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Constant roll inflation is analyzed in the presence of multiscalar fields which are assumed to be described
by a constant roll rate each. The different cases are studied and the corresponding potentials are
reconstructed. The exact solutions are obtained, which show a similar behavior to the single scalar field
model. For one of the cases analyzed in the paper, the so-called adiabatic field also constantly roll(s) while
entropy perturbations become null, while the second case may lead to nonadiabatic perturbations. Both
cases can fit the Planck data well by assuming the appropriate values for the free parameters of the models.
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I. INTRODUCTION

Since cosmic inflation was proposed in order to sort out
some of the problems inherent to the big bang model, a lot
of literature has been published about this paradigm, with
many theoretical models that are capable of reproducing a
super-accelerating phase just after the big bang singularity
that solve the initial conditions problem in the standard
cosmological model [1]. In addition, the release of data by
the missions WMAP first, and Planck later, made it
possible to test some features of inflation through the
imprints on the anisotropies in the cosmic microwave
background (CMB) [2–4]. This is due to the fact that
inflation can not only solve the initial condition problem of
the big bang model, but also the quantum fluctuations
produced during this early period yield the anisotropies in
the CMB which are the seeds causing the variations on the
matter distribution that later formed the galaxies and
clusters of galaxies [5].
Most of the inflationary models are constructed by

means of a single scalar field, the so-called inflaton, whose
potential is chosen in such a way that inflation is produced
on a plateau of the potential leading to a quasi-de Sitter
expansion and then the field goes down up to a minimum
where inflation ends. Such models typically assume that the
scalar field slowly rolls down the slope of the potential,
during which fluctuations of the scalar field produce scalar
and tensor perturbations that can be related to the potential
of the inflaton. This yields a value for the spectral index for

curvature fluctuations and the ratio between tensor and
scalar perturbations, magnitudes that can be compared to
the data from CMB, leading to constraints on the shape of
the scalar potential [6,7]. Nevertheless, inflation can also be
well produced with other frameworks which are different
from a scalar field leading to the same accurate predictions.
Particularly, inflation has been widely analyzed in the
context of some extensions of general relativity, as in
the so-called fðRÞ gravities [8], with the Starobinsky model
as the most promising one for its good predictions at all
levels [9]. However, such modified gravity models can be
reduced to a single field model, which implies at least a
mathematical equivalence among them. Nevertheless,
when more than a scalar field is considered, the presence
of at least a second field may produce nonadiabatic
(isocurvature) perturbations, which contribute as a source
for the adiabatic ones, also at superhorizon scales, and
consequently to modifications on the predictions from
inflation [10–13], although such deviations may be small
or null when the fields behave similarly in the field space or
when the initial nonadiabatic perturbations are small [14].
However, in all the above scenarios the slow roll

condition on the scalar field(s) is assumed in general,
which basically means to consider a negligible acceleration
for the field(s). Nevertheless, inflationary models beyond
the slow roll condition have been considered in the
literature, as in the ultra slow roll inflation [15–17], where
curvature perturbations are not kept frozen at super-Hubble
scales, inducing non-Gaussianities in the power spectrum.
All these models have been generalized under the so-called
constant roll inflation, which assumes that the rate between
the acceleration and velocity of the inflaton remains
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constant, where the other scenarios are just particular cases
of this one [18]. In addition, some exact solutions have
been obtained and the corresponding potentials for the
scalar field reconstructed, showing that one of these
potentials does not induce evolution of the curvature
perturbations at superhorizon scales, leading to a viable
model for inflation that also satisfies the last constraints
from Planck [19,20]. Moreover, constant roll inflation has
also been analyzed in contexts beyond the single scalar
field model, as in Brans-Dicke-like theories [21], modified
gravities, as fðRÞ and fðTÞ gravity [22], or with couplings
to gauge fields [23]. In addition, some generalizations of
the constant roll condition have been studied in [24] as well
as transitions between slow and constant roll scenarios [25].
Also, more accurate methods for calculating the power
spectrum of scalar and tensor perturbations in constant roll
inflation have been proposed [26,27].
The main aim of the present paper is to extend the

analysis of constant roll inflation to the presence of more
than one scalar field, applying the previous knowledge on
multifield inflationary models to the case of two scalar
fields that both hold the constant roll condition. In
Ref. [28], a two scalar fields model has been studied by
considering the constant roll condition on the Hubble
parameter and its derivatives and then reconstructing the
corresponding solutions for the scalar fields and its poten-
tial. Here we assume two separate constant roll conditions,
one for each scalar field, and analyze the solutions and
possible potentials for the different cases that arise in the
model. We shall show that in the case where both fields
have similar constant roll rates, the so-called adiabatic field
constantly roll(s) too, a result that is obtained also in [28] by
a different approach, and the nonadiabatic perturbations are
null. Then, the corresponding potential is reconstructed and
the model is confronted with the data from Planck. Also,
the general scenario where both fields constantly roll(s)
differently is studied and its predictions confronted to the
Planck data, showing that in both cases the predictions of
the models can be compatible with such data by assuming
suitable values for the free parameters of the models.
The paper is organized as follows: in Sec. II, we review

constant roll inflation with the presence of a single scalar
field. Section III is devoted to showing the main general
features and tools used in multifield inflation, while in
Sec. IV we study a two constant roll scalar fields model and
reconstruct the solutions and potentials for different sce-
narios. Also, its predictions and comparison to Planck data
are carried out. Finally, Sec. V gathers the results and
conclusions of the paper.

II. CONSTANT ROLL INFLATION IN SINGLE
FIELD MODELS

Let us start by reviewing the main features of constant roll
inflation with a single scalar field. The gravitational action of
a scalar field minimally coupled to gravity reads as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð1Þ

where M2
Pl ¼ ð8πGÞ−1 is the Planck mass, g is the determi-

nant of the space-time metric gμν, R≡ gμνRμν is the Ricci
scalar, and VðϕÞ is the vector potential. The corresponding
Friedman-Lemaître-Robertson-Walker (FLRW) equations in
a spatially flat universe ds2 ¼ −dt2 þ aðtÞ2dx2i , where aðtÞ
is the scale factor, are given by

3M2
PlH

2 ¼ 1

2
_ϕþ VðϕÞ; −2M2

Pl
_H ¼ _ϕ2: ð2Þ

Here H ¼ _a
a is the Hubble parameter and dots refer to

derivatives with respect to the cosmic time. In addition, by
varying the action with respect to the scalar field ϕ, its
equation in a FLRW metric yields

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ 0: ð3Þ

In slow roll inflation, the universe expansion becomes quasi-
de Sitter as the scalar field behaves as an effective cosmo-
logical constant or, in other words,

ϕ̈ ≪ _ϕ; _ϕ2 ≪ VðϕÞ: ð4Þ

Then, the accelerating expansion should last for a large
enough number of e-foldings, usually N ¼ 50–65, after
which the scalar field rolls down the potential slope to a
minimum.Hence, the corresponding scalar potential has to be
a monotonically decreasing function with a plateau at the top
(for an analysis and reconstruction of slow roll inflation
potentials, see, e.g., [6,7]). Moreover, the above conditions
can be more conveniently expressed in terms of the so-called
slow roll parameters:

ϵ ¼ M2
Pl

2

�
V 0

V

�
2

; η ¼ M2
Pl
V 00

V
: ð5Þ

As inflation occurs, ϵ ≪ 1 and η ≪ 1, while at the end of
inflation ϵ ∼ 1. In addition, during inflation fluctuations on
the scalar field grow with the expansion leading to the
fluctuations on the metric and, consequently, on the matter
density that forms the seeds of the large-scale structure of the
Universe as well as the anisotropies in the CMB. The relation
between the curvature perturbations and the slow roll param-
eters are given by the so-called spectral index that describe the
growth of such perturbations, ns, as well as by the tensor to
scalar perturbations ratio, r, as

ns − 1 ¼ −6ϵþ 2η; r ¼ 16ϵ; ð6Þ

respectively. The data by Planck provides strong constraints
on these magnitudes, such that any inflationary model can be
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tested at least through the type of curvature and tensor
perturbations that it produces, which has led us to rule out
some models [3,4].
Instead of assuming the slow roll conditions (4), one may

consider a type of potential that leads to a constant rate of
roll for the scalar field, which in terms of its derivatives can
be expressed as follows:

ϕ̈
_ϕ
¼ βH: ð7Þ

This is the constant roll condition that imprints an alter-
native dynamic to the scalar field [18], where the constant β
determines the deviation from a flat potential. When β ≃ 0,
slow roll inflation is recovered, whereas β ¼ 0 corresponds
to the “ultra slow roll” inflation [15–17]. In order to
reconstruct the appropriate scalar potential that holds the
constant roll condition (7), the second FLRW equation in
(2) is expressed as

_ϕ ¼ −2M2
Pl
∂H
∂ϕ : ð8Þ

Together with the condition (7), the following equation for
H as a function of the scalar field ϕ is obtained:

∂2H
∂ϕ2

þ β

2M2
Pl

H ¼ 0; ð9Þ

which can be easily solved to obtain the Hubble factor as

HðϕÞ ¼ C1e
ffiffiffi
−β
2

p
ϕ

MPl þ C2e
−
ffiffiffi
−β
2

p
ϕ

MPl ; ð10Þ

where C1;2 are integration constants. Finally, by using the
first FLRWequation (2), the potential is reconstructed as [18]

VðϕÞ ¼ C2
1M

2
Plðβ þ 3Þe

ffiffiffiffiffiffi
−2β

p
ϕ

MPl

þ C2
2M

2
Plðβ þ 3Þe−

ffiffiffiffiffiffi
−2β

p
ϕ

MPl þ 2C1C2M2
Plð3 − βÞ:

ð11Þ

Depending on the value of β and C1;2, the potential will be
characterized by trigonometric or hyperbolic functions, each
possibility leading to a different type of inflation. In
particular, for −1 < β < 0, the potential can be identified
with a power law inflation which is excluded from obser-
vations, since it predicts a too large tensor to scalar ratio. For
the general case β < 0 and choosing a hyperbolic cosine in
(10), the potential leads to a type of inflation that behaves as
pressureless matter with a cosmological constant, i.e., the Λ
cold dark matter model, which requires additional assump-
tions for ending inflation. Hence, the only possibility left that
provides a viable model for inflation is β > 0, and in such a
case the Hubble parameter (10) turns out

HðϕÞ ¼ M cos

� ffiffiffi
β

2

r
ϕ

MPl

�
; ð12Þ

where M is a combination of C1;2. The scalar potential
becomes in this case,

VðϕÞ ¼ 3M2M2
pl

�
1 −

3þ β

6

�
1 − cos

� ffiffiffiffiffi
2β

p ϕ

Mpl

���
:

ð13Þ

As for the scalar field, substituting (12) in (8) one finds

ϕ ¼ 2

ffiffiffi
2

β

s
Mpl arctanðeβMtÞ; ð14Þ

and plugging it back again into (12) one can obtain the
expression

HðtÞ ¼ −M tanhðβMtÞ; ð15Þ

which implies that the scale factor behaves as

a ∝ cosh−1=βðβMtÞ: ð16Þ

It should be noted that the condition β > 0 guarantees that in
order to produce inflation the potential (13) will get to a
minimum. Indeed, there is a critical value of the field for
which VðϕcÞ ¼ 0, which corresponds to

ϕc ¼
Mplffiffiffiffiffi
2β

p arccos

�
1 −

6

3þ β

�
: ð17Þ

In order to cut the potential before getting to negative values,
we set the cutoff field ϕ0 as ϕ0 < ϕc in such a way that
depending on how small this cutoff is as compared to the
critical value (17) we find different inflationary behaviors.
For instance, if ϕ0 ≪ ϕc then the model is similar to a
quadratic hilltop inflationwith a cutoff, while ifϕ0 ≲ ϕc then
the model resembles a natural inflation with an additional
negative cosmological constant, Λ ¼ M2ð3þ αÞ.
To compute the slow roll parameters we define a field

position, ϕi, as the one which is 55 e-folds back from ϕc.
Next, we substitute Eq. (13) into (5) to find

ϵ≡ 1

2

�
V 0

V

�
2

¼ βð3þ βÞ2 sin2ð ffiffiffiffiffi
2β

p
=MplÞ

½−6 − αþ α cosð ffiffiffiffiffi
2β

p
=MplÞ�2

ð18Þ

η≡ V 00

V
¼ 2βð3þ βÞ cosð ffiffiffiffiffi

2β
p

=MplÞ
−3þ β − ð3þ βÞ cosð ffiffiffiffiffi

2β
p

=MplÞ
: ð19Þ

For the slow roll approximation to hold, we must constrain
the largest values these parameters can take to be of
order Oð10−2Þ for 0; 005 < β < 0; 025and 0 < ϕ < ϕi.
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Therefore, choosing different values for β one gets different
values for the slow roll parameters that can be substituted in
the spectral parameters (6) and compared to observatio-
nal data.

III. INFLATION IN MULTIFIELD MODELS

Let us start by analyzing the main general features in
inflation when considering more than one scalar field to
produce the accelerating expansion. The general minimally
coupled multifield scenario is described by action

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
GIJgμν∂μφ

I∂νφ
J − VðφIÞ

�
;

ð20Þ

where the I, J indices run from 1 to n, while the n × nmetric
GIJ determines the kinetic terms in the field’s space,which, in
themost general case,may include noncanonical and crossed
kinetic terms. In multifield scenarios, it is usual to define a
new field usually known as the adiabatic field, which
represents the path length along the classical trajectory,
as [12]

_σ2 ¼ GIJ _φ
I _φJ: ð21Þ

Then, the corresponding background FLRW equations are
given by

H2 ¼ 1

3M2
pl

�
1

2
_σ2 þ V

�
; _H ¼ −

1

2M2
pl

_σ2; ð22Þ

while the equation for the adiabatic field σ is given by

σ̈ þ 3H _σ þ Vσ ¼ 0; ð23Þ

where Vσ ¼ σ̂I dV
d _φI with σ̂I ≡ _φI

0

_σ , being φI
0 the background

value.Now thebackground dynamics looks like a single field
model with canonical kinetic terms, but one has to take care
of the potential, since it depends on all the independent fields.
For simplicity, we are considering here two scalar fields
fϕ; χg, although this analysis can be easily generalized to n
scalar fields, and furthermore we shall consider canonical
kinetic terms (minimal couplings GIJ ¼ δIJ), so that the time
derivative of the adiabatic field is

_σ2 ¼ _ϕ2 þ _χ2: ð24Þ
This expression can be rewritten in the following form:

_σ ¼ cos θ _ϕþ sin θ _χ; ð25Þ

where cos θ ¼ _ϕffiffiffiffiffiffiffiffiffiffi
_ϕ2þ_χ2

p and sin θ ¼ _χffiffiffiffiffiffiffiffiffiffi
_ϕ2þ_χ2

p . For the appro-

priate potentialVðσÞ, an accelerating expansion can be easily

achieved similarly as in single fieldmodels.Nevertheless, the
field trajectories play a fundamental role in the generation of
nonadiabatic perturbations.
Let us consider perturbations of the scalar fields as δϕ

and δχ, and consider the fluctuation on the entropy field, s,
defined as

δs ¼ cos θδχ − sin θδϕ: ð26Þ

Whenever both fields have equal trajectories in the back-
ground, the entropy field is null, δs ¼ 0. Here we consider
scalar perturbations on the metric,

ds2 ¼ −ð1þ 2AÞdt2 þ 2aBidxidt

þ a2½ð1 − 2ψÞδij þ 2Eij�dxidxj: ð27Þ

Then, working in the spatially flat gauge, the gauge-
invariant Mukhanov-Sasaki variable is given by

Qσ ≡ σ̂IQI ¼ δσ þ _σ

H
ψ ; ð28Þ

which accounts for the nonadiabatic fluctuation δσ. We
may define the gauge-invariant curvature perturbation,
R, as

R≡ ψ −
H

ρþ P
δq ¼ ψ þH

_σ
σ̂Iδϕ

I ¼ H
_σ
Qσ; ð29Þ

where we have used the total momentum perturbation or the
energy density flux of the perturbed fluid, δq, which is
given by

δq ¼ − _σ σ̂J δφ
J ¼ − _σQσ; ð30Þ

while the total energy density, ρ, and pressure, P, are
written as

ρ ¼ 1

2
_σ2 þ V; P ¼ 1

2
_σ2 − V: ð31Þ

Then, by using the perturbed FLRW equations and the
scalar fluctuation field equation, the evolution equation for
the field perturbations can be expressed as [12]

Q̈σ þ 3H _Qσ þ
�
k2

a2
þ Vσσ − _θ2 −

1

M2
pla

3

d
dt

�
a3 _σ2

H

��

×Qσ ¼ 2
d
dt

ð_θδsÞ − 2

�
Vσ

_σ
þ

_H
H

�
_θδs; ð32Þ

and

δ̈sþ 3H _δsþ
�
k2

a2
þ Vss þ 3_θ2

�
δs ¼ 4M2

plk
2 _θ

_σa2
Ψ; ð33Þ
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where Ψ is the gauge-invariant Bardeen potential
Ψ≡ ψ þ a2Hð _E − B

aÞ, _θ ¼ − Vs
_σ with Vs being the potential

gradient perpendicular to the trajectory in the field space:

Vs ¼ cos θVχ − sin θVϕ: ð34Þ

As shown in (32), the entropy perturbation δs works as a
source term for adiabatic perturbations. Taking the time
derivative of the curvature perturbation (29) one finds

_R ¼ H
_H

k2

a2
Ψþ 2H

_σ
_θδs: ð35Þ

We can see that R is not conserved even in the large-scale
limit whenever δs ≠ 0 and a nonstraight trajectory in the
field space (_θ ≠ 0) occurs [13]. The dimensionless power
spectrum is given by

PRðkÞ ¼
k2

2π2
jRj2; ð36Þ

whereas the spectral index is defined as follows:

ns ¼ 1þ ∂ lnPR

∂ ln k : ð37Þ

Hence, the nonadiabatic perturbations might induce devia-
tions on the spectral index in such a way that when
assuming the presence of more than a scalar field in
inflation the corresponding trajectories in the field space
play a fundamental role, since such corrections may
provide wrong predictions on the spectral index (and on
the tensor to scalar ratio as well) when comparing to the
Planck data. In the next section, we analyze a two scalar
field model when both fields constantly roll(s).

IV. CONTANT ROLL INFLATION WITH TWO
SCALAR FIELDS

Here we consider a two scalar field inflation model,
whose field equations (22) are written as

3M2
Pl ¼

1

2
ð _ϕ2 þ _χ2Þ þ Vðϕ; χÞ;

− 2M2
Pl
_H ¼ _ϕ2 þ _χ2; ð38Þ

together with the respective equations for each field, that is,

ϕ̈þ 3H _ϕþ Vϕ ¼ 0 and χ̈ þ 3H _χ þ Vχ ¼ 0: ð39Þ

As in the case of single field model, we impose constant roll
conditions on the two fields, which are written as

ϕ̈
_ϕ
¼ βϕH;

χ̈

_χ
¼ βχH; ð40Þ

where βϕ and βχ are constants. In order to carry out our
analysis, we must distinguish the cases in which these two
constants are equal or different.

A. βϕ = βχ
Let us start by considering βϕ ¼ βχ ¼ β. In such a case,

by the constant roll conditions (40) one has

βH ¼ ϕ̈
_ϕ
¼ χ̈

_χ
: ð41Þ

The second part of this equation can be integrated in such a
way that both fields become related as

_ϕ ¼ k1 _χ → ϕ ¼ k1χ þ k0; ð42Þ

with k0, k1 integration constants. Then, by the scalar field
equation for ϕ in (39), the following extra relation is
obtained:

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ k1χ̈ þ 3k1H _χ þ 1

k1

∂V
∂χ ¼ 0: ð43Þ

By comparing the last part of this expression with the field
equation for χ in (39), a constraint on k1 is obtained:

k1 ¼ �1: ð44Þ

Our aim now is to reconstruct the most general potential
Vðϕ; χÞ that holds the constant roll condition (40). From the
second FLRW equation (38) and using (42), one can
compute the left-hand side as −2M2

Pl
_H ¼ −4M2

Pl
∂H
∂ϕ, so

that by comparing both sides of Eq. (38) we find

_ϕ ¼ −
4MPl

1þ k−21

∂H
∂ϕ : ð45Þ

By applying the time derivative here, the following relation
is obtained:

ϕ̈
_ϕ
¼ −

8MPl

1þ k−21

∂2H
∂ϕ2

: ð46Þ

Therefore, by the constant roll condition (40), an equation
for H in terms of the scalar field ϕ is obtained:

∂2H
∂ϕ2

þ β

8M2
Pl

ð1þ k−21 ÞH ¼ 0; ð47Þ

which is the natural generalization of (9). By solving (47)
one obtains
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HðϕÞ ¼ C1 exp

 
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
βð1þ k21Þ

2k21

s
ϕ

MPl

!
þ C2 exp

 
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
βð1þ k21Þ

2k21

s
ϕ

MPl

!
: ð48Þ

The potential Vðϕ; χÞ ¼ Vðϕ;ϕ=k1 − k0Þ ¼ VðϕÞ can be reconstructed by using this result in the first FLRWequation (38),
leading to

VðϕÞ ¼ M2
Pl

"
C2
1ð3þ βÞ exp

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
βð1þ k21Þ

2k21

s
ϕ

MPl

!
þ C2

2ð3þ βÞ exp
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
βð1þ k21Þ

2k21

s
ϕ

MPl

!
− 2C1C2ðβ − 3Þ

#
: ð49Þ

Now, from the relation between the scalar fields (42) and the integrability condition on the potential ∂2V
∂ϕ∂χ ¼ ∂2V

∂χ∂ϕ, one gets
k0 ¼ 0 and the full potential in terms of both scalar fields becomes

Vðϕ; χÞ ¼ M2
Pl

"
C2
1ð3þ βÞ exp

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−βðϕ2 þ χ2Þ

p
MPl

!
þ C2

2ð3þ βÞ exp
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−βðϕ2 þ χ2Þ

p
MPl

!
− 2C1C2ðβ − 3Þ

#
: ð50Þ

Depending on the value of β, the nature of the potential will be different and, consequently, sowill be theway inflation occurs.
Nevertheless, it ismore convenient toworkwith the adiabatic field σ and the entropic field s as defined in the above section. For
this purpose, let us start by analyzing the behavior of the adiabatic field (24) under the constant roll conditions (41):

σ̈ ¼
_ϕ ϕ̈þ_χ χ̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _χ2

q ¼ βH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _χ2

q
¼ βH _σ →

σ̈

_σ
¼ βH: ð51Þ

Therefore, the adiabatic field also constantly roll(s). We can use the FLRWequations (22) and the scalar field equation (23) to
write the analog equation (47) for H as a function of the adiabatic field as

∂2H
∂σ2 þ β

2M2
Pl

H ¼ 0; ð52Þ

whose solution is

HðσÞ ¼ C1 exp

� ffiffiffiffiffiffi
−β
2

r
σ

MPl

�
þ C2 exp

�
−

ffiffiffiffiffiffi
−β
2

r
σ

MPl

�
; ð53Þ

while the constant roll potential leads to

VðσÞ ¼ M2
Pl

�
C2
1ð3þ βÞ exp

� ffiffiffiffiffiffiffiffiffi
−2β

p σ

MPl

�
þ C2

2ð3þ βÞ exp
�
−

ffiffiffiffiffiffiffiffiffi
−2β

p σ

MPl

�
− 2C1C2ðβ − 3Þ

�
: ð54Þ

Hence, we get the potential that describes the constant roll
adiabatic field σ. As pointed out in Ref. [18], the only viable
potential for inflation corresponds to values β > 0, leading to

VðσÞ ¼ 1

2
M2

PlC
2
1

�
3 − β þ ð3þ βÞ cos

� ffiffiffiffiffi
2β

p σ

MPl

��
; ð55Þ

which is depicted in Fig. 1 for β ¼ 0.02. The corresponding
solutions for theHubble parameter and the scalar field can be
obtained from the FLRW equations (22) as

HðtÞ¼−C1 tanhðC1βtÞ; σðtÞ¼ 2

ffiffiffi
2

β

s
MPl arctanðeC1βtÞ:

ð56Þ

Nevertheless, it is more convenient to write the solutions in
terms of the number of e-foldings, which can be obtained
from the second FLRW equation (22) expressed as follows:

H
∂σ
∂N 2M2

Pl þ
∂H
∂σ ¼ 0: ð57Þ
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Using the scalar potential (55) and the first FLRWequation in
(22), the following solutions forH and σ as functions of the
number of e-foldings are obtained:

HðNÞ ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp ð2βN þm

ffiffiffiffiffi
2β

p
Þ

q
;

σðNÞ ¼
ffiffiffi
2

β

s
MPl arcsin

�
βN þm

ffiffiffi
β

2

r �
: ð58Þ

Here m is a constant that can be fixed with the number of
e-foldings forwhich inflation lasts, as shownbelow.As in the
case of a single field model, the potential (55) should be cut
off prior to a critical value where VðσcÞ ¼ 0, that is,

σc ¼
MPlffiffiffiffiffi
2β

p arccos

�
β − 3

β þ 3

�
: ð59Þ

As we are interested in evaluating the perturbations at a field
point σi < σc, this can be fixed by a number of e-foldingsNc
before σc, which, in general, amounts to 50–65. Then, using
(58) and (59), the constant m is expressed as

m ¼ 1ffiffiffiffiffi
2β

p
�
−2βNc þ log

�
3

3þ β

��
: ð60Þ

As shown in Fig. 1, inflation occurs prior to the critical value
ϕc. Before analyzing the perturbations, we should study the
nonadiabatic perturbations in order to compute the possible
contributions to the spectral index. Nevertheless, as the first
derivative for both fields are proportional _ϕ ¼ k1 _χ, the
fluctuation δs becomes null:

δs ¼ cos θδχ − sin θδϕ ¼ ðcos θ − sin θÞδχ

¼
�

k1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

p −
k1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

p �
δχ ¼ 0: ð61Þ

Hence, the spectral index ns and the tensor to scalar ratio r
can be computed through (6), where the slow roll parameters
are now given by

ϵ ¼ M2
Pl

2

�
Vσ

V

�
2

; η ¼ M2
Pl
Vσσ

V
: ð62Þ

In Fig. 2, the spectral index ns and the tensor to scalar
ratio r are depicted as functions of the parameter β and the
number of e-foldings σi is located back from the critical
value σc. On the other hand, Fig. 3 shows the parametric
plot for both quantities, where the allowed values region is
depicted. One should bear in mind that the last constraints
on both parameters provided by Planck [3,4] are

FIG. 2. Spectral index ns and tensor to scalar ratio r for the case βϕ ¼ βχ ¼ β as a function of the number of e-foldingsN ¼ 50–65 and
of β ¼ 0–0.10.

FIG. 1. The potential VðσÞ in Eq. (55) in units of C2
1M

2
Pl for

β ¼ 0.02. The corresponding critical value VðσcÞ ¼ 0 is given by
σc=MPl ¼ 14.9.
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ns ¼ 0.9659� 0.0041; r < 0.11: ð63Þ

Hence, as shown in Figs. 2 and 3, the constant roll model
with two fields that rolls down at the same rate (41), but
may not in the same way, predicts an spectral index and
tensor to scalar ratio that can fit the Planck constraints,
although the value of r may exceed the upper constraint
(63) in the confidence region for ns.

B. βϕ ≠ βχ
Let us now consider the case where both fields constantly

roll(s) at different rates, i.e., βϕ ≠ βχ . As in the case above,
by the constant roll conditions (40), we can relate both
fields as follows:

1

βϕ

ϕ̈
_ϕ
¼ 1

βχ

χ̈

_χ
→ _ϕ ∝ ð_χÞβϕ=βχ : ð64Þ

It is clear that for very different constant roll parameters, for
instance βχ ≫ βϕ, the problem reduces to one single field,
similarly to the case analyzed above. For the general case, it
is not possible to reconstruct the corresponding potential
Vðϕ; χÞ analytically, but it can be computed in terms of the
number of e-foldings. Indeed, by integrating independently
the constant roll conditions (40), one obtains

_ϕ ¼ MPl
_ϕ0

�
a
a0

�
βϕ ¼ MPleβϕNþmϕ ;

_χ ¼ MPl _χ0

�
a
a0

�
βχ ¼ MPleβχNþmχ ; ð65Þ

where mϕ and mχ are integration constants that determine

the initial velocities of the scalar fields _ϕ0 and _χ0. The
second FLRW equation (38) can be expressed in terms of
the number of e-foldings as follows:

−2HH0 ¼ e2βϕNþ2mϕ þ e2βχNþ2mχ ; ð66Þ

whose solution is given by

HðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C1 −

e2βϕNþ2mϕ

2βϕ
−
e2βχNþ2mχ

2βχ

s
; ð67Þ

with C1 an integration constant. A glance to this expression
allows us to realize that the Hubble parameter seems to
behave similarly as in the case of the equal constant roll, as
given by Eq. (58). The corresponding potential Vðϕ; χÞ ¼
VðNÞ can be obtained from the first FLRWequation (38) as

VðNÞ¼M2
Pl

2

�
3þβ2ϕ
βϕ

e2βϕNþ2mϕ þ3þβ2χ
βχ

e2βχNþ2mχ −12C1

�
:

ð68Þ
The corresponding ϕðNÞ and χðNÞ fields could then be
obtained by integrating (65), but this path would not
provide an exact expression, and therefore the potential
cannot be obtained for this general case. Nevertheless,
similarly as in the previous case, we can analyze the
behavior of the adiabatic field σ and the entropy perturba-
tions δs to extract information on how the fluctuations are
generated when βϕ ≠ βχ . Let us start by analyzing the
behavior of σ as defined in (24), which in the present case
reads explicitly

_σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _χ2

q
¼ _χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21 _χ

2ðβϕβχ−1Þ
r

;

σ̈ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _χ2

q ðβϕH _ϕ2 þ βχH _χ2Þ

¼ βχH _χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21 _χ

2ðβϕβχ−1Þ
q �

1þ k21
βϕ
βχ

_χ
2ðβϕβχ−1Þ

�
; ð69Þ

where k1 is a proportional constant between the first
derivatives of the scalar fields. As indicated above, from
here we can see that unless both constant parameters are
similar, or one very large in comparison to the other, the
adiabatic field σ will not constantly roll(s). In addition, the
entropy fluctuations field for the general case yields here:

δs¼
_ϕδχ− _χδϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ϕ2þ _χ2
q

≃
k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þk21 _χ
2ðβϕβχ−1Þ

q �
_χ
2ðβϕβχ−1Þδχ−

Z
dt
βϕ
βχ

_χ
βϕ
βχ
−1 _δχ

�
: ð70Þ

Then, nonadiabatic perturbations will arise in the general
case, as occurs in slow roll inflation with multifields.
Nevertheless, we can consider such perturbations small
outside the horizon [14]. Hence, we can compute the spectral
index and the tensor to scalar ratio through the slow roll
parameters as given in (62) by using the potential (68). As in

FIG. 3. Parametric plot for the spectral index ns versus the
tensor to scalar ratio r.
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the above case, we should impose also a cutoff in the potential,
which can be taken as Vðϕc; χcÞ ¼ VðNcÞ ¼ 0, where Nc is
the number of e-foldings complete along the inflationary
period, which allowed us to fix the integration constantC1. In
Fig. 4, the spectral index ns and the tensor to scalar ratio r are
depicted as functions of the constant roll parameters fβϕ; βχg
(top panels) and the initial conditions for the velocities of the
scalar fields fmϕ; mχg (bottom panels). We have considered
for both cases an inflationary expansion of 55 e-foldings, but
we point out that other durations provide similar results. Note
also that in this case we have allowed the constant roll
parameters fβϕ; βχg to take negative values. Hence, the
corresponding predictions for ns and r can fit well the values
provided by Planck (63).

V. CONCLUSION

In the present work we have analyzed a two field
inflationary model when both fields constantly roll(s),
extending the previous analysis of this class of inflationary
scenarios to the multifield case. As is done in multifield
inflation, we have used the approach of redefining the
scalar fields by using the so-called adiabatic field and the
entropy field, which gather the adiabatic perturbations and
the entropy ones, respectively. Then, we have separately
analyzed two cases, one when both scalar fields have the
same constant roll parameter and the other one when they
are different. In both cases, we obtained the spectral index
and the tensor to scalar ratio and compared them to the
latest data from Planck.

FIG. 4. Spectral index ns and tensor to scalar ratio r for the case βϕ ≠ βχ ¼ β. Top panels show the variation of both magnitudes with
respect to the constant roll parameters, while in the bottom panels the same magnitudes are depicted as functions of the initial velocities
for the scalar fields. Both cases are considered for a 55 e-foldings inflation.
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For the first case, where the constant roll ratio is the same
for both fields, we show that the adiabatic field also
constantly roll(s) while nonadiabatic fluctuations are null.
The corresponding potential for the adiabatic field is
obtained, as well as its expression in terms of both scalar
fields, which showed the same behavior as in the single
field scenario studied in [18,19]. The exact solution for the
Hubble parameter is also obtained in terms of the cosmic
time and the number of e-foldings. Then, the spectral index
and the tensor to scalar ratio are obtained, which remain as
functions of the number of e-foldings that inflation lasts
and the constant roll parameter. As shown in Figs. 2 and 3,
the constraints provided by the Planck mission can be well
satisfied.
The second case leads to a more complex approach, as

the differences between the constant roll parameters of both
fields do not lead to an adiabatic field that also constantly
roll(s), while the entropy fluctuations are in general not
null. Nevertheless, for large differences of both constant
roll parameters, the problem can be reduced to the one of a
single field. In the general case, we have indeed obtained
the exact solution for the Hubble parameter as a function of
the number of e-foldings and the corresponding potential is
also obtained in terms of this independent variable. That
allowed us to compute the spectral index and the tensor to
scalar ratio as functions of the constant roll parameters, the
initial velocities of each field and the number of e-foldings.
By considering negligible entropy perturbations, the results
were also compared to the Planck data and depicted in
Fig. 4, which can be satisfied for some values of the free
parameters, as in the case above.

Hence, the paper has presented an extension of multifield
scenarios when considering two constant roll scalar fields.
Results fit well the observational constraints and keep the
entropy fluctuations small for some of the cases, leading to
a healthy generalization of constant roll inflation to multi-
field models.
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