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Abstract. A regional geologic study of Arabia Terra, a densely cratered area of Mars northern 

hemisphere, has revealed the individuality of this province. This is best expressed by an equatorial 

belt with a crater age distinctly YOllllger as compared to the northern part of Arabia Terra and to 

Noachis Terra to the south. We interpret this as an incipient back-arc system provoked by the sub­

duction of Mars lowlands under Arabia Terra during Noachian times. The regional fiachrre patterns 

are also best explained in this manner, mabng it UIlllecessary to appeal to a rotational instability of 

the planet, which is not supported by the palaeoclimatic indicators in the area. This model could be 

the first regional-scale confinnation of Sleep's (1994) hYlhlthesis of a limited plate consumption as 

an explanation of the martian dichotomy. 
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1. Introduction 

Extending roughly from 20° through 280° W and from 50° N to the Equator, Arabia 

Terra (Figure 1) is the largest (�12 000000 km2) expanse of cratered terrain in 

Mars northern hemisphere. Parts of Arabia Terra have been studied by, among oth­

ers, Carr and Schaber (1977), Lucchitta (1981, 1984), Schultz et al. (1982), Parker 

et al. (1989), McGill and Squyres (1991), and Maxwell and Craddock (1995), 

who mainly emphasised two aspects: glacial features, and the nature of the low­

land/upland boundary. Recently Barlow (1995) studied crater degradation in an 

area north of crater Cassini. No thorough regional study of Arabia Terra has ever 

been carried out. This area is nevertheless an especially good test bed to callibrate 

several hypotheses pertaining to some of the big problems of martian geology: the 

Schultz and Lutz (1988) proposition of large variations in martian obliquity; the 

'Martian plate tectonics' conjecture (Sleep, 1994); and the dichotomy origin itself 
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Figure 1. Arabia Terra in a physiographic map of equatorial Mars, 270-150° W. The striped pattern 
marks the resurfaced belt referred to in the text. The numbered points are the areas where the crater 
counts have been carried out. 

(Wise et aI., 1979; Wilhelms and Squyres, 1984; McGill and Squyres, 1991). We 

will focus these discussions by reconstructing the palaeoclimatology and describ­

ing the structures of Arabia Terra, and establishing crater ages that support the 

individuality of this sector of the Martian lithosphere. 

2. Palaeoclimatic Indicators in Arabia Terra 

From a morphological point of view, Arabia Terra can be considered a densely 

cratered volcanic plateau (Greeley and Guest, 1987) perhaps including interbedded 

sedimentary rocks, with a slight slope to the north. The Mars Digital Terrain Model 

indicates Arabia has a height of about 3 km above datum near the equator, and 

then slopes down to about 1 km at its northern edge. Its most important features 

are erosional valleys (fluvial and/or glacial in origin) considerably modified by 

periglacial and mass wasting processes, while eolian (and karstic?) shapes are sub­

ordinate. Tectonic structures include fault scarps (generally associated in graben) 

and wrinkle ridges, the graben clearly controlling the layout of the main valleys. 

The lowland/upland boundary style varies widely along the more than 6000 km 



which form the northern border of Arabia Terra. In what follows. we will only 

emphasize morphological featnres with a possible palaeoclimatic meaning. The 

reason for this is that some tectonic featnres (namely the wrinkle ridges) have been 

attributed (Schultz and Lutz. 1988) to overtnrns in Mars' rotational axis. Since 

those rotational instabilities should leave traces in the palaeoclimatic record. they 

can only be assessed through a discussion on the putative palaeoclimatic indicators. 

The origin of the closed depressions (Figure 2B) which abound in the northern 

reaches of Arabia Terra could require the presence of soluble underground layers. 

Since the flat bottoms of the depressions (without traces of chaotic terrain on them) 

seem incompatible with the fusion of permafrost. water solution of rocks could be 

indicated. with carbonates or evaporites being the best rock candidates (Schaefer. 

1990); it should. nevertheless. be noted (Toulmin et al.. 1977; Kahn. 1985; Pollack 

et al.. 1987) that the identification of spectral signals for carbonates from Martian 

orbit have been only tentative up to now. An outcrop which could be composed of 

sedimentary rocks (,White Rock'. a suggested evaporitic formation. Williams and 

Zimbelman. 1994) lies not far away (at 80 S. 3340 W). 

The northernmost area of Arabia Terra is a model for fretted terrain (Sharp. 

1973). with typical examples of periglacial mass wasting. generating basal de­

bris aprons. Complementary to the fretted terrain are the groups (Cydonia Men­

sae. Deuteronilus Mensae and Protonilus Mensae) of isolated mesas and buttes 

(Figure 3) which form the northern fringe of Arabia Terra. and which have been 

explained (Sharp. 1973) as erosional remnants of the dichotomy. Tectonic effects 

seem to be the cause of the triangular or. in general. polygonal shape of many of 

these mesas. 

Arabia Terra channels fall in two different classes. The largest ones are fretted 

channels. which seem to have been carved out of the structnral network (Figure 2) 

by a set of processes among which Baker et al. (1992) list ground ice mobilization. 

and mass and debris flows. The scarcity of tributaries and of channel flow marks 

in Martian channels is best explained through sapping (Sharp and Malin. 1975; 

Baker. 1985. 1990). However. examples are also found of small outflow channels 

(see again Figure 3) which debouch in the lowlands. disappearing in the dichotomy 

despite the fact that the regional slope continues steadily to the north. This has been 

cited (Parker et al.. 1993) as an argument for an important water-lain sedimentary 

cover on the northern lowlands plain. Some channels (Figure 2) featnre long. par­

allel ridges on their bottom. probably formed through mass wasting and glacier 

flow (Carr and Schaber. 1977; Lucchitta. 1984; Squyres. 1989). More uncertain 

origins have been attributed to areas of striped ground found near Arabia (Fig­

ure 4) usually termed 'thumbprint terrain' (Guest et aI., 1977), whose pseudo-folds 

have been ascribed by Carr and Schaber (1977) to recessional moraines; by Scott 

and Underwood (1991) to ice-pushed ridges; and by Kargel and Strom (1992) to 

subglacially eroded channel valleys. The last authors connect these shapes with 

processes similar to the ones that generate submarine (De Geer) moraines in ter­

restrial glaciers. The association of this terrain with sinuous ridges comparable 



Figure 2. Flat floor ('fretted') channels (A) and closed depressions (B) following the trend of tectonic 

struchrres: wrinkle ridges (C) and graben (D). 'Flow' lines parallel to the scarps can be seen in the 

bottom of some of the valleys (B). Viking mosaic 230 km wide, centered at 40° N 332° W. 





to eskers lends support to this last hypothesis, as well as the scale (hundreds of 

meters) of the thumbprint terrain, which suggests deposition in deep water (Bamett 

and Holdsworth, 1974). If those ridges were actnally shown to be eskers, a case for 

a glacier modification of the dichotomy in these areas could be made. 

In all, the featnres of the lowland/upland boundary in Arabia Terra conform to 

the ocean/lake model put forward, in slightly different versions, by Lucchitta et al. 

(1987), Parker et al. (1989, 1993), Schaefer (1990), and Baker et al. (1991). And 

the last results from the laser altimeter onboard Mars Global Surveyor (Smith et aI., 

1998) also support the ancient ocean hypothesis. Sedimentary progradation, fluvial 

and glacial erosion and, as can be seen in the following section, tectonic stresses, 

would later modify this topographic boundary to its present aspect. 

3. Tectonic Structures of Arabia Terra 

Graben and wrinkle ridges (Figure 5) abound in Arabia Terra, where they are al­

ways covered by craters, a fact which implies a very old age for these structnres. 

Scott and Dohm (1990) assign them a Noachian age. Graben show en echelon 

steps, both right and left, and vary in width from a few kilo meters up to sev­

eral hundred kilo meters, although in these last cases there is evidence of erosion, 

which has widened the original graben by an unknown amount. As can be seen 

in Figures 3 and 5, both kinds of structnres show NW-SE and NE-SW bear­

ings. N-S graben are also developed. When crosscutting relationships are clear, 

graben always cut wrinkle ridges (Figure 5A and B). These last structnres have 

been interpreted as anticlines above a thrust fault (Plescia and Golombek, 1986; 

Watters and Maxwell, 1986; Watters, 1988, 1992; Golombek et aI., 1991), or as 

volcanic extrusions (locally, dikes) intruded along graben (Hartmann and Wood, 

1971; Scott, 1989). While some authors (Scott, 1989; Maxwell, 1989) propose 

a tensile origin for wrinkle ridges, the comparison with similar terrestrial struc­

tnres (for instance, in Plescia and Golombek, 1986, Figure 3) leads most planetary 

scientists to interpret them as compressional. 

Regarding the origin of graben and wrinkle ridges in Arabia, Scott and Dohm 

(1990) indicate that they follow the trend of the highland/lowland boundary, al­

though they do not explicitly propose a genetic relation of the structnres with it. 

Other sections of the uplandllowland boundary also show graben along the bound­

ary trend, but there is no other set of such regular and closely spaced wrinkle ridges 

(excepting those associated with Tharsis) in any other region of the dichotomy, 

a fact that does not suggest a causal relationship between both featnres. When 

proposing that the highlandllowland boundary is the rim of a giant impact basin, 

Wilhelms and Squyres (1984) mention several features that their hypothesis could 

explain, but the geometry of the tectonic structnres south of the boundary is not 

among them. Moreover, Chicarro et al. (1985) discard on a statistical basis any 
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Figure 6. A high albedo depCEit (A) blankets the bottom of a crater It 3° S, 336° W in a pa-t, 

125 Ym wide, of the Viking mosaic antered at 5° S 337° W Ccmpare with Figure 1 of Williams 

3'ldZimbelm3'l (1994) 

shown that the evaporites' (7) source area is interlayered with vokanics which, 
on the basis of crater COllllts, can be confidently ascribed to very old Martian 

crust Finally, it nmst be added that Grirmn and Solomon (1986) do not find the 
theoretical tectonic signatures that should be present on Mars if true polar wander 
had taken place, 

Briefly, we find no solid argrnnents for the graben and wrinkle ridges of Arabia 
Terra being associated with one or more large impact basins or with abrupt changes 
in planetary obliquity, While similar structru:es do exist in Tharsis (the graben of 
Alba and Tantalus Foosae, or the wrinkle ridges of Lrnlae Planum, for instance), it 
should be stressed that they can be explained as consequences of the construction 



of the dome itself (Grimm and Solomon, 1986; Smith et aI., 1998). The absence of 

such a volcanic construct in or near Arabia Terra calls for a different explanation. 

4. Arabia Terra as a Geologic Unit 

In the 1 ; 15 000000 geologic map of Mars' eastern hemisphere (Greeley and Guest, 

1987), Arabia Terra is divided among seven main geological units. The mapping 

criteria are chronological (crater density), structnral (presence of ridges), or ge­

omorphological (dissection by channels). The outcrops of one of the units (the 

'Subdued crater unit', NpI2)
' 

defined as one with craters partially covered by lava 

flows or sediments, form a discontinuous corridor which runs from the Equator 

at 3600 W to 200 N, 3300 W, by the crater Cassini, thus partially separating the 

northern part of Arabia Terra from the rest of the cratered highlands. B ut a careful 

examination of the Viking mosaics of this area permits us to define a continuous 

belt of relatively less cratered terrain separating the northern part of Arabia Terra 

from the rest of the heavily cratered highlands. This belt is even reflected in the 

Shaded Relief Map of Mars Eastern Region (USGS, Map 1-1618). A sketch of this 

corridor is drawn in Figure 1, and Figure 7 features a tract of the belt. 

To confirm this hypothesis, we performed several crater counts on this unit, as 

well as on northern Arabia Terra and on N oachis Terra, the cratered highland to the 

south. The results are plotted on Figure 8. Crater counts on Arabia Terra, the belt, 

and Noachis Terra, are first shown by groups (Figures 8A-C), and then compared 

(Figure 8D) to highlight the differences between the crater retention age of the 

equatorial belt and the ones deduced for the neighbouring terrains. Our presen­

tation follows the recommendations of Hartmann (1973) and the Crater Analysis 

Techniques Working Group (1978). The surface areas over which the counts were 

conducted measured between 28 000 and 87 000 km2 Both Viking images and 

Viking mosaics (all with similar resolutions, between 151 and 256 mlpixel) were 

used in the counting. The numerical data of the counts are listed in Table I. 

The main deduction obtained from the counts is that the belt is defined by 

a fairly homogeneous, sparse crater population, while Arabia Terra and N oachis 

Terra show similar, high crater retention ages. Crater density differences, never­

theless, are minimal to nil in the diameter range up to 10 km, while they are well 

marked from 10 km upwards, and statistically significant in the range between 

20 and 40 km. No craters bigger than 50 km have been found in the more than 

200000 km2 counted in the belt. Following Barlow (1988, 1995) and Hartmann 

(pers. comm.), we explain the coincidence of the cratering curves for small diam­

eters as the result of crater obliteration, mainly by dust sedimentation but also by 

volcanism and ejecta cover. 

As for the differences in frequency of bigger craters between the belt and the 

highlands to the north and south of it, we think they require a more significant 

process. We propose that an important resurfacing event took place in an equatorial, 
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Figure 8. Crater cOlmts plots. A is a plot of the four counts performed at northern Arabia Terra (points 

NI to 4 in Figure 1). Similarly, Band C are plots of the counts at the resurfaced belt (points B1 to 4) 
and at Noachis Terra (points SI to 3). D is a combined plot of the means of each of the units, for a 

comparison of crater densities. 



TABLE! 

Characteristics of the crater COllllts 

COllllt hnage Coordinates Surface (km2) Resolution 

NI Viking 529A25 33° N 3460 28 900 151 m1pixel 

N2 Photomosaic 30° N 3220 85582 231 m1pixel 

MI30N322 

N3 Photomosaics (* ) 250 N 3050 78680 231 m1pixel 

N4 Photomosaic 30° N 2920 75950 231 m1pixel 

MI30N292 

BI Viking 369S05 lO° N 3550 53 954 206 m1pixel 

B2 Photomosaics (* ) 250 N 3350 79370 231 m1pixel 

B3 Viking 339S23 20° N 3180 40 738 179 m1pixel 

B4 Viking 339S50 16°N 311° 44460 187 m1pixel 

SI Photomosaic lOoS342° 86330 231 m1pixel 

MIlOS342 

S2 Photomosaic 5° N 3220 87 153 231 m1pixel 

MI05N322 

S3 Viking 393S01 14° S 3120 83324 256 m1pixel 

* These crater COllllts were made using a combination of the photomosaics 

arOlllld those locations. 

5. Discussion: Plate Tectonics Traces in Arabia Terra? 

This linear volcanic episode could suggest an important regional event of litho­

spheric tension. The only hypothesis explaining important tangential tectonic 

stresses on Mars (unrelated to domes or basins) has been put forward by Sleep 

(1994), who advocates a limited two-plate tectonics which would have been at 

work for a short interval in the northern third of the planet. The stage of litho spheric 

mobility on Mars came to a stop when the lowlands ridge collided against Tharsis 

and Arabia Terra (Sleep, 1994, plate 4); but the previous subduction under Arabia 

Terra could explain both its tectonic structnres and the equatorial, less cratered belt. 

The wrinkle ridges would be conjugate sets of compressional fractnres produced by 

the subductive push from the north, while the graben and the equatorial resurfacing 

would be the expression of a tensile stress field generated by a limited back-arc 

spreading (Figure 9). Although the final destination of Earth back-arc basins is to 

disappear through compression, the crosscutting of wrinkle ridges by graben in 

Arabia is thought to mean that the last movements in this section of the Martian 

lithosphere were tensile. The limited time span (�100 Ma) proposed by Sleep 

(1994) for his advocated subduction could explain why stresses came to a stop 

at an immatnre stage of the margin. 



Figure 9. Cartoon showing the back-arc hypothesis for the resurfaced belt. 

The main differences of this putative Martian plate tectonics as compared to 

Earth plate tectonics are the absence of megashears (and, in general, of strike­

slip structures) and of a volcanic chain over this part of the proposed subduction 

zone. The first circumstance (the scarcity of strike-slip faults on Mars) has been 

stressed by Golombek (1985) and Forsythe (1989). According to the first author, 

this fact is due to the very shallow crustal levels where stresses are concentrated, 

thus favoring vertical maximum compressive stresses and normal faults. This topic 

deserves further study, since Forsythe and Zimbelman (1988) stated that their find­

ing of a strike-slip fault set at Gordii Dorsum seems to require a certain degree of 

lithospheric mobility on Mars. 

Regarding the volcanism, Sleep (1994) interprets the Arabia ridged plains as the 

product of an arc. This is likely for the northernmost plains, close to the dichotomy; 

but the resurfaced belt, which is � 1200 km from the boundary, must be explained 

by a process (such as back-arc spreading) able to generate magmas at hundreds of 

kilometers from a destructive margin. The back-arc active centers in the Marianas 

and in the Sea of Japan, for instance, are 400 and 800 km distant from the respective 

trenches (Karig et aI., 1978; Toksoz and Hsui, 1978). In the case of Arabia, the 

long distance from the margin to the proposed back -arc basin would require a very 

shallow subduction, in agreement with the highland nature of the slab supposedly 

subducted at the Arabia margin (Sleep, 1994). 
A prediction of our hypothesis is that the resurfaced belt would show a posi­

tive gravity anomaly, as the rigid martian lithosphere under Arabia Terra, though 

stretched, could not be deflected under the volcanic load. The limited precision 

of the present Martian gravity data hinder the geophysical confirmation of the 

individuality of Arabia Terra. Nevertheless, a relative gravity maximum can be 

found along the eastern part of the belt in the best gravimetric map available (Smith 

et aI., 1994). The new generation of geophysical data already coming from Mars 

Global Surveyor will certainly add to our understanding of Martian tectonics at 



both the local and the global scales. For the moment. the preliminary results of 

laser altimetry provided by Mars Global Surveyor (Smith et al.. 1998) show that 

the northern hemisphere of Mars is as smooth as Earth's abyssal plains. and are thus 

in accordance with Sleep's hypothesis. A scheme that in tnrn corresponds nicely 

to one of the classical basic ideas of comparative planetology. the 'plate tectonics 

window' of Con die (1989). 

6. Conclusions 

1. The northern sector of Arabia Terra is limited by the dichotomy and by a belt 

in which significant resurfacing has taken place. 

2. The dense network of grab en and wrinkle ridges in Arabia Terra could be ex­

plained by a N-S-directed stress field (first compressional, then tensile) caused 

by a limited subduction under Arabia Terra, as proposed by Sleep (1994). 

3. The resurfaced belt would correspond to an incipient back-arc system, con­

ceived as an addition to the hypothesis of Sleep (1994). 

4. We therefore interpret the dichotomy as a palaeoplate border. 

5. The chaotic rotational instability of Mars is not supported by Arabia Terra 

palaeoclimatic evidence, both published and new. 
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