31�,

TABLE II. Numerical determinations for different lattice sizes, both at �c and at �=0.42 �where �
12 for
large L�, of the dimensionless ratios gC and gS, Eq. �A12�, and the cluster-estimator merit number R, Eq.
�A11�, recall also Eq. �A7�. Note that at �=0.42 the advantages of using a cluster estimator grows fast with
L, while it remains fairly modest at �c. We show as well the product �n1L−�D+2−��/2� at �c, where n1 is the
largest cluster, D=2, and �=1 /4 is the anomalous dimension. We see that n1

2 scales as the full sum 	cnc
2

�indeed �n1�2� �n1
2�� �	cnc

2�=LD��LD+2−��. On the contrary, at �=0.42, n1 grows only mildly with L. We
can also compare for both � the average ratio of the sizes of the second largest to the largest cluster �n2 /n1�,
and that of the third largest to the largest �n3 /n1�. While at �c there is a L-invariant hierarchical structure
n1
8n2
16n3. . ., at �=0.42 the largest cluster becomes a typical one with growing L.

�=�c, y= �D+2−�� /2

L gC R �n1�L−y �n2 /n1� �n3 /n1�

16 0.11590�43� 1.19371�35� 1.00701�60� 0.12953�41� 0.06484�21�
128 0.12440�62� 1.16125�51� 1.00687�84� 0.12528�49� 0.06180�27�
512 0.12572�62� 1.15683�41� 1.00683�93� 0.12485�52� 0.06166�29�

�=0.42, y=0

16 0.28942�73� 1.22644�53� 137.68�12� 0.27402�53� 0.15343�34�
128 0.16134�80� 3.4069�80� 1016.78�66� 0.72070�22� 0.58116�24�
512 0.010212�22� 13.967�15� 1963.27�60� 0.82843�14� 0.73909�15�
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CM2M2�0�

�M2�2 =
�M4� − �M2�2

�M2�2 = U4 − 1. �A8�

Hence, in the scaling region, where U4�3, the spin estima-
tor will be remarkably noisier than at �c, see Table I.

The covariance matrix for the �S , �C can be expressed in
terms of the nc �27�,

��C
2� = ��	

c

nc
2�2� − �	

c

nc
2�2

, �A9�

��S
2� = 2��	

c

nc
2�2

− 	
c

nc
4� , �A10�

so that

R =�1 +
��S

2�
��C

2�
. �A11�

Introducing the dimensionless ratios

gC =
��C

2�
�M2�

, gS =
��S

2�
�M2�

, �A12�

we note that

U4 − 1 = gC + gS, R =�1 +
gS
gC

. �A13�

Now, in the paramagnetic scaling region �1���L� the
thermodynamic limit of gS is 2. Indeed, the two terms in the
difference ��S

2�=2��	cnc
2�2−	cnc

4� scale differently; when �
�L the first grows as the system volume squared, while the
second scales linearly with the volume �28�. As a conse-
quence, R diverges if one takes the large-L limit at fixed �
��c. Since the susceptibility �= �M2 /L2� remains finite for
large L, the error incurred when estimating the susceptibility
from a single measurement, Ct, vanishes in the large-L limit.
Quite on the contrary, Eq. �A13�, considered precisely at �c,
strongly suggests that both gC and gS have a finite, nonvan-
ishing, large-L limit �and hence a finite R�.

We display in Table II our results for gC and U4 both at the
critical point and at �=0.42, where ��12. Indeed R��c�

1.15 remains bound. As we show in Table II, the average
ratios n2 /n1 and n3 /n1 at �c are surprisingly small and size
independent. In other words, the two sums in Eq. �A10� are
dominated by n1, causing a massive cancellation that dimin-
ish gS as compared to gC.

3. Monte Carlo time correlations

We now drop the assumption of independent measure-
ments. The �squared� ratio of the errors of the spin and sus-
ceptibility estimators is no longer R2, Eq. �A7�, but

R̃2 =
	t=−�

t=�
CM2M2�t�

	t=−�

t=�
CCC�t�

. �A14�

Similarly, Eq. �8�, the efficiency of BSW as a control variate
to improve the cluster susceptibility estimator is ruled by the
correlation coefficient

rCBSW
=

	t=−�

t=�
CCBSW

�t�

�	t=−�

t=�
CCC�t��1/2�	t=−�

t=�
CBSWBSW

�t��1/2 .

�A15�

Arguing as in Ref. �26� will lead us to our main result,

R̃2 = 1 +
1

2
int,C
�R2 + 1� , �A16�

rCBSW
=

1

�2
int,C�R2 − 1��1/2 . �A17�

Since R2��c�
1.3, the efficiency of the cluster estimator
at �c is ruled by 
int,C. Indeed, the �mild� critical slowing
down can be traced in Table I. The usefulness of BSW as a
control variate, Eq. �A17�, deteriorates as well with growing

int,C.

On the other hand, in the paramagnetic scaling region

����c, 1���L�, one easily has R̃2
100 or larger. Given
Eq. �A16�, and since 
int,C�1 /2 �because CCC�t��0, see be-
low�, this is due to the large R2 that are to be expected, recall
Appendix A, Sec. 2 �we expect 
int,C to be upper bounded in
the large-L limit, for ���c�. However, Eq. �A17�, in the
scaling region, BSW behaves poorly as a control variate, since

int,C is lower bounded while R2 diverges in the large-L limit.

To derive Eqs. �A16� and �A17� we first note that �in
space dimension D�

L2DCCBSW
�t� = CCM2�t� − CCC�t� , �A18�

L4DCBSWBSW
�t� = CM2M2�t� + CCC�t� − 2CCM2�t� .

�A19�

Equation �18� suggests that it will be fruitful to recall the
main properties of the operator PSW= PbondPspin. The two op-
erators Pbond and Pspin are of heat-bath type, and their action
is quite simple �25�; for any observable O, PspinO
=E�O � 
b�� and PbondO=E�O � 
S��. In particular, we have

PspinM2 = C, PspinC = C, PbondM2 = M2. �A20�

All heat-bath operators, PHB, share some nice features;
they are self-adjoint, �O1 , PHBO2�= �PHBO1 ,O2� and idempo-
tent �PHB�2= PHB. Furthermore, they preserve expectation
values �O�= �PHBO� �29�.

Combining PSW= PbondPspin with �Pspin�2= Pspin �hence
�PbondPspin�t�0= �PSW�tPspin� and with the self-adjointedness
of Pspin and Pbond, we get for t�0

�M2,�PSW�tM2� = �M2,�PSW�tPspinM2� ,

=�M2,�PSW�tC� ,

=�PspinPbondM2,�PSW�t−1C� ,

=�C,�PSW�t−1C� , �A21�
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�M2,�PSW�tC� = �C,�PSW�t−1C� , �A22�

�C,�PSW�tM2� = �C,�PSW�tC� . �A23�

Now, Eqs. �A21�–�A23� tell us that ��t,0 stands for Kro-
necker’s delta, we assume t�0�

CM2M2�t� = �t,0CM2M2�0� + �1 − �t,0�CCC�t − 1� ,

�A24�

CCM2�t� = �t,0CCC�0� + �1 − �t,0�
CCC�t − 1� + CCC�t�

2
.

�A25�

Deriving at this point, Eqs. �A16� and �A17�, is straightfor-
ward.

We note, finally, that

�C,�PSW�tC� = �C,�PspinPbondPspin�tC� , �A26�

which implies that CCC�t��0, and hence 
int,C�1 /2.
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