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Abstract

In this paper we study the su(m) spin Sutherland (trigonometric) model of DN type and its related
spin chain of Haldane–Shastry type obtained by means of Polychronakos’s freezing trick. As in the ratio-
nal case recently studied by the authors, we show that these are new models, whose properties cannot be
simply deduced from those of their well-known BCN counterparts by taking a suitable limit. We identify
the Weyl-invariant extended configuration space of the spin dynamical model, which turns out to be the
N -dimensional generalization of a rhombic dodecahedron. This is in fact one of the reasons underlying the
greater complexity of the models studied in this paper in comparison with both their rational and BCN coun-
terparts. By constructing a non-orthogonal basis of the Hilbert space of the spin dynamical model on which
its Hamiltonian acts triangularly, we compute its spectrum in closed form. Using this result and applying the
freezing trick, we derive an exact expression for the partition function of the associated Haldane–Shastry
spin chain of DN type.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Recent studies have revealed that exactly solvable and integrable one-dimensional quantum
many body systems with long-range interactions [1–8] are closely connected with a wide range
of topics in modern physics as well as mathematics. In particular, this type of exactly solv-
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able systems have appeared as prototype models of various condensed matter systems exhibiting
generalized exclusion statistics [8–10], quantum Hall effect [11] and quantum electric transport
phenomena [12,13]. In the context of high-energy physics, the dynamics of particles or fields in
the near-horizon region of black holes has been described through such integrable systems [14–
16]. More recently, quantum integrable spin chains with long-range interaction have played a
key role in calculating higher loop effects in the spectra of trace operators of planar N = 4 super
Yang–Mills theory [17–19]. Furthermore, this type of quantum integrable systems are found to
be connected with different areas of mathematics like random matrix theory [20], multivariate
orthogonal polynomials [21–24], Dunkl operators [25,26], and Yangian quantum groups [27–30].

Due to such a large variety of potential applications, the construction of new quantum in-
tegrable systems with long-range interactions and the computation of their exact solutions have
emerged as an important area of activity in the current literature. The study of this type of systems
with dynamical degrees of freedom was pioneered by Calogero, who found the exact spectrum
of an N -particle quantum system on the line with two-body interactions inversely proportional to
the square of the distances and subject to a confining harmonic potential [1]. An exactly solvable
trigonometric variant of this rational Calogero model was subsequently proposed by Suther-
land [2,3]. The particles in this so-called Sutherland model move on a circle, with two-body
interactions proportional to the inverse square of their chord distances. In a parallel development,
Haldane and Shastry found an exactly solvable quantum spin- 1

2 chain with long-range interac-
tions [5,6]. The lattice sites of this su(2) Haldane–Shastry (HS) spin chain are equally spaced on
a circle, all spins interacting with one another through pairwise exchange interactions inversely
proportional to the square of their chord distances. A close relation between the HS chain with
su(m) spin degrees of freedom and the su(m) spin generalization of the Sutherland model [31–
33] was subsequently established by using the so-called “freezing trick” [7,34]. More precisely,
it is found that in the strong coupling limit the particles in the spin Sutherland model “freeze” at
the coordinates of the equilibrium position of the scalar part of the potential, and the dynamical
and spin degrees of freedom decouple. The equilibrium coordinates coincide with the equally
spaced lattice points of the HS spin chain, so that the decoupled spin degrees of freedom are gov-
erned by the Hamiltonian of the su(m) HS model. Moreover, in this freezing limit the conserved
quantities of the spin Sutherland model immediately yield those of the HS spin chain, thereby
explaining its complete integrability. Application of this freezing trick to the rational Calogero
model with spin degrees of freedom leads to a new integrable spin chain with long-range inter-
action [7]. The sites of this chain—commonly known in the literature as the Polychronakos or
Polychronakos–Frahm (PF) spin chain—are unequally spaced on a line, and in fact coincide with
the zeros of the Hermite polynomial of degree N [35]. By applying the freezing trick, the exact
partition functions of the PF and HS spin chains have also been exactly computed [36,37].

The above mentioned type of quantum integrable systems can be generalized to form a much
wider class by taking advantage of their hidden mathematical structure. Indeed, Olshanetsky
and Perelomov established the existence of an underlying AN root system structure for both
the spinless Calogero and Sutherland models, and constructed generalizations thereof associated
with any (extended) root system [4]. Spin generalizations of the BCN Calogero and Sutherland
models have also been proposed, and various properties of the related lattice models of HS type
have been studied with the help of the freezing trick [38–43]. Among the other classical root
systems, the exceptional ones are comparatively less interesting, since their associated models
consist of at most 8 particles. Until recently, the BN , CN and DN Calogero–Sutherland models
(particularly the corresponding spin models) have been largely ignored, probably due to the fact
that they were believed to be simple limiting cases of their BCN counterparts. However, in a
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recent paper [44] the present authors have computed the spectrum of the su(m) spin Calogero
model of DN type, thereby showing that this model is in fact a singular limit of its BCN version.
More precisely, it is well known that the Hilbert space of the spin Calogero model associated
with the BCN root system can be constructed from the Hilbert space of an auxiliary differential-
difference operator by using a single projector. In contrast, it is found that two independent
projectors of BCN type with opposite “chiralities” are needed to construct the Hilbert space
of the DN -type spin Calogero model from that of the corresponding auxiliary operator [44].
Consequently, the Hilbert space of the latter model can be expressed as a direct sum of the
Hilbert spaces associated with two different BCN models with opposite chiralities. This explains
why the spectrum of the DN model cannot be obtained as the limit of its BCN counterpart when
one of the coupling constants tends to zero. In Ref. [44] we also studied the spin chain associated
with the DN -type spin Calogero model, showing that its Hamiltonian differs from the limit of its
BCN analog by a term which can be interpreted as an impurity interaction at one end of the chain.
By applying Polychronakos’s freezing trick we were also able to compute the chain’s partition
function in closed form, showing again that its spectrum markedly differs from that of its BCN

counterpart.
In this paper we study the trigonometric variant of the DN -type spin Calogero model and

its freezing limit, i.e., the DN -type spin Sutherland model and its related spin chain. Just as
in the rational case, the Hamiltonian of the DN -type spin Sutherland model can be formally
obtained as a certain limit of its BCN counterpart. However, the relation between these models
turns out to be even more subtle than in the rational case. Roughly speaking, this is due to the
fact that the Weyl-invariant extended configuration space of the DN model—which turns out to
be the N -dimensional generalization of a rhombic dodecahedron—does not coincide with that
of the BCN model, which is simply a hypercube. As a consequence, the (scaled) Fourier basis
of the Hilbert space of the BCN model’s auxiliary operator no longer spans a complete set of
the Hilbert space of the auxiliary operator of the DN model. This entails an additional level
of difficulty (but also of interest) by comparison with the rational case, for which the auxiliary
operators of the BCN and DN models share the same Hilbert space. On the other hand, as in the
rational case, we shall still need two projectors of BCN type with opposite chiralities in order
to construct the Hilbert space of the DN spin model from that of its corresponding auxiliary
operator. Therefore, the Hilbert space of the DN spin model actually consists of four—and not
two, as in the rational case—different sectors, characterized by their chirality and parity under
reflections of the particles’ coordinates. This fundamental difference explains why the spectrum
of the DN -type spin Sutherland model is essentially different from that of its BCN counterpart.
It also accounts for the greater complexity of the partition function of the associated chain of DN

type (which we have also computed in closed form by means of the freezing trick) compared to
its BCN version studied in Ref. [42].

The paper is organized as follows. In Section 2 we introduce the Hamiltonians H , Hsc and H
of the DN -type spin Sutherland model, its scalar version, and the associated spin chain of HS
type, respectively. We show that the sites of this chain, defined as the coordinates of the (unique)
equilibrium point of the scalar part of the spin Hamiltonian in the principal Weyl alcove of the DN

root system, can be expressed in terms of the roots of a suitable Jacobi polynomial. Using this
characterization, we prove that the Hamiltonian H differs from the limit of its BCN counterpart
by a spin reversing term at each end of the chain.

Section 3 is devoted to the computation of the spectrum of the Hamiltonians H and Hsc us-
ing an auxiliary scalar differential-difference operator H ′. In order to improve the clarity of
the exposition, we have divided it into four subsections. In the first one, we show that for any
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one-dimensional representation π of the DN Weyl group W, the Hamiltonians H and Hsc are
equivalent (isospectral) to their π -symmetric extensions to the W-orbit C of the configuration
space. The representation π is then uniquely determined by requiring that the action of the ex-
tension of H (resp. Hsc) coincide with that of H ′ ⊗ 1 (resp. H ′) on the subspace of L2(C) ⊗ Σ

(resp. L2(C)) of π -symmetric functions, where Σ denotes the su(m) spin space. This prop-
erty, together with the fact that H ′ commutes with the projector onto π -symmetric functions,
enable us to evaluate the spectra of H and Hsc by triangularizing the simpler operator H ′. The
first step in this direction is to construct a (non-orthogonal) basis of L2(C), which includes as
a proper subset the limit of the basis of L2([−π

2 , π
2 ]) for the BCN model. As a by-product of

this construction, we show that the translations of C generate a tessellation of the N -dimensional
Euclidean space. By expressing H ′ as a sum of squares of a suitable family of Dunkl operators,
we show that when the above basis of L2(C) is ordered in an appropriate way the action of H ′
becomes triangular. Using this basis, in the last subsection we construct a corresponding (non-
orthogonal) basis of the subspace of π -symmetric functions L2(C) ⊗ Σ (resp. L2(C)) in which
the action of H (resp. Hsc) is also triangular. This completes the calculation of the spectra of the
Hamiltonians H and Hsc.

In Section 4 we compute the partition function Z of the spin chain H using Polychronakos’s
freezing trick. More precisely, we evaluate the partition function Z as the large coupling constant
limit of the quotient of the partition functions of H and Hsc. The resulting formula exhibits
a greater complexity than its rational counterpart and, in particular, cannot be expressed in a
simple way in terms of the partition functions of the BCN trigonometric spin chains. We end up
this section by showing that the latter expression for the partition function is indeed a polynomial
in q ≡ e−1/(kBT ), as should be the case for a finite system with nonnegative integer energies.
Finally, a brief summary of the paper’s results is presented in Section 5.

2. The models

Our starting point will be a brief review of the su(m) spin Sutherland model of BCN type,
with Hamiltonian [39,42]

H(B) = −
∑

i

∂2
xi

+ a
∑
i �=j

[
sin−2 x−

ij (a + Sij ) + sin−2 x+
ij (a + S̃ij )

]
+ b

∑
i

sin−2 xi(b − εSi) + b′ ∑
i

cos−2 xi

(
b′ − εSi

)
. (1)

Here the sums run from 1 to N (as always hereafter, unless otherwise stated), a, b, b′ > 1/2,
ε = ±1, and x±

ij = xi ± xj . The operators Sij and Si in the latter equation act on the finite-
dimensional Hilbert space

Σ = 〈|s1, . . . , sN 〉 ∣∣ si = −M,−M + 1, . . . ,M
〉
, M ≡ m − 1

2
∈ N

2
, (2)

associated to the particles’ internal degrees of freedom, as follows:

Sij |s1, . . . , si , . . . , sj , . . . , sN 〉 = |s1, . . . , sj , . . . , si , . . . , sN 〉,
Si |s1, . . . , si , . . . , sN 〉 = |s1, . . . ,−si , . . . , sN 〉. (3)

We have also used the customary notation S̃ij = SiSjSij . Note that the spin operators Sij and Si

can be expressed in terms of the fundamental su(m) spin generators Jα
k at the site k (with the

normalization tr(J αJ
γ
) = 1δαγ ) as
k k 2
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Sij = 1

m
+ 2

m2−1∑
α=1

Jα
i J α

j , Si = √
2mJ 1

i .

Due to the singularities at the hyperplanes xi ± xj = kπ , xi = kπ and xi = π
2 + kπ (with 1 �

i < j � N and k ∈ Z), the configuration space of the Sutherland Hamiltonian (1) can be taken as
the principal Weyl alcove

A(B) =
{

x ∈ R
N : 0 < x1 < x2 < · · · < xN <

π

2

}
(4)

of the BCN root system. The spectrum of the spin model (1) was computed in Ref. [42] by
constructing a suitable basis of its Hilbert space in which the Hamiltonian H(B) is represented
by a triangular matrix.

Applying the so-called freezing trick [7] to the Hamiltonian (1) with b = βa and b′ = β ′a one
obtains the su(m) Haldane–Shastry (antiferromagnetic) spin chain of BCN type, whose Hamil-
tonian we shall take as

H(B) = 1

2

∑
i<j

[
sin−2 θ−

ij (1 + Sij ) + sin−2 θ+
ij (1 + S̃ij )

]
+ 1

4

∑
i

(
β sin−2 θi + β ′ cos−2 θi

)
(1 − εSi). (5)

Here θ±
ij = θi ± θj , where θ = (θ1, . . . , θN) is the unique equilibrium [41] in the set A(B) of the

scalar potential

U(B)(x) =
∑
i �=j

(
sin−2 x−

ij + sin−2 x+
ij

) +
∑

i

(
β2 sin−2 xi + β ′2 cos−2 xi

)
. (6)

As shown in the latter reference, the lattice sites θi are related to the zeros ζi of the Jacobi

polynomial P
(β−1,β ′−1)
N by

ζi = cos(2θi). (7)

The spin chain (5) was studied in Ref. [42], where its partition function was computed in closed
form with the help of the freezing trick.

The Hamiltonian H of the su(m) spin Sutherland model of DN type is defined by setting
b = b′ = 0 in Eq. (1), i.e.,

H = −
∑

i

∂2
xi

+ a
∑
i �=j

[
sin−2 x−

ij (a + Sij ) + sin−2 x+
ij (a + S̃ij )

]
. (8)

The configuration space A of the DN model (8) is determined by the hard-core singularities of
the Hamiltonian on the hyperplanes xi ± xj = kπ (with i �= j and k ∈ Z). More precisely, we
shall take as A the open subset of RN defined by the inequalities

0 < xi ± xj < π, 1 � j < i � N. (9)

If N > 2 (as we shall assume hereafter), it is straightforward to check that this set can be equiv-
alently expressed as

A = {
x ∈ R

N : |x1| < x2 < · · · < xN < π − xN−1
}
, (10)
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which is again the principal Weyl alcove of the DN root system

1

π
(±ei ± ej ), 1 � i < j � N. (11)

The points x ∈ A clearly satisfy the inequalities

0 < x2 < · · · < xN−1 < π/2, x1 > −π/2, xN < π; (12)

note, in particular, that the set A properly contains the BCN configuration space (4).
Similarly (cf. (5) and (6)), we define the Hamiltonian of the su(m) HS spin chain of DN type

as

H = 1

2

∑
i<j

[
sin−2 ϑ−

ij (1 + Sij ) + sin−2 ϑ+
ij (1 + S̃ij )

]
, (13)

where the lattice sites ϑi are the coordinates of the unique minimum ϑ in the set A of the scalar
potential

U(x) =
∑
i �=j

(
sin−2 x−

ij + sin−2 x+
ij

)
. (14)

Heuristically, the relation between the spin dynamical model (8) and its associated spin chain (13)
can be explained as follows. Defining the coordinate-dependent matrix multiplication operator

h(x) = 1

2

∑
i<j

[
sin−2 x−

ij (1 + Sij ) + sin−2 x+
ij (1 + S̃ij )

]
,

the spin Hamiltonian (8) can be decomposed as

H = Hsc + 4ah(x), (15)

where

Hsc = −
∑

i

∂2
xi

+ a(a − 1)U(x) (16)

is the Hamiltonian of the scalar Sutherland model of DN type. Thus, for sufficiently large a

all the eigenfunctions of Hsc are sharply peaked around the unique minimum ϑ of the scalar
potential U in the set A [45]. Hence, if ϕi(x) is an eigenfunction of Hsc with energy Esc

i and |σj 〉
is an eigenstate of the chain H with eigenvalue Ej , for a 
 1 we have

h(x)ϕi(x)|σj 〉 � ϕi(x)h(ϑ)|σj 〉 ≡ ϕi(x)H|σj 〉 = Ej ϕi(x)|σj 〉.
By Eq. (15), H is approximately diagonal in the basis with elements ϕi(x)|σj 〉, and its eigenval-
ues Eij satisfy

Eij � Esc
i + 4aEj , a 
 1. (17)

It was shown in Ref. [41] that the scalar potential U(x) has a unique minimum in the configu-
ration space A, which coincides with the unique maximum in this set of the ground state wave
function of the scalar Sutherland Hamiltonian of DN type (16), given by

ρ(x) =
∏∣∣sinx−

ij sinx+
ij

∣∣a. (18)

i<j
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The lattice sites ϑi of the chain (13) are thus the unique solution in A of the nonlinear system∑
j ;j �=i

(
cotϑ−

ij + cotϑ+
ij

) = 0, 1 � i � N. (19)

As in the BCN case, we define the variables ξi by

ξi = cos(2ϑi), 1 � i � N.

Note that, since ϑ ∈ A, we obviously have

1 � ξ1 > ξ2 > · · · > ξN−1 > ξN � −1. (20)

In terms of the new coordinates ξi , the system (19) can be written as(
1 − ξ2

i

) ∑
j ;j �=i

1

ξi − ξj

= 0, 1 � i � N. (21)

Since ξ1 − ξj > 0 for all j > 1 and ξN − ξj < 0 for all j < N , from Eq. (21) it immediately
follows that ξ2

1 = ξ2
N = 1, so that ξ1 = −ξN = 1 by Eq. (20). Substituting into (21) we obtain the

following system for the remaining coordinates ξ2, . . . , ξN−1:

(
1 − ξ2

i

)N−1∑
j=2
j �=i

1

ξi − ξj

= 2ξi, 2 � i � N − 1. (22)

Note that the latter system is invariant under the transformation ξi �→ −ξi , so that (by uniqueness)
ξi = ξN+1−i . Comparing (22) with the system

2
(
1 − ζ 2

i

) N ′∑
j=1
j �=i

1

ζi − ζj

= β − β ′ + (
β + β ′)ζi, 1 � i � N ′, (23)

satisfied by the zeros ζi (i = 1, . . . ,N ′) of the Jacobi polynomial P
(β−1,β ′−1)

N ′ (cf. Ref. [46]),

we conclude that the coordinates ξ2, . . . , ξN−1 are the zeros of P
(1,1)
N−2 . (Note that P

(1,1)
N−2 is

proportional to the Gegenbauer polynomial C
(3/2)

N−2 , cf. Ref. [47].) In terms of the original site
coordinates ϑi we have

0 = ϑ1 < ϑ2 < · · · < ϑN−1 < ϑN = π

2
,

with P
(1,1)
N−2 (cos(2ϑi)) = 0 for i = 2, . . . ,N −1. Note that Eqs. (21)–(23) also yield an alternative

characterization of the coordinates ξi as the N roots of the Jacobi polynomial P
(−1,−1)
N , which

was to be expected, since the potential U(B) in Eq. (6) reduces to the DN potential U when
β = β ′ = 0. The equivalence of both characterizations of the site coordinates is easily established
with the help of the identity 4P

(−1,−1)
N (t) = (t2 − 1)P

(1,1)
N−2 (t), cf. [48].

We shall next discuss the precise relation between the DN spin chain Hamiltonian (13) and the
limit as (β,β ′) → 0 of its BCN counterpart (5). To this end, we use the trigonometric identities

sin−2 θi = 2
, cos−2 θi = 2

,

1 − ζi 1 + ζi
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and note that as (β,β ′) → 0 all the roots ζi of the Jacobi polynomial P
(β−1,β ′−1)
N tend to the

corresponding roots ξi of P
(−1,−1)
N . Thus all the terms in the last sum in the Hamiltonian (5) tend

to zero as (β,β ′) → (0,0), except the first and the last one. In order to evaluate the limit of these
two terms, we divide (23) by 1 ± ζi and sum the resulting equation over i, obtaining

2β
∑

i

1

1 − ζi

= 2β ′ ∑
i

1

1 + ζi

= N
(
β + β ′ + N − 1

)
.

Hence

lim
(β,β ′)→0

2β

1 − ζ1
= lim

(β,β ′)→0

2β ′

1 + ζN

= N(N − 1). (24)

Since ζi → ξi as (β,β ′) → 0 and θi, ϑi ∈ A (recall that A(B) ⊂ A), we have lim(β,β ′)→0 θi = ϑi

for all i = 1, . . . ,N . From Eqs. (5), (13) and (24) it immediately follows that

lim
(β,β ′)→0

H(B) = H + 1

2
N(N − 1)

[
1 − ε

2
(S1 + SN)

]
. (25)

Thus the limit as (β,β ′) → 0 of the Hamiltonian of the HS chain of BCN type yields its DN

analog, plus an additional term which can be interpreted as an “impurity” at both ends of the
latter chain.

3. Spectrum of the dynamical models

The aim of this section is to compute the spectra of the su(m) spin Sutherland model of DN

type (8) and its scalar counterpart (16). In order to facilitate this computation, we introduce the
auxiliary scalar operator

H ′ = −
∑

i

∂2
xi

+ a
∑
i �=j

[
sin−2 x−

ij (a − Kij ) + sin−2 x+
ij (a − K̃ij )

]
, (26)

where Kij and Ki are coordinate permutation and sign reversing operators, defined by

(Kijf )(x1, . . . , xi, . . . , xj , . . . , xN) = f (x1, . . . , xj , . . . , xi, . . . , xN),

(Kif )(x1, . . . , xi, . . . , xN) = f (x1, . . . ,−xi, . . . , xN),

and K̃ij ≡ KiKjKij .

3.1. Extensions of H and Hsc

Due to the character of their singularities, the operators H and Hsc are naturally defined
on suitable dense subspaces of the Hilbert spaces L2(A) ⊗ Σ and L2(A), respectively. On the
other hand, the appearance in the RHS of Eq. (26) of the generators KiKj and Kij of the Weyl
group W of the DN root system entails that the auxiliary operator H ′ is defined instead on a dense
subspace of L2(C), where C ≡ W(A). One of the key ingredients of the method we shall use
consists in replacing the operators H and Hsc by suitable equivalent (isospectral) extensions H̃

and H̃sc thereof to appropriate subspaces of L2(C) ⊗ Σ and L2(C), such that H̃ = H ′ ⊗ 1 and
H̃sc = H ′ in the latter subspaces.

We shall start by showing that the set C is explicitly given by
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C = {
x ∈ R

N : 0 < |xi ± xj | < π, 1 � i < j � N
}
, (27)

a characterization which will prove useful in what follows. Recall, to this end, that W is generated
by coordinate permutations and sign reversals of an even number of coordinates [49]. Since A is
defined by the inequalities (9), it is obvious that C ⊂ C∗, where C∗ denotes the RHS of Eq. (27).
Thus, we need only show that C∗ ⊂ C, or equivalently, that for every x∗ ∈ C∗ there is an element
W ∈ W such that Wx∗ ∈ A. To this end, we shall make repeated use of the following elementary
fact:

x ∈ C∗, |x1| < x2 < · · · < xN �⇒ x ∈ A. (28)

Suppose, then, that x∗ ∈ C∗. By reversing the sign of an even number of coordinates and applying
a suitable permutation, we can transform x∗ into another element y ∈ W(C∗) = C∗ satisfying

y1 < y2 < · · · < yN and yi > 0, i = 2, . . . ,N.

If y1 + y2 > 0, then |y1| < y2 < · · · < yN , and hence y ∈ A by Eq. (28). Suppose, on the other
hand, that y1 + y2 < 0, so that

y1 < 0 < y2 < · · · < yN.

Calling z1 = −y2, z2 = −y1 and zi = yi for i � 3, we have z ∈ C∗ and

z1 + z2 = −(y1 + y2) > 0, z1 < z2 �⇒ |z1| < z2.

If z2 < z3, then z ∈ A by Eq. (28). Otherwise, the inequalities z1 +z3 = y3 −y2 > 0 and z3 −z1 =
y3 + y2 > 0 imply that

|z1| < z3 < · · · < z2 < · · · < zN.

Applying a suitable permutation to z, we obtain a new element u ∈ C∗ satisfying |u1| < u2 <

· · · < uN , which belongs to A again by Eq. (28).

Remark 1. Note that the analogous set C(B) for the BCN root system, which is simply the
hypercube (−π

2 , π
2 )N minus the singular hyperplanes xi ± xj = 0, 1 � i � j � N (cf. Ref. [42]),

is clearly contained in C by Eq. (27).

Remark 2. For N = 3, the set C is a rhombic dodecahedron (a zonohedron with 12 equal rhom-
bic faces) centered at the origin [50], with edge length

√
3π/2.

Our next aim is to replace the operator H by an isospectral extension H̃ thereof acting on
suitably (anti)symmetrized wave functions defined on the set C. If the extension is appropriately
chosen, we shall see that H̃ = H ′ ⊗ 1 on the Hilbert space of H̃ , so that the computation of the
spectrum of H reduces to the analogous (but considerably simpler, in practice) task for H ′.

Before proceeding with our construction, we need to introduce some additional notation.
Given an element W of the Weyl group of DN type W and a factorized spin function ϕ|s〉 ∈
L2(C) ⊗ Σ , where |s〉 ≡ |s1, . . . , sN 〉 is an element of the canonical spin basis, we define the
action of W on ϕ|s〉 in the usual way:

W
(
ϕ|s〉) = (

ϕ ◦ W−1)|W s〉. (29)

Extending this definition by linearity to the whole Hilbert space L2(C)⊗Σ , we obtain an action
of W (in fact, a representation) on the latter space. Let now π : W → C denote a one-dimensional
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representation of W; of course, since W is generated by reflections, we have π(W) ⊂ {−1,1}.
The symmetrizer Λπ associated with π is the linear operator defined on L2(C) ⊗ Σ by

Λπ = 1

|W|
∑

W∈W

π(W)W, (30)

where |W| = 2N−1N ! is the order of W. By construction, we have

Φ ∈ Λπ

(
L2(C) ⊗ Σ

)
, W ∈ W �⇒ WΦ = π(W)Φ, (31)

so that Λπ is the projector onto states with well-defined parity π(W) with respect to any trans-
formation W in the Weyl group W.

Given a factorized spin function Ψ = ψ |s〉 ∈ L2(A)⊗Σ , we define its π -symmetric extension
Ψ̃ ∈ Λπ(L2(C) ⊗ Σ) by

Ψ̃ (x) = π(Wx)ψ
(
W−1

x x
)|Wxs〉, x ∈ C, (32)

where Wx denotes the unique element of W such that W−1
x x ∈ A. As usual, the action of ˜ is

extended to L2(A) ⊗ Σ by linearity. It is easy to see that Ψ̃ is the unique extension of Ψ to C

which has well defined parity π(W) under any transformation W ∈ W. In view of Eqs. (29)–(30),
with a slight abuse of notation we can write

Ψ̃ = |W| · Λπ(Ψ χA), (33)

where χA is the characteristic function of A.
The extension ˜ : L2(A) ⊗ Σ → Λπ(L2(C) ⊗ Σ) is an invertible linear operator, its inverse

being the restriction operator ̂ : Λπ(L2(C) ⊗ Σ) → L2(A) ⊗ Σ defined by Φ̂ = Φ|A. Indeed,
the linearity of the operator ˜ is obvious. As to its invertibility, note first of all that if Ψ ∈
L2(A) ⊗ Σ by Eq. (32) we have ˆ̃

Ψ = Ψ , since Wx is the identity when x belongs to A. On the
other hand, if Φ ∈ Λπ(L2(C) ⊗ Σ) using Eqs. (30) and (33) we obtain

˜̂
Φ =

∑
W∈W

π(W)W(Φ̂χA) =
∑

W∈W

π(W)W(ΦχA) =
∑

W∈W

π(W)W(Φ)
(
χA ◦ W−1),

and hence, by Eq. (31),

˜̂
Φ(x) = Φ(x)

∑
W∈W

χA

(
W−1x

) = Φ(x)χA

(
W−1

x x
) = Φ(x).

Given a one-dimensional representation π of W and a linear operator T acting on L2(A)⊗Σ ,
it is natural to define its π -symmetric extension T̃π to the Hilbert space Λπ(L2(C) ⊗ Σ) by the
prescription

T̃πΦ = (T Φ̂)̃ , Φ ∈ Λπ

(
L2(C) ⊗ Σ

)
. (34)

By the invertibility of the ˜ operator, we have

T̃π =˜◦ T ◦ (̃ )−1,

so that the operators T and T̃π are isospectral.
We now seek to find a suitable one-dimensional representation π of W such that the π -

symmetric extension of H coincides with the restriction of H ′ ⊗ 1 to Λπ(L2(C) ⊗ Σ). In view
of Eqs. (8) and (26), it suffices that π satisfy
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KiKjΛπ = SiSjΛπ, KijΛπ = −SijΛπ .

Hence π(W) should be defined as the sign of the permutation part of W ∈ W. From now on,
when dealing with the spin Hamiltonian (8) we shall take π as above, and drop the subscript π

from Λπ and H̃π .
Turning now to the scalar Hamiltonian Hsc, by Eqs. (14), (16), and (26) its extension H̃sc to

the space Λπ(L2(C)) will coincide with the restriction of H ′ to the latter space provided that

KiKjΛπ = Λπ, KijΛπ = Λπ.

Thus in this case π(W) = 1 for all W ∈ W, so that for the scalar model (16) Λπ ≡ Λsc is the total
symmetrizer with respect to both coordinate permutations and sign reversals of an even number
of coordinates.

By the previous discussion, we have reduced the problem of evaluating the spectrum of the
Hamiltonians Hsc and H to the analogous problem for the restrictions of the auxiliary opera-
tors H ′ and H ′ ⊗1 to the Hilbert spaces Λsc(L

2(C)) and Λ(L2(C)⊗Σ), respectively. We shall
next prove a more explicit characterization of these spaces that will be needed in the sequel. To
this end, let Λ± be the projector onto states antisymmetric under particle permutations and with
parity ±1 under reversals of coordinates and spins. We shall show that

Λ
(
L2(C) ⊗ Σ

) = Λ+(
L2(C) ⊗ Σ

) ⊕ Λ−(
L2(C) ⊗ Σ

)
. (35)

Indeed, let Λa denote the antisymmetrizer under particle permutations, and let {W±
i }2N−1

i=1 be the
set of reversals of an even (+) or an odd (−) number of coordinates and spins. We then have

Λ± = 1

2N

(
2N−1∑
i=1

W+
i ±

2N−1∑
i=1

W−
i

)
Λa,

and hence

Λ = 1

2N−1

(
2N−1∑
i=1

W+
i

)
Λa = Λ+ + Λ−,

which establishes (35). Similarly, if Λ±
sc is the projector onto states symmetric under coordinate

permutations and with parity ±1 under sign reversals, it is easy to show that

Λsc
(
L2(C)

) = Λ+
sc

(
L2(C)

) ⊕ Λ−
sc

(
L2(C)

)
. (36)

3.2. Basis of L2(C)

Our next step is to construct suitable (non-orthogonal) bases1 of Λ(L2(C) ⊗ Σ) and
Λsc(L

2(C)) on which H ′ ⊗ 1 and H ′, respectively, act triangularly. The decompositions (35)–
(36), and the fact that H ′ ⊗ 1 and H ′ clearly commute with Λ± and Λ±

sc, suggest that we first
triangularize H ′ on L2(C). It should be noted that this problem is considerably harder than the
corresponding one for the rational DN model studied in Ref. [44], due to the fact that in the latter

1 More precisely, a non-orthogonal basis of a (separable) Hilbert space H is a Schauder basis of its underlying Banach
space, i.e., a countable subset {vi : i ∈ N} ⊂ H such that every element v ∈ H can be expressed in a unique way as∑∞ civi , with ci ∈ C. In the rest of this section the term “basis” will often be used in this more general sense.
i=1
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case C = C(B) = R
N . However, in the present case C does not coincide with C(B) = [−π

2 , π
2 ]N ,

so that one cannot assume that the functions

ρ(x)e2in·x, n ∈ Z
N, (37)

obtained from the basis of L2([−π
2 , π

2 ]N) found in Ref. [42] by setting b = b′ = 0, are a basis
of L2(C). In fact, it turns out that the set (37) is not complete in L2(C), and must therefore
be supplemented by additional functions in order to obtain a basis. This peculiarity, which is
absent in the rational case, lends an additional layer of complexity to the relation between the
trigonometric DN models and their BCN counterparts.

In this subsection we shall prove that the functions

ϕ(δ)
n (x) ≡ ρ(x)ei

∑
j (2nj +δ)xj , n ≡ (n1, . . . , nN) ∈ Z

N, δ ∈ {0,1}, (38)

form a Schauder basis of L2(C), leaving for the next subsection the proof that H ′ acts triangu-
larly on the latter set when ordered appropriately. As we shall next discuss in more detail, the
completeness of the functions (38) is essentially based on the fact that a complex exponential
eik·x (k ∈ R) is periodic in C if and only if

k = (2n1 + δ, . . . ,2nN + δ), nj ∈ Z, δ ∈ {0,1}. (39)

Since C is not a hypercube, we need to define more precisely what it means for a function to
be periodic in this set. To this end, let

Fεε′
ij = {

x ∈ C: xi + εxj = ε′π
}
, 1 � i < j � N, ε, ε′ = ±,

denote one of the 2N(N − 1) faces of C. If T εε′
ij is the translation along the vector ε′π(ei + εej )

perpendicular to the latter face (where {e1, . . . , eN } is the canonical basis of R
N ), then each

T
ε,−ε′
ij clearly sends the corresponding face Fεε′

ij to its opposite F
ε,−ε′
ij . Given a point x ∈ Fεε′

ij ,

we shall refer to T
ε,−ε′
ij x as the point opposite to x in the face F

ε,−ε′
ij . (Of course, a point lying

on the intersection of k > 1 faces has k different opposites.)
We shall say that a continuous function f : C → C is periodic in C if

f (x) = f
(
T

ε,−ε′
ij x

)
, ∀x ∈ Fεε′

ij , 1 � i < j � N, ε, ε′ = ±. (40)

In other words, f is periodic in C if it takes the same value on opposite points in any two faces
of C. Since the coroots of the DN root system with the normalization (11) are the 2N(N − 1)

vectors

π(±ei ± ej ), 1 � i < j � N,

the group T generated2 by the translations T εε′
ij is the translation group corresponding to the DN

coroot lattice (i.e., the Z-linear span of the coroot vectors). As is well known, the semidirect
product of T � W yields the affine Weyl group of DN type Wa [49]. We shall define two points
x,x′ ∈ R

N to be equivalent, and shall write x ∼ x′, provided that x′ = T x for some T ∈ T. Note
that Eq. (40) and the previous definition imply that a function f is periodic in C if and only if

x,x′ ∈ ∂C, x ∼ x′ �⇒ f (x) = f
(
x′).

2 In fact, since T
+,∓

T
+,± = T

−,± for i < k < j , the group T is generated just by the translations T
+,±.
kj ik ij ij
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We shall accordingly say that a continuous function f : R
N → C is T-periodic if it satisfies

f (x) = f (T x), ∀T ∈ T, ∀x ∈ R
N. (41)

Remark 3. Since T ++
ij T −+

ij is a translation of 2π in the direction of the vector ei , it follows that
every T-periodic function is 2π -periodic in each coordinate. The converse, however, is not true
in general.

One of the main ingredients in the proof of the completeness of the set (38) in L2(C) is the
fact that every continuous function f : C → C periodic in C can be uniquely extended to a T-
periodic function f̄ : R

N → C. This result is a direct consequence of the following fundamental
facts:

(i) For each x ∈ R
N , there is a point x′ ∈ C such that x ∼ x′.

(ii) Moreover, if x ∼ x′′ ∈ C and x′′ �= x′, then both x′ and x′′ lie on (at least) a face of C.

The proof of these two statements is straightforward. Indeed, it is well known [49] that A is a
fundamental domain for the action of Wa in R

N , i.e., that for every x ∈ R
N there is a unique

a ∈ A and a suitable element R of Wa such that x = Ra. Since Wa is the semidirect product
of its subgroups T and W, we can write R = T W , with T ∈ T and W ∈ W. This shows that x
is equivalent to x′ = Wa ∈ W(A). Since the elements of W are homeomorphisms, we have
W(A) = W(A) ≡ C, which proves the first statement.

As to the second one, suppose next that x is equivalent to two different points x′ and x′′ of C.
It follows that x′ ∼ x′′ or, equivalently,

x′′
i = x′

i + kiπ, ki ∈ Z, 1 � i � N; k1 + · · · + kN ∈ 2Z.

Since both x′ and x′′ belong to C ⊂ [−π,π]N , the integers ki can only take the values 0,±1,±2.
Suppose, first, that one of these integers is equal to ±2. Without loss of generality, we may
assume that k1 = 2. Since x′

1, x
′′
1 ∈ [−π,π], this is only possible if x′

1 = −π = −x′′
1 , from which

it follows (taking into account that x′,x′′ ∈ C) that x′
i = x′′

i = 0 for i > 1. Thus in this case x′
belongs to the 2(N − 1) faces F

±,−
1i (with 2 � i � N ), and x′′ to the opposite faces F

±,+
1i . (Note,

however, that in this case x′′ is not the opposite point of x′ in any of these 2(N − 1) faces.)
Assume now that |ki | < 2 for all i. Since not all the integers ki can be zero by hypothesis,

and k1 + · · · + kN must be even, there are two of these integers, which w.l.o.g. we can take as k1
and k2, such that k1 = εk2 = ε′ (with ε, ε′ = ±). From the equalities x′′

1 + εx′′
2 = x′

1 + εx′
2 +2ε′π

and the fact that x′
1 + εx′

2, x
′′
1 + εx′′

2 ∈ [−π,π], it follows that x′′
1 + εx′′

2 = −(x′
1 + εx′

2) = ε′π ,

and therefore x′ and x′′ lie on (at least) the opposite faces Fεε′
12 and F

ε,−ε′
12 of C, respectively.

This completes the proof of the second statement.

Remark 4. The previous result implies that N -dimensional Euclidean space can be tiled with
translations of the set C along the DN (co)root lattice. For N = 3, this is the well-known tessel-
lation of R

3 with rhombic dodecahedra [50].

We are now ready to prove that the set (38) is a (non-orthogonal) basis of L2(C). In fact, it
suffices to show that the exponentials

ei
∑

j (2nj +δ)xj , n ≡ (n1, . . . , nN) ∈ Z, δ ∈ {0,1} (42)
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are themselves a basis of L2(C). Indeed, if this is the case then any complex-valued function
f ∈ C0(C) continuous in C and with compact support in C can be represented in the form

f (x) =
∑

n∈ZN , δ∈{0,1}
cn,δei

∑
j (2nj +δ)xj , (43)

where the coefficients cn,δ ∈ C are by hypothesis uniquely determined by f . Our claim follows
immediately from the fact that the function f/ρ is also in C0(C), and that the latter set is of
course dense in L2(C).

The fact the exponentials (42) form a basis of L2(C) is essentially a consequence of the
fact that the momenta (39) are the elements of the dual (or “reciprocal”, in a more physical
terminology) lattice of the DN coroot lattice. However, for completeness’ sake we shall next
provide an elementary proof of this fact. We first note that, since the set P(C) of complex-valued
continuous functions periodic in C contains the dense set C0(C), to prove that (42) is a basis of
L2(C) we need only show that every f ∈ P(C) can be uniquely represented by a Fourier series
of the form (43). Let, then, f : C → C be a continuous function periodic in C, and denote by
f̄ : R

N → C its T-periodic extension. Since the function f̄ is 2π -periodic in each coordinate
(cf. Remark 3), it can be developed in terms of the L2([−π,π]N ) Fourier basis eik·x (k ∈ Z

N ) as

f̄ (x) =
∑

k∈ZN

akeik·x, (44)

with ak ∈ C uniquely determined by f . Imposing that f̄ satisfy Eq. (41) when T is one of the
generators T εε′

ij of T we easily obtain

ak
(
1 − eiπε′(ki+εkj )

) = 0, ∀k ∈ Z
N, 1 � i < j � N, ε, ε′ = ±.

Hence ak vanishes unless

ki ± kj ≡ k±
ij ∈ 2Z, 1 � i < j � N,

i.e., unless all the integers ki have the same parity. Setting ki = 2ni + δ (with δ ∈ {0,1}), ak =
cn,δ , and substituting into Eq. (44) we obtain

f̄ (x) =
∑

n∈ZN , δ∈{0,1}
cn,δei

∑
j (2nj +δ)xj ,

where the equality should be understood in the sense of L2([−π,π]N). Restricting to L2(C)

(which is allowed, since C ⊂ [−π,π]N ), and recalling that all the coefficients ak are uniquely
determined by f , we obtain the desired result.

Remark 5. In fact, since the translations of C along the DN (co)root lattice are a tiling of RN ,
the results of [51] imply that the functions (42) are mutually orthogonal. Of course, this does not
imply that the functions (38) are themselves orthogonal, due to the presence of the factor ρ(x).

3.3. Triangularization of H ′

We shall next endow the set (38) with a suitable order such that the action of H ′ on the
resulting basis is triangular. Note, first of all, that

L2(C) = H(0) ⊕ H(1), (45)
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where H(δ) is the closure of the subspace spanned by the basis functions ϕ
(δ)
n with n ∈ Z

N . We
will show that H ′ leaves invariant each of the subspaces H(δ), so that we need only order each
subbasis {ϕ(δ)

n }n∈ZN in such a way that H ′ is represented by a triangular matrix in H(δ). To this
end, given a multiindex p ≡ (p1, . . . , pN) ∈ Z

N we define

[p] = (|pi1 |, . . . , |piN |), with |pi1 | � · · · � |piN |.
If p′ ∈ ZN is another multiindex, we shall write p ≺ p′ provided that the first non-vanishing
component of [p] − [p′] is negative. The basis functions {ϕ(δ)

n }n∈ZN should then be ordered in
any way such that ϕ

(δ)
n precedes ϕ

(δ)

n′ whenever ν ≺ ν′, where

ν ≡ (2n1 + δ, . . . ,2nN + δ), (46)

and similarly for ν ′. For instance, ϕ
(0)
(3,1,0) must precede ϕ

(0)
(2,−3,−1), ϕ

(1)
(3,1,0) should follow

ϕ
(1)
(2,−3,−1), while the relative precedence of ϕ

(0)
(2,−3,−1) and ϕ

(0)
(1,3,−2) can be arbitrarily assigned.

In order to compute the action of H ′ on the basis functions (38), it is convenient to introduce
the Dunkl operators of DN type

Jk = i∂xk
+ a

∑
l �=k

[(
1 − i cotx−

kl

)
Kkl + (

1 − i cotx+
kl

)
K̃kl

] − 2a
∑
l<k

Kkl, (47)

with k = 1, . . . ,N , obtained from their BCN counterparts in Ref. [42] by setting b = b′ = 0. Note
that the set C is invariant under all the generators Kij , Ki of the Weyl group of BCN type W(B),
and hence the operator Jk is actually defined in a suitable dense subspace of L2(C). It can be
shown that

H ′ =
∑

k

J 2
k , (48)

so that the action of H ′ on the basis (38) can be easily inferred from that of the Dunkl opera-
tors (47). In the following discussion, we shall label the basis functions ϕ

(δ)
n simply by ϕν , with ν

given by (46). As in Ref. [52], we shall begin by considering the action of Jk on a basis functions
ϕν with ν nonnegative and nonincreasing. For such a multiindex, we shall use the notation

#(s) = card{i: νi = s}, �(s) = min{i: νi = s},
with �(s) = +∞ if νi �= s for all i = 1, . . . ,N . For instance, if ν = (8,6,6,2,2,2) then #(2) = 3
and �(2) = 4.

We shall next prove the formula

Jkϕν = λν,kϕν +
∑

ν′∈Z
N

ν′−ν∈(2Z)N ,ν′≺ν

cν′
ν,kϕν′ , (49)

where cν′
ν,k ∈ C and

λν,k =
{−νk + 2a(2�(νk) + #(νk) − k − N − 1), νk > 0,

2a(N − k), νk = 0,
(50)

which will play a fundamental role in the sequel. To begin with, a lengthy but straightforward
calculation yields
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Jkϕν

ϕν
= −νk − 2a(N − 1) + 2a

∑
j<k

α
νj −νk

jk − 1

α2
jk − 1

+ 2a
∑
j>k

α
νj −νk+2
jk − 1

α2
jk − 1

+ 2a
∑
j �=k

β
2−νj −νk

jk − 1

β2
jk − 1

, (51)

where

αjk = z−1
j zk, βjk = zj zk, zj ≡ eixj .

Consider now the first sum in Eq. (51). Since j < k, by hypothesis νj � νk . If νj = νk , the j -th
term in this sum clearly vanishes. On the other hand, if νj > νk we have

ϕν

α
νj −νk

jk − 1

α2
jk − 1

= ϕν +
1
2 (νj −νk)−1∑

r=1

z−2r
j z2r

k ϕν, (52)

where the last sum only appears if νj − νk > 2. In this case the multiindices ν′ of the monomials
in the summation symbol in Eq. (52) are of the form

ν′ = (ν1, . . . , νj − 2r, . . . , νk + 2r, . . . , νN), r = 1, . . . ,
1

2
(νj − νk) − 1,

and hence ν′ − ν ∈ (2Z)N . Moreover, we have 0 < max{νj − 2r, νk + 2r} < νj for all r =
1, . . . , 1

2 (νj − νk) − 1, so that ν′ ≺ ν. Thus, the first sum in (51) contributes to λν,k the quantity

2a card
{
j < k: νj > νk

} = 2a
(
�(νk) − 1

)
. (53)

It may be likewise verified that the multiindices ν′ corresponding to the monomials arising from
the second sum in Eq. (51) either coincide with ν or satisfy ν′ ≺ ν, and that this sum yields the
following contribution to λν,k :

2a card{j > k: νj = νk} = 2a
(
�(νk) + #(νk) − k − 1

)
. (54)

Consider, finally, the j -th term of the last sum in Eq. (51). This term is equal to 1 when νj =
νk = 0, while for νj + νk � 2 we have

β
2−νj −νk

jk − 1

β2
jk − 1

= −β
2−νj −νk

jk

β
νj +νk−2
jk − 1

β2
jk − 1

= −
1
2 (νj +νk)−1∑

r=1

β−2r
jk .

Hence when νj + νk � 2 the multiindices corresponding to the basis functions arising from the
last sum in Eq. (51) are of the form

ν′ = (ν1, . . . , νj − 2r, . . . , νk − 2r, . . . , νN), r = 1, . . . ,
1

2
(νj + νk) − 1,

and thus ν′ − ν ∈ (2Z)N . Furthermore, since

−νk + 2 � ν′
j � νj − 2, −νj + 2 � ν′

k � νk − 2,

we have max{|ν′
j |, |ν′

k|} < max{νj , νk}, so that again ν′ ≺ ν. The contribution of the last sum in
Eq. (51) to λν,k is therefore equal to
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2a
(
#(0) − 1

)
δνk,0. (55)

Adding Eqs. (53)–(55) to the first two terms in the RHS of Eq. (51), and taking into account that
l(0) + #(0) = N + 1, we easily obtain Eq. (50) for λν,k .

Eq. (49) does not hold in general if ν does not belong to [ZN ], so that Eq. (50) does not yield
the spectrum of the Dunkl operators Jk . On the other hand, for the purposes of computing the
spectrum of H ′ we shall only need the following weaker result: if ν ∈ Z

N is a multiindex all of
whose components have the same parity, then

Jkϕν =
∑

ν′∈Z
N

ν′−ν∈(2Z)N ,[ν′]�[ν]

γ ν′
ν,kϕν′ (56)

for some complex constants γ ν′
ν,k . Indeed, if ν is as above, there is an element W belonging to

the Weyl group of BCN type W(B) such that ϕν = Wϕ[ν]. Proceeding as in Ref. [52], it is easy to
show that

[Jk,W ] =
2NN !∑
j=1

cjkWj , cjk ∈ R,

where W(B) ≡ {Wj : j = 1, . . . ,2NN !}. We thus have

Jkϕν = W(Jkϕ[ν]) +
2NN !∑
j=1

cjkWjϕ[ν],

and Eq. (56) follows immediately from (49) and the fact that the partial ordering ≺ and the parity
of the components are invariant under the action of W(B).

From the previous results it is relatively straightforward to compute the spectrum of H ′. More
precisely, we shall next show that the action of H ′ on each Schauder subbasis {ϕ(δ)

n }n∈ZN , ordered
as explained above, is upper triangular:

H ′ϕ(δ)
n = E(δ)

n ϕ(δ)
n +

∑
ν′≺ν

c
(δ)

n′nϕ
(δ)

n′ , νk ≡ 2nk + δ, ν′
k ≡ 2n′

k + δ, (57)

where c
(δ)

n′n ∈ C and

E(δ)
n =

∑
k

([ν]k + 2a(N − k)
)2

. (58)

Indeed, suppose first that the multiindex ν in Eq. (57) is nonnegative and nonincreasing. Applying
Jk to both sides of Eq. (49) we obtain

J 2
k ϕν = λ2

ν,kϕν +
∑

ν′−ν∈(2Z)N

ν′≺ν

λν,kc
ν′
ν,kϕν′ +

∑
ν′−ν∈(2Z)N

ν′≺ν

cν′
ν,kJkϕν′ .

By Eq. (56), the last sum is a linear combination of basis functions ϕν′′ with ν′′ ≺ ν and ν′′ − ν ∈
(2Z)N . Therefore we can write

J 2
k ϕν = λ2

ν,kϕν +
∑

ν′−ν∈(2Z)N
′

bν′
ν,kϕν′ ,
ν ≺ν
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with bν′
ν,k ∈ C. Summing over k and using the identity (48) we obtain

H ′ϕν =
(∑

k

λ2
ν,k

)
ϕν +

∑
ν′−ν∈(2Z)N

ν′≺ν

(∑
k

bν′
ν,k

)
ϕν′ . (59)

Suppose, next, that ν /∈ [Z]N , and let W ∈ W(B) be such that ϕν = Wϕ[ν]. Since H ′ is obtained
from its BCN counterpart in Ref. [42] by setting b = b′ = 0, and the latter operator commutes
with all the elements of W(B), it follows that [H ′,W ] = 0. By Eq. (59) applied to ϕ[ν] we have

H ′ϕν = W · H ′ϕ[ν] =
(∑

k

λ2[ν],k
)

ϕν +
∑

ν′−[ν]∈(2Z)N

ν′≺[ν]

(∑
k

bν′
[ν],k

)
Wϕν′ ,

which establishes (57) with

E(δ)
n =

∑
k

λ2[ν],k. (60)

All that remains to be proven is Eq. (58) for the eigenvalue E
(δ)
n . To this end, let p = [ν] and

suppose that pk−1 > pk = · · · = pk+r > pk+r+1 � 0, so that �(pk+j ) = k and #(pk+j ) = r + 1
for j = 0, . . . , r . Since

λp,k+j = −pk+j + 2a(k + r − j − N) = −pk+r−j + 2a(k + r − j − N), j = 0, . . . , r,

we have

k+r∑
j=k

λ2
p,j =

k+r∑
j=k

(
pj + 2a(N − j)

)2
. (61)

If, on the other hand, pk−1 > pk = · · · = pN = 0, the analog of Eq. (61) follows directly
from (50). This completes the proof of Eq. (58).

3.4. Triangularization of H and Hsc

Using the results of the previous subsection, it is a straightforward matter to triangularize H

and Hsc. Indeed, by the results in Section 3.1, this problem is equivalent to the triangularization
of the extensions H̃ and H̃sc acting on their respective Hilbert spaces H ≡ Λ(L2(C) ⊗ Σ) and
Hsc ≡ Λsc(L

2(C))

Let us start with the operator H̃ . By Eqs. (35) and (45), its Hilbert space can be decomposed
as the direct sum

H =
⊕
ε=±
δ=0,1

Λε
(
H(δ) ⊗ Σ

)
. (62)

Let f (x) be in the domain of H ′, and let |s〉 ∈ Σ denote an arbitrary spin state. Since H̃ coincides
with H ′ ⊗ 1 on H, and the latter operator commutes with Λ (indeed, it commutes with all the
elements of W(B), and hence of W), we have

H̃
[
Λε

(
f (x)|s〉)] = Λε

[(
H ′f (x)

)|s〉]. (63)
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As we saw in the previous subsection, H ′ preserves the subspaces H(δ), which by the latter
equation implies that each of the four subspaces Λε(H(δ) ⊗ Σ) is invariant under H̃ . We shall
next verify that H̃ acts triangularly on a (non-orthogonal) basis of Λε(H(δ) ⊗ Σ) of the form

ψδ,ε
n,s (x) = Λε

(
ϕ(δ)

n (x)|s〉), (64)

ordered in such a way that ψ
δ,ε
n,s precedes ψ

δ,ε
n′,s′ whenever ν ≺ ν′ (with ν defined in (46), and

similarly ν′). The spin functions (64) are obviously a complete set (since the functions (38) are
a basis of L2(C)), but their linear independence is not assured unless we impose suitable re-
strictions on the quantum numbers n and s. More precisely, the states (64) are a (non-orthogonal)
basis of the Hilbert space Λε(H(δ) ⊗Σ) provided that the quantum numbers n ∈ Z

N and s satisfy
the following conditions:

(i) n1 � · · · � nN � 0, (65a)

(ii) si > sj whenever ni = nj and i < j, (65b)

(iii) If δ = ni = 0 then si � 0 for ε = 1, while si > 0 for ε = −1. (65c)

Indeed, since

Λε(KiSi) = εΛε, Λε(KijSij ) = −Λε,

acting with suitable operators KiSi and KijSij on a spin function ϕ
(δ)
n (x)|s〉 with arbitrary n ∈ Z

N

and s one can easily show that the corresponding state ψ
δ,ε
n,s is either zero or proportional to

a state (64) satisfying the above conditions. (Note, in this respect, that a state (64) with δ =
ni = si = 0 is symmetric under (xi, si) → (−xi,−si), and must therefore vanish identically if
ε = −1.) This shows that the states (64) with n ∈ Z

N and s satisfying the above conditions are
complete. Their linear independence is easily checked.

Remark 6. Conditions (i)–(ii) above are identical to the corresponding ones for the spin Calogero
model of DN type studied in Ref. [44]. As to the third one, the key difference is that in the present
case the action of a coordinate sign reversing operator Ki on a state ϕ

(δ)
n (x)|s〉 no longer produces

a state with the same quantum number n (up to a constant factor) unless δ = ni = 0.

Remark 7. Since the functions ϕ
(0)
n with n ∈ Z

N form a basis of L2(C(B)) ⊂ L2(C)

(cf. Ref. [42]), it follows that each subspace Λε(H(0) ⊗ Σ) properly contains the Hilbert space
Λε(L2(C(B)) ⊗ Σ) of the Sutherland spin model of BCN type (1) with chirality ε. Note, how-
ever, that the other sector Λ+(H(1) ⊗ Σ) ⊕ Λ−(H(1) ⊗ Σ) of H has no counterpart in the BCN

model. Thus, in contrast with the rational case [44], the Hilbert space of the DN model is larger
than the direct sum of the Hilbert spaces of its BCN counterparts with both chiralities.

Let us now examine the action of the operator H̃ on the basis of Λε(H(δ) ⊗ Σ) given by
Eqs. (64)–(65). It is easy to show that

H̃ψδ,ε
n,s = Eδ,ε

n,sψ
δ,ε
n,s +

∑
n′,s′
ν′≺ν

cδε
n′s′,nsψ

δ,ε
n′,s′ , (66)

where cδε′ ′ ∈ C, the quantum numbers (n′, s′) satisfy conditions (65) and
n s ,ns



524 B. Basu-Mallick et al. / Nuclear Physics B 843 [FS] (2011) 505–533
Eδ,ε
n,s =

∑
k

(
2nk + δ + 2a(N − k)

)2
. (67)

Indeed, from Eqs. (57)–(58) and the identity (63) one immediately obtains

H̃ψδ,ε
n,s = Eδ,ε

n,sψ
δ,ε
n,s +

∑
ν′≺ν

c
(δ)

n′,nψ
δ,ε
n′,s. (68)

Although the quantum numbers (n′, s) appearing in the RHS of this equation do not necessarily
satisfy conditions (65), there is an element W ∈ W(B) such that (Wn′,W s) ≡ (n′′, s′′) do satisfy
these conditions. Since the corresponding state ψ

δ,ε
n′′,s′′ differs from ψ

δ,ε
n′,s by at most an overall

sign, and [ν′′] = [ν′] ≺ [ν] implies that ν′′ ≺ ν, it is clear that we can rewrite (68) in the form (66).
From Eq. (66) it follows that the operator H̃ acts triangularly on the (non-orthogonal) basis

of Λε(H(δ) ⊗ Σ) in Eqs. (64)–(65), ordered in such a way that ψ
δ,ε
n,s precedes ψ

δ,ε
n′,s′ whenever

ν ≺ ν ′. Moreover, the eigenvalues of the restriction of H̃ to Λε(H(δ) ⊗ Σ) are given by Eq. (67),
with n ∈ Z

N and s satisfying conditions (65).

Remark 8. Since the numerical value of the eigenvalue (67) does not depend on s or ε, for any
multiindex n ∈ [ZN ] the corresponding eigenvalue E

δ,ε
n,s has an associated degeneracy

dδ
n = dδ,+

n + dδ,−
n , (69)

where d
δ,ε
n is the number of basic spin states |s〉 satisfying conditions (65) for given ε and δ.

These spin degeneracy factors will be computed below, when we discuss the partition function
of this model.

The spectrum of the scalar Hamiltonian H̃sc can be computed in a similar way by exploiting
the fact that H̃sc coincides with H ′ in its Hilbert space Hsc, which by Eqs. (36) and (45) is given
by

Hsc =
⊕
ε=±
δ=0,1

Λε
sc

(
H(δ)

)
. (70)

Due to the identity

H̃sc
(
Λε

scf (x)
) = Λε

sc

(
H ′f (x)

)
,

it is immediate to show that each of the four subspaces Λε
sc(H

(δ)) is invariant under H̃sc. Just as
in Section 3.4, it can be verified that the functions

ψδ,ε
n (x) = Λε

sc

(
ϕ(δ)

n (x)
)
, (71)

where n ∈ Z
N and

n1 � · · · � nN � 1

2
(1 − ε)(1 − δ), (72)

are a Schauder basis of Λε
sc(H

(δ)). (The last inequality is due to the fact that if δ = nN = 0 the
function ψ

0,−
n is symmetric under xN → −xN , and therefore vanishes identically.) Proceeding

as above, it is straightforward to show that if we order the basis (71)–(72) so that ψ
δ,ε
n precedes

ψ
δ,ε
n′ whenever ν ≺ ν′, the operator H̃sc acts triangularly on it, with eigenvalues E

δ,ε
n given by

the RHS of Eq. (67). Of course, due to the absence of internal degrees of freedom, in this case
the degeneracy factors d

δ,ε
n are equal to one for all quantum numbers n, ε = ±1, and δ = 0,1.
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Remark 9. It is well-known [22] that the eigenfunctions of the scalar BCN Sutherland model are
of the form

ρ(x)
∏
i

| sinxi |b| cosxi |b′ · Pk(y), (73)

where Pk(y) is a symmetric polynomial in the variables yi = sin2 xi (i = 1, . . . ,N ). The polyno-
mials Pk , which can be regarded as multivariate generalizations of the classical Jacobi polyno-
mials, are orthogonal in the hypercube [0,1]N with respect to the weight function

w(B)(y) =
∏
i<j

|yi − yj |2a ·
∏
i

y
b− 1

2
i (1 − yi)

b′− 1
2 (74)

(cf. Eq. (2.17) of Ref. [22]). In our case, from the identities

Λ+
scei

∑
k νkxk = Λsc

∏
k

cos(νkxk), Λ−
scei

∑
k νkxk = iNΛsc

∏
k

sin(νkxk),

it is straightforward to show that the (orthonormalized) eigenfunctions of H̃sc in each of the
invariant subspaces Λε

sc(H
(δ)) are of the form

ρ(x)
∏
i

| sin 2xi | 1−ε
2 | cosxi |δε · P δ,ε

k (y), (75)

where P
δ,ε
k (y) is a polynomial in the variables yi = sin2 xi symmetric under permutations. From

the discussion in Section 3.1 it follows that the restrictions of the functions (75) to the open set
A are a complete set of eigenfunctions of the scalar Sutherland model of DN type Hsc. They
are also orthogonal in the latter set, on account of their symmetry under coordinate permutations
and sign changes. This is easily seen to imply that the polynomials P

δ,ε
k are orthogonal in the

hypercube [0,1]N with respect to the weight

wδ,ε(y) =
∏
i<j

|yi − yj |2a ·
∏
i

y
− ε

2
i (1 − yi)

ε(δ− 1
2 ). (76)

In view of Eqs. (73)–(74) and (75)–(76), it is clear that the three orthogonal polynomial families
{P δ,ε

k : k ∈ N} with (δ, ε) = (0,−1), (1,±1) are not limiting cases of the multivariate Jacobi
polynomials studied by Baker and Forrester [22]. The analysis of the properties of these new
orthogonal polynomials, and their relations with their BCN counterparts, could lead to interesting
new developments in the field of multivariate orthogonal polynomials.

4. Partition function of the spin chain

The purpose of this section is to evaluate in closed form the partition function of the Haldane–
Shastry spin chain of DN type (13). Our starting point is the freezing trick relation (17), which
can be equivalently written as

Ej = lim
a→∞

Eij − Esc
i

4a
. (77)

This formula expresses each eigenvalue Ej of the chain (13) in terms of a certain eigenvalue
Eij of the spin Sutherland model of DN type (8) and a corresponding eigenvalue Esc of the
i
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scalar model (16). In practice, the fact that the eigenvalues Eij and Esc
i are obviously not in-

dependent makes it impossible to use Eq. (77) to completely determine the spectrum of the
chain (13) in terms of the spectra of the Hamiltonians H and Hsc computed in the previous
section (cf. Eq. (67)). The key idea behind the freezing trick method introduced by Polychron-
akos [36] is to use Eq. (77), or rather the equivalent relation (17), to directly compute the chain’s
partition function. Indeed, the latter equation immediately yields the identity

Z(T ) = lim
a→∞

Z(4aT )

Zsc(4aT )
, (78)

expressing the chain’s partition function Z in terms of the partition functions Z and Zsc of the
Hamiltonians H and Hsc.

Remark 10. Eq. (77) can be used to obtain nontrivial qualitative information on the spectrum
of the chain (13). For instance, from the fact that the numerical values of the energies of both
Hamiltonians H and Hsc are given by the RHS of Eq. (67) and Eq. (77) it easily follows that all
the energies of the spin chain (13) are integers.

In the rest of this section, we shall compute the large a limits of Z(4aT ) and Zsc(4aT ) using
Eq. (67) for the spectrum of H and Hsc, thereby obtaining an exact expression for Z via Eq. (78).
Before doing so, it is convenient to subtract from the spectra of H and Hsc the constant term

E0 = 4a2
∑

k

(N − k)2 = 2

3
a2N(N − 1)(2N − 1),

which is of course irrelevant for the purposes of computing Z . The rationale behind this normal-
ization is the fact that, by Eq. (67), the eigenvalues of H and Hsc become O(a) for a → ∞, so
that the limits of Z(4aT ) and Zsc(4aT ) exist separately.

Let us start with the partition function of Hamiltonian H of the DN -type spin Sutherland
model (8). With the normalization of the energies explained above, the spectrum of this model
satisfies

Eδ,ε
n,s = 4a

∑
k

(2nk + δ)(N − k) + O(1), (79)

and hence its partition function is given by

lim
a→∞Z(4aT ) =

∑
n1�···�nN�0
ε=±, δ=0,1

dδ,ε
n q

∑
i

(2ni+δ)(N−i)

, q ≡ e−1/(kBT ). (80)

As mentioned in Remark 8, the degeneracy factor d
δ,ε
n is equal to the number of spin states |s〉

satisfying conditions (65) for given ε = ±1 and δ = 0,1. Writing the quantum number n in the
form

n = ( k1︷ ︸︸ ︷
p1, . . . , p1, . . . ,

kr︷ ︸︸ ︷
pr, . . . , pr

)
, p1 > · · · > pr � 0, (81)

and using conditions (65b) and (65c) we have

dδ,ε
n =

{(
mε

kr

)∏r−1
i=1

(
m
ki

)
, δ = pr = 0;∏r

(
m
)
, otherwise,

(82)

i=1 ki
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with

mε = 1

2

(
m + επ(m)

)
, π(m) ≡ (m mod 2). (83)

Let us now define

Z(δ)(T ) ≡
∑

n1�···�nN�0
ε=±

dδ,ε
n q

∑
i

(2ni+δ)(N−i)

,

so that

lim
a→∞Z(4aT ) = Z(0)(T ) + Z(1)(T ). (84)

The function Z(0)(T ) can be easily expressed in terms of the partition functions Z
(B)
± of two spin

Sutherland models of BCN type (1) with opposite chiralities ε = ±. Indeed, when δ = 0 Eq. (82)
coincides with Eq. (51) in Ref. [42] for the degeneracy factor of the BCN -type spin Sutherland
model with chirality ε. Likewise, Eq. (67) with δ = 0 is obtained from the analogous formula for
the energies of the BCN Hamiltonian (1) in Eq. (24) of the latter reference by setting β = β ′ = 0,
and the same is true for Eq. (79). We thus have

Z(0)(T ) = lim
a→∞

(
Z

(B)
+ (4aT ) + Z

(B)
− (4aT )

)∣∣
β=β ′=0. (85)

Using Eq. (53) from Ref. [42] we obtain the explicit expression

Z(0)(T ) =
∑

(k1,...,kr )∈PN

{[(
m+
kr

)
+

(
m−
kr

)

+ 2

(
m

kr

)
qKr

1 − qKr

] r−1∏
i=1

[(
m

ki

)
qKi

1 − qKi

]}
, (86)

where PN is the set of partitions of the integer N (taking order into account), and

Ki = k̄i (2N − 1 − k̄i ), k̄i ≡
i∑

j=1

ki . (87)

Note that, since k1 + · · · + kr = N , the integers k̄i are in the range 1, . . . ,N .
On the other hand, from Eq. (82) it easily follows that

Z(1)(T ) = 2q
1
2 N(N−1)

∑
n1�···�nN�0

r∏
i=1

(
m

ki

)
· q

∑
j 2nj (N−j)

.

Proceeding as in Ref. [42] we easily obtain

Z(1)(T ) = 2q
1
2 N(N−1)

∑
(k1,...,kr )∈PN

(
1 − qKr

)−1
r∏

i=1

(
m

ki

)
·
r−1∏
i=1

qKi

1 − qKi
. (88)

The partition function Zsc(4aT ) of the scalar Hamiltonian (16) is also easily evaluated in the
limit a → ∞, since in this limit its spectrum (with the normalization discussed above) is still
given by the RHS of Eq. (79). Using Eq. (72), and taking into account that in this case d

δ,ε
n = 1,

we have
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lim
a→∞Zsc(4aT ) = 2

∑
n1�···�nN�0

q

∑
i

(2ni+1)(N−i)

+
∑

n1�···�nN�0

q

∑
i

2ni (N−i)

+
∑

n1�···�nN>0

q

∑
i

2ni(N−i)

= (
2q

1
2 N(N−1) + 1

) ∑
n1�···�nN�0

q

∑
i

2ni(N−i)

+
∑

n1�···�nN�0

q

∑
i

2(ni+1)(N−i)

= (
1 + q

1
2 N(N−1)

)2 ∑
n1�···�nN�0

q

∑
i

2ni(N−i)

.

The last sum is easily recognized as the a → ∞ limit of the partition function Z
(B)
sc (4aT ) of the

scalar Sutherland Hamiltonian of BCN type

H(B)
sc ≡ H(B)

∣∣
Sij →1,Si→1

with β = β ′ = 0. Using Eq. (49) in Ref. [42] we thus obtain

lim
a→∞Zsc(4aT ) = (

1 + q
1
2 N(N−1)

)2 lim
a→∞Z(B)

sc (4aT )
∣∣
β=β ′=0

= (
1 + q

1
2 N(N−1)

)2 ∏
i

(
1 − qi(2N−1−i)

)−1
. (89)

The partition function of the Haldane–Shastry spin chain of DN type (13) is easily computed
by inserting Eqs. (84), (86), (88) and (89) into the freezing trick identity (78). In order to simplify
the resulting expression, we define N − r integers k̄′

1 < · · · < k̄′
N−r in the range 1, . . . ,N − 1 by{

k̄′
1, . . . , k̄

′
N−r

} = {1, . . . ,N − 1} − {k̄1, . . . , k̄r−1},
and set

K ′
i = k̄′

i

(
2N − 1 − k̄′

i

)
. (90)

Using this notation, the partition function of the chain (13) can be written as

Z(T ) = (
1 + q

1
2 N(N−1)

)−2 ∑
(k1,...,kr )∈PN

r−1∏
i=1

(
m

ki

)
· q

r−1∑
i=1

Ki
{

2

(
m

kr

)(
qKr + q

1
2 N(N−1)

)

+
[(

m+
kr

)
+

(
m−
kr

)](
1 − qKr

)}N−r∏
i=1

(
1 − qK ′

i
)
. (91)

Taking into account that k̄r =
r∑

i=1
ki = N , so that Kr = N(N − 1) by Eq. (87), we finally obtain

the more compact expression
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Z(T ) = (
1 + q

1
2 N(N−1)

)−1 ∑
(k1,...,kr )∈PN

r−1∏
i=1

(
m

ki

)
·
{

2

(
m

kr

)
q

1
2 N(N−1)

+
[(

m+
kr

)
+

(
m−
kr

)](
1 − q

1
2 N(N−1)

)}
q

r−1∑
i=1

Ki
N−r∏
i=1

(
1 − qK ′

i
)
. (92)

Remark 11. From [42, Eq. (53)] and Eq. (91) we easily obtain the identity

Z(T ) = (
1 + q

1
2 N(N−1)

)−2[(Z (B)
+ (T ) + Z (B)

− (T )
)∣∣

β=β ′=0 + 2q
1
2 N(N−1)QN(T )

]
,

where

Ql (T ) =
∑

(k1,...,kr )∈Pl

r∏
i=1

(
m

ki

)
· q

r−1∑
i=1

Ki
l−r∏
i=1

(
1 − qK ′

i
)

(93)

and the integers Ki , K ′
i are defined by Eqs. (87) and (90) for all l. Thus, unlike what happens

in the rational case (cf. [44, Eq. (46)]), it does not seem possible to express in a simple way
the partition function Z(T ) exclusively in terms of its BCN counterparts Z (B)

± . Note also that
the function QN(T ) has the same structure as the partition function of the ordinary (AN−1-
type) Haldane–Shastry chain [37], the only difference being the “dispersion relation” defining
the quantities Ki and K ′

i in terms of k̄i and k̄′
i .

As mentioned in Remark 10, the eigenvalues of the spin chain (13) are integers, and they
are nonnegative on account of the nonnegative character of the operators 1 + Sij and 1 + S̃ij .
Thus, the partition function Z(T ) should be a polynomial in q , a fact which is not apparent
from Eq. (92). In order to ascertain this fact, consider first a partition (k1, . . . , kr ) ∈ PN with
kr = 1. In this case the term in curly brackets in Eq. (92) reduces to m(1 + qN(N−1)/2), and
k̄r−1 = N − kr = N − 1 implies that{

k̄′
1, . . . , k̄

′
N−r

} = {1, . . . ,N − 2} − {k̄1, . . . , k̄r−2}.
Hence the contribution to Z(T ) of the partitions with kr = 1 is given by mqN(N−1)QN−1(T ).
Consider next a partition (k1, . . . , kr ) ∈ PN such that kr ≡ l > 1. In this case (k1, . . . , kr−1) is a
partition of N − l, and k̄r−1 = N − l implies that

k̄′
N−j−r+1 = N − j, j = 1, . . . , l − 1, (94)

and hence

K ′
N−j−r+1 = (N − j)(N + j − 1), j = 1, . . . , l − 1.

Note, in particular, that K ′
N−r = N(N − 1), so that(

1 + q
1
2 N(N−1)

)−1(1 − qK ′
N−r

) = 1 − q
1
2 N(N−1).

Taking into account that, by Eq. (94),{
k̄′

1, . . . , k̄
′
N−l−r+1

} = {1, . . . ,N − l − 1} − {k̄1, . . . , k̄r−2},
it is immediate to verify that the contribution to Z(T ) of the partitions with kr = l � 2 is given
by
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(
1 − q

1
2 N(N−1)

)
q(N−l)(N+l−1)

l−2∏
i=1

(
1 − q(N−i−1)(N+i)

)
×

{
2

(
m

l

)
q

1
2 N(N−1) +

[(
m+
l

)
+

(
m−
l

)](
1 − q

1
2 N(N−1)

)}
QN−l(T ),

with Q0 ≡ 1. Thus the partition function (92) can be expressed as3

Z(T ) = mqN(N−1)QN−1(T )

+ (
1 − q

1
2 N(N−1)

) min(m,N)∑
l=2

q(N−l)(N+l−1)

l−2∏
i=1

(
1 − q(N−i−1)(N+i)

)
×

{
2

(
m

l

)
q

1
2 N(N−1) +

[(
m+
l

)
+

(
m−
l

)](
1 − q

1
2 N(N−1)

)}
QN−l (T ), (95)

where the RHS is clearly a polynomial in q on account of Eq. (93). This remarkable formula is
one of the main results in the paper.

Remark 12. From Eqs. (92) or (95) it is apparent that the partition function of the DN chain (13)
has a much more complex structure than its BCN counterpart with β = β ′ = 0, cf. [42, Eq. (53)].
In particular, while for the BCN chain one can find [53] a description of the spectrum in terms
of a suitable generalization of Haldane’s motifs [54], it is not clear how to implement such a
description for the present chain. Note that, for HS chains of AN type, the existence of such a
description is the key ingredient in the proof of the Gaussian character of their level density when
the number of sites tends to infinity [55], which is of importance in the context of quantum chaos.

5. Concluding remarks

As mentioned in the introduction, reductions of the BCN Calogero and Sutherland models
obtained by setting suitable coupling constants to zero have been largely ignored in the extensive
literature devoted to these models. This is probably due to the fact that these reductions were
mostly regarded as trivial limits of the above models. In a previous paper [44], we showed that
this is not case by studying the DN reduction of the (spin) BCN Calogero model. Moreover, the
spin chain of Haldane–Shastry type associated with this reduction was also seen to differ from its
BCN counterpart even more markedly, essentially due to the nontrivial nature of Polychronakos’s
“freezing trick”. The aim of the present paper is to perform a comprehensive study of the DN

reduction of the BCN spin Sutherland model and its associated spin chain.
A significant part of the paper is devoted to the exact computation of the spectrum of the dy-

namical spin model (8) and its scalar version (16). We have first provided a rigorous proof of the
equivalence of these models to their extended versions H̃ and H̃sc defined on the Weyl-invariant
configuration space C. The latter set, which turns out to be the N -dimensional generalization (27)
of a rhombic dodecahedron, is more complicated in nature than its BCN counterpart (a hyper-
cube). The motivation for constructing the extended operators H̃ and H̃sc is the fact that on their
natural domains they essentially coincide with the restriction of a simpler auxiliary operator H ′,
which can be expressed as a sum of squares of a suitable set of Dunkl operators of DN type. In

3 Note that the terms with l > m in the previous equation vanish identically due to the binomial coefficients. This is in
fact a consequence of conditions (65b) and (65c), cf. Eq. (82).
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particular, from the spectrum of H ′ it is not difficult to deduce those of H̃ and H̃sc, and hence
of H and Hsc. In order to compute the spectrum of H ′, we have constructed an appropriate
(non-orthogonal) basis of the Hilbert space L2(C) where this operator acts. This is indeed the
key difference with the rational case, for which this step is trivial due to the fact that the (ex-
tended) configuration spaces of both the DN and BCN models is R

N . Using a method similar
to that of Ref. [52], we have shown that H ′ acts triangularly on the above basis when ordered
appropriately. Finally, we have shown how to construct from the latter basis a (non-orthogonal)
basis of the Hilbert spaces of H̃ and H̃sc on which the action of the latter operators is also upper
triangular. In this way we have computed in closed form the spectra of the spin Sutherland model
of DN type (8) and its scalar version (16).

The second main result in the paper is the exact computation of the partition function of the
Haldane–Shastry spin chain of DN type (13) obtained from the spin dynamical model (8) by
means of Polychronakos’s freezing trick. The latter chain, as is apparent from Eq. (25), cannot
be obtained from its BCN counterpart by taking the limit (β,β ′) → 0 due to the presence of an
“impurity” term at both endpoints. Our starting point is the fundamental relation (78), expressing
the chain’s partition function as the large coupling constant limit of the quotient between the par-
tition functions of the corresponding spin dynamical model H and its scalar version Hsc. Using
the above mentioned results for the spectra of these models, we have been able to evaluate this
limit, thereby obtaining Eq. (92) for the chain’s partition function. In contrast with the rational
case (cf. Remark 11), this partition function is not expressed in a simple way in terms of its
BCN counterparts, since it also involves the partition function of the original (type A) HS chain
with a slightly different dispersion relation. We have further simplified Eq. (92) for the partition
function, showing how to write it explicitly as a polynomial in q ≡ e−1/(kBT ) (see Eq. (95)), as
should be the case for a finite system. In fact, this simplified formula turns out to be quite ef-
ficient for the numerical computation of the chain’s spectrum, making it possible to perform a
statistical analysis of the spectrum when the number of particles becomes very large. It would
be worthwhile to carry out such a study, and compare its results with the corresponding ones for
other spin chains of HS type [37,43,44,56–59].

The results of this paper suggest a number of further developments that we shall now discuss.
In the first place, we have shown that the DN reduction of the standard Sutherland model of
BCN type gives rise to an interesting new solvable model that had been previously overlooked.
In fact, there are several additional reductions that could be considered, like e.g. those associated
with the BN and CN root systems, or even more general ones, like the b = 0 reduction of the
Sutherland model (1). It could also be of interest to consider similar reductions of the compara-
tively less studied hyperbolic Sutherland model of BCN type [52]. As we have also shown in this
work, these reductions can potentially yield unexpected results in other fields, as for instance the
remarkable tiling of R

N with the N -dimensional generalization of the rhombic dodecahedron
uncovered in Section 3 (see Remark 4).

The work presented in this paper has direct implications in the field of multivariate orthogonal
polynomials. More precisely (see Remark 9), the eigenfunctions of the DN reduction of the
scalar Sutherland model yield new families of multivariate orthogonal polynomials that cannot
be obtained as straightforward limits of the generalized Jacobi polynomials associated with the
BCN Sutherland model [22]. It is to be expected that the additional reductions mentioned above
could lead to similar new families of orthogonal polynomials.

An important aspect of spin chains of Haldane–Shastry type that has not been dealt with in
this paper is their integrability, which for the original HS chain of AN type was established by
constructing a transfer matrix satisfying the Yang–Baxter equation [27]. This matrix was also
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used in the latter reference to derive the full Yangian symmetry algebra of this model, which is
ultimately responsible for the highly degenerate character of its spectrum. Moreover, the repre-
sentation theory of the Yangian is closely related to Haldane’s elegant description of the spectrum
in terms of motifs [54]. It is natural to inquire whether a similar construction is possible for the
DN chain of HS type studied in this paper. In fact, our numerical calculations show that the
spectrum of the DN chain is also highly degenerate, which points to the existence of a large un-
derlying symmetry algebra. The characterization of this algebra, and its precise connection with
the Yang–Baxter equation, is yet another open problem motivated by the present work.

Acknowledgements

This work was supported in part by the MICINN and the UCM–Banco Santander under Grants
Nos. FIS2008-00209 and GR58/08-910556. The authors would also like to thank A. Enciso for
several helpful discussions.

References

[1] F. Calogero, J. Math. Phys. 12 (1971) 419–436.
[2] B. Sutherland, Phys. Rev. A 4 (1971) 2019–2021.
[3] B. Sutherland, Phys. Rev. A 5 (1972) 1372–1376.
[4] M.A. Olshanetsky, A.M. Perelomov, Phys. Rep. 94 (1983) 313–404.
[5] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635–638.
[6] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639–642.
[7] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329–2331.
[8] Z.N.C. Ha, Quantum Many-body Systems in One Dimension, Advances in Statistical Mechanics, vol. 12, Singapore,

World Scientific, 1996.
[9] M.V.N. Murthy, R. Shankar, Phys. Rev. Lett. 73 (1994) 3331–3334.

[10] A.P. Polychronakos, J. Phys. A: Math. Gen. 39 (2006) 12793–12845.
[11] H. Azuma, S. Iso, Phys. Lett. B 331 (1994) 107–113.
[12] C.W.J. Beenakker, B. Rajaei, Phys. Rev. B 49 (1994) 7499–7510.
[13] M. Caselle, Phys. Rev. Lett. 74 (1995) 2776–2779.
[14] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, A.V. Proeyen, Phys. Rev. Lett. 81 (1998) 4553–4556.
[15] T.R. Govindarajan, V. Suneeta, S. Vaidya, Nucl. Phys. B 583 (2000) 291–303.
[16] G.W. Gibbons, P.K. Townsend, Phys. Lett. B 454 (1999) 187–192.
[17] N. Beisert, C. Kristjansen, M. Staudacher, Nucl. Phys. B 664 (2003) 131–184.
[18] N. Beisert, Nucl. Phys. B 682 (2004) 487–520.
[19] T. Bargheer, N. Beisert, F. Loebbert, J. Phys. A: Math. Theor. 42 (2009) 285205(58).
[20] N. Taniguchi, B.S. Shastry, B.L. Altshuler, Phys. Rev. Lett. 75 (1995) 3724–3727.
[21] P.J. Forrester, Nucl. Phys. B 416 (1994) 377–385.
[22] T.H. Baker, P.J. Forrester, Commun. Math. Phys. 188 (1997) 175–216.
[23] J.F. van Diejen, Commun. Math. Phys. 188 (1997) 467–497.
[24] H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 66 (1997) 345–350.
[25] C.F. Dunkl, Commun. Math. Phys. 197 (1998) 451–487.
[26] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001)

477–497.
[27] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219–5236.
[28] K. Hikami, Nucl. Phys. B 441 (1995) 530–548.
[29] B. Basu-Mallick, Nucl. Phys. B 540 (1999) 679–704.
[30] N. Beisert, D. Erkal, J. Stat. Mech. 0803 (2008) P03001.
[31] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359–9368.
[32] K. Hikami, M. Wadati, J. Phys. Soc. Jpn. 62 (1993) 469–472.
[33] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265–270.
[34] B. Sutherland, B.S. Shastry, Phys. Rev. Lett. 71 (1993) 5–8.



B. Basu-Mallick et al. / Nuclear Physics B 843 [FS] (2011) 505–533 533
[35] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473–L479.
[36] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553–566.
[37] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411(6).
[38] D. Bernard, V. Pasquier, D. Serban, Europhys. Lett. 30 (1995) 301–306.
[39] T. Yamamoto, Phys. Lett. A 208 (1995) 293–302.
[40] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977–3984.
[41] E. Corrigan, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 7017–7061.
[42] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553–576.
[43] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. B 77 (2008) 214422(10).
[44] B. Basu-Mallick, F. Finkel, A. González-López, Nucl. Phys. B 812 (2009) 402–423.
[45] B. Simon, Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983) 295–308.
[46] S. Ahmed, M. Bruschi, F. Calogero, M.A. Olshanetsky, A.M. Perelomov, Nuovo Cimento B 49 (1979) 173–199.
[47] G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc., Providence, RI, 1975.
[48] S. Odake, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 8283–8314.
[49] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29,

Cambridge University Press, Cambridge, 1990.
[50] H.S.M. Coxeter, Regular Polytopes, third edition, Dover, New York, 1973.
[51] B. Fuglede, J. Funct. Anal. 16 (1974) 101–121.
[52] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 233 (2003)

191–209.
[53] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, in preparation.
[54] F.D.M. Haldane, Z.N.C. Ha, J.C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021–2025.
[55] A. Enciso, F. Finkel, A. González-López, On the level density of spin chains of Haldane–Shastry type,

arXiv:1005.3202v1 [math-ph], 2010.
[56] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Europhys. Lett. 83 (2008) 27005(6).
[57] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. E 80 (2009) 047201(4).
[58] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280–302.
[59] B. Basu-Mallick, N. Bondyopadhaya, Phys. Lett. A 373 (2009) 2831–2836.


	The spin Sutherland model of DN type  and its associated spin chain
	Introduction
	The models
	Spectrum of the dynamical models
	Extensions of H and Hsc
	Basis of L2(C)
	Triangularization of H'
	Triangularization of H and Hsc

	Partition function of the spin chain
	Concluding remarks
	Acknowledgements
	References


