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Cuando empecé esta carrera en 2010 pensaba que nunca llegaŕıa el momento de
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Resumen

Los análisis estáticos de deadlock son, a menudo, capaces de asegurar la ausencia

de bloqueos, pero cuando detectan un posible ciclo de deadlock, la información

que devuelven como salida es escasa e insuficiente. Debido al complejo flujo de

ejecución existente en los programas concurrentes, el usuario podŕıa ser incapaz

de encontrar la causa del comportamiento anómalo a partir de la información

abstracta proporcionada por el análisis estático. Este trabajo propone el uso

combinado de un análisis estático y el testing dinámico para la detección efectiva

de deadlocks en programas aśıncronos. Las principales contribuciones son: (1)

Presentamos una semántica extendida que permite la detección instantánea de

bloqueos durante el testing y dar al usuario una descripción precisa de la traza

de deadlock. (2) Además combinamos, nuestra herramienta de testing con las

descripciones abstractas de posibles ciclos de deadlock, inferidos por un análisis

estático existente. Tales descripciones son usadas en nuestra semántica extendida

para guiar la ejecución hacia posibles caminos de deadlock, mientras que el resto

son podados. Cuando el programa contiene un bloqueo, el uso combinado del

análisis estático y el testing nos proporciona una técnica efectiva para encontrar

trazas de deadlock. En caso de que el programa no contenga ninguno, pero

el análisis śı que lo detecte debido a pérdidas de precisión, podŕıamos llegar a

demostrar la ausencia de deadlocks.

Palabras Clave
Restricciones de Ciclo de Deadlock, Análisis de Deadlock, Testing Guiado, Ciclo

Abstracto, Detección de Deadlocks, Intervalo de Espera, Cadena de Deadlock,

Tabla de Entrelazados.
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Abstract

Static deadlock analyzers might be able to verify the absence of deadlock, but

when they detect a potential deadlock cycle, they provide little (or even none)

information on their output. Due to the complex flow of concurrent programs,

the user might not be able to find the source of the anomalous behaviour from

the abstract information computed by static analysis. This paper proposes the

combined use of static analysis and testing for effective deadlock detection in

asynchronous programs. Our main contributions are: (1) We present an enhanced

semantics which allows an early detection of deadlocks during testing and that

can give to the user a precise description of the deadlock trace. (2) We combine

our testing framework with the abstract descriptions of potential deadlock cycles

computed by an existing static deadlock analyzer. Namely, such descriptions are

used by our enhanced semantics to guide the execution towards the potential

deadlock paths (while other paths are pruned). When the program features a

deadlock, our combined use of static analysis and testing provides an effective

technique to find deadlock traces. While if the program does not have deadlock,

but the analyzer inaccurately spotted it, we might be able to prove deadlock

freedom.

Key Words
Deadlock Cycle Constraint, Deadlock Analysis, Guided Testing, Abstract Cycle,

Deadlock Detection, Waiting interval, Deadlock Chain, Interleaving Table.
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Chapter 1

Introduction

1.1 Introduction

In order to improve program responsiveness, many modern programming lan-

guages and libraries promote a model of actors, in which asynchronous tasks can

execute concurrently with their caller tasks, until their callers explicitly wait for

their completion. We consider an asynchronous language which allows spawning

asynchronous tasks at distributed locations, and has two operations for blocking

and non-blocking synchronization with the termination of asynchronous tasks

and, thus, it is possible to introduce deadlocks.

Indeed, deadlock is one of the most common programming errors and, there-

fore, a main goal of verification and testing tools for concurrent programs is,

respectively, proving deadlock freedom and deadlock detection. In general, dead-

lock situations are produced when a concurrent program reaches a state in which

one or more tasks are waiting for each other termination and none of them can

make any progress.

In our setting, in order to detect deadlocks, all possible interleavings among

tasks executing at the distributed locations must be considered. Basically, each

time that the processor can be released, any of the available tasks can start its

execution, and all combinations among the tasks must be tried, as any of them

7



CHAPTER 1. INTRODUCTION 8

might lead to deadlock. The contribution of this work is a testing framework for

deadlock detection in asynchronous systems.

Static analysis and testing are two different ways of detecting deadlocks that

often complement each other and, thus, it seems quite natural to combine them.

Static analysis evaluates an application by examining its code but without exe-

cuting it. As static analysis examines all possible execution paths and variable

values, it can reveal deadlocks that could not manifest until weeks, months or

years after releasing the application. This aspect of static analysis is especially

important in security assurance, because security attacks try to exercise an appli-

cation in unpredictable and untested ways. However, when a deadlock is found,

state-of-the-art analysis tools [11, 12, 9, 18] provide little (and often none) in-

formation on the source of the deadlock. In particular, for deadlocks that are

complex (involve many tasks and locations), it is essential to know the task in-

terleavings that have occurred and the locations involved in the deadlock, i.e.,

provide a concrete deadlock trace that allows the programmer to identify and fix

the problem.

In contrast, testing consists in executing the application: in dynamic test-

ing, it is executed for concrete input values, while static testing does not make

any assumption on the input values and the application is executed symbolically

using constraint variables. The primary advantage of testing for deadlock de-

tection is that it can provide the deadlock trace with all information that the

user needs in order to fix the problem. There are two shortcomings though: (1)

In dynamic testing, since not all inputs can be tried, there is no guarantee of

deadlock freedom; and in static testing, one needs to assume some termination

criteria and, thus, it is again not possible to ensure deadlock freedom. (2) Be-

sides, although recent research tries to avoid redundant exploration as much as

possible [10, 21, 8, 1, 4], the search space (without redundancies) can be huge.

This is a threaten to the application of testing in concurrent programming.

When the focus of testing is on a particular property, it might not be necessary

to generate the whole search space (even without redundancies). Instead, we aim
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at guiding the execution only towards those paths that might lead to deadlock,

and prune those that we know certainly that cannot lead to deadlock. This

paper proposes a seamless combination of static analysis and testing for effective

deadlock detection as follows: an existing static deadlock analysis [11] is first

used to obtain abstract descriptions of potential deadlock cycles which are then

used to guide a testing tool in order to find associated deadlock traces (or discard

them). Technically, the main contributions of the paper are:

1. We extend a standard semantics for asynchronous programs with informa-

tion about the task interleavings made, and the status of tasks (i.e., awaiting,

blocked, or finished).

The extended semantics will allow us: (1) to provide deadlock traces when

a deadlock is found, (2) an early detection of deadlock states during exe-

cution and (3) its combined use with static analysis. In essence, whenever

the scheduler changes the executing task, we assign a unique time identi-

fier to it, determined by the location and task identifiers; we add a tuple

with (i) a time value that is larger than those of the tasks that have been

selected so far and (ii) its status (e.g., if it finished or is blocked awaiting

for the termination of another task). All this information is stored in the

interleavings table along the execution.

2. We provide a formal characterization of deadlock state which can be checked

along the execution, and allows us to early detect deadlocks.

Our characterization is based on the notion of deadlock chains which are

chains t0, . . . , tn of times whose tasks are basically awaiting for the ter-

mination of another one in the next location until tn that waits for the

termination of a task of the (blocked) location in which t0 executes. A

state is deadlock iff it contains this kind of deadlock chains. This notion

is useful per se since it is not straightforward to detect a deadlock during

the execution. This is because there can be one (or several locations) that

keep on executing (maybe even go into an infinite computation) while, due
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to a deadlock chain in other locations, we are sure that the execution will

eventually lead to a deadlock. Thus, it allows early detection of deadlocks

paths.

3. We present a new methodology to detect deadlocks which combines testing

and static analysis.

The deadlock cycles inferred by static analysis are used by our framework

to generate constraints that must be fulfilled by every state in a deadlock

derivation. Using these constraints, our extended semantics guides the test-

ing process towards paths that might lead to a deadlock cycle and discard

deadlock-free paths. The effectiveness of this framework is highly related to

the deadlock analysis: the more accurate the analysis is, the more reduced

the search space will be. Deadlock analysis is a very active research area

and whenever new deadlock analyses are developed, our framework will be-

come more effective as well; since it can be easily adapted to use a new

constraints generator.

4. We introduce several deadlock-based testing criteria.

Our criteria allow us to apply our methodology to find: the first deadlock

trace, a representative deadlock trace of each deadlock cycle, or all deadlock

traces for each cycle.

5. The implementation in the aPET system [5] and a thorough experimental

evaluation.

Our experiments show that we can find deadlock traces for the potential

deadlock cycles with a significant reduction of the required state explo-

ration. We have used our framework on programs where deadlock analysis

loses precision and outcomes false-positives and also show a reduction in

time and space to prove these programs are actually deadlock-free.



Chapter 2

Language

In this chapter, we present the language that will be used during the formalization

of the framework and an example programmed in this language that illustrates its

semantics. Section 2.1 presents the language syntax and semantics and Section

2.2 illustrates the well-known Sleeping Barber Problem, which is used as running

example.

2.1 Asynchronous Programs: Syntax and Se-

mantics

We consider a distributed programming model with explicit locations. Each lo-

cation represents a processor with a procedure stack and an unordered buffer of

pending tasks. Initially all processors are idle. When an idle processor’s task

buffer is non-empty, some task is selected for execution. Besides accessing its

own processor’s global storage, each task can post tasks to the buffers of any

processor, including its own, and synchronize with the termination of tasks.

The language uses future variables to check if the execution of an asynchronous

task has finished. An asynchronous call m(z̄) spawned at location x is associated

with a future variable f as follows f = x ! m(z̄). Instructions f.block and f.await

allow, respectively, blocking and non-blocking synchronization with the termina-

11



CHAPTER 2. LANGUAGE 12

tion of m. When a task completes, or when it is awaiting with a non-blocking

await for a task that has not finished yet, its processor becomes idle again, chooses

the next pending task, and so on. The number of distributed locations need not

be known a priori (e.g., locations may be virtual).

Syntactically, a location will therefore be similar to a concurrent object [15]

and can be dynamically created using the instruction new. The program consists

of a set of methods of the form M ::=T m(T̄ x̄){s}, where statements s take the

form s::=s; s | x=e | if e then s else s | while e do s | return | b=new | f =

x ! m(z̄) | f.await | f.block. For the sake of generality, the syntax of expressions e

and types T is left open.

Figure 2.1 presents the semantics of the language. The information about

ρ in bold font is part of the extensions for testing in Section 4 and should be

ignored by now. A state or configuration is a set of locations and future variables

o0 · · · on · fut0 · · · futm. A location is a term loc(o, tk , h,Q) where o is the location

identifier, tk is the identifier of the active task that holds the location’s lock or

⊥ if the location’s lock is free, h is its local heap, and Q is the set of tasks in

the location. A future variable is a term fut(id, o, tk ,m) where id is a unique

future variable identifier, o is the location identifier that executes the task tk

awaiting for the future, and m is the initial program point of tk . A task is a

term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method name

executing in the task, l is a mapping from local variables to their values, and s is

the sequence of instructions to be executed or ε if the task has terminated.

We assume that the execution starts from a main method without parameters.

The initial state is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial

location with identifier 0 executing task 0. Here, l maps local variables to their

initial values (null in case of reference variables) and⊥ is the empty heap. body(m)

is the sequence of instructions in method m, and we can know the program point

pp where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
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(mstep) selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, s),

S � ρ∅
o·tk
;∗ S′ � ρ

S
o·tk−→ S′

(newloc) tk = tsk(tk ,m, l, x = new D; s), fresh(o ′), h′ = newheap(D), l′ = l[x→ o′]

loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l′, s)}) · loc(o ′,⊥, h′, {}) � ρ0

(async) tk = tsk(tk ,m, l, y=x!m1(z); s), l(x)=o1, fresh(tk1), l1=buildLocals(z̄,m1, l)

loc(o, tk , h,Q∪ {tk}) · loc(o1, , ,Q′) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)})·
loc(o1, , ,Q′ ∪ {tsk(tk1,m1, l1, body(m1))}) · fut(y, o1, tk1, ini(m1)) � ρ0

(return)
tk = tsk(tk ,m, l, return; s),ρ1 = return

loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o,⊥, h,Q∪ {tsk(tk ,m, l, ε)}) � ρ1

(await1)

tk = tsk(tk ,m, l, y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1, ) � ρ0

(await2)

tk = tsk(tk ,m, l, pp:y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp : y.await

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o,⊥, h,Q∪ {tk}) · fut(y, , tk1, ) � ρ1

(block1)

tk = tsk(tk ,m, l, y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1, ) � ρ0

(block2) tk=tsk(tk ,m, l, pp:y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp:y.block

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ; loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ1

Figure 2.1: Semantics of Asynchronous Programs

macro-step semantics [20] (defined by means of the transition “−→”) in which

the evaluation of all statements of a task takes place serially (without interleaving

with any other task) until it gets to an await or return instruction. In this case,

we apply rule mstep to select an available task from a location, namely we apply

the function selectLoc(S) to select non-deterministically one active location in

the state (i.e., a location with a non-empty queue) and selectTask(o) to select

non-deterministically one task of o’s queue.

The transition ; defines the evaluation within a given location. newloc

creates a new location without tasks, with a fresh identifier and heap. async
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spawns a new task (the initial state is created by buildLocals) with a fresh task

identifier tk 1, and it adds a new future to the state. ini(m) refers to the first

program point of method m. We assume o 6= o1, but the case o = o1 is analogous,

the new task tk 1 is added to Q of o. The rules for sequential execution are

standard and are thus omitted. Await1: If the future variable we are awaiting

for points to a finished task, the await can be completed. The finished task t1

is only looked up but it does not disappear from the state as its status may be

needed later on. Await2: Otherwise, the task yields the lock so that any other

task of the same location can take it. Return: When return is executed, the lock

is released and will never be taken again by that task. Consequently, that task

is finished (marked by adding the instruction ε). Block2: A y.block instruction

waits for the future variable but without yielding the lock. Then, when the future

is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a

sequence of macro-steps (applications of rule mstep). The derivation is complete

if St0 is the initial state and @ Stn+1 6= Stn such that Stn −→ Stn+1. Since

the execution is non-deterministic, multiple derivations are possible from a state.

Given a state St, exec(St) denotes the set of all possible derivations starting at

St. We sometimes label transitions with o · tk , the name of the location o and

task tk selected (in rule mstep) or evaluated in the step (in the transition ;).

2.2 Motivating Example

Our running example is a simple version of the classical sleeping barber problem

where a barber sleeps until a client arrives and takes a chair, and the client wakes

up the barber to get a haircut. Our implementation has a main method showed

to the left and three classes Ba, Ch and Cl implementing the barber, chair and

client, respectively.

The main creates three locations barber, client and chair and spawns two asyn-

chronous tasks to start the wakeup task in the client and sleeps in the barber, both

tasks can run in parallel. The execution of sleeps spawns an asynchronous task
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1 main() {
2 Ba barber = new Ba();
3 Cl client = new Cl();
4 Ch chair = new Ch();
5 client!wakeup(barber,chair);
6 barber!sleeps(client,chair);
7 }
8 class Ba{
9 Unit sleeps(Cl cl, Ch ch){

10 Fut f=ch!taken(cl);
11 f.block;}
12 Unit cuts(){}
13 }

14 class Ch{
15 Unit taken(Cl cl){
16 Fut f=cl!sits();
17 f.await;}
18 Unit isClean(){}
19 }
20 class Cl{
21 Unit wakeup(Ba b, Ch ch){
22 Fut f=b!cuts();
23 ch!isClean();
24 f.block;}
25 Unit sits(){}
26 }

Figure 2.2: Classical Sleeping Barber Problem

on the chair to represent the fact that the client takes the chair, and then blocks

at line 11 until the chair is taken. The task taken first adds the task sits on the

client, and then awaits on its termination at line 17 without blocking, so that

another task on the location chair can execute. On the other hand, the execution

of wakeup in the client spawns an asynchronous task cuts on the barber and one on

the chair, isClean, to check if the chair is clean. The execution of the client blocks

until cuts has finished. We assume that all methods have an implicit return at

the end.

Figure 2.3 summarizes the execution tree of the main by showing some of the

macro-steps taken. Derivations that contain a dotted node are not deadlock,

while those with a gray node are deadlock. A main motivation of our work is to

detect as early as possible that the dotted derivations will not lead us to deadlock

and prune them. Let us see two selected derivations in detail. In the derivation

ending at node 11, the first macro-step executes cl.wakeup and then b.cuts. Now,

it is clear that the location cl will not deadlock, since the block at line 24 will

succeed and the other two locations will be also able to complete their tasks,

namely the await at line 17 of location ch can finish because the client is certainly

not blocked, and also the block at line 11 will succeed because the task in taken



CHAPTER 2. LANGUAGE 16
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Figure 2.3: Execution Tree of Example 2.2

will eventually finish as its location is not blocked. However, in the branch of

node 6, we first select wakeup (and block client), then we select sleeps (and block

barber), and then select taken that will remain in the await at line 17 and will

never succeed since it is awaiting for the termination of a task of a blocked loca-

tion. Thus, we certainly have a deadlock. However, location chair can keep on

executing an available task isClean. Let us outline five states of this derivation:

St1 ≡ loc(cl,⊥, h1, {tsk(1, wakeup, l1, body(wakeup))})·
·loc(ba,⊥, h2, {tsk(2, sleeps, l2, body(sleeps))})·
·loc(ch,⊥, h3, ∅)·
·loc(ini,⊥, h0, {tsk(0,main, l0, ε)})

cl,1−→
St2 ≡ loc(cl, 1, h1, {tsk(1, wakeup, f0.block)})·

·loc(ba,⊥, h2, {tsk(2, sleeps, l2, body(sleeps)), tsk(3, cuts, l3, body(cuts))})·
·loc(ch,⊥, h3, {tsk(4, isClean, l4, body(isClean))})·
·loc(ini,⊥, h0, {tsk(0,main, l0, ε)})·
·fut(f0, ba, 3, 12)

ba,2−→
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St3 ≡ loc(cl, 1, h1, {tsk(1, wakeup, f0.block)})·
·loc(ba, 2, h2, {tsk(2, sleeps, l2, f1.block), tsk(3, cuts, l3, body(cuts))})·
·loc(ch,⊥, h3, {tsk(5, taken, l5, body(taken)), tsk(4, isClean, l4, body(isClean))})·
·loc(ini,⊥, h0, {tsk(0,main, l0, ε)})·
·fut(f0, ba, 3, 12) · fut(f1, ch, 5, 15)

ch,5−→
St6 ≡ loc(cl, 1, h1, {tsk(1, wakeup, l1, f0.block), tsk(6, sits, l6, body(sits))})·

·loc(ba, 2, h2, {tsk(2, sleeps, l2, f1.block), tsk(3, cuts, l3, body(cuts))})·
·loc(ch,⊥, h3, {tsk(5, taken, l5, f5.await), tsk(4, isClean, l4, body(isClean))})·
·loc(ini,⊥, h0, {tsk(0,main, l0, ε)})·
·fut(f0, ba, 3, 12) · fut(f1, ch, 5, 15) · fut(f2, cl, 6, 25)

ch,4−→
St6′ ≡ loc(cl, 1, h1, {tsk(1, wakeup, l1, f0.block), tsk(6, sits, l6, body(sits))})·

·loc(ba, 2, h2, {tsk(2, sleeps, l2, f1.block), tsk(3, cuts, l3, body(cuts))})·
·loc(ch,⊥, h3, {tsk(5, taken, l5, f5.await), tsk(4, isClean, l4, ε)})·
·loc(ini,⊥, h0, {tsk(0,main, l0, ε)})·
·fut(f0, ba, 3, 12) · fut(f1, ch, 5, 15) · fut(f2, cl, 6, 25)

The first state is obtained after executing the main where we have the initial

location ini, three locations created at lines 3, 2 and 4, and two tasks at lines 5

and 6 added to the queues. Note that each location and task is assigned a unique

identifier (we use numbers as identifiers for tasks and short names as identifiers

for locations). In the next state, the task wakeup has been selected and fully

executed. Observe at St2 the addition of the future variable created at line 22.

In St3 we have executed task sleeps in the barber and added a new future term.

In St6 we execute task taken in the chair (this state is already deadlock as we will

see in Section 4.2). The state St6′ is obtained after executing task isClean and is

not included in Figure 2.3, as it is not relevant at this point. From now on, we

use the location and task names instead of numeric identifiers for clarity.



Chapter 3

Preliminaries

This chapter recaps the two techniques that we adopt to develop our framework.

The static analysis that we use to infer potential deadlock cycles is explained in

Section 3.1. Section 3.2 summarizes the main features of aPET, an automated

test case generator.

3.1 Deadlock Analysis

In the literature, there is a large number of static analyses that detect deadlocks

both in thread-based languages and in actor-based languages [11, 12, 9, 18]. Our

choice is the static deadlock analysis in [11] and its implementation DECO, a

DEadlock analyzer for Concurrent Objects whose efficiency and scalability have

been proved experimentally on several case studies.

DECO reports that a program is deadlock-free when there are no abstract

cycles that could lead to deadlock. On the other hand, when the analyzer reports

a potential deadlock, it also provides hints on the program points involved in this

deadlock.

The analysis builds a dependencies graph from which the deadlock cycles are

formed. We now recall the definition of this graph as it is used in Theorem 1.

18
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Definition 1 (Deadlock Dependencies Graph). Given a program state S = Loc∪
Fut, where Loc and Fut are, respectively, the set of locations and futures. We

define its dependencies graph GS whose nodes are the existing location and task

identifiers and whose edges are defined as follows:

1. Location-Task: o → tk 2 iff there are two locations loc(o, tk , h,Q),

loc(o2, , h2,Q2) ∈ Loc, two tasks tsk(tk ,m, l, {y.block; s}) ∈ Q
tsk(tk 2,m2, l2, s2) ∈ Q2 and a future variable fut(y, o2, tk 2,m2) ∈ Fut

where s2 6= ε(v).

2. Task-Task: tk 1 → tk 2 iff there are two locations loc(o, , h,Q),

loc(o2, , h2,Q2) ∈ Loc, two tasks tsk(tk 1,m1, l1, {sync; s}) ∈ Q
tsk(tk 2,m2, l2, s2) ∈ Q2 and a future variable fut(y, o2, tk 2,m2) ∈ Fut,

where sync ∈ {y.block, y.await} and s2 6= ε(v).

3. Task-Location: tk → o iff there is a location loc(o, tk 2, h,Q) ∈ Loc and

a task tsk(tk ,m, l, s) ∈ Q with tk ∈ Q, tk 2 6= tk and s 6= ε(v).

The first type of dependency corresponds to the notion of blocking task and

blocked location and the other two to waiting tasks. Dependencies are created

as long as the task we are waiting for is not finished. Observe that a block

instruction will generate two dependencies, whereas an await will generate only a

dependency. Besides, every task without the location’s lock (which is not finished)

has a dependency to its location. If there is a cycle in the graph, then the program

is deadlock. This definition can be better understood by means of an example.

Example 1. Let us consider the final (deadlock) state for derivation ending at

node 6 described in Section 2.2. Here, we denote by o:m a task executing method

m on location o. We have the following seven dependencies in this state which

form a cycle:

d1 cl → ba:cuts d4 ba → ch:taken d7 ch:taken → cl:sits

d2 cl:wakeup → ba:cuts d5 ba:sleeps → ch:taken

d3 cl:sits → cl d6 ba:cuts → ba
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Observe that in location cl we have a blocking task cl:wakeup executing a block which

induces dependencies location-task d1 and task-task d2 above, and a waiting task cl

:sits that induces the dependency task-location d3. In ba, we have the blocking task

ba:sleeps that adds dependencies location-task d4 and task-task d5 and a waiting

task b:empt that adds the dependency task-location d6. Finally, in ch, we have a

waiting task ch:taken that induces a dependency task-task d7. The cycle involves

the locations ba and cl and the three tasks ba:cuts, ch:taken, cl:sit.

Similar to other approaches [16, 2], the deadlock analysis consists in con-

structing an Abstract Dependencies Graph that over-approximates the Deadlock

Dependencies Graph of any state and, then, look for cycles within the graph. It

returns a set of abstract deadlock cycles of the form e1
p1:tk1−−−→ e2

p2:tk2−−−→ ...
pn:tkn−−−→ e1,

where p1, . . . , pn are program points, tk 1, . . . , tkn are task abstractions, and nodes

e1, . . . , en are either location abstractions or task abstractions.

The abstraction that we use for our formalization abstracts each concrete

location o by the program point at which it is created opp, and each task by

the method name executing. They are abstractions since there could be many

locations created at the same program point and many tasks executing the same

method. Points-to analysis is used as the basis to infer such abstractions. The

analysis is object-sensitive [3], i.e., it distinguishes the actions performed by the

different location abstractions, (e.g., an abstract task is of the form opp.m where

opp is the abstract location that executes it).

A more precise abstraction for locations can include the program point where

its ancestor location is created, e.g., if the instruction client=new Cl(); at line 3 is

executed from two different locations (one created at line 30 and another at line

50, the analysis uses two abstractions client30:3 and client50:3 and treats the two

abstract locations separately. The same accuracy improvement can be made for

task abstractions.

The length of the ancestors chain k is a parameter of the analysis and any

k ≥ 0 can be used. The same length k adopted by the deadlock analysis should

be used in the semantics so that we can take fully advantage of the information
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in the abstract chains during testing. Our semantics can be easily extended to

keep the k ancestor locations by simply adding an additional parameter in tasks

with the list of the ancestor location identifiers (up to k).

The analysis performs the following steps: (1) it generates an abstract depen-

dencies graph G that over-approximates the dependencies graphs of any reachable

state S. This graph is obtained by abstracting locations and tasks, which are used

as nodes, and its edges are the abstracted version of the ones in Definition 1. Fi-

nally, (2) it looks up the cycles contained within the abstract dependencies graph.

Example 2. Following with the program in Section 2.2, if we perform the first

step of the deadlock analysis, its abstract dependencies graph G is as follows:

G

ob3

ob2

ob4

tk 5 : ob2.sleeps

tk 4 : ob4.taken

tk 3 : ob3.sits

tk 2 : ob2.cuts

tk 1 : ob3.wakeup

The locations created at lines 2, 3 and 4 are abstracted to ob2, ob3, ob4, respec-

tively. In a similar way, if we perform the Points-to analysis with the parameter

k = 1, then the tasks spawned at lines 5 and 6 are abstracted to ob3.wakeup and

ob2.sleeps, respectively. Now, we can see that there exists a cycle within the ab-

stract dependency graph which is marked with bold edges. The cycle found in

Example 1 is abstracted to this cycle, which includes the two blocked locations cl

(here ob3) and ba (here ob2) and the three waiting tasks.

Given a program with a main procedure, the output of the analysis are the

potential cycles (if any). But, as it can observed, it is complex to figure out from
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them why these dependencies arise, and in particular the interleavings scheduled

to lead to this situation. In our framework, we use these abstract cycles to guide

the execution towards concrete cycles, representatives of the abstract ones or

discard false positives if there is no execution containing a representative.

Now, we recall the theorem that guarantees the soundness of this analysis

and whose proof can be found in [11]. We denote as α, the abstraction function

applied over the nodes in a path of deadlock dependencies graph.

Definition 2 (deadlock soundness). Let S be a reachable state. If there is a cycle

γ = e1→e2→· · ·→e1 in GS, then α(γ) = α(e1)
p1:tk1−−−→α(e2)

p2:tk2−−−→· · · pn:tkn−−−→α(e1) is

an abstract cycle of G.

Furthermore, the following lemma is used in Theorem 1 and its proof can be

also found in [11].

Lemma 1. Let S be a reachable state and Gtt
S the dependencies graph taking

only task-task dependencies. If future variables cannot be stored in fields, Gtt
S is

acyclic.

Finally, the accuracy of the analysis can be greater improved by means of

May-Happen-In-Parallel information in order to discard unfeasible cycles whose

tasks cannot happen simultaneously. The interested reader is referred to [11] for

a detailed explanation.
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3.2 Testing

Software testing is one of the techniques most widely used in practice in order

to ensure the reliability of concurrent programs. The basic idea is to use some

sample of the data that a program is expected to handle in order to test the

functional behavior of the program. If the program produces correct results for

the sample, it is assumed to be correct. Most current research focuses on the

question of how to choose this sample.

We use the framework developed in [5] and its implementation aPET, a non-

random white-box tool, which generates test cases using symbolic execution. In

order to perform testing, we execute from a main method whose input parameters

must be completely instantiated.

Our language adopts a non-deterministic semantics, as rule mstep in Figure

2.1 selects any location whose queue is not empty and, then, any pending task

inside such queue can be chosen to be executed. As fields can be accessed by all

tasks, different behaviors can occur depending on the order in which tasks are

scheduled in the location and, thus, during testing all possible orderings must be

tried.

Finally, our testing tool stops generating new test cases when a coverage cri-

terion is achieved by the current test suite. A coverage adequacy criterion defines

what properties of a program must be tested to constitute an adequate test, i.e.,

one whose successful execution implies no errors in a tested program. In Section

5.2, we will propose several criteria that define how good is a test suite when we

are trying to detect deadlocks.

To illustrate this concept, we highlight two very common criteria: statement

coverage that requires executing all the statements in the program under test

and, similarly, branch coverage requires that all control transfers in the program

are exercised during testing. The interested reader can find more examples of

coverage criteria in [22].
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27 Int a; // field
28 Int main(){
29 Int r = 0;
30 this.a = 0;
31 Fut<Int> g;
32 this ! toOdd();
33 this ! toEven();
34 g = this ! oddEven();
35 g.await;
36 r = g.block;
37 return r;
38 }

39 Unit toOdd(){
40 this.a = this.a∗2+1;
41 }
42 Unit toEven(){
43 this.a = this.a∗2;
44 }
45 Int oddEven(){
46 Int r = 0;
47 if (this.a == 0) r = 0;
48 else r = this.a mod 2;
49 return r;
50 }

Figure 3.1: Program with multiple outputs

Example 3. Let us consider the methods in Figure 3.1 that belong to the same

class, where a is a class field. In order to test this program, we execute the main

method using the rules for the semantics in Figure 2.1 and trying all possible

reorderings. Figure 3.2 summarizes the derivation tree, where the derivations

that contain a gray node have already got the output, although the execution could

be unfinished.

When the execution arrives to the program point g.await, the queue of tasks for lo-

cation this will contain the three asynchronous calls toOdd, toEven and oddEven.

Now, the current task in which the g.await is executing also has to go to the queue

since the value of g is not ready.

First, let us consider the leftmost derivation in Figure 3.2. Then, we suppose

that toOdd is selected to be executed. Then, it changes the value of field a to 1.

Next, toEven updates the field with the value 2 and, finally, oddEven returns 0 as

result, and it is stores in the future variable g. Now, the execution of the await can

proceed and the method returns r = 0 as result. Once this execution has finished,

a new test case is saved with the output and the initial and final states.
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Figure 3.2: Execution Tree of program in Figure 3.1

R = 0

Si = [(O, loc(′main′, [field(a, 0)], [])]

Sf = [(O, loc(′main′, [field(a, 2)], [])]

Now, we consider the derivation ending at state 17: let us suppose that the

first selected task is toEven and, thus, the value of field a does not change. Then,

oddEven returns 0 as result and, finally, toOdd updates the field a with the value

1. The following is the test case obtained:

R = 0

Si = [(O, loc(′main′, [field(a, 0)], [])]

Sf = [(O, loc(′main′, [field(a, 1)], [])]

Now, let us consider these two test cases to be evaluated under the two criteria

proposed previously. Then, we can observe this set does not achieve the statement

coverage, as neither of the two executions tests the line 48. Analogously, both test

cases evaluate the condition in line 47 to true and, thus, a control transfer remains

unexercised.
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Finally, let us consider the rightmost derivation, corresponding to the follow-

ing execution order: main, toEven, toOdd, oddEven and g.await, then we obtain this

test case:

R = 1

Si = [(O, loc(′main′, [field(a, 0)], [])]

Sf = [(O, loc(′main′, [field(a, 1)], [])]

The test suite that contains these three test cases does achieve both statement

and branch coverage.



Chapter 4

Testing for Deadlock Detection

The goal of this chapter is to present a framework for early detection of dead-

locks during testing. This is done by enhancing the standard semantics for asyn-

chronous programs with information which allows us to easily detect dependencies

among tasks, in Section 4.1. These dependencies are necessary to detect in a sec-

ond step deadlock states, which is explained in Section 4.2. Chapter 5 also makes

use of these dependencies in order to discard derivations that could not achieve

them.

4.1 An Enhanced Semantics for Deadlock De-

tection

In the following we define the interleavings table whose role is threefold: (1) It

stores all decisions about task interleavings made during the execution. This way,

at the end of a concrete execution, the exact ordering of the performed macro-

steps can be observed. (2) It will be used to detect deadlocks as early as possible,

and, also to detect states from which a deadlock cannot occur, therefore allowing

to prune the execution tree when we are looking for deadlocks. (3) Its times

will be used to check time and future constraints discarding derivations that does

not satisfy them. The interleavings table is a mapping with entries of the form

tido,idt,pp 7→ 〈n, ρ〉, where:

27
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(mstep2)

selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, pp : s),

checkC(S, table), S � ρ0
o·tk
;∗ S′ � ρ, S 6= S′,not(deadlock(S′))

clock(n), table ′ = table ∪ to,tk ,pp 7→ 〈n, ρ〉
(S, table)

o·tk−→ (S′, table ′)

Figure 4.1: mstep2 rule for combined testing and analysis

• tido,idt,pp is a macro-step identifier, or time identifier, that includes: the

identifiers of the location ido and task idt that have been selected in the

macro-step, and the program point pp of the first instruction that will be

executed;

• n is a (non-negative) integer representing the time when the macro-step

starts executing;

• ρ is the status of the task after the macro-step and it can take three val-

ues as it can be seen in Figure 2.1: block or await when executing these

instructions on a future variable that is not ready (we also annotate in ρ

the information on the associated future); return that allows us to know

that the task finished. This allows reflecting task dependencies which will

be necessary later to find deadlock cycles and find out when an execution

is blocked.

We use a function clock(n) to represent a clock that starts at 0, is increased

by one in every execution of clock, and returns the current value n. The initial

entry is t0,0,1 7→ 〈0, ρ0〉, being 0 the identifier for the initial location and task,

and 1 the first program point of main. The clock also assigns the value 0 as the

first element in the tuple and a fresh variable in the the second element ρ0. The

next macro-step will be assigned clock value 1, next 2, and so on. As notation,

we define the relation t ∈ table if there exists an entry t 7→ 〈n, ρ〉 ∈ table, and the

function status(t , table) which returns the status ρt such that t 7→ 〈n, ρt〉 ∈ table.
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The semantics is extended by changing rule mstep as in Figure 4.1. The

function deadlock will be defined in Theorem 1 to stop derivations as soon as

deadlock is detected. Function checkC should be ignored by now, it will be defined

in Section 5.1. Essentially, there are two new aspects: (1) The state is extended

with the status ρ, namely all rules include a status ρ attached to the state using

the symbol �. The status is showed in bold font in Figure 2.1 and can get a value

in rules block2, await2 and return. The initial value ρ0 is a fresh variable. (2)

The state for the macrostep is extended with the interleavings table table, and a

new entry to,tk ,pp 7→ 〈n, ρ〉 is added to table in every macrostep if there has been

progress in the execution, i.e., S ′ 6= S, being n the current clock time.

Example 4. The interleavings table below is computed for the derivation in Sec-

tion 2.2. It has as many entries as macro-steps in the derivation. We can observe

that subsequent time values are assigned to each time identifier so that we can

then know the order of execution. The right column shows the future variables in

the state that store the location and task they are bound to.

St0 tini,main,1 7→ 〈1, return〉 ∅
St1 tcl,wakeup,21 7→ 〈2, 24:f0.block〉 fut(f0, ba, cuts, 12)

St2 tba,sleeps,9 7→ 〈3, 11:f1.block〉 fut(f1, ch, taken, 15)

St3 tch,taken,15 7→ 〈4, 17:f2.await〉 fut(f2, cl, sits, 25)

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-

tion selectLoc so that only locations that can proceed are selected. If, at a given

state, no location is selected but there is at least a location with a non-empty

queue then there is a deadlock. However, deadlocks can be detected earlier.

We present the notion of deadlock state which characterizes states that contain

a deadlock chain in which one or more tasks are waiting for each other termination

and none of them can make any progress. Note that, from a deadlock state, there

might be tasks that keep on progressing until the deadlock is finally made explicit.
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Even more, if one of those tasks runs into an infinite loop, the deadlock will not

be captured using this naive extension. The early detection of deadlocks is crucial

to reduce state exploration as our experiments show in Section 6.2.

We first introduce the auxiliary notion of waiting interval which captures the

period in which a task is waiting for another one to terminate. In particular, it

is defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which

the location stops executing a task due to some block/await instruction, tasync is

the macro-step at which the task that is being awaited is selected for execution,

and, tresume is the macro-step at which the task will resume its execution. tstop,

tasync and tresume are time identifiers as defined in Section 4.1. tresume will also

be written as next(tstop). When the task stops at tstop due to a block instruction,

we call it blocking interval, as the location remains blocked between tstop and

next(tstop) until the awaited task, selected in tasync, has already finished.

The execution of a task can have several points at which macro-steps are per-

formed (e.g., if it contains several await or block the processor may be lost several

times). For this reason, we define the set of successor macro-steps of the same

task from a macro-step: suc(to,tk ,pp0 , table) = {to,tk ,ppi : to,tk ,ppi ∈ table, to,tk ,ppi ≥
to,tk ,pp0}.

Definition 3 (Waiting/Blocking Intervals). Let St = (S, table) be a state, I =

(tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:

1. ∃ tstop = to,tk0,pp0 ∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:x.block},

2. tresume ≡ to,tk0,pp1 , fut(x, ox, tkx, pp(M)) ∈ S,

3. tasync ≡ tox,tkx,pp(M), @ t ∈ suc(tasync, table) with status(t) = return.

If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then

it is not a waiting interval. This is known by checking that this task has not

reached return, i.e., @ t ∈ suc(tasync, table) such that status(t) = return. In
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condition 1, we see that in ρstop we have the name of the future we are awaiting

(whose corresponding information is stored in fut, condition 2). In order to

define tresume in condition 2, we search for the same task tk 0 and same location

o that executes the task starting at program point pp1 of the await/block, since

this is the point that the macro-step rule uses to define the macro-step identifier

to,tk0,pp1 associated to the resumption of the waiting task.

Example 5. Let us consider again the derivation in Section 2.2. We have the

following blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St1 with St1 ≡
(S1, table1), since tcl,wakeup,21 ∈ table1, status(tcl,wakeup,21, table1) = [24:f.block],

(f, ba, cuts, 12) ∈ St1 and tba,cuts,12 6∈ table1. This blocking interval captures the

fact that the task at tcl,wakeup,21 is blocked waiting for task cuts to terminate. Simi-

larly, we have the following two intervals in St6: (tba,sleeps,9, tch,taken,15, tba,sleeps,11)

and (tch,taken,15, tcl,sits,25, tch,taken,17), which intuitively capture that the barber ba is

waiting that the chair ch is taken, and in turn the chair ch is waiting that the

client cl sits.

The following notion of deadlock chain relies on the waiting/blocking intervals

of Definition 3 in order to characterize chains of calls in which intuitively each

task is waiting for the next one to terminate until the last one which is waiting

on the termination of a task executing on the initial location (that is blocked).

Given a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 4 (Deadlock Chain). Let St = (S, table) be a state. A chain of

time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn) iff

∀ti ∈ {t0, ..., tn−1} s.t. (ti, t
′
i+1, next(ti))∈St one of the following conditions holds:

1. ti+1 ∈ suc(t′i+1, table), or

2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.

and for tn, we have that tn+1 ≡ t0, and condition 2 holds.
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Let us explain the two conditions in the above definition: In condition (1), we

check that when a task ti is waiting for another task to terminate, the waiting

interval contains the initial time t′i+1 in which the task will be selected. However,

we look for any waiting interval for this task ti+1 (thus we check that ti+1 is

a successor of time t′i+1). As in Definition 5, this is because such task may

have started its execution and then suspended due to a subsequent await/block

instruction.

Abusing terminology, we use the time identifier to refer to the task executing.

In condition (2), we capture deadlock chains which occur when a task ti is waiting

on the termination of another task t′i+1 which executes on a location loc(t′i+1)

which is blocked. The fact that is blocked is captured by checking that there is

a blocking interval from a task ti+1 executing on this location. Finally, note that

the circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if and

only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations.

We prove that our definition of deadlock is equivalent to the standard definition

of deadlock in [11, 9]. To do so, we define a function γ that transforms one-to-one

a deadlock chain into a cycle in GS.

Definition 5 (γ). Given a state St=(S, table) and a sequence of times {t0, ..., tn}
in St, satisfying (1) or (2) in Definition 4. The one-to-one function γ({t0, ...tn})=e1→e2
→· · ·→en in GS is defined as follows:

γ({t0, ..., tn})=

{
{loc(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)

{loc(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

where γtk is the following auxiliary function:

γtk({t0, ..., tn})=

{
{tsk(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)

{tsk(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

We need to distinguish between functions γ and γtk, as in [11] a location

blocked in a task could be represented in GS by both the location identifier and
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the blocked task identifier, depending on the previous context. The intuition of

function γ (γtk) is: given a sequence of times {t0, ..., tn} ∈ St, we define a path

whose edges are obtained as follows: ∀ti ∈ {t0, .., tn} such that (ti, t
′
i+1, next(ti)) ∈

St. if (1) is satisfied, then there exists an edge o-t between loc(ti) and tsk(ti+1) (an

edge edge t-t between tsk(ti) and tsk(ti+1)), as tsk(t′i+1) = tsk(ti+1) by definition

of function suc. On the other hand, if 2 and ¬1 are satisfied, then there exist two

edges in GS: an edge t-o between tsk(t′i+1) and loc(t′i+1), as this task belongs to a

location which is blocked and an edge o-t (edge t-t), between loc(ti) and tsk(t′i+1),

(between tsk(ti) and tsk(t′i+1)).

Theorem 2 (Deadlock Equivalence). Let St be a program state,

∃ dc({t0, ..., tn}) ∈ St⇐⇒ ∃ cycle γ({t0, ..., tn}) ∈ GS

Proof.

⇒ Let dc({t0, ..., tn}) be a deadlock chain, then we could apply the function

γ, as ∀ti ∈ {t0, ..., tn}, ti satisfies (1) or (2). So, we obtain a path in GS and

using the last condition in Definition 4, both γ({tn}) and γtk({tn}) add the edge

tk(t′0)→ loc(t0) and, thus, the path becomes a cycle.

⇐ Given a cycle Γ in GS, by Lemma 1, it contains at least one location node,

which is required by the function γ. As γ is a one-to-one function, ∃γ−1, which

is applied to Γ and, easily, we obtain the result.

Example 6. Following Example 4, St6 is a deadlock state since there exists

a deadlock chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second element in

the chain tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15, tba,sleeps,11) ∈ St6

and tch,taken,15 ∈ suc(tch,taken,15, table6). For the first element tcl,wakeup,21, condi-

tion 2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St6 and (tba,sleeps,9, tch,taken,15,

tba,sleeps,11) is blocking. Condition 2 holds analogously for tch,taken,15.



Chapter 5

Combining Deadlock Analysis

and Testing

This chapter proposes a deadlock detection methodology that combines static

analysis and testing as follows. First, a state-of-the-art deadlock analysis is run,

in particular that of [11], which is presented in Section 3.1. For the sake of sim-

plicity of the presentation, we assume parameter k = 0 in the formalization, (our

implementation uses k = 1). If the set is empty, then the program is deadlock-

free. Otherwise, using the inferred set of deadlock cycles, we test the program

using our enhanced semantics with two goals: (1) finding concrete deadlock traces

associated to the different cycles, and, (2) discarding deadlock cycles, and in case

all cycles are discarded, ensure deadlock freedom for the considered input or, in

our case, for the main method under test, we present this technique in Section

5.1. At the end, in Section 5.2, we propose several coverage criteria, based on

our methodology, which give us different level of information about the deadlocks

contained by the program tested.

5.1 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide

the execution towards paths that might contain a representative of that abstract

34
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deadlock cycle, by discarding paths that are guaranteed not to contain such a

representative.

The main idea is as follows: (1) From the abstract deadlock cycle, we generate

deadlock-cycle constraints, which must hold in all states of derivations leading to

the given deadlock cycle. (2) We extend the execution semantics to support

deadlock-cycle constraints, with the aim of stopping derivations as soon as cycle-

constraints are not satisfied. Uppercase letters in constraints denote variables to

allow representing incomplete information.

Definition 6 (Deadlock-cycle constraints). Given a state St = (S, table), a

deadlock-cycle constraint takes one of the following three forms:

1. ∃tO,T,PP 7→ 〈N, ρ〉, which means that there exists or will exist an entry of

this form in table (time constraint)

2. ∃fut(F,O ,Tk , p), which means that there exists or will exist a future vari-

able of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associated

to a given abstract deadlock cycle.

Definition 7 (Generation of deadlock-cycle constraints). Given an abstract dead-

lock cycle e1
p1:tk1−−−→ e2

p2:tk2−−−→ . . .
pn:tkn−−−→ e1, and two fresh variables Oi,Tk i, φ is

defined as φ(ei
pi:tk i−−−→ ej

pj :tkj−−−→ . . . ,Oi,Tk i) ={
{∃tOi,Tk i, 7→〈 , sync(pi,Fi)〉, ∃fut(Fi,Oj ,Tk j , pj)} ∪ φ(ej

pj :tkj−−−→ . . . ,Oj ,Tk j) if ej=tk j

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−→ . . . ,Oi,Tk j) if ej = o

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase

letters appearing for the first time in the constraints are fresh variables. The first

case handles location-task and task-task arrows, since ej is a task abstraction;

whereas the second case handles task-location arrows, because ej is an abstract

location.
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Let us observe the following: (1) The abstract location and task identifiers

of the abstract cycle are not used to produce the constraints. This is because

constraints refer to concrete identifiers. Even if the cycle contains the same

identifier on two different nodes or arrows, the corresponding variables in the

constraints cannot be bound (i.e., we cannot use the same variables) since they

could refer to different concrete identifiers. (2) The program points of the cycle

(pi and pj) are used in time and fut constraints. (3) Location and task identifier

variables of fut constraints and subsequent time or pending constraints are bound

(i.e., the same variables are used). This is done using the 2nd and 3rd parameters

of function φ. (4) In the second case, Tk j is a fresh variable since the location

executing Tk i can be blocked due to a (possibly) different task. Intuitively,

deadlock-cycle constraints characterize all possible deadlock chains representing

the given cycle.

Example 7. In our working example there are three abstract locations, ob2, ob3

and ob4, corresponding to locations barber, client and chair, created at lines 2, 3

and 4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean, as

we have seen in Example 1. Let us observe here that the abstract tasks involved

are different to the ones in Example 2 due to the accuracy of the analysis.

The following cycle is inferred by the deadlock analysis: o2
11:sleeps−−−−−→ taken

17:taken−−−−−→
sits

25:sits−−−−→ o3
24:wakeup−−−−−−→ cuts

12:cuts−−−−→ o2.

The first arrow captures that the location created at line 2 is blocked waiting for

the termination of task taken because of the synchronization at line 11 of task

sleeps.

Observe that cycles contain dependencies also between tasks, like the second arrow,

where we capture that taken is waiting for sits. Also, a dependency between a task

(e.g., sits) and a location (e.g., o3) captures that the task is trying to execute on

that (possibly) blocked location.

Now, the deadlock-cycle constraints computed for this cycle are:

{∃ tO1,Tk1, 7→〈 , 11:F1.block〉, ∃fut(F1,O2,Tk 2, 15), ∃tO2,Tk2, 7→〈 , 17:F2.await〉,
∃ fut(F2,O3,Tk 3, 25), pending(Tk 3), ∃tO3,Tk4, 7→〈 , 24:F3.block〉
∃fut(F3,O4,Tk 5, 12), pending(Tk 5)}. They are shown in the order in which they
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are computed by φ. The first four constraints require table to contain a concrete

time in which some barber sleeps waiting at line 11 for a certain chair to be

taken at line 15 and, during another concrete time, this one waits at line 17 for a

certain client to sit at line 25. The client is not allowed to sit by the 5th constraint.

Furthermore, the last three constraints require a concrete time in which this client

waits at line 24 to get a haircut by some barber at line 12 and that haircut is never

performed.

Note that, in order to preserve completeness, we are not binding the first and the

second barber. If the example is generalized with several clients and barbers, there

could be a deadlock in which a barber waits for a client which waits for another

barber and client, so that the last one waits to get a haircut by the first one. This

deadlock would not be found if the two barbers are bound in the constraints (i.e., if

we use the same variable name). In other words, we have to account for deadlocks

which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle

constraints for the given cycle, with the aim of stopping derivations at states that

do not satisfy the constraints. The following boolean function checkC checks the

satisfiability of the constraints at a given state.

Definition 8. Given a set of deadlock-cycle constraints C, and a state St =

(S, table), check holds, written checkC(St), if ∀tOi,Tk i,PP 7→ 〈N, sync(pi, Fi)〉 ∈ C,

fut(Fi,Oj,Tk j, pj) ∈ C, one of the following conditions holds:

1. reachable(tOi,Tk i,pi , S)

2. ∃toi,tk i,pp 7→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, oj, tk j, pj) ∈ S ∧
(pending(Tk j) ∈ C⇒ getTskSeq(tk j, S) 6= ε)

Function reachable checks whether a given task might arise in subsequent

states. We over-approximate it syntactically by computing the transitive call

relations from all tasks in the queues of all locations in S. Precision could be

improved using more advanced analyses. Function getTskSeq gets from the state
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the sequence of instructions to be executed by a task (which is ε if the task has

terminated).

Intuitively, check does not hold if there is at least a time constraint so that: (i)

its time identifier is not reachable, and, (ii) in the case that the interleavings table

contains entries matching it, for each one, there is an associated future variable

in the state and a pending constraint for its associated task which is violated,

i.e., the associated task has finished.

The first condition (i) implies that there cannot be more representatives of the

given abstract cycle in subsequent states, therefore if there are potential deadlock

cycles, the associated time identifiers must be in the interleavings table.

The second condition (ii) implies that, for each concrete potential cycle in

the state, there is no deadlock chain since at least one of the blocking tasks has

finished. This means there cannot be derivations from this state leading to the

given deadlock cycle, therefore this derivation can be stopped. Function checkC

is used in the semantics to prune deadlock-free derivations as showed in Figure

4.1.

The following definition presents the notion of deadlock-cycle guided testing.

Definition 9 (Deadlock-cycle guided-testing (DCGT)). Consider an abstract

deadlock cycle c, and an initial state St0. Let C = φ(c,Oinit,Tk init) with

Oinit,Tk init fresh variables. We define DCGT, written execc(St0), as the set

{d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 8. Let us consider the DCGT of our working example with the

deadlock-cycle and the constraints C of Example 7. The interleavings table at

St5 contains the entries tini,main,1 7→〈1, return〉, tcl,wakeup,21 7→〈2, 24:f0.block〉 and

tba,cuts,12 7→〈3, return〉}. checkC does not hold since tO1,Tk1,24 is not reachable from

St5 and constraint pending(Tk 5) is violated (task cuts has already finished at this

point). The derivation is hence pruned. Similarly, the rightmost derivation is

stopped at St11. Also, derivations at St6, St14 and St18 are stopped by function

deadlock of Theorem 1. Our deadlock guided testing methodology generates 16

states instead of the 181 generated by the standard exhaustive execution.
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Theorem 3 (Soundness). Given a program P, a set of abstract cycles C in P

and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is

deadlock, then ∃c ∈ C such that d ∈ execc(St0).

Proof of Theorem 3. If the last state is deadlock, then ∃dc({t0, ..., tn})∈Stn, by

Theorem 1. Using the soundness of deadlock analysis (by Definition 2) over the

cycle γ({t0, ..., tn}), the existence of an abstract cycle c ∈ C is ensured. Now, by

Lemma 2, we obtain the result.

Lemma 2. Given an initial state St0 and an abstract cycle c, ∀d ∈ exec(St0),

d ≡ St0 −→∗ Stn, if ∃ dc({t0, ..., tn}) ∈ Stn such that α ◦ γ({t0, ..., tn}) ∈ c, then

d ∈ execc(St0).

Proof. By contradiction, let us suppose that ∃d ∈ exec(St0) and d 6∈ execc(St0).

Hence, ∃Sti ∈ d such that checkC(Sti) returns false and, consequently, the deriva-

tion St0 −→∗ Sti stops, where C = φ(c,O ,Tk) and O ,Tk are fresh variables.

Therefore, at Sti ∃{tOi,Tk i,PP 7→ 〈N, sync(pi, Fi)〉, fut(Fi,Oj,Tk j, pj)} ⊂ C that

does not satisfy either (1) or (2) in Definition 8. However, it is not possible,

as C imposes necessary constraints for the existence of some representative of c

and Stn contains a cycle that is a representative of c, then (1) or (2) must be

satisfied at every state of d and, in particular, at Sti. As a result, we get a

contradiction.

5.2 Deadlock-based Testing Criteria

In the application of testing for deadlock detection, and in a general setting

where there could arise many potential deadlock cycles, the following practical

questions arise: is a user interested in just finding the first deadlock trace? or do

we rather need to obtain all deadlock traces? For the purpose of the programmer

to identify and fix the sources of the deadlock error(s), it could be more useful to

find a deadlock trace per abstract deadlock cycle. This is the kind of questions

that test adequacy criteria answer. Using our methodology, we are able to provide

the following deadlock-based adequacy criteria:

• first-deadlock, which requires exercising at least one deadlock execution,
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• all-deadlocks, which requires exercising all deadlock executions,

• deadlock-per-cycle, which, for each abstract deadlock cycle, requires exercis-

ing at least one deadlock execution representing the given cycle (if exists)

We have developed concrete testing schemes for each criteria above relying on our

DCGT methodology. For first-deadlock, DCGT is called for each abstract dead-

lock cycle until finding the first deadlock. For both all-deadlocks and deadlock-

per-cycle, DCGT is also called for each abstract cycle, but with the difference that

the different DCGTs can be run in parallel since they are completely indepen-

dent. In the case of deadlock-per-cycle, each DCGT finishes as soon as a deadlock

representing the corresponding cycle is found. It can also be very practical to set

a time-limit per DCGT to prevent that the state explosion on a certain DCGT

degrades the efficiency of the whole exploration.



Chapter 6

Implementation and Experiments

The chapter reports on some aspects of the real implementation that were not

completely specified in the general description of the framework and summarizes

the experiments we have performed. In particular: in Section 6.1.1, we present

the handling of the interleavings table; Section 6.1.2 explains the checking of

the two prunings: the existence of a deadlock chain in the current state and the

satisfiability of Deadlock-cycle constraints ; finally, in Section 6.1.3, we detail how

the different coverage criteria have been implemented. Section 6.2 summarizes

the experimental results and the main conclusions about the meaning of these

experiments.

6.1 Implementation Details

We have implemented our approach within the tool aPET, presented in Section

3.2, which is available at http://costa.ls.fi.upm.es/apet. This tool is written in

Prolog and is based on the constraint logic programming paradigm, in which logic

programming is extended to include concepts from constraint satisfaction.

Such webpage also contains the benchmarks in Section 6.2, which are written

in ABS language. ABS is a actor-based language [15] that targets distributed

systems by means of concurrent object groups and asynchronous methods calls

and supports a range of techniques for model exploration and analysis. The
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language in Section 2.1 fully captures the main features of ABS.

6.1.1 Enhanced State and Interleavings Table

In order to make the semantics object-sensitive and, thus, get more accurate

prunings, we add to the term loc in Section 2.1 a new argument anc which keeps

track its ancestor locations. When a new instruction is executed, a new location

is created and receives as ancestors list its parent plus the parent’s ancestors list.

Once the parameter k of the deadlock analysis is fixed, the relevant ancestors for

the semantics are the first k locations in such list.

In the implementation, the interleavings table in Section 4.1 is represented as

a list of t/4. Every entry in table is now a term t/4 that stores the time, the

current location and task identifiers and the status. This status stores relevant

information by means of two statements: prod(f) that indicates that the current

task produces a value collected by the future f and waits(pp,f), that saves the pro-

gram point pp and the future variable f where the current task stops. Therefore,

the futures are not taken explicitly by the state but by the tasks which produce

them.

The interleavings table is modified by the relevant instructions as follows:

• When the last instruction executed is an asynchronous call, we add a new

term t to the interleavings table right after the table head. The location

and task identifiers are the corresponding to the current call, the status is

partially instantiated by prod(f), where f is the corresponding future and the

time is a variable which will be instantiated at the moment of its execution.

• When a task is selected to be executed, its corresponding term t is brought

to the head of the table. Thus, the following accesses to update the status

are done in amortized constant time, even when the table is arbitrarily

large. Furthermore, the time is instantiated to the next number by solving

the constraint imposed over this variable.

• When the current task gets blocked in an await or block instruction, we
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modify the status in the table head with waits(pp,f) where pp is the blocking

instruction’s program point and f is the waited future variable.

As a result of these rules, the interleavings table is always sorted in decreasing

order. Furthermore, a complete derivation is deadlock if and only if the last

interleavings table contains a t/4 whose time remains variable.

Example 9. Let us see again how the interleavings table progresses along the

derivation ending at node 6. For the sake of clarity, we tag the arrows with the

line numbers that produce the change in the table.

tab0≡[t(0, ini, ini, [prod(f0)|X0])]
5,6−→

tab1≡[t(0, ini, ini, [prod(f0)]), t(I1, cl, wk, [prod(f1)|X1]), t(I2, ba, sl, [prod(f2)|X2])]
21−→

tab2≡[t(1, cl, wk, [prod(f1)|X1]), t(0, ini, ini, [prod(f0)]), t(I2, ba, sl, [prod(f2)|X2])]
22,23−→

tab3≡[t(1, cl, wk, [prod(f1)|X1]), t(I3, ba, cut, [prod(f3)|X3]), t(I4, ch, cle, [prod(f4)|X4]), ...]
24−→

tab4≡[t(1, cl, wk, [prod(f1), waits(24, f3)]), t(I3, ba, cut, [prod(f3)|X3]), t(I4, ch, cle, ..), ...]
10,11−→

tab5≡[t(2, ba, sl, [prod(f2), waits(11, f5)]), t(I5, ch, tk, [prod(f5)|X5]), t(1, cl, wk, ..), ...]
16,17−→

tab6≡[t(3, ch, tk, [prod(f5), waits(17, f6)]), t(I6, cl, sit, [prod(f6)|X6]),

t(2, ba, sl, [prod(f2), waits(11, f5)]), t(1, cl, wk, [prod(f1), waits(24, f3)]),

t(I3, ba, cut, [prod(f3)|X3]), t(I4, ch, cle, [prod(f4)|X4]), t(0, ini, ini, [prod(f0)])]

We can observe here that tab6 is sorted decreasingly and those asynchronous calls

that have not been executed are always preceded by the time which spawned them.

Indeed, we could obtain the execution trace by filtering out from this list those

t/4′s whose time is variable.

6.1.2 Checking prunings

In order to reduce the exploration of the search space and improve the testing scal-

ability in concurrent programs, we have proposed two prunings that try avoiding

useless exploration: (1) Early Deadlock Detection, which stops a derivation when

the most recent explored state is deadlock, and (2) Deadlock-Cycle Constraints

Solver, which detects if the current derivation could reach a deadlock state.
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Early Deadlock Detection

The goal of the first pruning is the detection of a deadlock state as soon as

possible. However, performing this checking at each state can add an important

overhead on the execution time. Thus, we just do it on dangerous states. We

consider a state as dangerous if the last time’s task in the interleavings table

stopped its execution due to an await or block instruction. The meaning of this

simple heuristics is that, by Definition 4, the last time could be involved in a

deadlock chain if its execution finishes due to one of these two instructions. We

perform the following actions:

1. We compute the waiting and blocking intervals contained by the state. To

do so, we process in increasing order the interleavings table and filter those

times whose index is variable. Now, for each time finished in an await or

block instruction, we build an interval, as in Definition 3. The result of this

action is a set with every interval contained in the state sorted increasingly.

The cost of this computation is linear in the table size.

2. We compute the blocking chains by concatenation of the previous intervals.

Basically, a blocking chain is a subchain of deadlock chain whose times hold

the property (1) in Definition 4. For each computed blocking interval, we

build an initial blocking chain with its tstop. If the next interval holds that

its t′stop is a successor of tasync, then we build a new blocking chain as a

result of the concatenation of the previous one and t′stop, and so on.

3. We build a graph whose nodes are the locations and there exists a directed

edge between two of them if the first one is the initial time ’s location in

a blocking chain which ends in a time whose location is the second node.

If this graph contains a cycle, then we have detected a deadlock and, thus,

the derivation is stopped saving the exploration of the derivation subtree

produced by the pending tasks.

Example 10. We perform the three previous actions on the tab6 of Example 9.

During the first action, we reduce the table: [t(0, ini, ini, [prod(f0)]), t(1, cl, wk, [prod(f1), waits(24, f3)]),

t(2, ba, sl, [prod(f2), waits(11, f5)]), t(3, ch, tk, [prod(f5), waits(17, f6)])].
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Now, we compute the set of intervals, that we shorten as wait/block(tstop, tasync),

because tresume is not relevant at this point. Therefore, the result of the first action

is:

{block(1, I3), block(2, 3),wait(3, I6)}

During the second action, we obtain three blocking chains that denote as

blchain(a,b) where a and b are the initial and final locations, respectively.

{blchain(cl, ba), blchain(ba, ch), blchain(ba, cl)}

The first element of this set is obtained due to the first interval. In a similar way,

we obtain the second one. The last blocking chain generated is result of concate-

nating the two last intervals, which satisfies the property (1) in Definition 4.

Performing the last action, we obtain a graph with three nodes: cl, ba, ch and

three edges: cl → ba, ba→ ch, ba→ cl. Therefore, there exists a cycle between cl

and ba, indicating this is a deadlock state.

Deadlock-Cycle Constraints Solver

The second pruning is the satisfiability of the Deadlock-Cycle Constraints. In

order to get a deadlock state, it is necessary that every constraint holds at each

state. Therefore, we check if some time constraint is unsatisfiable with the current

interleavings table to stop the derivation as soon as possible. This fact happens

depending on multiple factors like conditions, orderings or, even the input values

and, thus, we cannot define a heuristics as simple as the one in the previous

section. Therefore, we perform this checking immediately after exploring a new

state. This adds an important overhead on the execution time but it can be

reduced if we check it periodically.

The Deadlock-Cycle Constraints can be understood as a set of blocking chain

constraints. This concept generalises the previous blocking chain as follows: a

blocking chain constraint concatenates time constraints linked by means of fut



CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 46

constraints until that a pending constraint is reached. Thus, we will stop the

execution if these chain constraints cannot happen simultaneously in any state.

In Section 3.1, we comment that both the deadlock analysis and the semantics

can be made object-sensitive and, indeed, our implementation uses k = 1, where

k is the precision parameter. To do so, the φ-generated time constraints (Section

5.1) keep track the list of abstract ancestor locations inside the variable location

X. Now, we define a compatibility relation between time constraints and the times

within the interleavings table as follows: a time constraint and a concrete time

are compatible if and only if the program point contained by both times’ status

is the same and the ancestors of the concrete location have been created in the

lines that indicate the abstract ancestors inside the time constraint.

Using the previous definitions, let us explain how this second pruning is

checked. For each blocking chain constraint, we perform the following actions:

(1) check if there exists some time in interleavings table that is compatible with

the first time constraint in the chain constraint. (2) If so, then we compute the

concrete blocking chain starting in such time and (3) check that the blocking chain

constraint and the concrete blocking chain are compatible time to time.

Nevertheless, any time constraint could be incompatible with every time

within the interleavings table. In order to stop the derivation safely, we need

to prove that the interleavings table cannot eventually contain a new time which

becomes compatible. To do so, we inspect the locations’ queue looking for pend-

ing tasks that, by means of transitive calls, could spawn a task that stops at the

program point indicated by time constraint ’s status.
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6.1.3 Coverage Criteria

Section 5.2 defines three coverage criteria depending on the user interests. In the

following we give details about the implementation of each of them.

First-Deadlock

The first-deadlock criterion requires exercising at least one deadlock execution.

To do so, we perform the following steps: (1) we choose one of the abstract

cycles and (2) generate its deadlock-guided constraints. Then, (3) we perform the

dynamic testing that follows the enhanced semantics using the rule mstep, which

is redefined in Section 4.1. Finally, (4) the DCGT stops as soon as a deadlock

state is reached, thanks to the early detection of deadlocks (Section 4.2) and,

thus, (5) we use this execution as the new test suite that achieves the adequacy

criterion.

There are alternative implementations of this scheme. In order to take advan-

tage of the independency among DCGTs with different abstract cycles, we could

(i) execute in parallel a DCGT for each detected abstract cycle, (ii) when one of

the DCGTs finds a deadlock, we send a stop signal to the others and, finally, (iii)

we use the deadlock derivation as the new test suite. However, it looks like too

extravagant running as much DCGTs as abstract cycles in order to find only the

first deadlock.

The main disadvantage of these two implementations is that the dynamic

testing is focused on finding a representative of a specific cycle. Therefore, the

last proposed implementation is running the dynamic testing without checkC in

rule mstep.

The most effective scheme depends on the program to be tested, we highlight

the first implementation as it looks like the most well-adjusted and performs

better on the benchmarks in Section 6.2.
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All-Deadlocks

The all-deadlocks criterion requires exercising all deadlock executions. We perform

the following steps: (1) we run in parallel a DCGT for each abstract cycle until

they have finished. Then, (2) the final test suite is the join of test cases generated

by every DCGT. When we use this criterion, the testing scalability is hardly ever

improved, as few branches can be pruned safely. Let us notice here that we cannot

use the early detection of deadlocks, because it could prune derivations that can

have more than one deadlock.

Deadlock-Per-Cycle

The deadlock-per-cycle criterion requires finding a deadlock representing the given

cycle (if exists). Now, let us define the concept of representation: a deadlock state

represents an abstract cycle if every constraint generated by the cycle satisfies the

condition 2 in Definition 8, i.e., every time constraint is compatible with some

time within the interleavings table.

In order to implement this scheme, (1) we run in parallel for every abstract

cycle. (2) When a derivation can be pruned by early detection, we check if the

deadlock state is a representative of the abstract cycle. (3) If so, then we stop

the execution of this DCGT. (3’) On the other hand, this branch is not pruned

because a deadlock state is still reachable. Finally, (4) the test suite is the join

of the test cases found by the DCGT’s.
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6.2 Experimental Evaluation

This section summarizes our experimental results which aim at demonstrating the

applicability, effectiveness and impact of the proposed techniques during testing.

The experiments have been performed using as benchmarks: (i) classical concur-

rency patterns containing deadlocks, namely SB is an extension of the sleeping

barber with several clients, UL is a loop that creates asynchronous tasks and

locations, PA the pairing problem, FA is a distributed factorial, WM making a

water molecule, HB the hungry birds problem, and, (ii) deadlock free versions of

some of the above, named fX for the X problem, for which deadlock analyzers

give false positives. We include here a peer-to-peer system P2P.

Table 6.1 shows the results obtained using three different settings: (1) the first

set of columns Exh corresponds to building the whole search tree, (2) the second

to the first-deadlock criterion, and (3) the third to the deadlock-per-cycle criterion.

For each setting i, we measure the total time taken (column Ti) and the number

of states generated (column Si). Column Ans contains the solutions obtained by

the whole execution tree. Column D/F/C in the third setting shows “number of

deadlock executions”/“number of unfeasible cycles”/“number of abstract cycles”

found by the analysis. For instance, for HB we have 2/3/5 that shows that the

analysis has found five abstract cycles, but we only found a deadlock execution

for two of them, therefore 3 of them were unfeasible. Since the DCGTs in setting

3 can be performed in parallel, columns Tmax and Smax show the maximum time

and number of states measured among all of them. Columns in S-up show the

gain of setting 3 w.r.t. 1 computed as Tup = T1/Tmax (the gain is ∞ when T1 is

∞ and Tmax is not, or none “−” when Tmax is∞ too), and analogously for states.

Times are in milliseconds and are obtained on an Intel(R) Core(TM) i7 CPU at

2.3GHz with 8GB of RAM, running Mac OS X 10.8.5. A timeout of 150.000ms

(written 150k) is used. When the timeout is reached we write ∞.

When comparing setting 2 w.r.t. 1, we see that, when we only want to find

the first deadlock trace and the program features a deadlock, our guided-testing

is very effective, e.g., by just exploring 6 states in 40ms the deadlock is found in
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(1) Exh (2) first-deadlock (3) deadlock-per-cycle S-up

Bm. Ans T1 S1 T2 S2 D/F/C T3 TMax S3 SMax Tup Sup

SB 103k ∞ >584k 62 23 1/0/1 59 11 23 23 ∞ ∞
UL 90k ∞ >489k 150 5 1/0/1 133 3 5 5 ∞ ∞
PA 121k ∞ >329k 40 6 2/0/2 42 4 12 6 ∞ ∞
WM 82k ∞ >380k 248 15 1/0/2 ∞ ∞ >258k >258k - -
HB 35k 32k 114k 82 15 2/3/5 44k 15k 103k 34k 2.15 3.33
FA 11k 11k 41k 786 1k 2/1/3 2k 759 3k 2k 15.07 22.19
fFA 5k 7k 25k 5k 11k 0/1/1 5k 5k 11k 11k 1.61 2.35
fP2P 25k 66k 118k 34k 52k 0/1/1 34k 34k 52k 52k 1.96 2.28
fUL 102k ∞ >527k 435 236 0/1/1 410 230 236 236 ∞ ∞
fPA 7k 7k 30k 4k 9k 0/2/2 4k 2k 9k 4k 3.73 6.98

Table 6.1: Experimental evaluation

PA. When the program is deadlock free, we need to explore the whole execution

also in setting 2. Although the (spurious) information provided by the analysis

does not allow much pruning in these cases, still there is a notable gain (e.g.,

in fPA we explore about one third of the states explored in setting 1 and the

time is almost halved). Importantly, we are able to prove deadlock freedom in all

examples while exhaustive exploration times out in fUL.

As regards setting 3, we achieve significant gains w.r.t. exhaustive exploration

for deadlock-free examples (e.g., by just exploring 23 states in SB we found one

representative per cycle in 59ms. while setting 1 times out). The gains are much

larger in the examples in which the deadlock analysis does not give false positives

(namely, in SB, UL, PA). For WM, we have failed to find a representative of a

potential cycle within the timeout. This is because every abstract cycle produces

different constraints, some of them allow important pruning during testing as they

impose very restrictive conditions, whereas others can hardly guide because most

of derivations fulfill the constraints. When this happens, the number of states

explored is slightly smaller than with exhaustive execution. However, when we

consider that each DCGT is computed in parallel for each cycle (columns S-up),

we achieve further gains (in SB, UL, HB and PA we decrease the time notably)

and in WP we perform slightly better than in setting 1.
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Finally, for the examples that are deadlock free, the number of explored states

for settings 2 and 3 is the same. This is because in order to ensure that a deadlock

representative cannot be found, it is necessary to make exhaustive exploration

with every abstract cycle. All in all, we argue that our experiments show that

our methodology is very effective for programs that contain deadlock, and it is

able also to prove deadlock freedom for some cases in which a static analysis

reports false positives.
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Related Work and Conclusions

7.1 Related Work

There is a large body of work on deadlock detection including both dynamic

and static approaches. Much of the existing work, both for asynchronous pro-

grams [11, 12, 9] and thread-based programs [17, 19], is based on static analysis

techniques. Static analysis can ensure the absence of errors, however it works

on approximations (especially for handling iteration and pointer aliasing) which

might lead to a “don’t know” answer. Deadlock detection has been also stud-

ied in the context of dynamic testing and model checking [16, 14, 8, 7], where

sometimes has been combined with static information [13, 2].

• The approach in [16] instruments the program’s binary at specifics loca-

tions such that lock acquisitions, release calls. Then, a Interference Engine

gathers information about the program’s locking behavior by keeping track

of the threads and the locks that they hold. They define several algorithms

that decide when and how to interfere with scheduling. Simple Preemption

simply preempts any thread exactly before trying to acquire a lock and

exactly after releasing the lock. As a result, this algorithm gets a low over-

head. On the other hand, Component Based Delays creates a run-time lock

order graph and keeps it updated with every execution. The nodes of this

graph represents the locks and a directed edge means that a thread that

52
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holds the initial lock attempts to acquire the final one. Each directed loop

in the graph corresponds to a potential deadlock. At the beginning of the

algorithm, one of these loops is chosen and the Interference Engine tries

to make threads circularly dependent on each other by delaying any thread

holding at least one lock from the loop. To be more accurate, a algorithm

variant uses the topological order to decide if the delay may be avoided.

One of the greatest advantages of this algorithm is the usage of the infor-

mation from previous executions. However, if the run-time lock order graph

has not been trained enough, then the Interference Engine could have im-

precise information and the algorithm could miss deadlocks.

• As regards combined approaches, the approach in [14] presents the algo-

rithm DeadlockFuzzer that finds real deadlocks in multi-threaded programs.

It works in two phases: in the first one, it uses a predictive dynamic algo-

rithm, called iGoodlock, which observes an execution and identifies potential

deadlock cycles even if the execution does not deadlock. The second phase

receives an initial state and a potential deadlock cycle, DeadlockFuzzer ex-

ecutes the program using a random scheduler and pauses a thread when is

about to acquire a lock l if l is present in the cycle. Between both phases,

the potential deadlock cycle detected in the first one has to relate to the

initial cycle in the second one by means of an abstraction. To do so, they

propose two object abstractions: k-object-sensitivity, the same as we do,

and light-wight execution indexing, by using the call stack.

The way they use the abstract cycle is completely different to ours. The

cycle is used to impose conditions that can cause a deadlock with a high

probability, losing the completeness. Whereas we use this information to

give necessary conditions discarding those paths that does not hold them. A

limitation of iGoodlock is that it can give false positives because it does not

consider the happens-before relation between the transitions in an execu-

tion. We could take into account to our implementation the last abstraction
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that they propose in order to compare which prunes more derivations and,

thus, performs better on our benchmarks.

• The approach in [13] describes an algorithm, CheckMate, that requires users

to annotate the predicate with each synchronization variable in a Java pro-

gram relevant to finding deadlocks. First, CheckMate observes a complete

execution and, by means of the predicate annotations, creates a trace pro-

gram that only keeps the instructions that are relevant for deadlock. In a

second step, CheckMate uses an off-the-shelf model checker to explore all

possible thread interleavings of the trace program and check if any of them

is deadlock.

The approach is fundamentally different from ours: in their case, since

model checking is performed on the trace program (that over-approximates

the deadlock behaviour), this method can detect deadlocks that do not ex-

ist in the program, while in our case this is not possible since the testing

is performed on the original program and the analysis information is only

used to drive the execution. Moreover, the trace program is generated by

observing an isolated execution, then CheckMate does not track all con-

trol and data dependencies and it could miss deadlocks. This algorithm is

neither complete nor sound.

• In [2], another version of algorithm GoodLock is used to create a run-time

lock tree for each thread during execution. At the end, it constructs a

run-time lock-graph using the lock trees and checks if the graph holds a

property equivalent to the circular dependency between threads and locks,

defined in [16]. In the last stage of the algorithm, a type system is used to

infer order relations in order to accelerate the detection of potential cycles.

There exist untypable programs that could contain deadlock and, however,

this algorithm cannot find it.

This work shares with our work that information inferred statically is used
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to improve the performance of the testing tool, however there are impor-

tant differences: first, their method developed for Java threads captures

deadlocks due to the use of locks and cannot handle wait-notify, while

our technique is not developed for specific patterns but rather works on

a general characterization of deadlock of asynchronous programs; their un-

derlying static analysis is a type inference algorithm which infers deadlock

types and the checking algorithm needs to understand these types to take

advantage of them, while we base our method on an analysis which in-

fers descriptions of chains of tasks and a formal semantics is enriched to

interpret them.

7.2 Conclusions and Future Work

We have proposed a framework for guided testing based on constraints that spec-

ify the order in which tasks interleave. Such constraints allow us to drive the

execution towards paths that are more likely to lead to deadlock; additional con-

tributions of our work are the deadlock-based testing criteria.

Our work complements static analysis techniques and can be used to look for

deadlock paths when static analysis is not able to prove the absence of deadlock.

Using our method, if there might be a deadlock, we try to find it by exploring the

paths (possibly infinite) given by our deadlock detection algorithm that relies on

the static information.

Although we have presented our technique in the context of dynamic testing,

our approach would be applicable also in static testing where the execution is

performed on constraints variables rather than on concrete values. This extension

will require the use of termination criteria which provide the desired degree of

coverage. This remains as subject for future research.

Finally, our semantics selects the next task to be executed non-deterministically.

Our approach would perform even better if we enhance the semantics presented

with a heuristics that chooses tasks that could potentially cause a deadlock. This
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extension will require the selector to look at the tasks’ instructions list those pro-

gram points that are required by the Deadlock-Cycle Constraints. This subject

also remains as future work.



Bibliography

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal dynamic

partial order reduction. In Proc. of POPL’14, pages 373–384. ACM, 2014.

[2] R. Agarwal, L. Wang, and S. D. Stoller. Detecting Potential Deadlocks with

Static Analysis and Run-Time Monitoring. In C onf. on Hardware and Soft-

ware Verification and Testing, LNCS 3875, pages 191–207. Springer, 2006.

[3] E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gómez-Zamalloa, G. Puebla,
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[4] E. Albert, P. Arenas, and M. Gómez-Zamalloa. Actor- and Task-Selection

Strategies for Pruning Redundant State-Exploration in Testing. In Proc.

FORTE’14, LNCS 8461, pages 49-65. Springer, 2014.
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