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Computación

Facultad de Informática
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con fines académicos, no comerciales y mencionando expresamente a su autor el presente
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Resumen

Los análisis estáticos de deadlock son, a menudo, capaces de asegurar la ausencia de blo-
queos, pero cuando detectan un posible ciclo de deadlock, la información que devuelven como
salida es escasa e insuficiente. Debido al complejo flujo de ejecución existente en los progra-
mas concurrentes, el usuario podŕıa ser incapaz de encontrar la causa del comportamiento
anómalo a partir de la información abstracta proporcionada por el análisis estático.

Este trabajo propone el uso combinado de análisis estático y el testing para la detección
efectiva de deadlocks en programas aśıncronos. Estos programas imperativos son primero
traducidos a una versión declarativa (CLP), de manera que la aproximación combinada es
llevada a cabo completamente por el mecanismo de backtracking inherente y al manejo de
restricciones de CLP. Cuando el programa encuentra un deadlock, el uso combinado del
testing y el análisis estático nos proporciona una técnica efectiva para encontrar trazas de
deadlock. En caso de que el programa no contenga ninguno, pero el analizador śı que los
encuentre por pérdidas de precisión, nosotros podŕıamos ser capaces de demostrar la ausencia
de deadlock. Los principales resultados de este trabajo han sido presentados a:

• la edición especial Computacional Logic for Verification de la revista Theory and Prac-
tice of Logic Programming y

• la conferencia internacional de Logic-Based Program Synthesis and Transformation
(LOPSTR’17)

y se encuentran actualmente bajo revisión.
Todas las técnicas desarrolladas en este trabajo han sido implementadas en la herramienta

SYCO, la cual ha sido aceptada y presentada en la conferencia internacional de Compilers
Construction (CC’16) [10].

Palabras Clave

Testing, Detección de deadlocks, Ejecución simbólica, Generación de casos de prueba, Veri-
ficación, Análisis de deadlock
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Abstract

Static deadlock analyzers might be able to verify the absence of deadlock. However, they
are usually not able to detect its presence. Also, when they detect a potential deadlock
cycle, they provide little (or even no) information on their output. Due to the complex
flow of concurrent programs, the user might not be able to find the source of the anomalous
behaviour from the abstract information computed by static analysis. This work proposes the
combined use of static analysis and testing for effective deadlock detection in asynchronous
programs. The asynchronous program is first translated into a CLP-version so that the
whole combined approach is carried out by relying on the inherent backtracking mechanism
and constraint handling of CLP. When the program features a deadlock, our combined use
of analysis and testing provides an effective technique to catch deadlock traces. While if the
program does not have deadlock, but the analyzer inaccurately spotted it, we might be able
to prove deadlock freedom. The main results in this project have been submitted to:

• the special issue on Computational Logic for Verification of the journal Theory and
Practice of Logic Programming and

• the 27th International Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR’17),

and are currently under revision.
The techniques developed in this work has been implemented in the SYCO tool, which

appears in the proceedings of the 25th International Conference on Compilers Construction
(CC’16) [10].

Keywords

Testing, Deadlock detection, Symbolic execution, Test case generation, Verification, Dead-
lock analysis
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Chapter 1

Introduction

A deadlock occurs when a concurrent program reaches a state in which one or more tasks
are waiting for each other termination and none of them can make any progress. Deadlocks
are one of the most common errors in concurrent programming and, thus, a main goal of
verification and testing tools is, respectively, proving deadlock freedom and deadlock detec-
tion. We consider an asynchronous language which allows spawning asynchronous tasks at
distributed locations, with no shared memory among them, and with an operation for block-
ing synchronization with the termination of asynchronous tasks. In this setting, in order to
detect deadlocks, all possible interleavings among tasks executing at the distributed loca-
tions must be considered. Basically, each time that the processor can be released, any of the
available tasks can start its execution, and all combinations among the tasks must be tried,
as any of them might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks. As static analysis
examines all possible execution paths and variable values, it can reveal deadlocks that could
not manifest until weeks or months after releasing the application. This aspect of static
analysis is especially important in security assurance – security attacks try to exercise an
application in unpredictable and untested ways. However, due to the use of approximations,
most static analyses can only verify the absence of deadlock but not its presence, i.e., they
can produce false positives. Moreover, when a potential deadlock is detected, state-of-the-
art analysis tools [15, 17, 18] provide little (and often no) information on the source of the
deadlock. In particular, for deadlocks that are complex (involve many tasks and locations),
it is essential to know the task interleavings that have occurred and the locations involved in
the deadlock, i.e., provide a concrete deadlock trace that allows the programmer to identify
and fix the problem.

In contrast, testing consists in executing the application. In dynamic testing, the appli-
cation is executed for concrete input values, while in static testing it is executed symbolically
(i.e., without any knowledge on the input variables). Since a deadlock can manifest only
on specific sequences of task interleavings, in order to apply testing for deadlock detection,
the testing process must systematically explore all task interleavings. The primary advan-
tage of systematic testing [11, 30] for deadlock detection is that it can provide the detailed
deadlock trace. There are two shortcomings though: (1) Although recent research tries to
avoid redundant exploration as much as possible using Partial Order Reduction (POR) tech-
niques [1, 6, 11, 14], the search space (even without redundancies) can be huge. This is a

1



2 CHAPTER 1. INTRODUCTION

threat to the application of systematic testing in concurrent programming. (2) In dynamic
testing, one can only guarantee deadlock freedom for finite-state terminating programs (i.e.,
terminating executions for concrete inputs). In static testing, one needs to assume some ter-
mination criteria (e.g., loops can only be executed a fixed number of iterations) and, thus,
deadlock freedom can be ensured for the considered termination criterion (e.g., the program
is deadlock free provided its loops are unrolled the fixed number of iterations).

This work proposes a seamless combination of static analysis and testing for effective
deadlock detection as follows: an existing static deadlock analysis [15] is first used to obtain
abstract descriptions of potential deadlock cycles which are then used to guide a testing tool
in order to find associated deadlock traces (or discard them). When the program features
a deadlock, our combined use of analysis and testing provides an effective technique to
catch deadlock traces. The development of such combined framework requires: (1) The
use of a backtracking mechanism to prune those paths that are deadlock free as soon as
possible, and keep on exploring the search tree in order to find deadlock paths (if there
are), and (2) handling the constraints that describe the potential deadlock cycles as well
as the path conditions. Our framework is based on Constraint Logic Programming over
Finite Domains CLP(FD), which imposes an integer domain for the program variables.
Our framework benefits from the inherent mechanisms of constraint logic programming for
achieving the above requirements as follows: the asynchronous program is translated into a
CLP equivalent program so that the whole combined approach is carried out by relying on
the inherent backtracking mechanism and constraint handling applied on the CLP-translated
program.

1.1 Summary of Contributions

In summary, the main contributions of this project are the following:

1. We extend a standard semantics for asynchronous programs with information about
the task interleavings made and the status of tasks.

2. We provide a formal characterization of deadlock state which can be checked along the
execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks that combines testing and static
analysis as follows: the deadlock cycles inferred by static analysis are used to guide
the testing process towards paths that might lead to a deadlock cycle while discarding
deadlock-free paths. Our method can be used both for static and dynamic testing.

4. We introduce several deadlock-based testing criteria to find the first deadlock trace, a
representative trace for each deadlock cycle, or all deadlock traces.

5. We propose a new algorithm to infer which tasks produce or may produce conflicting
interactions from the deadlock cycles. This information is useful to discard initial
states or contexts that cannot lead to deadlock.

6. We implement our methodology in the SYCO/aPET testing system and perform a
thorough experimental evaluation on some classical examples.



1.2. ORGANIZATION OF THE PROJECT 3

7. We develop two new user-friendly web interfaces for SYCO and aPET which are well
suited for any kind of user. They can be used online (see Chapter 6).

The main results in this project have been submitted to:

• the special issue on Computational Logic for Verification of the journal Theory and
Practice of Logic Programming, where we present the basic framework for static testing
and

• the 27th International Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR’17), where we present the inference of initial contexts.

Both submissions are currently under revision.

This project is a revised and extended version of my Bachelor’s Final Project [22] and
a conference paper that appeared in the proceedings of iFM’16 [9]. There are three fun-
damental contributions w.r.t. [22]. The first one is that we extend our approach and our
implementation to the static testing setting, i.e., we can apply symbolic execution without
any knowledge on the input data in order to find deadlock traces. In contrast, [22] is defined
for dynamic testing which requires the use of particular values for the input data. This has
a clear theoretical interest as it generalizes the previous work to a static setting. Besides,
the practical impact of such extension is important as now we can use it to prove deadlock
freeness, i.e., if we are able to symbolically execute the whole program without finding any
deadlock trace, nor termination problem, then the program is proven to be deadlock free.
Note that the use of symbolic execution requires the use of termination strategies, since
when the program contains loops or recursion, we might need a termination criterion (e.g.,
one that allows unfolding loops a constant number of times k) to guarantee termination
of the process. In such case, our combined approach would prove deadlock freeness up for
the selected termination criterion. The second contribution is that our whole approach is
formalized in CLP, while [22] was developed on the imperative language. This gives us the
advantages mentioned above, in particular the implicit support for backtracking greatly sim-
plifies the definition of the symbolic testing framework. Finally, [22] presented a prototype
tool SYCO, which is implemented in Prolog, but it is not very suitable for end-users. As
a third fundamental contribution, we have developed a new user-friendly web interface for
SYCO, which appears in the proceedings of CC’16 [10]. This tool is available for online use
at http://costa.ls.fi.upm.es/syco.

1.2 Organization of the project

The remainder of the work is organized as follows. Chapter 2 presents the syntax and seman-
tics of the asynchronous programs that we consider. Essentially, it includes three instructions
for concurrency: create a new concurrency unit, spawn a task on a concurrency unit, and
block the execution of a concurrency unit until a spawned task has finished its execution.
Section 2.1 motivates our work by means of an example that will be used throughout the
work to explain the different concepts and techniques.

http://costa.ls.fi.upm.es/syco
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Chapter 3 recaps the CLP-based testing framework that is the basis of our combined
approach. We will first review the translation of standard imperative programs into CLP-
equivalent ones. Next we describe how to perform systematic testing on the concurrent CLP-
translated programs. This already requires the use of backtracking to exercise all possible
task interleavings in a non-deterministic way. Finally, we leverage the testing framework to
the static context in which one does not assume any information on the input data.

Chapter 4 contains the main contributions of this work. We first introduce the inter-
leavings table in which we store the decisions about task interleavings made during the
execution. Using the interleavings table, we provide a technique for the early detection of
deadlock states during the execution. Finally, we will present our combined testing and static
analysis framework for detecting deadlock traces. Chapter 5 provides a new technique to
generate the most interesting initial contexts (discarding others) for the symbolic execution
based on the information stored by the abstract deadlock cycles.

Chapter 6 describes the implementation of SYCO and aPET and shows the users how
to use them through a detailed step-by-step tutorial. Chapter 7 describes our experimental
evaluation that demonstrates the applicability and effectiveness of the proposed techniques.
Chapter 8 reviews related work and we conclude in Chapter 9 pointing out several directions
for future research.



Chapter 2

The language: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each location repre-
sents a processor with a procedure stack and an unordered queue of pending tasks. Initially
all processors are idle. When an idle processor’s task queue is non-empty, some task is se-
lected for execution. Besides accessing its own processor’s global storage, each task can post
tasks to the queues of any processor, including its own, and synchronize with the termination
of tasks. The language uses future variables [12] for synchronizing program execution with
the completion of asynchronous tasks. A future variable acts as a proxy for a result that is
initially unknown, usually because the computation of its value is yet incomplete. When the
future variable is ready, the result can be retrieved. The declaration of a future variable is as
follows Fut<T> f, where T is the type of the result r. An asynchronous call m(z̄) spawned at
location x is associated with a future variable f as follows f = x ! m(z̄). Instruction r = f.get
allows blocking the execution until the task executing m that is associated to f terminates,
and it retrieves the result in r. When a task is completed, its processor becomes idle again,
chooses the next pending task, and so on. The number of distributed locations need not be
known a priori (e.g., locations may be virtual). Syntactically, a location will therefore be
similar to a concurrent object that can be dynamically created using the instruction new. For
instance, the instruction b = new Location(); creates a distributed location of type Location
which is referenced by b. The program consists of a set of classes that define the types of
locations, each of them defines a set of fields and methods of the form M ::= T m(T̄ x̄){s},
where statements s take the form

s ::= s; s
| x = e
| if e then s else s
| while e do s
| return x;
| b = new T(z̄)
| f = x ! m(z̄)
| x = f.get

where x is a variable, e an expression, b a reference, z̄ a list of argument values, and f a future
variable. All methods must return something, hence void methods are by-default expressed
as int methods returning 0. For the sake of generality, the syntax of expressions e and types

5



6 CHAPTER 2. THE LANGUAGE: SYNTAX AND SEMANTICS

(mstep)

selectTask(S) = tk , S = loc(o,⊥, h,Q∪ {tk}) · S′

loc(o, tk , h,Q∪ {tk}) · S′
o·tk
;∗ S′′

S
o·tk−→ S′′

(newloc)
tk = tsk(tk ,m, l, x = new D(z̄); s), fresh(o1), h1 = newheap(D, z̄), l1 = l[x→ o1]

loc(o, tk , h,Q∪ {tk}) ; loc(o, tk , h,Q∪ {tsk(tk ,m, l1, s)}) · loc(o1,⊥, h1, {})

(async)

tk = tsk(tk ,m, l, y = x ! m1(z); s), l(x)=o1, fresh(tk1), fresh(f1),
l1=buildLocals(z̄,m1, l), l

′ = l[y → f1]

loc(o, tk , h,Q∪ {tk}) · loc(o1, , ,Q1) ; loc(o, tk , h,Q∪ {tsk(tk ,m, l′, s)})·
loc(o1, , ,Q1 ∪ {tsk(tk1,m1, l1, body(m1))}) · fut(f1, o1, tk1, ini(m1),⊥)

(return)
tk = tsk(tk ,m, l, return x; s), l(x) = v

loc(o, tk , h,Q∪ {tk}) · fut(f, , tk , ,⊥) ; loc(o,⊥, h,Q) · fut(f, , tk , , v)

(get1)
tk = tsk(tk ,m, l, x = y.get; s), l(y) = f, fut(f, , , , v) ∈ Futs, l1 = l[x→ v]

loc(o, tk , h,Q∪ {tk}) ; loc(o, tk , h,Q∪ {tsk(tk ,m, l1, s)})

(get2)
tk=tsk(tk ,m, l, x = y.get; s), l(y) = f, fut(f, , , ,⊥) ∈ Futs

loc(o, tk , h,Q∪ {tk}) ; loc(o, tk , h,Q∪ {tk})

Figure 2.1: Macro-Step Semantics of Asynchronous Programs

T is left open.

Figure 2.1 presents the semantics of the language. A state or configuration is a set of lo-
cations and future variables {loc0, ..., locn, fut0, ..., futm}. A location is a term loc(o, tk , h,Q)
where o is the location identifier, tk is the identifier of the active task that holds the lo-
cation’s lock or ⊥ if the location’s lock is free, h is its local heap (a function that maps
every field to its value), and Q is the set of tasks in the location. A future variable is
a term fut(id, o, tk , pp, r) where id is a unique future variable identifier, o is the location
identifier that executes the task tk awaiting for the future, pp is the initial program point
of tk , and r is the return value of the task tk , or ⊥ if tk has not finished. A task is a
term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method name executing
in the task, l is a mapping from local variables to their values (integers, booleans or refer-
ences), and s is the sequence of instructions to be executed. We assume that the execution
starts from a main method without parameters included in a Main class. The initial state
is S={loc(0, 0,⊥, {tsk(0,main, l, body(main))}), fut(0, 0, 0, ini(main),⊥)} with an initial lo-
cation with identifier 0 executing task 0 and its corresponding future variable. Here, l maps
local variables to their initial values (null in case of reference variables), ⊥ is the empty heap,
body(m) is the sequence of instructions in method m, ini(m) refers to the first program point
of method m, and we can know the program point pp where an instruction s is in the program
as follows pp:s.

As locations do not share their states, the semantics can be presented as a macro-step
semantics [30] (defined by means of the transition “−→”) in which the evaluation of all
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statements of a task takes place serially (without interleaving with any other task) until it
gets a return instruction. In this case, we apply rule mstep to select non-deterministically
an available task from one active location in the state (i.e., a location with a non-empty
task queue). The transition ; defines the evaluation within a given location. Rule newloc
creates a new location of class D without tasks, with a fresh identifier fresh(o1) and a
new heap built with parameters z̄. Rule async spawns a new task (whose arguments are
initialized by function buildLocals) with a fresh task identifier tk 1, and it adds a new future
variable to the state. We assume o 6= o1, but the case o = o1 is analogous, the new task tk 1

is added to Q of o. The rules for sequential execution are standard and are thus omitted.
When return is executed, the lock is released and will never be taken again by that task.

Consequently, that task is finished and removed from the task queue, as rule Return claims.
The instruction y.get waits for the future variable y ∈ Futs (where Futs is the future variables
set in the state) without yielding the lock, i.e., it blocks the execution of the location until
the task that is awaiting is finished (rule Get2). Then, when the future is ready, rule Get1

allows continuing the execution.
In what follows, a derivation or execution E ≡ S0 −→ · · · −→ Sn is a sequence of

macro-steps (applications of rule mstep). The derivation is complete if S0 is the initial
state and there is no exists a state Sn+1 such that Sn −→ Sn+1 and Sn 6= Sn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state. Given a state
S, exec(S) denotes the set of all possible complete derivations starting at S. We sometimes
label transitions with o · tk , the name of the location o and task tk selected (in rule mstep)
or evaluated in the step (in the transition ;). The systematic exploration of exec(S) thus
corresponds to the standard systematic testing setting in which all possible explorations are
performed without eliminating any redundancy.

2.1 Motivating Example

Our running example simulates a simple communication protocol among a database and n
workers. Our implementation in Figure 2.2 has three classes, a Main class which includes
the main method, and classes Worker and DB implementing the workers and the database,
respectively. The main method just calls method simulate with the number of workers to
create in its parameter (in this case, 1). Method simulate creates the database and the n
workers, and invokes methods register and work on each of them, respectively. The work

method of a worker simply accesses the database (invoking asynchronously method getData)
and then blocks until it gets the result, which is assigned to its data field. The register method
of the database registers the provided worker reference adding it to its clients list field. In
case checkOn is true, before adding the worker, it makes sure that the worker is online. This
is done by invoking asynchronously method ping with a concrete value and blocking until it
gets the result with the same value. Method getData of the database returns its data field
if the caller worker is registered, otherwise it returns null. Depending on the sequence of
interleavings, the execution of this program can finish:

• (I) As one would expect, i.e., with worker.data = db.data,

• (II) with worker.data = null, or,
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1 class Main{
2 main(){
3 this ! simulate(1);
4 return 0;
5 }
6 simulate(int n){
7 DB db = new DB();
8 while (n > 0){
9 Worker w = new Worker();

10 db ! register(w);
11 w ! work(db);
12 n = n−1;
13 }
14 return 0;
15 }
16 }// end of class Main
17

18 class DB{
19 Data data = ...;
20 List<Worker> clients;// Empty list
21 Bool checkOn = true;

22 int register(Worker w){
23 if (checkOn){
24 Fut〈int〉 f = w ! ping(5);
25 if (f.get == 5) add(clients,w);
26 } else add(clients,w);
27 return 0;
28 }
29 Data getData(Worker w){
30 if (contains(w,clients)) return data;
31 else return null;
32 }
33 }// end of class DB
34 class Worker{
35 Data data;
36 int work(DB db){
37 Fut〈Data〉 f = db ! getData(this);
38 data = f.get;
39 return 0;
40 }
41 int ping(int n){return n;}
42 }// end of class Worker

Figure 2.2: Working example: Communication protocol among a DB and n workers.

• (III) in a deadlock.

(I) happens when the worker is registered in the database (assignment in Line 25) before
getData is executed. (II) happens when getData is executed before the assignment at Line
25. A deadlock is produced if both register and work start executing before getData and ping.

Figure 2.3 shows the derivation tree computed by a systematic testing of the main method.
Derivations that contain a dotted node are not deadlock, while those with a black node are
deadlock. A main motivation of our work is to detect as early as possible that the dotted
derivations will not lead us to deadlock and prune them. All derivations which can be found
in this program start by executing methods main and simulate, one after the other. The 1st
and 2nd derivations finish with the expected output state (scenario I above), the 3rd and
4th branches are deadlocks (scenario III), and finally, the 5th and 6th derivations correspond
to scenario II. Let us see two selected branches in detail. In the first derivation, the third
macro-step executes register on location db and then ping on w. It is clear that location db

will not deadlock in this derivation, since the get at Line 25 will succeed and location w will
also be able to complete its tasks, namely, the get at Line 38 will succeed because the task
in getData will eventually finish as its location is not blocked. However, in the third branch,
we first select register (and block database waiting for the termination of ping), and then we
select work (blocking w waiting for the termination of getData). The get at Line 38 will never
succeed since it is awaiting for the termination of a task of a blocked location. Hence, we
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Figure 2.3: Systematic testing tree of working example

have a deadlock. Let us outline five states of this derivation:

S0 ≡ loc(0, 0, , {tsk(0,main, , )})·fut(f0, 0, 0, 2,⊥)
0.0−→

S1 ≡ loc(0, 0, , {tsk(1, simulate, , )})·fut(f0, 0, 0, 2, 0)·fut(f1, 0, 1, 6,⊥)
0.1−→

S2 ≡ loc(0, 0, ...)·loc(db,⊥, hdb, {tsk(2, reg, , )})·loc(w,⊥, hw, {tsk(3, wo, , )})· w.2−→
·fut(f0, 0, 0, 2, 0)·fut(f1, 0, 1, 6, 0)·fut(f2, db, 2, 22,⊥)·fut(f3, w, 3, 36,⊥)

db.2−→
S3 ≡ loc(db, 2, , {tsk(2, reg, f4.get)})·loc(w ,⊥, , {tsk(4 , ping , , ), })·...·fut(f4 ,w , 4 , 41 ,⊥)

w .3−→
S4 ≡ loc(w, 3, , {tsk(3, wo, f5.get)})·loc(db, 2 , , {tsk(5 , getData, , ), }·...·fut(f5 , db, 5 , 29 ,⊥)

w .2−→

The third state S2 is obtained after executing methods main and simulate. It contains
the initial location 0, the two locations created at Lines 7 and 9 resp., and the two tasks
created at Lines 10 and 11 resp. in the corresponding queues. Note that each location and
task is assigned a unique identifier (we use numbers as identifiers for tasks and short names
as identifiers for locations). In the next state, the task register has been selected and fully
executed (we have shortened the name of the methods, e.g., reg for register). Let us observe
the addition of the future variable created at Line 24 at S3. In S4 we have executed task
work in the worker and added a new future variable. This state is already deadlock as we
will see in Section 4.2. In the rest of the work, for clarity we use the location and task names
instead of numeric identifiers.





Chapter 3

A CLP-based Testing Framework

In this chapter we review the CLP-based testing framework for concurrent asynchronous
programs developed in previous work (namely it comprises the following three articles: [5,
19, 20]). The framework consists in two main phases. (1) The source asynchronous program
is transformed into an equivalent CLP program, which includes calls to specific operations
to handle non-native CLP features that include concurrency builtins for asynchronous calls,
task scheduling, and synchronization. The CLP-transformed program can be executed in
CLP as long as such operations are encoded in CLP. (2) Systematic and symbolic execution
is performed using CLP’s execution mechanism over the CLP-transformed program. The
use of CLP as the enabling technology for the testing framework has the following important
advantages that will become apparent throughout this chapter:

• CLP is well known to be a very appropriate paradigm to do meta-programming.

• CLP’s native backtracking mechanism allows systematically executing the program in
order to try out all non-deterministic task interleavings.

• CLP’s backtracking and constraint solving mechanisms allow performing symbolic ex-
ecution and test case generation [20].

3.1 CLP-translated Programs

Constraint Logic Programming is a programming paradigm that extends Logic Programming
with Constraint solving. It augments the LP expressive power and application domain while
maintaining its semantic properties (e.g., existence of a fixpoint semantics). In CLP, the bod-
ies of clauses may contain constraints in addition to ordi- nary literals. CLP integrates the
use of a constraint solver to the operational semantics of logic programs. As a consequence
of this extension, whereas in LP a computation state consists of a goal and a substitution,
in CLP a computation state also contains a constraint store. The special constraint literals
are stored in the constraint store instead of being solved according to SLD-resolution. The
satisfiability of the constraint store is checked by a constraint solver. The CLP paradigm
can be instantiated with many constraint domains. A particularly useful constraint domain
is CLP(FD) (Constraint Logic Programming over Finite Domains). CLP(FD) constraints

11
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are usually intended to be arithmetic constraints over finite integer domain variables. Our
framework will rely on CLP(FD) to translate conditional statements over integer variables
into CLP constraints. Moreover, the labeling mechanism is essential to concretize the ob-
tained test cases in order to obtain concrete input data amenable to be used and validated by
testing tools. The translation of imperative, object-oriented, and concurrent programs into
equivalent CLP-translated programs has been subject of previous work (see, e.g. [3, 5, 19]).
Therefore, we only state the features of the translated programs without going into deep
details of how the translation is done.

Definition 1 (CLP-translated program). The CLP-translated program for a given method
m from the original asynchronous program consists of a finite, non-empty set of predicates
m,m1, . . . ,mn. A predicate mi is defined by a finite, non-empty set of mutually exclusive
rules, each of the form mi(In, Out, Sin, Sout) : −[g, ]b1, . . . , bj., where:

1. In and Out are, respectively, the (possibly empty) list of input and output arguments.

2. Sin and Sout are, respectively, the input and (possibly modified) output states.

3. If mi is defined by more than one rule, then g is the constraint that guards the execution
of each rule, i.e., it must hold for the execution of the rule to proceed.

4. b1, . . . , bj is a sequence of instructions including arithmetic operations, calls to other
predicates, field accesses, and concurrent operations as defined in Figure 3.1.

Specifically, CLP-translated programs adhere to the grammar in Figure 3.1. As customary,
terminals start with lowercase (or special symbols) and non-terminals start with uppercase;
subscripts are provided just for clarity. Non-terminals Block, Num, Var, PP, MSig, FSig,
and C denote, respectively, the set of predicate names, numbers, variables, source program-
points, method signatures, field signatures, and class names. A clause indistinguishably
defines either a method which appears in the original source program (MSig), or an additional
predicate which corresponds to an intermediate block in the control flow graph of the original
program (Block). A field signature FSig contains the field name. An asterisk on a non-
terminal denotes that it can be either as defined by the grammar or a (possibly constrained)
variable (e.g., Num∗, denotes that the term can be a number or a variable). Location
references are written as terms of the form r(Ref ) or null. As expected, the operation
new location(Sin ,C ,Ref , Sout) creates a new location of class C in state Sin and returns
its assigned reference Ref and the updated state Sout; get field(S ,Ref ,FSig ,V ) retrieves
in variable V the value of field FSig of the location referenced by Ref in the state S; and,
set field(Sin ,Ref ,FSig ,V , Sout) sets the field FSig of the location referenced by Ref in Sin

to V and returns the modified state Sout. Implementations of these operations in CLP can be
found in [20]. Operations async/6, get/6 and return/3 simulate in CLP the asynchronous
concurrency and are explained later.

Figure 3.2 shows (a simplified and pretty-printed version of) the CLP-translated program
of our working example. Let us observe the following:

• Conditional statements and loops in the source program are transformed into guarded
rules and recursion in the CLP program, respectively. E.g. the if of the getData method
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Clause ::= Pred(Argsin,Argsout,Sin,Sout) :- [G,]B1,B2,. . . ,Bn.
G ::= Num* ROp Num* | Ref∗1 \== Ref∗2
B ::= Var #= Num* AOp Num*

| Pred(Argsin,Argsout,Sin,Sout)
| new location(Sin,C∗,Ref∗,Sout) | async(Sin,Ref*,Call,Var,PP,Sout)
| return(Sin,Var,Sout) | get(Sin,Var,Var,PP,Call,Sout)
| get field(Sin,Ref∗,FSig,Var) | set field(Sin,Ref∗,FSig,Data∗,Sout)

Call ::= Pred(Argsin,Argsout)
Args ::= [ ] | [Data∗|Args ]
Data ::= Num | Ref

Ref ::= null | r(Var)

Pred ::= Block | MSig
ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

S ::= Var

Figure 3.1: Syntax of CLP-translated programs

is encoded in CLP by means of predicate if3/4, whereas the while of the main method
is encoded by the recursive rule while/4. Mutual exclusion between the rules of a
predicate is ensured either by means of mutually exclusive guards, or by information
made explicit on the heads of rules, as usual in CLP.

• A global state, which includes the locations (with their fields and task queues) and the
future variables, is explicitly handled. Observe that each rule includes as arguments an
input and an output state (3rd and 4th arguments respectively). The state is carried
along the execution being used and transformed by the corresponding operations as a
black box, therefore it is always a variable in the CLP program. The operations that
modify the state are explained later.

• An additional predicate is produced for the continuation after a get statement. The
call to such continuation predicate is included within the arguments (5th argument) of
the get/6 operation (see e.g. the second rule of if1/4). This allows implementing in
CLP the concurrent behavior of asynchronous programs. Namely, a task can suspend
its execution due to a blocking synchronization, and afterwards, when the awaiting
task has finished, the task has to resume its execution at this precise point.

• Exceptional behavior is ignored for simplicity but can be easily handled by means of
additional guarded rules and an exception flag in an additional parameter (see [20] for
details).

• Predicates contains/4 and add/4 are the CLP-translated versions of the library op-
erations contains and add. They are basically equivalent, resp., to the classical Prolog
predicates member/2 (returning true/false instead of succeeding/failing) and append/3

(with a unitary list in the second argument with the element to be added). The last
two arguments (input and output states) are ignored.
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43 main([This],0,S0,S2) :-

44 async(S0,This,

45 simulate([This,1],_),_,6,S1),

46 return(S1,0,S2).

47

48 simulate([This,N],R,S0,S2) :-

49 new_location(S0,’DB’,DB,S1),

50 while([N,DB],R,S1,S2).

51 while([N,_],0,S0,S1) :-

52 N #=< 0, return(S0,0,S1).

53 while([N,DB],R,S0,S4) :-

54 N #> 0,

55 new_location(S0,’Worker’,W,S1),

56 async(S1,DB,

57 register([DB,W],_),_,22,S2),

58 async(S2,W,work([W,DB],_),_,36,S3),

59 N2 #= N - 1,

60 while([N2,DB],R,S3,S4).

61

62 register([This,W],R,S0,S1) :-

63 get_field(S0,This,checkOn,Ch),

64 if1([This,W,Ch],R,S0,S1).

65 if1([_,_,false],R,S0,S1) :-

66 cont1([],R,S0,S1).

67 if1([This,W,true],R,S0,S2) :-

68 async(S0,W,ping([W,5],_),F,41,S1),

69 get(S1,F,FV,25,if2([This,W,FV],R),S2).

70 if2([_,_,FV],R,S0,S1) :-

71 FV #\= 5,

72 cont1([],R,S0,S1).

73 if2([This,W,5],R,S0,S1) :-

74 get_field(S0,This,clients,Cls),

75 add([Cls,W],Cls2,_,_),

76 set_field(S0,This,clients,Cls2,S1),

77 cont1([],R,S1,S2).

78 cont1([],0,S0,S1) :- return(S0,0,S1).

79

80 getData([This,W],R,S0,S1) :-

81 get_field(S0,This,clients,Cls),

82 contains([Cls,W],RC,_,_),

83 if3([This,RC],R,S0,S1).

84 if3([_,false],null,S,S1) :-

85 return(S0,null,S1).

86 if3([This,true],Data,S0,S1) :-

87 get_field(S0,This,data,Data),

88 return(S0,Data,S1).

89

90 work([This,DB],R,S0,S2) :-

91 async(S0,DB,getData([DB],_),F,29,S1),

92 get(S1,F,FV,38,cont2([FV],R),S2).

93 cont2([FV],FV,S0,S1) :- return(S0,FV,S1).

94

95 ping([_,N],N,S0,S1) :- return(S0,N,S1).

Figure 3.2: CLP-translated program for the working example

3.2 Systematic (Concrete) Execution

The standard CLP execution mechanism suffices to execute the CLP-translated programs
as long as we provide a suitable implementation of all operations that manipulate the state.
Also, just by providing a CLP non-deterministic task selection function, CLP’s native back-
tracking mechanism will allow systematically executing the asynchronous program in order
to try out all non-deterministic task interleavings. In the following we define the global state
and the operations to manage it.

3.2.1 The Global State

The global state carried along by the CLP-translated program is analagous to that of the
language semantics of Chapter 2:
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S ::= (Locs,Futs)
Locs ::= [ ] | [loc(Num,Lock ,Fields,Q)|Locs]
Futs ::= [ ] | [fut(Num,Num,Num,PP ,RetVal)|Futs]

Fields ::= [ ] | [field(FSig ,Data)|Fields]
Q ::= [ ] | [tsk(Num,MSig ,Call ,PP ,TskInfo)|Q ]

Lock ::= bot | active(Num) | blocked(Num)
RetVal ::= bot | Data

TskInfo ::= call | get(Var ,Num)

The state is represented as a pair with two lists, the list of locations and the list of future
variables. Locations and future variables are represented as loc/4 and fut/5 terms respec-
tively, including the same parameters as in the semantics of Chapter 2. Namely, locations
include the location identifier and lock, the list of fields and the queue of pending tasks;
and, future variables include the future identifier, the location, task identifier, initial pro-
gram point and return value of the task for which the future is awaiting. The return value
is bot if the task has not finished yet. Fields are represented as field/2 terms containing
the field signature and its associated data. The location’s lock is bot if the lock is free,
active(TkId) if this is the active location which is executing task TkId (there is only one
active location in the state), or blocked(TkId) if task TkId is holding the location’s lock.
Finally, the queue of pending tasks is represented as a list of tsk/5 terms, which includes the
identifier, method signature, CLP call and initial program point of the pending task. The
last parameter TskInfo indicates whether the task is an asynchronous call (call/0 term) or
a resumption after a get statement (get/2 term, including the future variable identifier and
CLP variable to store its value). Our tsk/5 terms differ from the tsk terms of the semantics
of Chapter 2 in the following: (1) In CLP we do not need the local variables mapping (it is
managed by the CLP engine); (2) the sequence of instructions is represented as a CLP call
(which is a continuation predicate in the case of resumption tasks); and, (3) in CLP we add
two additional parameters (the last two ones), the initial program point and the TskInfo
term.

Example 1. Let us consider the systematic execution of the main method of our working
example. After executing Line 55, we obtain the following state: S1 = (Locs1,Futs1) where

Locs1 = [loc(0, active(1), [ ], [tsk(1, simulate, simulate([r(0), 1], Ret), 6, call)]),
loc(1, bot, [field(data, ..), field(clients, null), field(checkOn, true)], [ ]),
loc(2, bot, [field(data, null)], [ ])], and

Futs1 = [fut(0, 0, 0, 2, 0), fut(1, 0, 1, 6, bot)].

As expected, two new locations appear in the state. None of them is executing, so their locks
are bound to bot; their fields have the initial values and their queues are empty since we
have not performed any asynchronous call yet. Location 0 has finished task main, hence its
related future variable (fut 0) has the return value 0. However, the return value of future
variable 1 is bot since task simulate has not finished yet. 2

3.2.2 Distribution, Concurrency and Synchronization

Figure 3.3 shows the relevant part of the CLP implementation of the operations that simulate
in CLP the distribution, concurrency, and synchronization of our asynchronous programs.
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Essentially, they correspond to the rules with the same names in the semantics of Figure 2.1.
Specifically:

• Predicate async/6, given a state S, builds and adds a call task with Call and its initial
program point PP to the queue of location LocId (by means of predicate add task/7);
and builds and adds a fut/5 term linked to the new task to the list of futures (by
means of add future/6), resulting in state S3. The call to fresh fut/1 in Line 105
produces a fresh integer future identifier which is stored in the corresponding fut/5
term and bound to the local variable Fut in Line 106.

• Predicate return/3, given a state S, sets the value of the future variable corresponding
to the task that has just finished with the value of local variable Ret, and then calls
mstep/3 to switch context to the following macro-step (if possible), resulting in the
final state S3.

• Predicate get/6, given a state S, if the future variable Fut is ready, i.e., if it is not bot,
(first rule) then the value of the future is bound to FutVal and the execution proceeds
using the continuation predicate Cont with initial state S and final state S2 by means
of run task/3. Predicate run task/3 simply builds a full call putting together Cont
and the states S and S2, and performs a meta-call with it.

• Predicate mstep/3 either finishes the execution (first rule), in case there are no more
tasks to be executed (select task/2 fails), or selects (non-deterministically) an en-
abled task Task from a non-blocked location (second rule) and continues the execution
calling Task with initial state S2 and final state S3 (predicate run task/3). Predicate
update locks/4 sets accordingly the locks of both the location which was previously
executing and the one which is about to start. The Status term, which is set in the
calls to mstep/3 from predicates return/3 (Line 110) and get/6 (Line 120), allows
knowing whether the previous macro-step had ended in a return or in a blocked get,
so that bot or blocked(Id) respectively is set on the previously active location’s lock.

The systematic execution of an asynchronous program in our CLP-based framework is
then perfomed just by launching in CLP the goal

:- main([r(0)],Ret,SIn,SOut).

with initial state SIn = ([L0],[F0]), being L0 = loc(0,active(0),[],[tsk(0,main, main([],

Ret),1,call)]) and F0 = fut(0,0,0,1,bot). This will compute, for each derivation, the re-
turn value and final state in variables Ret and SOut, respectively.

Example 2. Let us continue the systematic execution of our working example from the state
in Example 1. After the call to async/6 in Line 56, we obtain the state (Locs2,Futs2)

where:

Locs2 = [loc(0, active(1), [ ],[tsk(1, simulate, simulate([r(0), 1], Ret), 6, call)]),
loc(1, bot,[field(data,..), field(clients, null), field(checkOn, true)],

[tsk(2, register, register([r(1), r(2)], Ret2), 22, call)]),
loc(2, bot,[field(data, null)], [ ])], and

Futs2 = [fut(0, 0, 0, 2, 0), fut(1, 0, 1, 6, bot), fut(2, 1, 2, 22, bot)].
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96 mstep(S,_,S) :-

97 \+ select_task(S,_).

98 mstep(S,Status,S3) :-

99 select_task(S,Task),

100 update_locks(S,Task,Status,S2),

101 run_task(Task,S2,S3).

102

103 async(S,LocId,Call,Fut,PP,S3) :-

104 add_task(S,LocId,call,Call,PP,TaskId,S2),

105 fresh_fut(FutId),

106 Fut = FutId,

107 add_future(S2,FutId,LocId,TaskId,PP,S3).

108 return(S,Ret,S3) :-

109 set_fut_value(S,Ret,S2),

110 mstep(S2,return,S3).

111

112 get(S,Fut,FutVal,_PP,Cont,S2) :-

113 ready(S,Fut), !,

114 get_fut_value(S,Fut,FutVal),

115 run_task(Cont,S,S2).

116 get(S,Fut,FutVal,PP,Cont,S3) :-

117 get_this_id(S,ThisId),

118 add_task(S,ThisId,get(Fut,FutVal),

119 Cont,PP,_,S2),

120 mstep(S2,PP:Fut:get,S3).

Figure 3.3: CLP operations for distribution, concurrency, and synchronization

We can observe how asynchronous calls do not transfer control from the caller, i.e., they
are not executed when they occur, but rather added as pending tasks on the receiver locations
that will eventually schedule them for execution. We now continue the execution until the
end of method simulate (Line 60). The return operation sets the value of the future and
calls mstep/3 to switch context and select non-determinitically the task to be executed next.
Let us assume task work is chosen and starts to execute. The call to the get at Line 92 first
checks whether the future variable of the call to getData is already available. Since it is not
the case (i.e, Fut is bound to bot) the execution of the current task cannot proceed, therefore
the corresponding get task is added to the current location (so that it can be resumed later
on) and mstep/3 is called again. The current state is (Locs3,Futs3) where:

Locs3 = [loc(0, active(1), [ ], [ ]),
loc(1, bot,[field(data, ..), field(clients, null), field(checkOn, true)],

[tsk(2, register, register([r(1), r(2)], Ret2), 22, call)
tsk(4, getData, getData([r(1), r(2)], Ret4), 29, call)]),

loc(2, bot,[field(data, null)], [tsk(3, work, cont2([FV], Ret3), 38, get)])]), and
Futs3 = [fut(2, 1, 2, 22, bot), fut(3, 2, 3, 36, bot), fut(4, 1, 4, 29, bot), ...].

The full derivation tree contains 6 successful branches that correspond to those of Figure 2.3.
2

3.3 Symbolic Execution

It is shown in [20] that in the context of a sequential source language without support
for dynamic memory, the symbolic execution of a method using the CLP-translated pro-
gram is attained by simply using the standard CLP execution mechanism just calling the
corresponding predicate with all arguments being free variables. However, in the case of
heap-manipulating programs, the straighforward definition of the heap-related operations
one could imagine fall short to generate arbitrary heap-allocated data structures correctly
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handling aliasing during symbolic execution. In [20], we can find the definition of heap-
related operations that allow performing symbolic execution and that can be used directly
in our CLP-based framework for asynchronous programs. Given the heap-related operations
and the CLP operations for concurrency, the inherent constraint solving and backtracking
mechanisms of CLP provide the support for keeping track of path conditions (or constraint
stores), failing and backtracking when unsatisfiable constraints are hit, hence discarding such
execution paths; and succeeding when satisfiable constraints lead to a terminating state in
the program. Thus, the symbolic execution of a method m in our source asynchronous
program is performed in our CLP-based framework just by launching in CLP the goal

:- m(In,Ret,SIn,SOut).

with initial state SIn =([L0|RL],[F0]) being L0 = loc(0,active(0),Fields,[tsk(0,m,m(In,

Ret),PP,call)]), F0 = fut(0,0,0,PP,bot), where the input arguments are In = [r(0)|Args],
PP the initial program point of method m, and Args, Fields, Ret, RL, and SOut free vari-
ables. Variable RL represents the rest of the locations in the input state, which is unknown,
and will be bound during the symbolic execution with (partially symbolic) locations. As a
result, we will obtain, for each feasible execution path, the constraints on the inputs and
outputs for the path, i.e., the so-called path conditions.

Example 3. Let us perform a symbolic execution of method getData with a completely
unknown input. Specifically, the input arguments are In = [r(0),r(W)], and the initial state
is SIn = ([L0|RL],[F0]) being

L0 = loc(0, active(0), [field(data, D), field(clients, Cls), field(checkOn, T)],
[tsk(0, getData, getData(In, Ret), 29, call)]) and

F0 = fut(0, 0, 0, 29, bot),

The following path conditions are obtained for the first three explored derivations:

1. {Cls = [], Ret = null}, i.e., if the clients list is empty, it returns null,

2. {Cls = [r(X)], X 6= W, Ret = null}, i.e., if the worker is not in the list, it returns
null, and

3. {Cls = [r(W)| ], Ret = D}, i.e., if the worker is in the head of the list, it returns D.
2

Due to the execution of the contains/4 predicate with a variable list, the exploration contin-
ues infinitely producing lists of increasing length with and without r(W) at different positions.

In general, in symbolic execution, as soon as the source program has loops or recursion
whose termination depends on unknown data, the derivation tree can be infinite. It is
therefore necessary to establish a termination criterion, which guarantees that the number
of paths traversed remains finite, while at the same time the obtained coverage on the source
program is meaningful. One of the standard termination/coverage criteria is the loop-k
criterion, which limits to a certain threshold the allowed number of iterations on each loop
(or recursive calls). E.g., in the above example, if we set k = 1, the exploration finishes with
the three successful derivations above. Unfortunately, in the context of concurrent programs,
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the application of this criterion to all tasks of a state does not guarantee termination of the
whole process. As studied in [7] it is required to take into account more factors that threaten
termination. Namely, in symbolic execution, (1) we can switch from one task to another
one an infinite number of times, and, (2) we can create an unbounded number of actors.
Termination/coverage criteria taking into account those factors are defined in [7] and are
simply adopted in our symbolic execution framework.

Example 4. Let us now perform a symbolic execution of method simulate for an unknown
input n. If we set loop-k with k = 1, we obtain seven derivations. The first one produces the
condition N #=< 0 and finishes with no workers in the output state and no executed tasks in
the database. The other six derivations include the path-condition N = 1 and correspond to
those of Example 2 (see also Figure 2.3). In case the loop limit is k = 2, we obtain a total
of 1321 derivations, out of which 50 of them are deadlock. 2





Chapter 4

Deadlock-Guided Testing

As already mentioned, systematically exploring all different task interleavings of a concur-
rent program, even applying the most advanced techniques to eliminate redundancies (see
Chapter 8), presents scalability problems. In the case of symbolic execution, the problem is
exacerbated by the intrinsic non-determinism of symbolic execution produced in branching
statements involving partially unknown data. In this chapter we present two complemen-
tary techniques to reduce the state space exploration when the goal is to find deadlocks,
both in concrete and symbolic execution. First, Section 4.1 proposes an extension of the
program state to store information about the task interleavings made and the status of
tasks. Section 4.2 provides a formal characterization of deadlock states using the above
extension, which can be checked during the execution allowing us to early detect deadlocks.
Section 4.3 presents a new methodology to guide the exploration towards paths that might
lead to deadlock (discarding deadlock-free paths), by relying on the information inferred
by a static deadlock analysis. Finally, Section 4.4 introduces several deadlock-based testing
criteria focused on exposing deadlock bugs.

4.1 The Interleavings Table

The interleavings table stores all decisions about task interleavings made during the exe-
cution. This way, at the end of a concrete execution, the exact ordering of the performed
macro-steps can be observed. Specifically, the Interleavings Table (IT ) is defined as a map-
ping with entries of the form to,tk ,pp 7→ 〈n, ρ〉, where:

• to,tk ,pp is a macro-step identifier, or time identifier, that includes: the identifiers of the
location o and task tk that have been selected in the macro-step, and the program
point pp of the first instruction that will be executed;

• n is an integer representing the clock-time when the macro-step starts executing;

• ρ is the status of the task after the macro-step and it can take the following values:
(1) pp:f.get when the macro-step ended on a get on a (non-ready) future variable f at
program point pp; or (2) return when the task finished.

21
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S1 t0,main,2 7→ 〈0, return〉 ∅
S2 t0,simulate,6 7→ 〈1, return〉 ∅
S3 tdb,reg,22 7→ 〈2, 25:f4.get〉 fut(f4, w, ping, 41,⊥)
S4 tw,work,36 7→ 〈3, 38:f5.get〉 fut(f5, db, getData, 29,⊥)

Table 4.1: Interleavings table for a derivation of our running example.

As notation, we say that t ∈ IT if there exists an entry t 7→ 〈n, ρ〉 ∈ IT , and we define
the function status(t , IT ) which returns the status ρt such that t 7→ 〈n, ρt〉 ∈ IT . The
following extensions are done to our CLP semantics:

• We extend the program state with two new arguments: an interleavings table and a
clock. The clock is a natural number. Its value in the initial state is 0, and it is incre-
mented at each new macro-step. Then, a new program state is s(Locs ,Futs , IT ,C ),
where Locs and Futs is the set of locations and future variables, respectively; IT is
the interleavings table, and C is the current clock value.

• The initial state starts with an empty interleavings table and a value 0 for the clock.

• The second clause of rule mstep/3 is extended as follows:

mstep(S,Status,S4) :-

add_entry_it(S,Status,S2),

select_task(S2,Task),

update_locks(S2,Task,Status,S3),

run_task(Task,S3,S4).

Predicate add entry it/3 adds a new entry to,tk ,pp 7→ 〈n, ρ〉 to the interleavings table
of state S for the macro-step that has just finished, resulting in state S2. The o, tk , pp,
and n are obtained from S (resp. from the active location, active task, initial program
point of the active task and states’s clock). The ρ is the Status parameter which gets
instantiated in the calls to mstep/3 from rules return/2 and get/6. In S2 the clock
is also incremented for the next macro-step.

Example 5. The interleavings table in Figure 4.1 is computed for the derivation in Sec-
tion 2.1. It has as many entries as macro-steps in the derivation. We can observe that
subsequent time values are assigned to each time identifier so that we can then know the
order of execution. The rightmost column shows the future variables in the state that store
the location and task they are bound to. 2

4.2 Early Deadlock Detection

Deadlocks can be easily detected in our CLP framework just by adding the following check
to function selectTask : “if no task can be selected and there is at least a location with a
non-empty task queue then there is a deadlock”. However, deadlocks can be detected earlier.
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To this aim, we present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other’s termination and none
of them can make any progress. Note that, from a deadlock state, there might be tasks that
keep on progressing until the deadlock is finally made explicit. Even more, if one of those
tasks runs into an infinite loop, the deadlock will not be captured using the above check.
The early detection of deadlocks therefore allows reducing state exploration.

We first introduce the auxiliary notion of blocking interval which captures the period in
which a task is waiting for another one to terminate. In particular, it is defined as a tuple
(tstop, tasync, tresume) where tstop is the macro-step at which the location stops executing a
task due to some get instruction, tasync is the macro-step at which the task that is being
awaited is selected for execution, and tresume is the macro-step at which the task will resume
its execution. tstop, tasync, and tresume are time identifiers as defined in Section 4.1. tresume

will also be written as next(tstop). When the task stops at tstop due to a get instruction,
we call it blocking interval, as the location remains blocked between tstop and next(tstop)
until the awaited task, selected in tasync, has finished. The execution of a task can have
several points at which macro-steps are performed (e.g., if it contains more than one get,
the execution may choose another actor several times). For this reason, we define the set
of successor macro-steps of the same task from a macro-step: suc(to,tk ,pp0 , IT ) = {to,tk ,ppi :
to,tk ,ppi ∈ IT, to,tk ,ppi ≥ to,tk ,pp0}.

Definition 2 (Blocking Interval). Let S = s( ,Futs , IT, ) be a state. We say that
I = (tstop, tasync, tresume) is a blocking interval of S, written as I ∈ S, iff there exists tstop ≡
to,tk0,pp0 ∈ IT such that status(tstop, IT ) = pp1:x.get and fut(x, ox, tkx, pp(M),⊥) ∈ Futs
where:

• tresume ≡ to,tk0,pp1, and

• tasync ≡ tox,tkx,pp(M).

In Condition 2, we can see that if the task starting at tasync has finished, then it is not a
blocking interval. This is known by checking that this task has not reached return, i.e., @ t ∈
suc(tasync, IT ) such that status(t) = return or fut(x, ox, tkx, pp(M),⊥) ∈ Futs . In Condition
1, we see that in ρstop we have the name of the future we are awaiting (whose corresponding
information is stored in fut , Condition 2). In order to define tresume in Condition 2, we search
for the same task tk 0 and same location o that executes the task starting at program point
pp1 of the get, since this is the point that the macro-step rule uses to define the macro-step
identifier to,tk0,pp1 associated to the resumption of the waiting task.

Example 6. Let us consider again the derivation in Section 2.1. We have the follow-
ing blocking interval (tdb,reg,22, tw,ping,41, tdb,reg,25) ∈ S3 with S3 ≡ s( ,Futs3, IT3, ), since
tdb,reg,22 ∈ IT3, status(tdb,reg,22, IT3) = [25:f.get], and fut(f, w, ping, 41,⊥) ∈ Futs3. This
blocking interval captures the fact that the task at tdb,reg,22 is blocked waiting for task ping to
terminate. Similarly, we have the following interval in S4: (tw,work,36, tdb,getData,29, tw,work,38).

2

The following notion of deadlock chain relies on the blocking intervals of Definition 2 in
order to characterize chains of calls in which intuitively each task is waiting for the next one
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to terminate until the last one which is waiting on the termination of a task executing on
the initial location (that is blocked). Given a time identifier t, we use loc(t) to obtain its
associated location identifier.

Definition 3 (Deadlock Chain). Let S = s( , , IT, ) be a state. A chain of time identifiers
t0, ..., tn is a deadlock chain in S, written as dc(t0, ..., tn) iff

∀ti ∈ {t0, ..., tn} s.t. (ti, t
′
i+1, next(ti)) ∈ S

and one of the following conditions holds:
1. ti+1 ∈ suc(t′i+1, IT ), or

2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking,
and Condition 2 holds for tn with tn+1 ≡ t0.

Let us explain the two conditions in the above definition: In Condition 1, we check that
when a task ti is waiting for another task to terminate, the blocking interval contains the
initial time t′i+1 in which the task will be selected. However, we look for any blocking interval
for this task ti+1 (thus we check that ti+1 is a successor of time t′i+1). As in Definition 6, this
is because such task may have started its execution and then suspended due to a subsequent
get instruction. Abusing terminology, we use the time identifier to refer to the task executing.
In Condition 2, we capture deadlock chains which occur when a task ti is waiting for the
termination of another task t′i+1 which executes on a location loc(t′i+1), which is blocked.
The fact that is blocked is captured by checking that there is a blocking interval from a task
ti+1 executing on this location. Finally, note the circularity of the chain, since we require
that tn+1 ≡ t0.

We state that a state S is a deadlock state if and only if there exists a deadlock chain in
S and it will be proven in Theorem 3. This early deadlock detection is integrated into our
CLP semantics just by adding the following clause as the new first clause of rule mstep/3.

mstep(S,_,S) :- deadlock(S), !.

where the deadlock/1 predicate checks whether the conditions in Definition 3 hold.
We prove that our definition of deadlock is equivalent to the standard definition of dead-

lock of [15]. Definition 4 introduces the concept of deadlock dependencies graph GS of the
state S. Based on this definition, authors state that if there is a cycle in the graph GS, then
the program (state S) is deadlock.

Definition 4 (Deadlock Dependencies Graph). Given a program state S = s(Locs ,Futs , , ),
where Locs and Futs are, respectively, the set of locations and futures, we define its depen-
dencies graph GS as the graph whose nodes are the existing location and task identifiers and
whose edges are defined as follows:

1. Location-Task : o → tk 2 iff there are two locations loc(o, tk , h,Q),
loc(o2, , h2,Q2) ∈ Locs, two tasks tsk(tk ,m, l, y.get; s) ∈ Q
tsk(tk 2,m2, l2, s2) ∈ Q2 and a future fut(y, o2, tk 2,m2,⊥) ∈ Futs .

2. Task-Task : tk 1 → tk 2 iff there are two locations loc(o, , h,Q),
loc(o2, , h2,Q2) ∈ Locs, two tasks tsk(tk 1,m1, l1, y.get; s) ∈ Q
tsk(tk 2,m2, l2, s2) ∈ Q2 and a future fut(y, o2, tk 2,m2,⊥) ∈ Futs .

3. Task-Location : tk → o iff there is a location loc(o, tk 2, h,Q) ∈ Locs and a task
tsk(tk ,m, l, s) ∈ Qs.t.tk 2 6= tk and fut(y, o, tk , pp(m),⊥) ∈ Futs .
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The first type of dependency corresponds to the notion of blocking task and blocked
location and the other two to waiting tasks. Dependencies are created as long as the task we
are waiting for is not finished. Observe that a get instruction will generate two dependencies,
whereas non-blocking synchronization instructions would generate only a dependency (task-
task). Besides, every task without the location’s lock (which is not finished) has a dependency
to its location.

To prove equivalence between our approach and the one in [15], we define a new depen-
dencies graph based on the information stored by the interleavings table and the set of future
variables and in Theorem 1, we prove both graphs are equivalent.

Definition 5 (GFuts
IT ). Given a state S = (Locs ,Futs , IT , ) and an interleavings table IT ,

we define the interleavings graph GFuts
IT as the tuple <N,E> whose set of nodes N is defined

as:

N = {o : fut( , o, , , ) ∈ Futs} ∪ {tk : fut( , , tk , , ) ∈ Futs}

and whose set of edges E is composed of:

1. Location-Task: o → tk 2 iff ∃ t ∈ IT such that

t ≡ to,tk ,pp, status(t, IT ) = pp1:x.get and fut(x , o2 , tk2 , pp2 ,⊥) ∈ Futs

2. Task-Task: tk → tk 2 iff ∃ t ∈ IT such that

t ≡ to,tk ,pp, status(t, IT ) = pp1:x.get and fut(x , o2 , tk2 , pp2 ,⊥) ∈ Futs

3. Task-Location: tk → o iff

∃fut(x, o, tk , pp,⊥) ∈ Futs

Theorem 1. Given a state S=s( ,Futs , IT , ), then

GS ≡ GFuts
IT

Proof. In order to see they are exactly the same graph, we need to check that (1) both have
the same nodes and (2) both have the same edges. (1) is straightforward since nodes in
GS are all the location and task identifiers and nodes in GFuts

IT are the location and task
identifiers present in every future variable in Futs . But, there exists a future variable for
each new task created (see rule async in Figure 2.1), so we have the same set of nodes in
both graphs. Let us prove (2). We study every edge type on its own:

1. o → tk 2 ∈ GS ⇔
there are two locations loc(o, tk , h,Q),
aaloc(o2, , h2,Q2) ∈ Locs , two tasks tsk(tk ,m, l, y.get; s) ∈ Q
aatsk(tk 2,m2, l2, s2) ∈ Q2 and a future variable fut(y, o2, tk 2,m2,⊥) ∈ Futs ⇔
∃t≡to,tk ,pp ∈ IT such that status(t, IT ) = pp1:y.get and fut(y , o2 , tk2 ,m2 ,⊥) ∈ Futs ⇔
o → tk 2 ∈ GFuts

IT
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2. tk 1 → tk 2 ∈ GS ⇔
there are two locations loc(o, , h,Q),
aaloc(o2, , h2,Q2) ∈ Locs , two tasks tsk(tk 1,m1, l1, y.get; s) ∈ Q
aatsk(tk 2,m2, l2, s2) ∈ Q2 and a future variable fut(y, o2, tk 2,m2,⊥) ∈ Futs ⇔
∃t≡to,tk1,pp∈IT such that status(t, IT ) = pp1:y.get and fut(y , o2 , tk2 ,m2 ,⊥) ∈ Futs ⇔
o → tk 2 ∈ GFuts

IT

3. tk → o ∈ GS ⇔
there is a location loc(o, tk 2, h,Q) ∈ Locs and a task tsk(tk ,m, l, s) ∈ Q such that
aatk 2 6=tk and fut(y, o, tk , pp(m),⊥) ∈ Futs ⇔ ∃fut(y, o, tk , pp,⊥) ∈ Futs ⇔
tk → o ∈ GFuts

IT

Corollary 1. Given a state S = s( ,Futs , IT , ), GS contains a cycle if and only if GFuts
IT

contains a cycle.

Furthermore, the following lemma is used in Theorem 2. The proof can be found in [15].

Lemma 1. Let S be a reachable state and Gtt
S be the dependencies graph taking only task-task

dependencies. If future variables cannot be stored in fields, Gtt
S is acyclic.

As a consequence, GS does not have cycles only composed of task-task edges and, by
Theorem 1, GFuts

IT does not have either. So, if there exists a cycle in GFuts
IT , then it is composed

of, at least, one location identifier.
Let us consider now a deadlock chain dc({t0, ..., tn}) ∈ S, and let us see (1) how to build a
path (a cycle) in GFuts

IT using Definition 3 and (2) how to generate a deadlock chain from a
cycle in GFuts

IT .

Theorem 2. Given a state S = s( ,Futs , IT , ), there is a deadlock chain dc({t0, ..., tn}) ∈
S if and only if there is a cycle inside GFuts

IT .

Proof. We have to prove this double implication. First, we prove by induction that if there
exists a deadlock chain in the state, then there is a cycle in GFuts

IT . After that, we prove that
if there is a cycle in GFuts

IT , then we obtain a deadlock chain in the state. We proceed by
induction on the length of the deadlock chain:

• Base case: Let {to,tk ,pp} ∈ S be a sequence of times of length 1, satisfying Conditions
1 or 2 in Definition 3. By Definition 2, (to,tk ,pp, to2,tk2, , ) ∈ S. Then, status(to,tk ,pp, IT ) =

: x.get and fut(x, o2, tk 2, ,⊥) ∈ Futs .
Using this information, we can conclude there exist three edges o → tk 2, tk → tk 2 and
tk 2 → o2. So, o → tk 2 → o2 and tk → tk 2 → o2 are paths of length 2 inside GFuts

IT .

Now, by Definition 3, if to,tk ,pp satisfies Condition 2, thus loc(to2,tk2, ) = (to,tk ,pp), that
means, o2 = o. Then, the path o → tk 2 → o2 is equals to o → tk 2 → o and, finally,
we get a cycle inside GFuts

IT .

• Induction Hypothesis (n): Let {t0, ..., tn−1} ∈ S be a sequence of times satisfying
Conditions 1 or 2 in Definition 3. Then, the sequence of times {t0, ..tn−1} rises up a
path inside GFuts

IT and, if dc({t0, ..., tn−1}) ∈ S, then this path is a cycle in GFuts
IT .
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• Inductive Step (n+1): Let {to0,tk0,pp0 , ..., ton,tkn,ppn} ∈ S be a sequence of times of
length n+1 satisfying Conditions 1 or 2 in Definition 3. By definition, (ton−1,tkn−1,ppn−1 ,
ton,tkn, , ) ∈ S. Then, status(ton−1,tkn−1,pp, IT ) = :x.get and fut(x, on, tkn, ,⊥) ∈ Futs .
Using this information, we can conclude there exist three edges on−1 → tkn, tkn−1 →
tkn and tkn → on. So, by induction hypotesis over {to0,tk0,pp0 , ..., ton−1,tkn−1,ppn−1} we
have that:

– if ton−1,tkn−1,ppn−1 holds 1 in Definition 3, we obtain a path o0 → tk 1→ ..→ tkn−1.
Now, if we take in account the three aforementioned edges, we obtain the path
o0 → tk 1 → ..→ tkn−1 → tkn → on of length 2 inside GFuts

IT .

– if ton−1,tkn−1,ppn−1 holds Condition 2 in Definition 3, we obtain a path o0 → tk 1 →
..→ on−1. Now, if we take in account the three aforementioned edges, we obtain
the path o0 → tk 1 → ..→ on−1 → tkn → on of length 2 inside GFuts

IT .

Let us consider ton,tkn,ppn , satisfying Condition 2. By definition, there exists a blocking
interval (ton,tkn,ppn , ton+1,tkn+1,ppn+1 , ) ∈ S, then there exist three edges on → tkn+1,
tkn → tkn+1 and tkn+1 → on+1. But, on+1 = o0 (Condition 2 in Definition 3), then we
get one of two cycles in GFuts

IT : o0 → tk 1 → .. → tkn−1 → tkn → on → tkn+1 → o0 or
o0 → tk 1 → ..→ on−1 → tkn → on → tkn+1 → o0.

Now, we prove that for each cycle inside GFuts
IT , there exists a deadlock chain in S. First

of all, by Lemma 1, we know that there cannot be cycles only composed of task identifiers.
Thus, every cycle has the form o0 → ...→ tkn → o0. Let us proceed again by induction on
the cycle length.

• Base Case (3): Let o0 → tk 1 → o1 be a path inside GFuts
IT . Then, by definition

of the first edge, we get ∃to0,tk0,pp0 ∈ IT such that status(to0,tk0,pp0) = pp1:x.get and
fut(x, o1, tk 1, pp2,⊥) ∈ Futs . But, we also have ∃fut(y, o1, tk 1, pp3,⊥) ∈ Futs because
of the second edge. Then, ∃(to0,tk0,pp0 , to1,tk1,pp2 , to0,tk0,pp1) ∈ S. Now, if o0 = o1, then
Condition 2 in Definition 3 holds trivially, thus ∃dc(to0,tk0,pp0) ∈ S.

• Induction Hypothesis (n): Let o0 → tk 1 → ... → tkn → on be a path in GFuts
IT .

Then, ∀i ∈ [0, n− 1],∃(toi,tk i,ppi , t
′
oi+1, ) ∈ S satisfying Conditions 1 or 2 in Definition

3, and if on = o0, then ton,tkn,ppn satisfies Condition 2, that is, there exists a deadlock
chain dc({to0,tk0,pp0 , ..., ton−1,tkn−1,ppn−1}) ∈ S.

• Inductive Step (n+1): Let o0 → tk 1 → ... → tkn+1 → on+1 be a path in GFuts
IT .

Then, the cycle has the form of one of the following: o0 → tk 1 → ...→ on → tkn+1 →
on+1 or o0 → tk 1 → ...→ tkn → tkn+1 → on+1.

1. If it has the form o0 → tk1 → ...→ on → tkn+1 → on+1, then we apply the induc-
tion hypothesis on the bold part and we obtain a set of times {to0,tk0,pp0 , ..., ton,tkn,ppn}
which satisfy Conditions 1 or 2 in Definition 3, but because of the last bold node,
we ensure that ton,tkn,ppn satisfies Condition 2.

2. If it has the form o0 → tk1 → ...→ tkn → tkn+1 → on+1, then we apply the
induction hypothesis on the bold part and we obtain a set of times {to0,tk0,pp0 , ...,
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ton,tkn,ppn} which satisfy Conditions 1 or 2 in Definition 3, but because of the last
bold node, we ensure that ton,tkn,ppn satisfies 1.

Now, by Definition of GFuts
IT , both edges on → tkn+1 and tkn → tkn+1 are defined as

∃ tn+1 ∈ IT such that:

tn+1≡ton+1,tkn+1,ppn+1 , status(t, IT )=ppn+2:x.get and fut(x , on+1 , tkn+1 , ppn+1 ,⊥)∈Futs

So (ton,tkn,ppn , ton+1,tkn+1 , ppn+1, ton,tkn,ppn+2) ∈ S satisfying Conditions 1 or 2. Now,
if last edge is tkn+1 → o0 means that there exists fut(y, o0, tkn+1, ppn+1,⊥) ∈ Futs .
But (to0,tk0,pp0 , to1,tk1,pp1 , ) ∈ S is blocking, then tn+1 holds Condition 2 and we get a
deadlock chain dc({to0,tk0,pp0 , ..., ton+1,tkn+1,ppn+1}).

Theorem 3 (Deadlock Equivalence). Let S be a program state,

S is a deadlock state ⇔ ∃ dc({t0, ..., tn}) ∈ S

Proof.

S is a deadlock state ⇔ ∃ cycle γ ∈ GS

⇔ ∃ cycle γ ∈ GFuts
IT (by Theorem 1)

⇔ ∃ dc({t0, ..., tn}) ∈ S (by Theorem 2)

Example 7. Following Example 6, S4 is a deadlock state since there exists a deadlock chain
dc(tdb,reg,22, tw,work,36). For the first element tdb,reg,22, Condition 2 holds since we have that
(tdb,reg,22, tw,ping,41, tdb,reg,25) ∈ S4, and (tw,work,36, tdb,getData,29, tw,work,38) is blocking. Similarly,
Condition 2 holds for tw,work,36. 2

4.3 Guiding Testing using Static Deadlock Analysis

This section proposes a deadlock detection methodology that combines static analysis and
systematic testing as follows. First, a state-of-the-art deadlock analysis is run, in particular
that of [15], which provides a set of abstractions of potential deadlock cycles. If the set
is empty, then the program is deadlock-free. Otherwise, using the inferred set of deadlock
cycles, we systematically test the program using a novel technique to guide the exploration
towards paths that might lead to deadlock cycles. The goals of this process are: (1) finding
concrete deadlock traces associated to the feasible cycles and (2) discarding unfeasible dead-
lock cycles, and in case all cycles are discarded, ensure deadlock freedom for the considered
input. As our experiments show in Chapter 7, our technique reduces significantly the search
space compared to the full systematic exploration.
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4.3.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [15] returns a set of abstract deadlock cycles of the form e1
p1:tk1−−−→

e2
p2:tk2−−−→ ...

pn:tkn−−−→ e1, where p1, . . . , pn are program points, tk 1, . . . , tkn are task abstractions,

and nodes e1, . . . , en are either location abstractions or task abstractions. Each arrow e
p:tk−−→ e′

should be interpreted like “abstract location or task e is waiting for the termination of
abstract location or task e′ due to the synchronization instruction at program point p of
abstract task tk .” Three kinds of arrows can be distinguished, namely, task-task (an abstract
task is awaiting for the termination of another one), task-location (an abstract task is awaiting
for an abstract location to be idle), and location-task (the abstract location is blocked due
the abstract task). Location-location arrows cannot happen. The abstractions for tasks and
locations can be performed at different levels of accuracy during the analysis: the simple
abstraction that we will use for our formalization abstracts each concrete location o by the
program point at which it is created opp, and each task by the method name executing. They
are abstractions since there could be many locations created at the same program point and
many tasks executing the same method. Points-to analysis is used as the basis to infer such
abstractions. The analysis is object-sensitive, i.e., it distinguishes the actions performed by
the different location abstractions. Both the analysis and the semantics can be made object-
sensitive by keeping the k ancestor abstract locations (where k is a parameter of the analysis
and any k ≥ 0 can be used). For the sake of simplicity of the presentation, we assume k = 0
in the formalization (our implementation uses k = 1, e.g., an abstract task is of the form
opp.m where opp is the abstract location that executes method m).

Example 8. In our working example in Figure 2.2,there are two abstract locations, o7,
correspoding to location database created at Line 7 and o9, corresponding to the n locations
worker, created inside the loop at Line 9; and four abstract tasks, register, getData, work,

and ping. The following cycle is inferred by the deadlock analysis: o7
25:register−−−−−−−→ ping

41:ping−−−−→
o9

38:work−−−−−→ getData
29:getData−−−−−−−→ o7. The first arrow captures that the location created at Line 7

is blocked waiting for the termination of task ping because of the synchronization at Line 25 of
task register. Also, a dependency between a task (e.g., ping) and a location (e.g., o9) captures
that the task is trying to execute on that (possibly) blocked location. Abstract deadlock cycles
can be provided by the analyzer to the user. But, as it can observed, it is complex to figure out
from them why these dependencies arise, and more importantly the interleavings scheduled
to lead to this situation. 2

4.3.2 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the systematic
execution towards paths that might contain a representative of that abstract deadlock cycle,
by discarding paths that are guaranteed not to contain such a representative. The main idea
is as follows: (1) From the abstract deadlock cycle, we generate deadlock-cycle constraints,
which must hold in all states of derivations leading to the given deadlock cycle. (2) We extend
the execution semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied. Uppercase letters in constraints
denote variables used to represent incomplete information.
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Definition 6 (Deadlock-cycle constraints). Given a state S = s( ,Futs , IT , ), a deadlock-
cycle constraint takes one of the following two forms:

1. ∃tL,T,PP 7→ 〈N, ρ〉, which means that there exists or will exist an entry of this form in
IT ( time constraint);

2. ∃fut(F,L,Tk , pp,⊥), which means that there exists or will exist a future variable of
this form in S and task Tk has not finished ( fut constraint).

The following function φ computes the set of deadlock-cycle constraints associated to a given
abstract deadlock cycle.

Definition 7 (Generation of deadlock-cycle constraints φ). Given an abstract deadlock cycle

e1
p1:tk1−−−→ e2

p2:tk2−−−→ . . .
pn:tkn−−−→ e1, and two fresh variables Li,Tk i, φ is defined as φ(ei

pi:tk i−−−→
ej

pj :tkj−−−→ . . . ,Li,Tk i) =
{∃tLi,Tk i, 7→〈 , pi:Fi.get〉,∃fut(Fi ,Lj ,Tk j , pj ,⊥)} ∪ φ(ej

pj :tk j−−−→ . . . ,Lj ,Tk j ) if ej=tk j

φ(ej
pj :tkj−−−→ . . . ,Li,Tk j) if ej = oj

Uppercase letters appearing for the first time in the constraints are fresh variables. The
first case handles location-task and task-task arrows (since ej is a task abstraction), whereas
the second case handles task-location arrows (ej is an abstract location). Let us observe the
following: (1) The abstract location and task identifiers of the abstract cycle are not used
to produce the constraints. This is because constraints refer to concrete identifiers. Even
if the cycle contains the same identifier on two different nodes or arrows, the corresponding
variables in the constraints cannot be bound (i.e., we cannot use the same variables) since
they could refer to different concrete identifiers. (2) The program points of the cycle (pi and
pj) are used in time and fut constraints. (3) Location and task identifier variables of fut
constraints and subsequent time or pending constraints are bound (i.e., the same variables are
used). This is done using the second case of function φ. (4) In the second case, Tk j is a fresh
variable since the location executing Tk i can be blocked due to a (possibly) different task.
Intuitively, deadlock-cycle constraints characterize all possible deadlock chains representing
the given cycle.

Example 9. The following deadlock-cycle constraints are computed for the cycle in Exam-
ple 8:

{∃tL1,Tk1, 7→ 〈 , 25:F1.get〉, ∃ fut(F1 ,L2 ,Tk2 , 41 ,⊥), ∃tL2 ,Tk2 , 7→〈 , 38 :F2 .get〉,
∃fut(F2,L3,Tk 3, 29,⊥)}

They are shown in the order in which they are computed by φ. The first two constraints
require IT to contain a concrete time in which some database gets blocked while registering
at Line 25 for a certain worker to receive the result of executing task ping at Line 41.
The worker has not got it because of the value ⊥ in the future. Furthermore, the last two
constraints require a concrete time in which this worker waits at Line 38 to get the data
stored by some database at Line 29 and the data is never returned. Note that, in order to
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preserve completeness, we are not binding the first and the second databases. If the example
is generalized with several databases, there could be a deadlock in which a database waits for
a worker which waits for another database and worker, so that the last one waits to get the
data stored by the first database. This deadlock would not be found if the two databases are
bound in the constraints (i.e., if we use the same variable name). In other words, we have
to account for deadlocks which traverse the abstract cycle more than once. 2

The idea now is to monitor the execution using the inferred deadlock-cycle constraints
for the given cycle, with the aim of stopping derivations at states that do not satisfy the
constraints. The following Boolean function checkC checks the satisfiability of the constraints
at a given state.

Definition 8. Given a set of deadlock-cycle constraints C, and a state S = s(Locs,Futs , IT , ),
check holds, written checkC(S), if:

∀tLi,Tk i,PP 7→ 〈N, ppi : Fi.get)〉 ∈ C, fut(Fi ,Lj ,Tk j , ppj ,⊥) ∈ C

one of the following conditions holds:

1. reachable(tLi,Tk i,ppi , Locs) or;

2. ∃toi,tk i,pp 7→ 〈n, ppi : fi.get〉 ∈ IT ∧ fut(fi , oj , tk j , ppj ,⊥) ∈ Futs

Function reachable/2 checks whether a given task might arise in subsequent states. We
over-approximate it syntactically by computing the transitive call relations from all tasks in
the queues of all locations in S. Precision could be improved using more advanced analyses.
Intuitively, checkC/1 does not hold if there is at least a time constraint so that: (i) its time
identifier is not reachable, and (ii) in the case that the interleavings table contains entries
matching it, for each one, there is an associated fut constraint which is violated, i.e., there is
an associated future variable in the state where the associated task has finished (the return
value is not equal to ⊥). Condition (i) implies that there cannot be more representatives of
the given abstract cycle in subsequent states, therefore if there are potential deadlock cycles,
the associated time identifiers must be in the interleavings table. Condition (ii) implies that,
for each potential cycle in the state, there is no deadlock chain since at least one of the
blocking tasks has finished. This means there cannot be derivations from this state leading
to the given cycle, hence the derivation can be stopped.

Definition 9 (Deadlock-cycle guided-testing (DCGT)). Consider an abstract deadlock cycle
c, and an initial state S0. Let C = φ(c,Linit, Tk init) where Linit and Tk init are fresh variables.
We define the DCGT for S0, written execc(S0), as the set {d : d ∈ exec(S0), deadlock(Sn)},
where Sn is the last state in d.

Example 10. Let us consider the DCGT of our working example with the deadlock-cycle of
Example 8, and hence with the constraints C of Example 9. The interleavings table in the
fifth state of the first derivation contains the entries:

t0,main,2 7→〈0, return〉,
t0,simulate,6 7→〈1, return〉,
tdb,register,22 7→〈2, 25:f0.get〉 and
tw,ping,41 7→〈3, return〉.
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Constraints {∃tL1,Tk1, 7→〈 , 25:F1.get〉,∃fut(F1 ,L2 ,Tk2 , 41 ,⊥)} are not satisfiable, (task
ping has already finished at this point, as we can see in the interleavings table in Figure 4.1).
checkC/1 does not hold since tL1,Tk1,25 is not reachable anymore and thus, the derivation is
pruned because there is no deadlock state reachable from this state. Similarly, the rightmost
derivation is stopped at its fifth state. Also, the third and fourth derivations are stopped
by function deadlock/1 of Theorem 3 ( early detection). Since there are no more deadlock
cycles, the search for deadlock detection finishes applying DCGT. Our methodology therefore
explores 9 states instead of the 25 explored by the full systematic execution. 2

Theorem 4 (Soundness). Given a program P, a set of abstract cycles C in P, and an initial
state S0, ∀d ∈ exec(S0) if d is a derivation whose last state is deadlock, then ∃c ∈ C such
that d ∈ execc(S0).

Proof of Theorem 4 relies on the soundness of the deadlock analysis that we state below.

Definition 10 (Deadlock soundness). Let S be a reachable state. If there is a cycle γ =

e1 → e2 → · · · → e1 in GS, then α(γ) = α(e1)
p1:tk1−−−→ α(e2)

p2:tk2−−−→ · · · pn:tkn−−−→ α(e1) is an
abstract cycle of G.

This theorem uses a standard abstraction function α that maps location and task identifiers
to the corresponding abstract ones. The formal definition of α can be found in [4]. Let α be
the extension of α over the paths in GS that applies the function α in every node contained
by the path. Lemma 2 claims an auxiliary result which helps us to prove Theorem 4. It uses
function γ, which transforms a sequence of times satisfying Conditions 1 or 2 from Definition
3 into its corresponding cycle in GS (see proof of Theorem 2).

Lemma 2. Given an initial state S0 and an abstract cycle c, ∀d ∈ exec(S0), d≡S0 −→∗ Sn,
if ∃ dc({t0, ..., tn}) ∈ Sn such that α ◦ γ({t0, ..., tn}) = c, then d ∈ execc(S0).

Proof. By contradiction, let us suppose that ∃d ∈ exec(S0) and d 6∈ execc(S0). Hence,
∃Si ∈ d such that checkC(Si) returns false and consequently, the derivation S0 −→∗ Si

stops, where C = φ(c,L,Tk) and L,Tk are fresh variables.
Therefore, at Si ∃{tLi,Tk i,PP 7→ 〈N, ppi:Fi.get〉, fut(Fi ,Lj ,Tk j , pj )} ⊂ C does not hold and
neither 1 nor 2 in Definition 8. However, this cannot happen, as C imposes necessary
constraints for the existence of some representative of c and Sn contains a cycle that is a
representative of c, then Condition 1 or 2 must be fulfilled in every state of d. As a result,
we get a contradiction.

Proof of Theorem 4. If the last state is deadlock, then, by Theorem 3, ∃ dc({t0, ..., tn}) ∈ Sn.
Using the soundness of deadlock analysis on the cycle γ({t0, ..., tn}), the existence of c is
ensured. Now, by Lemma 2, we obtain the result.

4.4 Deadlock-based Testing Criteria

In the application of testing for deadlock detection, and in a general setting where there
could occur different potential deadlock cycles, the following practical questions arise: are
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we interested in just finding the first deadlock trace? or do we rather need to obtain all
deadlock traces? For the purpose of the programmer to identify and fix the sources of the
deadlock error(s), it could be more useful to find a deadlock trace per abstract deadlock cycle.
This is the kind of questions that test adequacy criteria answer. Using our methodology, we
are able to provide the following deadlock-based testing adequacy criteria:

• first-deadlock, which requires exercising at least one deadlock execution,

• all-deadlocks, which requires exercising all deadlock executions, and

• deadlock-per-cycle, which, for each abstract deadlock cycle, requires exercising at least
one deadlock execution representing the given cycle (if exists)

We have implemented concrete testing schemes for each of the above criteria by using
our DCGT methodology. For first-deadlock, DCGT is called for each abstract deadlock cycle
until finding the first deadlock. For both all-deadlocks and deadlock-per-cycle, DCGT is also
called for each abstract cycle, but with the difference that the different DCGTs can be run
in parallel since they are completely independent. In the case of deadlock-per-cycle, each
DCGT finishes as soon as a deadlock representing the corresponding cycle is found. It can
also be very practical to set a time-limit per DCGT to prevent that the state explosion on
a certain DCGT degrades the efficiency of the whole exploration.





Chapter 5

Automatic (Deadlock-Guided)
Generation of Distributed Contexts

In the context of static testing at the unit level, that is, the method level, the method under
test is generally analyzed from a completely unknown context without any knowledge on its
inputs. However, when lifting up to the integration or the system level, an initial (possibly
partial) context is usually provided. This is specially relevant in the case of concurrent and
distributed programs, where an initial context includes at least the set of locations and their
initial tasks. For instance, in our motivating example, such an initial context is provided by
the main method, which creates a DB and a Worker location, and schedules a work task on the
worker with the database as parameter, and a register task on the database with the worker
as parameter. This is however only one out of the possible contexts and, of course, it might
be the case that it does not expose an error that occurs in other contexts.

A further challenge for our testing framework would be to make it able to automati-
cally and systematically generate distributed contexts at the integration/system level. This
would allow our framework to perform static testing, test case generation, and, in particular,
deadlock detection, at the integration/system level. However, this would cause a further
combinatorial explosion on the different possible distributed contexts that can be generated.
Therefore, it is crucial to provide some support so that the process can focus on the most
interesting contexts, filtering out other less interesting ones as soon as possible. This would
include focusing on the most general contexts while other less general ones are discarded
(since the derivations produced by the most general ones include those produced by the less
general ones). E.g., the context generated by our main method should not be considered
among the initial contexts of interest to do static testing, in the sense that it can be made
more general just by leaving all locations fields uninstantiated.

For the particular context of deadlock detection, an additional challenge would be to
only generate initial contexts in which a deadlock can occur. In the case of our motivating
example, this would mean generating for instance a context with a database location and
some worker location with a scheduled work task and a register task on the database for it, i.e.,
the context created by the main method. E.g., contexts that do noy include both tasks would
be useless for deadlock detection. Interestingly, the deadlock analysis provides the possibly
conflicting task interactions that can lead to deadlock. This information could be used to
help our framework anticipate this information and discard initial distributed contexts that

35
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cannot lead to deadlock from the beginning.
Section 5.1 introduces the concept of initial context and presents a method to automat-

ically and systematically generate initial contexts. Then, Section 5.2 presents a deadlock-
guided approach to effectively generate initial contexts for deadlock detection.

5.1 Specifying and Generating Initial Contexts

In our asynchronous programs, the most general initial contexts consist of sets of locations,
with free variables in their fields, and the initial tasks in each location queue (with free
variables as parameters). A first approach to systematically generate initial contexts could
consist in generating, on backtracking, all possible multisets of initial tasks (method names),
and for each one, generating all aliasing combinations with the locations of the tasks be-
longing to the same type of location. They are multisets because there can be multiple
occurrences of the same task. To guarantee termination of this process we need to impose
some limit in the generation of the multisets. For this, we could simply set a limit on the
multiset global size. However it would be more reasonable and useful to set a limit on the
maximum cardinality of each element in the multiset. To allow further flexibility let us also
set a limit on the minimum cardinality of each element. E.g. if we have a program with
just one location type A with just one method m, and we set 1 and 2 as the minimum
and maximum cardinalities respectively, then there are two possible multisets, namely, {m}
and {m,m}. The first one leads to one initial context with one location of type A with an
instance of task m in its queue. The second one leads to two contexts, one with one location
of type A with two instances of task m in its queue, and the other one with two different
locations, each with an instance of task m in its queue.

On the other hand, it makes sense to allow specifying which tasks should be considered
as initial tasks and which not. A typical scenario is that the user knows which are the main
tasks of the application and does not want to consider auxiliary or internal tasks as initial
tasks. Another scenario is in the context of integration testing, where the tester might want
to try out together different groups of tasks to observe how they interfere with each other.
Also, one could think on using some static analysis to determine a subset of tasks of interest
according to some specific property. This is the case of our deadlock-guided approach of
Section 5.2.

With all this, the input to our automatic generator of initial contexts is a set of abstract
tasks Tini, each with its associated minimum and maximum cardinalities, i.e., a set of tuples
(C.M,Cmin, Cmax), where C and M are the class and method name resp., and Cmin (resp.
Cmax) is the associated minimum (resp. maximum) cardinality. Note that this does not
limit the approach in any way since one could just include in Tini all methods in the program
and set Cmin = 0 and a sufficiently large Cmax. The goal of starting from this input is hence
usefulness and flexibility.

Example 11. Let us consider the set Tini = {(DB.register, 1, 1), (DB.getData, 0, 1)}. The
corresponding multisets are {register} and {register, getData}. All contexts must contain
exactly one instance of task register and at most one instance of task getData. This leads
to three possible contexts: (1) a DB location instance with a task register in its queue, (2) a
DB location instance with tasks register and getData in its queue, and (3) two different DB
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location instances, one of them with an instance of task register and the other one with an
instance of task getData. E.g., the state corresponding to the latter context would be:

S = [loc(DB1, bot, [data 7→ D1, clients 7→ Cl1, checkOn 7→ B1],
[tsk(1, register, [this 7→ r(DB1), m 7→ W1], body(register))])

loc(DB2, bot, [data 7→ D2, clients 7→ Cl2, checkOn 7→ B2],
[tsk(2, getData, [this 7→ r(DB2), m 7→ W2], body(getData))])],

where D1,Cl1, and B1 (resp. D2,Cl2, and B2) are the fields data, clients, and checkOn
of location DB1 (resp. DB2), and W1 (resp. W2) the parameter of the task register resp.
getData, and body(m) is the sequence of instructions in method m. Note that both fields and
task parameters are fresh variables so that the context is the most general possible. Let us
recall that the first parameter of a task is always the location this and it is therefore fixed. 2

In the following, we formally define the contexts that must be produced from a set of
abstract tasks Tini with associated cardinalities, and a procedure (as a Prolog rule) that gen-
erates these contexts as partially instantiated states. We use the notation {[m1, ...,mn]oi}
for an initial context where there exists a location loc(oi,⊥, h, {tk(tk1,m1, l1, body(m1))} ∪
... ∪ {tk(tkn,mn, ln, body(mn))}). Note that we can have mi = mj with i 6= j. E.g.,
the three contexts in Example 11 are written as {[register]db1}, {[register, getData]db1} and
{[register]db1 , [getData]db2}, respectively. Let us first define the set of initial contexts from a
given Tini when all tasks belong to the same class.

Definition 11 (Superset of initial contexts (same class Ci)). Let Tini = {(Ci.m1, C
min
1 , Cmax

1 ),
. . . , (Ci.mn, C

min
n , Cmax

n )} be a set of abstract tasks with associated cardinalities. Let o1,1,

. . . , o1,Cmax
1

, . . . , on,1, . . . , on,Cmax
n

be
n∑

i=1

Cmax
i different identifiers: We can find at most

n∑
i=1

Cmax
i

instances of class Ci, that is, each abstract task mi (i ∈ [1, n]) has at most Cmax
i instances

and each of them can be inside a different instance of class Ci. Let umk
i,j be an integer variable

that denotes the number of instances of task mk inside the location oi,j and let us consider
the following integer system:

Cmin
1 ≤ um1

1,1 + . . .+ um1
1,Cmax

1
+ . . .+ um1

n,1 + . . .+ um1
n,Cmax

n
≤ Cmax

1

. . .

Cmin
n ≤ umn

1,1 + . . .+ umn
1,Cmax

1
+ . . .+ umn

n,1 + . . .+ umn
n,Cmax

n
≤ Cmax

n

Each formula requires at least Cmin
k and at most Cmax

k instances of task mk. Each solution
to this system corresponds to an initial context. Let (dm1

1,1 , . . . , d
m1
n,Cmax

n
, . . . , dmn

1,1 , . . . , d
mn
n,Cmax

n
)

be a solution, then the corresponding initial context contains:

• loc(oi,j,⊥, h,Q), that is, a location oi,j whose lock is free, the fields in h are mapped to
fresh variables, and the queue Q contains: dm1

i,j instances of abstract task m1,. . . , and
dmn
i,j instances of mn, if i ∈ [1, n], j ∈ [1, Cmax

i ] and ∃dmk
i,j > 0, k ∈ [1, n], where each

instance of mi is tsk(tk ,mi, l, body(mi)) and every argument in l is mapped to a fresh
variable.
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Example 12. Let us consider the example Tini={(DB.register, 0, 1), (DB.getData, 1, 1)}. The
identifiers are o1,1 and o2,1, and the variables of the system are ureg1,1 , ureg2,1 , uget1,1 and uget2,1.
Finally, we obtain the next system:{

0 ≤ ureg1,1 + ureg2,1 ≤ 1

1 ≤ uget1,1 + uget2,1 ≤ 1

We obtain 6 solutions: (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0) and (0, 1, 0, 1).
Then, the superset of initial contexts is

{{[getData]o1,1}, {[getData]o2,1}, {[register, getData]o1,1}, {[register, getData]o2,1},

{[register]o2,1 , [getData]o1,1}, {[register]o1,1 , [getData]o2,1}}
2

Let us observe that the two last contexts are equivalent since they are both composed
of two instances of DB with tasks register and getData respectively. Therefore, we only need
to consider one of these two contexts for symbolic execution. Considering both would lead
to redundancy. The notion of minimal set of initial contexts below eliminates redundant
contexts, hence avoiding useless executions.

Definition 12 (Equivalence relation ∼). Two contexts C1 and C2 are equivalent, written
C1 ∼ C2, if C1 = C2 = ∅ or C1 = {loc(o1,⊥, h1,Q1)} ∪ C ′1, and ∃ o2 ∈ C2 such that:

1. C2 = {loc(o2,⊥, h2,Q2)} ∪ C ′2,

2. Q1 and Q2 contain the same number of instances of each task, and

3. C ′1 ∼ C ′2 .

Example 13. The superset in Example 12 contains 3 equivalence classes induced by the
relation ∼: (1) the class {{[getData]o1,1}, {[getData]o2,1}}, where both contexts are composed
of a location with a task getData, (2) the class {{[register, getData]o1,1},
{[register, getData]o2,1}}, whose locations have two tasks register and getData; and, finally, (3)
the class {{[register]o2,1 , [getData]o1,1}, {[register]o1,1 , [getData]o2,1}}, where both contexts have
two locations with a task register and a task getData, respectively. 2

Definition 13 (Minimal set of initial contexts ICi (same class Cli)). Let Tini be a set of
abstract tasks, then the minimal set of initial contexts ICli is composed of a representative
of each equivalence class induced by the relation ∼ over the superset of initial contexts for
the input Tini.

Example 14. As we have seen in the previous example, there are three different equivalence
classes. So, the minimal set of initial contexts is composed of a representative of each class
(we have renamed the identifiers for the sake of clarity):

IDB = {{[getData]db1}, {[register, getData]db1}, {[register]db1 , [getData]db2}}

2
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121 generate_contexts([(M,MinC,MaxC)|Methods],SOut) :-

122 add_calls(SVar,[(M,0,MinC,MaxC)|Methods],SOut),

123 normal_form(SOut,N),

124 (prev_generated(N) -> fail ; assertz(prev_generated(N))).

125

126 add_calls(SIn,[(PP:M,Instances,MinC,MaxC)|Ms],SOut) :-

127 Instances < MaxC,

128 Call =.. [M,[ref(LocVar)|ArgsIn],ArgsOut],

129 add_task(SIn,LocVar,call,Call,PP,TaskId,S1),

130 fresh_fut(FutId),

131 add_future(S1,FutId,LocVar,TaskId,PP,S2),

132 I2 is Instances + 1,

133 add_calls(S2,[(PP:M,I2,MinC,MaxC)|Methods],SOut).

134

135 add_calls(SIn,[(_,I,Min,_),(M,MinC,MaxC)|Methods],SOut) :-

136 Min <= I,

137 add_calls(SIn,[(M,0,MinC,MaxC)|Methods],SOut).

138

139 add_calls(SIn,[(_,I,Min,_)],SIn) :-

140 Min <= I.

Figure 5.1: Prolog predicate to generate initial contexts

Let us now define the set of initial contexts I when the input set Tini contains tasks of
different types of locations.

Definition 14 (Minimal set of initial contexts I (Different classes)).
Let Tini = {(C1.m1, C

min
1 , Cmax

1 ), . . . , (Cn.mn, C
min
n , Cmax

n )} be the set of abstract tasks with
associated cardinalities, and let us consider a partition of this set where every equivalence
class is composed of abstract tasks of the same class. Hence, we have:
T C1
ini ={C1.m

′
1, . . ., C1.m

′
j1
}, . . ., T Cn

ini ={Cn.m
′′
1, . . . , Cn.m

′′
jn} where Ci 6= Cj,∀i, j ∈ [1, n], i6=j.

Then, let ICi be the minimal set of initial contexts for the input T Ci
ini , i ∈ [1, n] and

U : IC1 × . . . × ICn → I , defined by U(s1, . . . , sn) = s1 ∪ . . . ∪ sn. The set I is defined
by the image set of application U .

Example 15. Let us consider the set Tini = {(DB.register, 1, 1), (DB.getData, 1, 1),
(Worker.work, 1, 1)} from which we get the initial contexts IWorker = {{[work]w1}} and IDB =
{{[register, getData]db,1}, {[register]db1 , [getData]db2}}. Then, by Definition 14,

I={{[register, getData]db1 , [work]w1}, {[register]db1 , [getData]db2 , [work]w1}}

2

We now define a Prolog predicate that generates the minimal set of initial contexts as
partially instantiated states. Predicate generate contexts/2 in Figure 5.1 receives a set
of abstract tasks with their associated maximum and minimum cardinalities, and gener-
ates on backtracking all generated initial contexts by means of add calls/3. Predicate
normal form/2 produces a normal form for the new context which is the same for all initial
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contexts in the same equivalence class. The new context is therefore only generated if it
has not been previously generated (i.e., if the call prev generated/1 fails). The first rule
of add calls/3 checks if the number of instances Instances of task PP:M is smaller than
the maximum cardinality MaxC, in which case we add a new instance of M, Instances is
incremented, and add calls/3 is recursively invoked. The second rule checks if the number
of instances is greater than or equal to Min, it initializes the number of instances for the
next method (M) and makes the recursive call to add calls/3. Finally, the third rule corre-
sponds to the base case when we are processing the last method of the list and the number
of instances if greater than or equal to Min.

Example 16. Let us show predicate generate contexts/2 in action for the set
Tini = {(DB.register, 1, 1), (DB.makesConnection, 1, 1),Worker.work, 1, 1)}. The first rule of
add calls/3 is applied, as 0 = Instances < MaxC = 1. Then, add task/7 is called with
variable Locs and M = DB.register, at Line 129. As Locs is a variable, a new location is
created. Once this predicate has finished, Instances is incremented and add calls is recur-
sively called (Line 133). Now, the second rule is applied, as 0 = Min < Instances = 1, and
add calls is called with M = DB.makesConnection whose number of instances is initialized
to 0 (Line 137). Again, at Line129, add task/7 is called with M = DB.makesConnection

and Locs containing an instance of DB. Here we get to a branching point which gives rise
to the two different initial contexts in Example 15. In the first branch, SIn contains a loca-
tion whose class is equal to that of the method makesConnection, so LocVar is the existing
location and a new instance is added to its queue. Finally, add calls/3 is called with M =

Worker.work (Line 137), it creates a new instance of class Worker with a task work, and it
finishes correctly at Line 140, and returns an initial context containing an instance of DB

with tasks register and makesConnection, and an instance of Worker with task work. Now, it
fails and the backtracking goes back to the branching point. Here, the third rule is applied and
then, the first location is ignored and task makesConnection is added to a new location at
Line 129. It finishes in a similar way. In this case, the initial context returned contains two
instances of DB containing a task register and makesConnection, respectively, and an instance
of Worker with task work. 2

5.2 On Automatically Inferring Deadlock-Interfering

Tasks

The systematic generation of initial contexts produces a combinatorial explosion and there-
fore it should be used with small sets of abstract tasks (and low cardinalities). However,
in the context of deadlock detection, in order not to miss any deadlock situation, one has
to consider in principle all methods in the program, hence producing scalability problems.
Interestingly, it can happen that many of the tasks in the generated initial contexts do not
affect in any way deadlock executions. Our challenge is to only generate initial contexts
from which a deadlock can show up. For this, the deadlock analysis provides the possibly
conflicting task interactions that can lead to deadlock. In this section we propose to use this
information to help our framework to discard initial contexts that cannot lead to deadlock
from the beginning. The underlying idea is as follows: we select an abstract cycle detected
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(await1)
tk = tsk(tk ,m, l, x = await y?; s), l(y) = f, fut(f, , , , v) ∈ Futs

loc(o, tk , h,Q∪ {tk}) ; loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)})

(await2)
tk=tsk(tk ,m, l, x = await y?; s), l(y) = f, fut(f, , , ,⊥) ∈ Futs

loc(o, tk , h,Q∪ {tk}) ; loc(o,⊥, h,Q∪ {tk})

Figure 5.2: Semantics of instruction await

by the deadlock analysis, and extract a set of potential abstract tasks which can be involved
in a deadlock. In a naive approximation, we could take those abstract tasks that are inside
the cycle and contain a blocking instruction. We also need to set the maximum cardinality
for each task to ensure finiteness (by default 1) and require at least one instance for each
task (minimum cardinality).

This approach is valid as long as we only have blocking synchronization primitives, i.e.,
when the location state stays unchanged until the resumption of a suspended execution.
However, this kind of concurrent/distributed languages usually include some sort of non-
blocking synchronization primitive, such as, the await instruction. All the previous results
are easily extended with this instruction.

In Figure 5.2, we can see the semantics of await instruction. The instruction await y?
waits for the future variable y ∈ Futs (where Futs is the future variable set in the state)
yielding the lock (rule await2) and, once the task related to the future variable is finished,
it can resume its execution (rule await1). When a location stops its execution due to an
await instruction, the task yields the lock and another one can interleave its execution with
it, i.e., start to execute and, thus, modify the location state (i.e., the location’s fields). Then,
if a call or a blocking instruction involved in a deadlock depends on the value of one of these
fields, and we do not consider all the possible values, a deadlock could be missed. As a
consequence, we need to consider at release points, all possible interleavings with tasks that
modify the fields in order to capture all deadlocks. Let us rewrite our working example to
illustrate this problem and show how to solve it.

Figure 5.3 shows a modification of our working example. We have replaced field checkOn
by connected and added a few lines to method register: field connected is bound to 0, then an
asynchronous call is made to method empty and we wait until this task has been performed
because of non-blocking instruction at Line 171 and then, field connected is checked to be
greater than 0, finally it is decreased by one. We also added two new methods: empty that
always returns 0 and makesConnection where connected is bound to the maximum number
of connections allowed by the system. Now it is easy to see that if we only consider register
and work as input, deadlocks are lost: once register is executed and the instruction at Line
171 is reached, the location’s queue only contains task empty but no makesConnection and,
therefore, at the moment task register is resumed, field connected keeps unchanged and the
body of condition is not executed, so we cannot have a deadlock situation.

In the following we define the deadlock-interfering tasks for a given abstract deadlock
cycle, i.e., the set of tasks that need to be considered in initial contexts so that we cannot
miss a representative of the given deadlock cycle. In our extended example, those would be,
register and work but also makesConnection.
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141 class Main{
142 main(){
143 this ! simulate(1);
144 return 0;
145 }
146 simulate(int n){
147 DB db = new DB();
148 while (n > 0){
149 Worker w = new Worker();
150 db ! register(w);
151 w ! work(db);
152 n = n−1;
153 }
154 return 0;
155 }
156 }// end of class Main
157

158 class DB{
159 Data data = ...;
160 List<Worker> clients;// Empty list
161 int MAX CONNECTS = 10;
162 int connected = MAX CONNECTS;
163 int empty(){ return 0;}
164 int makesConnection(){
165 connected = MAX CONNECTS;
166 return connected;}

168 int register(Worker w){
169 connected = 0;
170 Fut<int>g = this! empty();
171 await g?;
172 if(0<connected){
173 connected = connected - 1;
174 Fut〈int〉 f = w ! ping(5);
175 if (f.get == 5) add(clients,w);
176 } else add(clients,w);
177 return 0;
178 }
179 Data getData(Worker w){
180 if (contains(w,clients)) return data;
181 else return null;
182 }
183 }// end of class DB
184

185 class Worker{
186 Data data;
187 int work(DB db){
188 Fut〈Data〉 f = db ! getData(this);
189 data = f.get;
190 return 0;
191 }
192 int ping(int n){return n;}
193 }// end of class Worker

Figure 5.3: Modified working example

Definition 15 (initialTasks(C)). Let C an abstract deadlock cycle. Then,

initialTasks(C) :=
⋃

icall∈t∈C

initialTasks(t, icall, C) ∪
⋃

isync∈t∈C

initialTasks(t, isync, C)

where:

• initialTasks(t, i, C) = ∅ if o
t−→ t2 6∈ C and i 6= imod and 6 ∃ iawait ∈[t0, i]

• initialTasks(t, i, C) = {t} if (o
t−→ t2 ∈ C or i = imod ) and 6 ∃ iawait ∈[t0, i]

• initialTasks(t, i, C) = {t} ∪
⋃

f∈fields(i)

( ⋃
imod∈tmod∈mods(f)

initialTasks(tmod, imod, C)

)
if ∃ iawait ∈ [t0, i]

The definition relies on function fields(I) which, given an instruction I, returns the set of
class fields that have been read or written until the execution of instruction I. Let mods(f) be
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194 calculate_interfering_tasks(Cycle,Tasks) :-

195 init(Cycle,[],Events,[],Ans),

196 process_events(Events,Ans,NoCardinality),

197 findall((Task,1,1),member((Task,_),NoCardinality),Repeated),

198 list_to_set(Repeated,Tasks).

199

200 init([],Evs,Evs,Ans,Ans).

201 init([edge(loc,get(Task,LAsync,LGet),task)|C],Evs,Evs2,Ans,Ans2) :-

202 !, init(C,[(Task,LAsync),(Task,LGet)|Evs],Evs2,[(Task,LGet)|Ans],Ans2).

203 init([edge(task,sync(Task,LAsync,LSync),task)|C],Evs,Evs2,Ans,Ans2) :-

204 !, init(C,[(Task,LAsync),(Task,LSync)|Evs],Evs2,Ans,Ans2).

205 init([_|Cycle],Evs,Evs2,Ans,Ans2) :- init(Cycle,Evs,Evs2,Ans,Ans2).

206

207 process_events([],Ans,Ans).

208 process_events([(Task,Inst)|Evs],Ans,Ans2) :-

209 thereis_await(Task,Inst),

210 accessed_fields(Task,Inst,Fields), !,

211 findall((T,L),(member(F,Fields),

212 inst(F,write,T,L),

213 \+ member((T,L),Ans)),Modifiers),

214 append(Modifiers,Evs,Evs2), append(Modifiers,Ans,Ans1),

215 process_events(Evs2,Ans1,Ans2).

216 process_events([_|Evs],Ans,Ans2) :- process_events(Evs,Ans,Ans2).

Figure 5.4: Prolog predicate to infer interfering tasks for a given deadlock cycle

the set of instructions that modify field f. We can observe that initialTasks(C) is the union
of initial tasks for each relevant instruction inside the cycle C, i.e., asynchronous calls and
synchronization primitives. We can also observe in the auxiliary function initialTasks(t,i,C)
that: (1) if the instruction i is not producing a location-task edge and it is not an instruction
modifying a field, then t does not need to be added as initial task, (2) if i produces a
location-task edge or is modifying a field, and we do not have any await instruction between
the beginning of the task and i, then i is going to be executed under the most general context,
so we do not need to add more initial tasks but t, and (3) on the other hand, if there exists
an await instruction between the beginning of task t, namely t0, and instruction i, each field
f inside the set fields(i) could be changed before the resumption of the await by any task
modifying f . Thus, tasks containing any of the possible f -modifying instructions must be
considered and, recursively, their initial tasks.

It is important to highlight that this definition could be infinite depending on the program
we are working with. For instance, if we apply the definition to the abstract cycle C in
Example 8, initialTasks(db.register, 173, C) will be evaluated. It fits well with the conditions
on third clause, as there exists an await instruction, fields(173) = {connected} and then again
173 is a modifier instruction of field connected, so initialTasks(db.register, 173, C) will be
evaluated again recursively.

Figure 5.4 presents predicate calculate interfering tasks/2 that finitely infers the
interfering-tasks for a given deadlock cycle as defined by Definition 15. First, both the list of
events and of answers are initialized (init/5) according to the type of edge. For each edge
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in the cycle, we take the call and the corresponding synchronization instruction, and we add
them to the pending events. Moreover, get instructions produce location-task edges, so they
are also included in the answers list, as they have to be inside the initial context. The other
tasks included in the initial context are the ones which could affect the conditions of those
instructions. In predicate process events/3, we take a pending event (Task,Inst) and we
check if there is an await instruction between the start of Task and Inst, using predicate
(thereis await/2), where the previously accessed field values (accessed fields/3) could
be changed (third clause in Definition 15. In case it does, we need to include in the answer
set all tasks which contain instructions modifying such field (inst/4). Besides, this change
could be inside an if-else body and we also need to consider the fields inside such condition.
Therefore we add the modifier instructions to the pending events list. This predicate finishes
when this list is empty and Ans is the list of pairs with all interfering instructions and their
container tasks. Finally, we only take the tasks, i.e., the first component of each pair,
we set their minimum and maximum cardinalities and remove duplicates (list to set/2).
Finiteness is guaranteed because each instruction is added to the pending events and answers
lists at most once, and the number of instructions is finite.

Example 17. Let us show how predicate calculate interfering tasks/2 works for our
modified example. For the sake of clarity, instructions are identified by their line numbers.
After the init/5 predicate, the value of variables Events and Ans is [(Worker.work, 189),
(Worker.work, 188), (DB.register, 175), (DB.register, 174)] and [(DB.register, 175), (Worker.work,
189)], respectively. Hence, predicate process events/3 takes (Worker.work, 189) first. Since
there is not an await instruction between the beginning of work and Line 189, Ans stays
unchanged. The same happens with (Worker.work, 188). Now, the pending events list is
[(DB.register, 175), (DB.register, 174, )] and (DB.register, 175) is processed. Now, there is an
await between Lines 168 and 175 and, then, fields(DB.register,175,Fields) is invoked
and Fields=[connected]. We find three instructions modifying the field connected: 165 ∈
DB.makesConnection, 169 ∈ DB.register and 173 ∈ DB.register. None of them is a member
of the answer set and hence they are added to both lists. Now, Evs is [(DB.register,173),
(DB.makesConnection,165), (DB.register,174),(DB.register,169)] but again there is no await be-
tween the beginning of tasks DB.register and DB.makesConnection and Lines 173 and 165, re-
spectively and, thus, Ans stays unchanged. Finally, both (DB.register, 169) and (DB.register, 174)
are taken and both fields(DB.register,174,Fields) and fields(DB.register,169,Fields)
hold where Fields=[connected], but the modifier instructions have been previously added
to Ans, hence Ans remains unchanged, and the pending events list becomes empty. Fi-
nally, the algorithm projects over the first component of each pair in the list, sets the min-
imum and maximum cardinalities to 1 and removes duplicates, returning the set Tini =
{(DB.register,1,1), (Worker.work,1,1), (DB.makesConnection,1,1)}. Thus, the generation of
initial contexts for this set (see Example 16) produces

I = {{[register,makesConnection]db1 [work]w1},
{[register]db1 , [makesConnection]db2 , [work]w1}}

2



Chapter 6

Implementation

We have implemented all the presented techniques within the prototype tool SYCO/aPET [10,
8], a dynamic/static testing tool for the ABS concurrent objects language [23], which includes
the POR techniques to detect and avoid the redundant executions described in [6, 7]. The tool
is available for online use through a user-friendly web interface at http://costa.ls.fi.upm.

es/syco, where the code of our running examples and the benchmarks used in Section 7 can
also be found. ABS concurrent objects communicate via asynchronous method calls and use
await and get, resp., as instructions for non-blocking and blocking synchronization. Handling
non-blocking synchronization in our framework do not pose any technical complication and
has not been included in our formalization for the sake of simplicity. All the components of
our implementation however include support for it.

The rest of the chapter is organized as follows: Section 6.1 gives an overview of the
SYCO/aPET tool. Then, Sections 6.2 and 6.3 present detailed step-by-step separate tutorials
of the SYCO and aPET sub-tools.

6.1 General Overview

6.1.1 The SYCO Tool

SYCO is a systematic tester for ABS concurrent objects. Figure 6.1 shows its main architec-
ture. Boxes with dash lines are internal components of SYCO whereas boxes with regular
lines are external components. The user interacts with SYCO through its web interface
which has been built using the EasyInterface [13] framework. The SYCO engine receives
an ABS program and a selection of parameters. The ABS compiler compiles the program
into an abstract-syntax-tree (AST) which is then transformed into the SYCO intermediate
representation (IR), i.e., the CLP-transformed program. The DPOR engine carries out the
actual systematic testing process in CLP. It comprises the ABS semantics in CLP, the DPOR
algorithm of [6] and the stability and dependencies analyses of [6]. The output manager
then generates the output in the format which is required by EasyInterface, including an
XML file containing all the EasyInterface commands and actions and SVG diagrams. In
case deadlock-guided testing is applied, the DECO deadlock analyzer [15] is invoked, which
returns a set of potential deadlock cycles that are then fed to the DPOR engine to guide the
testing process (discarding non-deadlock executions).

45
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Figure 6.1: SYCO architecture

Section 6.3 details the usage of SYCO. Essentially, once the input program is ready, either
selected from the available library of ABS programs or supplied by the user, the SYCO engine
is run (with the selected settings) and the output is obtained. As a result, SYCO outputs
a set of execution results. For each one, SYCO shows the output state and the sequence
of tasks/interleavings and concrete instructions exercised by the corresponding execution
(highlighting the source code). SYCO also generates sequence diagrams for each execution.
Such sequence diagrams provide graphical and more comprehensive representations of execu-
tion traces. Essentially, they show the task/object executing at each time of the simulation,
the spawned asynchronous calls (with arrows from caller to callee), and, the waiting and
blocking dependencies. See Section 6.2.2 for details.

6.1.2 The aPET Tool

aPET is a static testing tool and test case generator for ABS concurrent objects based on
symbolic execution. Its architecture is essentially the same as that of SYCO. Indeed, both
tools share most of their components, namely the ABS compiler, the AST-to-IR and part of
the DPOR Engine and Output Manager. The main differences are that the internal CLP
engine of aPET includes support for symbolic execution and its termination criteria, and that
the output manager includes support for TCG in different formats.

The usage of aPET is essentially as follows: given an input program and a selection of
methods, the aPET symbolic execution engine computes a set of test cases for the selected
methods. Test cases can be given as path constraints or, after a constraint solving procedure,
as concrete test cases. Each test case includes the input arguments and input state, and the
output argument and output state. Section 6.3 details how to use aPET with screenshots and
provides information about the different parameters which can be set.

6.2 SYCO: Step by Step

In order to use SY CO we select Systematic testing (SYCO) from the pull-down menu (see
Figure 6.2). example is available here. It is a bit simple than the one presented in Section
2.1, we remove method simulate and clients field becomes a single reference. It can be seen

http://ei.abs-models.org:8082/clients/web/index.html?app=syco&file=/collaboratory/examples/TestCaseGeneration/DBProtocol.abs
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Figure 6.2: SYCO/aPET web interface

in Figures 6.2 and 6.3. If we click over DBProtocol.abs, the code appears at the code
area. Now, if we press button Refresh Outline, the right-hand side with the classes and
module information is updated. The Clear button cleans the console area. Optionally, the
parameters of the selected testing tool can be configured by clicking on Settings (details
are given in Section 6.2.3). To execute the selected tool it is enough to click Apply in the
pulldown menu on the tool bar and the results are presented in the console area.

6.2.1 Using SYCO with default parameters

Let us perform a systematic testing of our running example with SYCO using default param-
eters. We just select SYCO and press Apply. Note that systematic testing always targets
the main block. Therefore, the selection made in the outline view is ignored. The results are
printed in the console area.

SYCO first prints the number of complete executions explored (in this case 4 executions).
Note that, by default, an aggressive POR is applied. As we will see later, the number of
executions without POR is 6. Also, the most recent POR technique included in SYCO is
able to obtain just two executions. SYCO then prints the output state and the execution
trace. The output state (in blue color) contains all the objects created during the execution.
Each object is represented as a term with three arguments: the object identifier, the object
type or class, and the final values of the object fields. For instance:
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- State

|------object(1,’DBimp’,[field(dt,’DataSomething’),field(client,ref(2))])

|------object(2,’WorkerImp’,[field(datum,’DataNull’)])

|------object(main,main,[])

means that the final state contains: (1) an object identified by 1 of class DBimp, whose fields
dt and client have ′DataSomething′ and ref(2) as values; (2) an object identified by 2 of
class WorkerImp, whose fields datum has ′DataNull′ as value and (3) an object identified by
main that creates the previous objects. Since we have registered the worker as DB’s client,
its datum field should end with value ′DataSomething′, instead of the obtained ′DataNull′.
This execution therefore reveals a bug in the program.

The execution trace (in red color) shows, for each time or macro-step of the execution, the
object and task executing at this time. If we click one time of the trace, the corresponding
line in the source code is highlighted (in yellow color) in the code area. This is shown in
Figure 6.3 where the first time (|------’Time: 0, Object: main, Task: 0:main’) of
the trace has been clicked.
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Figure 6.3: Execution of SYCO with default parameters
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6.2.2 How to understand the sequence diagrams

To see the sequence diagram of a concrete execution we click the text ‘‘Click here to

see the sequence diagram’’ (next to the execution number in the console view). Figure
6.4 shows the sequence diagram of the first execution for our running example. At the left-
hand side, a timeline is shown with the times of the execution, in this case 7 times (0− 6).
Each vertical cluster corresponds to the activities performed by each object, and each node
corresponds to the task executing at the corresponding object in the corresponding time.
Objects are of the form class id, where class is the object type and id is a unique object
identifier. Tasks are of the form id:method where id is a unique task identifier and method

is the name of the method. Nodes also indicate why the execution of the associated task
stopped. Nodes in green color labeled with return correspond to tasks that have finished
their executions; nodes in orange color labeled with waiting for taskId are tasks which
have been suspended waiting for task taskId; and nodes in red color labeled with blocked

for taskId are tasks which block the object waiting for task taskId. Finally, arrows from
nodes to clusters indicate asynchronous calls or object creations.

In our running example, the trace corresponding to execution 1 is shown in Figure 6.4.
Let us briefly explain the diagram and the relations among the diagram, the code of the
program (Figure 2.2) and the final state computed for execution 1 (Figure 6.3 below). Time
0 corresponds to the execution of the main block within the object identified as main 0. It
creates two new objects DBimp 1 (DB DB = new DBimp(DataSomething)) and WorkerImp 2

(Worker w = new WorkerImp()). Then, it spawns task 1:register (db ! register(w))
and task 3:work (w ! work(db)). These calls produces in the sequence diagram two arrows
tagged with 1:register and 3:work, respectively. In the final state, this adds the objects
object(main,main,[]) , object(1,’DBimp’,[field(dt,’DataSomething’),
aaaalaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa field(client,null)])

and object(2,’WorkerImp’,[field(datum,null)]) respectively.

Then, the block main 0 finishes its execution and it is marked with return. During
time 1, object DBimp 1 executes the task 1:register which spawns task 2:ping (an arrow
between DBimp 1 and WorkerImp 2 appears tagged with 2:ping) to check if the worker is
online and it gets blocked until such task is performed, then, this node is red and it is marked
with blocked for 2. At time 2, 2:ping is executed and it finishes in a return, its node is
green color. At time 3, the execution of task 3:work makes a new call (and produces a new
arrow between WorkerImp 2 and DBimp 1) (w ! getData()) and it gets blocked until its execu-
tion (red node tagged with blocked for 4). During time 4, DBimp 1 resumes the execution
of task 1:register at Line 21 (tagged as 1:register(21) and finishes correctly. Then,
DBimp 1 becomes object(1,’DBimp’,[field(dt,’DataSomething’),field(client,ref(2))]).
At time 5, DBimp 1 executes task 4:getData and it returns DataSomething, as WorkerImp 2

has been previously registered as its client. Finally, during time 6, WorkerImp 2 resumes the
execution of task 3:work at Line 38 and it finishes correctly, in a green node. WorkerImp 2

becomes object(2,’WorkerImp’,[field(datum,’DataSomething’)]).

Figures 6.5 and 6.6 show the result and sequence diagram of the third execution, in which
we can observe the aforementioned bug. If we make a comparison between the sequence
diagrams of executions 1 and 3, we can figure out that the problem in execution 3 originates
on time 2, where task 4:getData finishes before executing task 1:register, that is, before
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Figure 6.4: A buggy execution trace for the running example

DBimp 1 had registered WorkerImp 2 as its client. In the sequence diagram of execution 1 we
can observe that object DBimp 1 executes task 4:getData after executing task 1 : register
(see times 1 and 15).

6.2.3 Parameters of SYCO

Up to now we have executed SYCO with default parameters. Pressing button Settings at
the toolbar shows the parameters window, which allows to configure the available parameters
for each application. Figure 6.7 shows the parameters of SYCO, with default values. The
following parameters can be set:

• Object selection policy. By default all objects from a state are selected non-deterministically
on backtracking (option Non-deterministic). In case parameter Partial-order reduc-
tion below is enabled, only the required objects are selected according to the POR
theory (see [6]). The other value Round-robin selects an object deterministically us-
ing a round-robin strategy.
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Figure 6.5: A correct execution for the running example

• Task scheduling policy. It allows us to set the scheduling policy of objects. Available
values are FIFO, LIFO and Non-deterministic. The default value is Non-deterministic.
Otherwise, SYCO performs a deterministic simulation with the selected strategies.

• Partial-order reduction. It allows one to disable POR, by selecting value None, or to
enable it with one of the following three levels of precision, Naive dep. approx.,
Shared memory dep. (by default) and Exact dep.. Option Naive dep. approx.

only applies the POR object selection in [6] based on stability, whereas option Shared

memory dep. over-approximates the dependencies based on shared-memory accesses
of [6]. Finally, Exact dep. applies a recent and yet experimental DPOR technique
which detects dynamically context-sensitive and exact dependencies. In the example,
4 executions are obtained with POR based on shared-memory dependencies, and 8
if POR is disabled. Using the technique to detect exact dependencies we just get 2 ex-
ecutions. This examples is quite small, but bigger examples illustrate the effectiveness
of the available POR techniques.

• Deadlock-guided testing. It allows us to enable/disable deadlock-guided testing. By
default it is disabled. If it is enabled, the testing process is guided towards deadlocks,
discarding non-deadlock executions, with the corresponding state space reduction. This
is useful in the context of deadlock detection and debugging. See Section 6.2.5 above.
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Figure 6.6: Diagram of correct execution for the running example

• Global timeout. Measured in seconds. It allows us to stablish a maximum time for the
execution of SYCO.

6.2.4 How to understand the execution tree

To see the execution tree of the program we click over the text ‘‘Click here to see the

execution tree’’ at the first line in the console view. Figure 6.8 shows the execution tree
of the program DBProtocol.abs (with option POR disabled).
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Figure 6.7: The SY CO parameters
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Figure 6.8: Execution tree of DBProtocol.abs
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The root of the execution tree is the state s0. After executing method main, the exe-
cution can either proceed with task 1:register of object DBimp 1 or task3:work of object
WorkerImp 2. If the first one is executed, we reach the state s1, where the execution can
either proceed with task 2:ping or 3:work of object WorkerImp 2. If 2:ping is executed,
then executions 0 and 1 are deadlock-free (they would have been pruned if deadlock-guided
testing is enabled as we show below). However, if 3:work is executed, we get a deadlock.
The other part of the tree is analogous: executions 3 and 4 are deadlock-free (and would be
pruned in deadlock-guided testing) and execution 5 produces a deadlock.

6.2.5 Deadlock-guided testing with SYCO

As we have seen in the previous sections, with POR disabled, SY CO produces 6 execu-
tions for the working example, which cover all possible task interleavings that may oc-
cur. SY CO reports that two executions are deadlock executions corresponding to se-
quences main→ register→ work and main→ work→ register. If we enable Deadlock-guided
testing, we obtain just the two deadlock executions which are shown in Figure 6.9. Looking
at the sequence diagram of the first execution (Figure 6.10 up), we can observe a deadlock
situation, since both DBimp 1 and WorkerImp 2 are blocked and, as we can see, they are
squared in red color. During time 1, DBimp 1 gets blocked waiting for WorkerImp 2 to ex-
ecute task 4:ping. During the next time, object WorkerImp 2, instead of executing task
4:ping, it executes task 5:work, getting blocked waiting for DBimp 1 to execute 6:getData.
Therefore, none of the objects can make any progress. Both tasks are highlighted with red
solid edges to indicate that these are the ones responsible for the deadlock. The second
execution (see Figure 6.10 down) is similar but changing the execution order between tasks
3:register and 5:work.

6.3 aPET: Step by Step

This section illustrates the usage of aPET using our running example. In this case we select
Test case generation (aPET) from the pull down menu in the toolbar. In contrast to
SYCO, since aPET performs symbolic execution, it can be applied over any method, possibly
containing input arguments. Symbolic execution produces as a result the conditions over
the input arguments and input state, or directly concrete values satisfying those conditions,
to execute the different execution paths. Also, for each considered path, the expressions
to compute the corresponding outputs, or concrete outputs satisfying them, are generated.
Methods to which we want to apply aPET are selected in the outline view.

Let us select method getData of class DBimp, and generate test cases for it with aPET

using default parameters. For this, we just click over the Apply button and in the console
area we can observe that 2 test cases have been generated. Let us focus on the first test case
which is shown in Figure 6.11.

• In the Input section, Args stands for the value of the input arguments; in this case
ref(A) and null are the initial values computed for the input parameters this and w.
State shows the input state. It contains only one object (the caller object) of class
DBimp identified by A.
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Figure 6.9: Deadlock-guided testing on the working example
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Figure 6.10: Sequence diagrams of deadlock executions
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Figure 6.11: TCG with aPET for method getData

• The Output section contains the Return value, followed by the final state. The return
type of method getData is Data and it returns DataNull (as the value of client field
is null as same as the value of w), and, the final state contains only the object A.

aPET also generates the traces associated with each test case and the corresponding
sequence diagrams to graphically visualize the traces. They are displayed by clicking on
‘‘Click here to see the sequence diagram’’ in each test case. As in SYCO, if we click
over one time point of the trace, the corresponding line in the source code is highlighted (in
yellow color) in the code area.

6.3.1 Parameters of aPET

The parameters available for aPET are shown in Figure 6.12, with their corresponding default
values. In the following we describe the meaning and available values for the different
parameters:

Concrete test-cases or path-constraints. The result of each feasible execution path in
the symbolic execution can be given in the form of (unresolved) path constraints (value
Path constraints), or in the form of a concrete test case (value Concrete tests),
where arbitrary concrete values satisfying the constraints are generated. Value Hybrid

generates concrete data only for functional data, leaving path constraints involving
numeric variables. As an example, let us consider again the TCG with aPET of method
getData of class DBimp with value Path constraints. The two computed test cases
are shown in the screenshot below:
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Figure 6.12: The aPET parameters
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The first test case can be read as: the initial and final states contain an object A, such
that the values of fields dt and client keep unknown (variables C and B) during the
path contraint. If we look at the constraint store, we see both variables are unbounded.
The return value is C (value of field dt), because the value of parameter w is equal to
the value of client, (e.g. the worker B) was previously registered as its client).

On the other hand, the second test case returns ’DataNull’, which is different than C
(value of field dt), and if we look at the constraint store we can see a new constraint
D is different than B, that is, the value of client field is different than the value
of w (e.g. the worker B was not previously registered as its client).

Range of numbers for concrete test cases. It allows specifying the domain for numeric
variables and it is given in the format Min..Max . This option is only applicable when
that concrete test-cases are generated.

Testing Level. It allows us to select between Unit/Method Level (by default) and
Integration/System Level. In this level, selected initial tasks (see the following
parameter) are used as it is explained in Chapter 5.1.

Selection of initial tasks. It allows us to select between User selected (by default)
and Deadlock interfering tasks. By default initial tasks are the ones selected by
the user in the outline view. If Deadlock interfering tasks is chosen, then the
system testing is performed from an initial context containing tasks inferred by the
predicate in Figure 5.4.

Max. initial calls per method. The specified number (by default 1) is used as a limit
on the maximum number of instances of methods in the initial contexts during system
testing.
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Termination crit.: Loop iterations. The specified number (by default 1) is used as a
limit on the maximum number of loop iterations or function recursive calls which are
allowed in symbolic execution.

Termination crit.: Task switchings per object. The specified number (by default 8)
is used as a limit on the maximum number of task switchings per object which are
allowed in symbolic execution.

Termination crit.: Objects originated per program point. The specified number (by
default 2) is used as a limit on the maximum number of objects originated per program
point which are allowed in symbolic execution.

Parameters Object selection policy, Task scheduling Policy, Partial-order reduction and
Global timeout have the same meaning as in SYCO (see Section 6.2.3). The first two have
however different default values in aPET, namely Round-robin, and FIFO respectively. This
is because, in the context of symbolic execution, it is much more likely to run into state
explosion problems with non-deterministic schedulings.

6.3.2 System testing with aPET

For the sake of simplicity, parameter Max. initial calls per method imposes a global maximum
cardinality for each initial task considered. This is done to help the user avoiding to define
a local cardinality for each of them. Option Min. initial calls per method is not available,
so the minimum cardinality for each task is 1 by default. Let us select methods register

and getData of class DBimp, and we enable the parameter System Testing with parameter
Max. initial calls per method by default. Then, the system testing is performed with Tini =
{(DBimp.register, 1, 1), (DBimp.getData, 1, 1)}. If we click over Button Run, 16 test cases are
obtained by aPET, and none of them are deadlock.

Each of these test cases are achieved from one of these two initial contexts: (1) a context
containing two instances of DBimp with a task 1:register and a task 0:getData, respectively
or (2) a context composed by an instance of DBimp with tasks 1:register and 0:getData.
If we press over the first sequence diagram (Figure 6.13), we can observe two edges which
indicates tasks and locations inside the initial context during time 0. First arrow means that
DBimp 1 has to perform task 0:getData and the second one means DBimp 1 has to perform
task 1:register.

Let us enable now the parameter Initial tasks and click over Run. 2 test cases are
obtained, all of them are deadlock. We can now observe the sequence diagram in Figure 6.14.
Here, asynchronous calls performed during time 0 are those tasks inferred by the predicate
in Figure 5.4.
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Figure 6.13: Sequence diagram of system testing of methods register and getData

Figure 6.14: Sequence diagram of system testing of methods inferred by the predicate in
Figure 5.4





Chapter 7

Experimental Evaluation

This chapter summarizes our experimental results, which aim at demonstrating the applica-
bility, effectiveness, and impact of the proposed techniques, as we can see in Table 7.1.The
benchmarks we have used include: (i) classical concurrency patterns containing deadlocks,
namely, DBW implements a communication protocol between a database and several work-
ers, F is a distributed factorial, PP is the pairing problem, HB the hungry birds problem, UF
is a loop that creates asynchronous tasks and locations, SB is an extension of the sleeping
barber; and, (ii) deadlock free versions of some of the above, named fP for the P program,
for which deadlock analyzers give false positives. All of these programs contain a class
Main which implements a method main with several integer parameters. Code of all of these
benchmarks can be found at http://costa.ls.fi.upm.es/apet.

Table 7.1 compares the results of our deadlock guided testing (DGT) methodology both
for the deadlock-per-cycle (DGT (d-p-c)) and all-deadlocks (DGT (all)) criteria,
against those obtained using the standard symbolic execution. In all cases, the default POR
techniques included in our testing framework are used. Each benchmark is executed with 2
different limits on loop iterations (column k).The selected limits for each benchmark are dif-
ferent and have been chosen according to the complexity of the benchmark. For the symbolic
execution and the DGT with the all-deadlock criterion settings we measure: the number of
solutions or complete derivations (columns Ans) and the total time taken (columns T). For
the DGT with the deadlock-per-cycle criterion, besides the time (column T), we measure
the “number of deadlock executions”/“number of unfeasible cycles”/“number of abstract
cycles inferred by the deadlock analysis” (column D/U/C), and, since the DCGTs for each
cycle are independent and can be performed in parallel, we also show the maximum time
measured among the different DCGTs (column Tmax). For instance, for HB with k = 4
(namely, HB4), whereas the standard symbolic execution blows-up, our DGT has been able
to find all its 1145 deadlock executions in 2847 ms. Also, our DGT for the deadlock-
per-cycle criterion is telling us that the program has five different abstract deadlock cycles
(found by the deadlock analysis), but it only found a feasible deadlock execution for two of
them (therefore 3 of them were spurious), being 6912ms the total time of the process, and
3237ms the time of the longest DCGT (including the time of the deadlock analysis), and,
hence the total time assuming an ideal parallel setting with 5 processors.

Columns in the group Speedup show the gains in time of DGT both for deadlock-
per-cycle (columns Tgainand Tmax

gain) and all-deadlocks (column Tall
gain) over the standard
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Symb. Exec. DGT (d-p-c) DGT (all) Speedup

Bmks. k Ans T D/U/C T Tmax Ans T Tgain Tmax
gain Tall

gain

DBW 2 1k 1k 1/0/1 22 3 50 99 50.8 374.9 10.8
3 196k ∞ 1/0/1 21 3 3k 6k >9k >60k >32.3

F 3 11k 7k 3/0/3 17 7 1 30 426.1 1k 241.5
4 269k ∞ 3/0/3 33 5 1 72 >5k >36k >3k

PP 2 16 15 2/0/2 12 3 2 9 1.3 5.0 1.7
3 310 224 2/0/2 10 3 8 16 22.5 74.7 14.0

HB 3 16k 10k 2/3/5 325 325 1k 120 31.4 31.4 80.8
4 206k ∞ 2/3/5 7k 7k 2k 3k >27 >27 >64

UF 2 1 ∞ 1/0/1 31 4 36 100 >58k >450k >18k
3 167k ∞ 1/0/1 66 4 72 261 >3k >45k >690

SB 1 29 31 1/0/1 20 4 3 20 1.6 7.8 1.66
2 217k ∞ 1/0/1 19 4 70 177 >94k >450k >10k

fUF 2 201k ∞ 0/1/1 430 430 0 427 >4k >4k >4k
3 147k ∞ 0/1/1 17k 17k 0 18k >11 >11 >10

fF 3 5k 4k 0/1/1 34 34 0 34 131.0 131.0 131.0
4 207k ∞ 0/1/1 90 90 0 111 >2k >2k >1k

fPP 3 7k 4k 0/2/2 29 29 0 30 150.8 150.8 145.8
6 341k ∞ 0/2/2 3k 3k 0 3k >535 >534.3 >535.1

Table 7.1: Experimental evaluation

symbolic execution. In the case of the deadlock-per-cycle criterion we provide the gains
both assuming a sequential setting, hence considering value T of DGT (column Tgain),
and an ideal parallel setting, therefore considering Tmax(column Tmax

gain). The gains are
computed as X/Y , X being the measure of standard symbolic execution and Y that of the
corresponding DGT. Times are in milliseconds and are obtained on an Intel(R) Core(TM)
i7 CPU at 2.3GHz with 8GB of RAM, running Mac OS X 10.8.5. A timeout of 180s is used.
When the timeout is reached, we write >X to indicate that for the corresponding measure
we have got X units in the timeout. In the case of the speedups, >X indicates that the
speedup would be X if the process finishes right in the timeout, and hence it is guaranteed
to be greater than X.

Our experiments confirm our claim that systematic testing complements deadlock analy-
sis. In the case of programs with deadlock, we have been able to provide concrete test cases
(including full traces and scheduling decisions) for feasible deadlock cycles and to discard
unfeasible cycles. For deadlock-free programs, we have been able to discard all potential
cycles and therefore prove deadlock freedom (modulo the termination limit used). More
importantly, the experiments demonstrate that our DGT methodology is effective and that
it can achieve a notable reduction of the search space over standard (symbolic) systematic
testing. The gains of DGT both in time and in number of explored states are enormous
(more than three orders of magnitude in many cases). It can be observed that the gains
are much larger in the examples in which the deadlock analysis does not give false posi-
tives (namely, in DBW3, F4, F10, PP9, UF3). An explanation for this is that, in general,
the generated constraints for unfeasible cycles are often not able to guide the exploration
effectively (e.g. in HB4). Indeed, if we consider HB5 we cannot find a representative of one
of the abstract cycles but neither we are able to prove it is a false positive. Even in these
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cases, DGT outperforms symbolic execution in terms of scalability and flexibility. Let us
also observe that the gains are less notable in deadlock-free examples. That is because, on
one hand, all cycles are unfeasible in this case, and, on the other, each DCGT cannot stop
until all potential deadlock paths have been considered. As expected, when we consider a
parallel setting, the gains are much larger.

All in all, we argue that our experiments show that our methodology complements dead-
lock analysis, finding deadlock traces for the potential deadlock cycles and discarding un-
feasible ones, with a significant reduction. It is very effective for programs that contain
deadlocks, and it is also able to prove deadlock freedom for most cases in which a static
analysis reports false positives.





Chapter 8

Related Work

Since our method uses in conjunction static and dynamic analyses, and the individual meth-
ods can be used for multiple purposes, we need to relate it to a wide spectrum of existing
techniques that we classify as follows.

8.1 Deadlock Analysis

There is a large body of work on deadlock detection including both dynamic and static
approaches. Much of the existing work, both for asynchronous programs [15, 16] and thread-
based programs [27, 29], is based on static analysis techniques. Static analysis can ensure
the absence of errors, however it works on approximations (especially for pointer aliasing)
which might lead to a “don’t know” answer.

Our work complements static analysis techniques and can be used to look for deadlock
paths when static analysis is not able to prove deadlock freedom. Using our method, we try
to find a deadlock by exploring the paths (possibly infinite) given by a deadlock detection
algorithm that relies on the static information. Although we have used the output given by
the deadlock analyzer of [15], our combined approach could use the output of other static
analyzers (e.g., [16]) without requiring any conceptual change to the combined framework.

8.2 Symbolic Execution, Verification, Model Checking

and Testing

The core of our CLP-based framework is the symbolic execution engine presented in Chap-
ter 3. By relying only on this component, one can clearly do (non-guided) deadlock detection
already, and besides other types of errors can also be captured (e.g., find critical states that
can cause the system to crash). This is the approach taken in model checking and other
verification techniques which are based on symbolic execution to automatically verify cor-
rectness properties. Indeed, deadlock detection has been intensively studied in the context
of model checking (see, e.g., [28]).

Both static and dynamic testing aim at finding bugs, among them deadlocks (see, e.g.,
[11, 25, 26, 21]). Indeed, symbolic execution is at the core of static testing systems and our
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symbolic execution engine is the basis for the aPET testing system [5].
Current research on testing for concurrent systems has focused on avoiding the generation

of redundant executions which result from interleaving independent processes (e.g., processes
that operate on disjoint areas of the memory). Dynamic Partial Order Reduction (DPOR)
[6, 14, 31] is a successful technique to avoid such redundancies. Our work is orthogonal to
such line of research, in the sense that we can use DPOR techniques within our framework
and the combined approach is still valid. Indeed, our implementation uses the techniques
described in [6] to eliminate redundancies, as we have mentioned in Chapter 7.

8.3 Hybrid Approaches

We now relate our work to hybrid approaches that use static information during testing for
deadlock detection, namely [24] and [2]. As regards [24], it first performs a transformation
of the program into a trace program that only keeps the instructions that are relevant
for deadlock and then dynamic testing is performed on such program. The approach is
fundamentally different from ours: in their case, since model checking is performed on the
trace program (that over-approximates the deadlock behaviour), the method can detect
deadlocks that do not exist in the program, while in our case this is not possible since the
testing is performed on the original program and the analysis information is only used to
drive the execution. Besides, our work is based on static testing that generalizes dynamic
testing to allow any input data.

As regards [2], the information inferred from a type system is used to accelerate the
detection of potential cycles. This work shares with our work that information inferred
statically is used to improve the performance of the testing tool, however there are important
differences: first, their method developed for Java threads captures deadlocks due to the use
of locks and cannot handle wait-notify, while our technique is not developed for specific
patterns but works on a general characterization of deadlock of asynchronous programs;
their underlying static analysis is a type inference algorithm which infers deadlock types and
the checking algorithm needs to understand these types to take advantage of them, while
we base our method on an analysis which infers descriptions of chains of tasks and a formal
semantics is enriched to interpret them.



Chapter 9

Conclusions and Future Work

It is known that testing of concurrent systems suffers from the state explotion problem that
results from considering all interleavings of processes. Firstly, we have proposed a hybrid
approach that uses the information yield by a static deadlock analyzer in order to guide
the execution of a testing tool towards potential deadlock paths and discard paths that are
guaranteed to be deadlock free. As our experiments show, our hybrid approach is more
scalable than not-guided testing for deadlock detection.

Secondly, we have presented a new technique to perform system or integration testing by
means of a set of initial tasks provided by the user. Furthermore, we reduce the combinato-
rial explosion by inferring the deadlock-interfering tasks which could lead the execution to
deadlock. The experimental evaluation of this approach remains as future work.

Besides, we can combine both approaches with state-of-the-art DPOR techniques that
eliminate redundancies in order to be even more effective. Indeed, we are currently work-
ing on improving existing techniques that detect redundancies during systematic testing in
order to prune the search tree even further. Our idea is to work on a more refined notion
of independence that will allow us to avoid certain interleavings between independent pro-
cesses which are not captured by existing techniques. The important point to note is that
the achieved improvements will be directly applicable to our hybrid framework for deadlock
detection. We are also studying the possibility of guiding the search towards other properties
of interest for the actors concurrency model. These are lines for future research.

Finally, we have implemented these techniques within the prototype tool SYCO/aPET, a
dynamic/static testing tool, which is available online and it appears in the proceedings of the
25th International Conference on Compilers Constructions. Improvements and extensions
of the tool remain also as future work.
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for Deadlock Detection. In Erika Ábrahám and Marieke Huisman, editors, Integrated
Formal Methods - 12th International Conference, IFM 2016, Reykjavik, Iceland, June
1-5, 2016, Proceedings, volume 9681 of Lecture Notes in Computer Science, pages 409–
424. Springer, 2016.
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