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Controlling spin without magnetic fields: The Bloch-Rashba rotator
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We consider the dynamics of a quantum particle held in a lattice potential and subjected to a time-dependent
spin-orbit coupling. Tilting the lattice causes the particle to perform Bloch oscillations, and by suitably changing
the Rashba interaction during its motion, the spin of the particle can be gradually rotated. Even if the Rashba
coupling can only be altered by a small amount, large spin rotations can be obtained by accumulating the rotation
from successive oscillations. We show how the time dependence of the spin-orbit coupling can be chosen to
maximize the rotation per cycle, and thus how this method can be used to produce a precise and controllable spin
rotator, which we term the Bloch-Rashba rotator, without requiring an applied magnetic field.
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I. INTRODUCTION

Spintronics [1] is a rapidly developing field of study in
which information is carried by an electron’s spin as well as
its charge. Spin qubits not only have the benefit of long spin
coherence times, but their lower-energy scales also promise
lower-power, higher-speed devices. Their implementation,
however, requires a method of manipulating the spin of in-
dividual electrons. This can be done by using micromagnets
[2–6], but it is difficult to confine magnetic fields to the small
volumes occupied by the qubits and obtain the necessary level
of control. A method of addressing spin by applying local
gating potentials would thus be greatly preferable. A possible
means to achieve this is provided by spin-orbit coupling
(SOC). This is a relativistic effect in which an electric field is
transformed into an effective magnetic field in the rest-frame
of the electron, which then interacts with the electron’s spin,
coupling it to the particle’s momentum. In condensed matter
systems, SOC underlies the existence of topological insulators
[7], and provides the basis of the spin quantum Hall effect [8].

If the electric field arises from inversion asymmetry in the
crystal lattice itself, the SOC is termed Dresselhaus coupling.
Alternatively, if it arises from spatial inhomogeneity of a
heterostructure interface, it is called Rashba coupling [9,10].
The Rashba effect is particularly suitable for qubit manipu-
lation because the magnitude of the coupling can be tuned
by electrostatic gates [11,12]. An electron’s spin can thus
be rotated by moving an electron in space while controlling
the size of the Rashba coupling [13]. In a quantum wire,
for example, a spin-flip can be obtained [14] by allowing an
electron to move a certain distance along the wire, where the
required distance [15] is inversely related to the strength of the
coupling.

It would, however, be more convenient to be able to trans-
port the electron back to its original location, so that having
been rotated by a certain angle it can then be used for fur-
ther quantum logic operations. This requires time-dependent
control of the Rashba coupling [16–21], otherwise the

rotation-angle obtained on the outward leg of the electron’s
journey would be unwound by the return leg. In Ref. [22]
a method to achieve this was proposed, where an electron
trapped in a local potential was moved along a closed trajec-
tory in space, while the Rashba coupling was varied in time,
to obtain the desired spin-rotation. An appealing aspect of
this system is that exact analytical solutions can be obtained
[23–25], allowing its robustness towards gate noise [26] and
thermal effects [27] to be assessed.

In this paper, we consider inducing a spin-rotation in a
conceptually similar way, but instead we use a lattice system.
This could be produced by applying a superlattice potential
to a quantum wire, or by suitably gating a heterostructure.
A lattice system provides several advantages. Unlike the
continuum case, a localized wave packet can be put into
oscillatory motion by tilting the lattice [28,29] to generate
Bloch oscillations [30,31], avoiding the need to carry the
electron from place to place in a trap. Furthermore, the wave
packet will not be excited out of is ground state by the motion
[22], avoiding a possible source of noise. By adjusting the
Rashba coupling in phase with the Bloch oscillations, we will
show how it is possible to controllably rotate the spin of an
electron, thereby forming a “Bloch-Rashba rotator.” Even if
the Rashba coupling can only be varied by a small amount,
a large spin-rotation can be built up by allowing the particle
to undergo several oscillations, allowing the rotation angle to
accumulate little by little.

II. BLOCH-RASHBA HAMILTONIAN

We consider a one-dimensional wire lying on a two-
dimensional interface in the x-y plane, subject to a Rashba
SOC governed by an electric field perpendicular to the in-
terface. For convenience we will take the wire to be aligned
along the x-direction. In a continuum, the Rashba Hamiltonian
will be given by HR = α(Ez )/h̄ (σ × p)z [10], where α is the
Rashba coupling, regulated by the applied electric field Ez, σ j

are the Pauli spin-operators, and p is the particle’s momentum.
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Moving to a lattice description, the continuum Hamiltonian,
H = p2/2m∗ + HR, becomes a tight-binding model [32]

Hlatt = −
∑

j

J[c†
j c j+1 + H.c.] + Jso[c†

j (iσy)c j+1 + H.c.],

(1)

where c†
j = (c†

j↑, c†
j↓), and c†

jσ /c jσ is the creation/

annihilation operator for a fermion of spin σ on lattice site
j. In this expression, J represents the single-particle tunnel-
ing between adjacent lattice sites, and Jso is the spin-orbit
tunneling produced by the Rashba SOC, whose amplitude is
proportional to α. Clearly the SOC term will induce a rotation
of the electron spin around the Sy axis when the particle moves
along the lattice, that is, the spin-rotation will be about an axis
perpendicular to both the direction of motion and the direction
of the electric field.

A convenient way to represent the hopping terms in Eq. (1)
is to visualize them in terms of the Creutz ladder [33], as

FIG. 1. (a) Creutz ladder representation of the lattice Hamilto-
nian (1). The index j labels the sites of the lattice. Black lines along
the edges of the ladder represent standard single-particle hopping
between neighboring sites which conserves the spin-orientation.
Diagonal hopping terms (shown in red) represent processes in which
a particle hops by one lattice site and flips its spin, which arise from
the Rashba interaction. The red dotted/solid lines have amplitudes
of −Jso / Jso due to the σy term in Hlatt . (b) Dispersion relation of
the lattice Hamiltonian. For Jso = 0 the system exhibits the standard
single-band dispersion relation Ek = −2J cos k. As Jso is increased,
the spectrum splits into two cosinusoidal bands, displaced from the
origin by an amount proportional to the spin-orbit coupling.

FIG. 2. Schematic form of the Bloch-Rashba rotator. A particle
is placed in a lattice which is subjected to a small tilt causing
the particle to undergo an oscillatory motion through the lattice
(Bloch oscillation). An external electric field regulates the Rashba
spin-orbit coupling, causing the spin of the particle to rotate about
an axis mutually perpendicular to its motion and the Rashba field.
We consider the particle motion to be in the x-direction, while the
Rashba field is aligned with the z-axis; consequently the particle spin
will rotate about the y-axis, in the Sx − Sz plane.

shown in Fig. 1(a). In this picture, spin-up fermions occupy
sites on the top edge of the ladder, while sites on the lower
edge hold spin-down fermions. The single-particle tunneling
terms do not change the spin of a fermion, and so they
represent hopping processes along the edges of the ladder,
shown by the black lines. The tunneling terms governed by
Jso, however, involve a spin-flip, and so are represented by the
diagonal red lines connecting sites on the two edges of the
ladder.

The dispersion relation of Hamiltonian (1) is shown in
Fig. 1(b). When the Rashba coupling vanishes (Jso = 0) we
recover the standard cosinusoidal dispersion relation for a
single-band tight-binding model, each state having a two-fold
spin degeneracy. As Jso increases, the degeneracy between
spin-up and spin-down states is lifted, and the spectrum splits
into two bands, each displaced from the origin by a momen-
tum proportional to the Rashba coupling Jso.

Having obtained the lattice Hamiltonian (1), the next step
is to introduce a tilt to the lattice potential, as shown in Fig. 2.
This is described by the Bloch-Rashba Hamiltonian

HBR = Hlatt + V0

∑

j

jn j, (2)

where V0 is the difference in potential between neighboring
sites, and n j is the standard number operator. Classically one
would expect a particle held in in a tilted potential to roll
down the slope and thus accelerate uniformly to the right.
Quantum effects produced by the lattice, however, complicate
this simple picture, and the wave packet instead undergoes
a coherent oscillation [34], termed Bloch oscillation, whose
frequency and amplitude depend on the lattice tilt. If the initial
wave packet is well localized in space, the position of its
center of mass [34,35] is given by the simple expression

x(t ) = 2(J/V0) (1 − cosV0t ). (3)
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III. RESULTS

A. Constant SOC

In Fig. 3 we show the time evolution of a Gaussian wave
packet placed in a lattice with a small tilt of V0 = 0.01J . The
width of the Gaussian, σ 2 = 1000a2, where a is the lattice
spacing, was chosen to be sufficiently small for the wave
packet to be well localized in space, but large enough for it
to exhibit well-defined Bloch oscillations; note that a very
narrow wave packet would instead experience Wannier-Stark
localization [34]. The system was numerically integrated in
time under the lattice Hamiltonian (2), and the plot displays
the particle density, ρ(x, t ) = |ψ (x, t )|2. It can be seen that
the wave packet oscillates along the lattice as expected, while
retaining its Gaussian shape, clearly displaying Bloch oscilla-
tions.

In Fig. 4(a) we show this motion more quantitatively, by
plotting the motion of the center of mass of the system. From
Eq. (1), we can see that the motion of the particle will be
associated with a rotation of its spin about the Sy-axis. Thus if
the particle is initialized in a spin-up state, during its motion
through the lattice, its spin will rotate in the Sx − Sz plane. In
Fig. 4(b) we plot the expectation values of the spin projections
〈Sz〉 and 〈Sx〉 for two different values of the Rashba SOC. We
can see that in each case, 〈Sz〉 takes an initial value of one,
as expected, and then decreases as the particle moves through
the lattice. At the same time 〈Sx〉 increases from zero. After
reaching the extremum of its motion, the particle reverses
its direction and returns to its initial position. In this portion
of its motion the values of 〈Sz〉 and 〈Sz〉 return smoothly
to their initial values. The spin of the particle thus rotates
periodically in the Sx − Sz plane, with the same period as the
Bloch oscillation. In the inset of Fig. 5 we plot the evolution of
the particle’s spin in this plane. We can note that the modulus
of the spin remains approximately constant, indicating that the
spin vector is evolving smoothly along a circle on the surface
of the Bloch sphere, as required. Close examination of this
trajectory, however, reveals minor deviations from the circle,
corresponding to a periodic “breathing” motion of the wave
packet’s width during the Bloch oscillation. As mentioned
previously, the rotation angle acquired in the first part of the

FIG. 3. A Gaussian wave packet placed in a tilted lattice potential
makes an oscillatory motion along the lattice. The amplitude of the
oscillation and its frequency are governed by the size of the tilt,
Eq. (3). The lattice tilt used here, V0 = 0.01J , gives a Bloch period
of TB = 200π/J .
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FIG. 4. (a) Bloch oscillation of the Gaussian wave packet. The
center of mass of the wave packet makes a sinusoidal oscillation
along the lattice, the period of which is determined by the lattice
tilt, TB = 2π/V0 [see Eq. (3)]. (b) Solid lines denote 〈Sz〉, the dashed
lines denote 〈Sx〉. The x and z components of the particle’s spin
oscillate sinusoidally in time, with the same period as the Bloch
oscillation. When the SOC is increased from Jso = 0.0005J (black
lines) to Jso = 0.001J (red lines), the amplitude of the oscillations in
〈Sx〉 and 〈Sz〉 correspondingly increases.

FIG. 5. The spin projections, 〈Sx〉 and 〈Sz〉 as a function of time.
When the Rashba tunneling Jso is held constant, the electron spin
rotates at a constant rate while the electron wave packet propagates
in one direction through the lattice. However, when the wave packet
reverses to complete a cycle of Bloch oscillation, the spin retraces
its trajectory to its original configuration, and so no spin-rotation
is acquired. When Jso is quenched to zero during the second half
of the Bloch cycle, the electron spin is frozen, and so does not
retrace its trajectory. Accordingly the rotation angle changes in steps
as the Bloch oscillation continues. Flipping the sign of the Rashba
tunneling, Jso → −Jso in the second half-cycle causes the spin to
continue rotating at the same rate during the entire Bloch oscillation.
Jso can also be varied continuously, Jso = J0 sin ωBt , with the same
frequency as the Bloch oscillation, to achieve this effect. Inset: When
Jso is held constant, the Bloch vector oscillates over a small range
(black symbols). By making Jso time dependent, the Bloch vector
can now progressively step around a great circle in the Sx − Sz plane.
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FIG. 6. Area enclosed in the parameter plane (x − Jso) for the different protocols shown in Fig. 5. The displacement x is measured in units
of the amplitude of the Bloch oscillation. (a) Constant Jso. The trajectory is a straight line; as it does not enclose an area, the net spin-rotation
is zero. (b) Quenched driving. Jso takes two values, Jso = 1 in the first half-period, and Jso = 0 in the second, so the trajectory encloses a
rectangle. (c) Flipped driving. Jso again takes two values, but is now negative (Jso = −1) in the second half-period. The area again is again
rectangular, but encloses twice the area obtained for quenched driving. As a consequence the spin rotates more rapidly. (d) Sinusoidal driving.
The trajectory now encloses a circle.

oscillation is exactly canceled when the particle returns to
its original position, and so the Bloch vector only traces out
a small, retracing arc on the Bloch sphere. To obtain a net
rotation it is necessary to also vary the SOC with time, and so
consider a two-parameter driving.

B. Time-dependent SOC

The simplest form of varying the SOC to produce a net
spin-rotation is for it to take two different values [24]: one dur-
ing the outward motion of the Bloch oscillation, and another
value while the particle returns. In Fig. 5 we show the time
dependence of 〈Sz〉 for this driving protocol, where Jso is set
to zero on the return leg. Initially the behavior of 〈Sz〉 follows
that of the system considered previously, but on the return
leg the value of 〈Sz〉 is quenched. If Jso is then periodically
restored and quenched in this way, in phase with the Bloch
oscillation, the time-evolution of 〈Sz〉 will show a staircase
behavior, Thus even if Jso is limited to a small maximum
value, a large spin-rotation can nonetheless be obtained by
allowing the particle to accumulate the rotation angle over
many Bloch oscillations, as can also be seen in the inset of
the figure.

Clearly the spin-rotation will occur more rapidly if the spin
is able to continue rotating in the same sense on the return leg
of the cycle, rather than just being frozen. As the Rashba SOC
has the schematic form HR = α σy p, we can see that this can
be done by reversing the sign of the coupling, α → −α, to
compensate for the reversal of the particle’s momentum. The
time evolution produced by this “flipped” protocol (where the
sign of Jso is flipped in each half-period of the Bloch oscilla-
tion) is also shown in Fig. 5, and indeed demonstrates how the
rotation occurs more quickly, the spin-rotation accumulating
twice as quickly as in the quenched protocol.

As well as using discrete values of Jso, it is also possible
to vary the SOC continuously in time. In Fig. 5 we show the
result of sinusoidally modulating Jso with the same period as
the Bloch oscillation, Jso = J0 sin (ωBt ). In this case, as in the
case of the “flipped driving,” the spin-rotation continues in the
same sense in both halves of the Bloch oscillation. As a result

the rotation angle increases at a comparable, though slower,
rate to that of the case of flipped driving.

To compare the efficacy of the different driving proto-
cols, it is informative to look at the trajectory traced out in
the displacement-Jso parameter space. The net spin-rotation
achieved after one cycle of driving (one Bloch oscillation) is
proportional to the area enclosed by this trajectory [23,26]. We
show the four cases that we have considered in Fig. 6. When
Jso is held constant, the trajectory just traces a straight line
[Fig. 6(a)] which encloses no area, and thus corresponds to
no net spin-rotation. In the quenching protocol [Fig. 6(b)], Jso

takes two values and the trajectory traces out a rectangle. If Jso

is restricted to take only positive values, this form of driving
clearly maximizes the possible area enclosed, and so will be
the most effective. If Jso can take both positive and negative
values then the flipped driving will be the most effective,
enclosing double the area of the quenched driving protocol.
Finally, the sinusoidal driving traces out a circular trajectory
in this parameter-space. Although the rotation per cycle is less
than for flipped driving, it is of similar order.

IV. CONCLUSION

We showed how the interplay between Bloch oscillations
and the SOC can be used to create a controllable spin rotator
that does not require an externally applied magnetic field. In
contrast to previous proposals, the electron does not have to
be transported in a moving potential well, but its motion is
instead an intrinsic property of the lattice system. We showed
how the system can be conveniently mapped to the Creutz
ladder, and how the spin-rotation produced per cycle can be
optimized by maximizing the area enclosed by the trajectory
in the x − Jso parameter space.

In a doped InAs heterostructure, it was found that the
Rashba SOC could be enhanced by a factor of 1.5 [11] by
applying a gate voltage of a few volts, while enhancement of
up to a factor of 6 could be obtained in an InAs quantum wire
[12]. Ferroelectric Rashba materials [36–38] also hold out
the prospect of having large, electrically controllable Rashba
couplings. However, even if the Rashba coupling of a material
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can only be changed by a small amount, the method described
here allows large values of spin-rotation to be achieved by
letting a particle undergo several periods of Bloch oscillation,
and allowing the rotation to accumulate. As well as applying
to solid state materials, an exciting possibility is to use this
technique to manipulate ultracold quantum gases. In such
systems an effective Rashba coupling can be engineered by
dressing atomic spin states with lasers [39], and a lattice struc-
ture can be imposed by applying an optical lattice potential
[40,41]. These systems are extremely clean and controllable,
and would provide an ideal format to investigate this form of
spin control.

In this work we just considered a one-dimensional system,
and consequently the spin-rotation only occurs in the Sx − Sz

plane. To obtain full coverage of the Bloch sphere, it would
be necessary for the particle to move in a perpendicular
direction as well. This could be achieved by applying a
two-dimensional lattice potential, in which Bloch oscillations
could be induced in the two directions. Extending the model
to treat this situation and including the effects of noise and
dissipation, are fascinating subjects for future study.
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Spec. Top. 227, 353 (2018).
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