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Within the chiral Lagrangian formalism it is possible to describe the general strongly coupled symmetry-
breaking sector in terms of a few parameters. Based on a dispersive approach we study the resonance spectrum
up to 3 TeV in chiral parameter space. This procedure could also be useful to extract higher energy resonant
behavior from low-energy collider data. It is also shown how the method reproduces the correct pole structure
of resonances as well as other analytic features. The results also hint at a possible excluded region of parameter
space.@S0556-2821~97!02307-2#
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I. INTRODUCTION

The main purpose of the next generation of colliders is to
unveil the nature of the electroweak symmetry-breaking sec-
tor ~EWSBS!. Despite the remarkable success of the standard
model~SM! with the present precision electroweak data, the
mechanism responsible of this breaking remains unknown.
There are, however, many theoretical models which, very
roughly, can be divided in two categories: weakly or strongly
coupled.

In the weak case light particles are expected below the
TeV scale. Typical examples are the minimal SM~MSM!
with a light Higgs boson or most supersymmetric models.
These models have become very popular and have been stud-
ied in great detail. That is not possible in the strong case,
where the strength of the interactions makes the usual per-
turbative approach unreliable. In particular, there are no light
particles to control the generic enhancement of gauge boson
production. As a consequence, the perturbative calculations
suffer from severe unitarity violations. Nevertheless, such an
enhancement would be the experimental signature of a
strong EWSBS. The most promising process is longitudinal
gauge boson scattering, where the most striking feature
would be the appearance of heavy resonances.

There are also several models of strongly coupled
EWSBS’s, like the MSM with a heavy Higgs boson, techni-
color, composite models, etc. From very general symmetry
considerations all of them share the same dynamics at low
energies@1#. However, the predictions of these models can
vary greatly from one another.

Several years ago it was introduced a theoretical frame-
work that is able to describe generically the strong interac-
tions of electroweak gauge bosons@2#. It is based on chiral
perturbation theory~ChPT! @3#, which works remarkably
well for pion physics. The idea is to write an effective chiral
Lagrangian including operators up to dimension four@4#.
The form of the terms is only constrained by symmetry con-
siderations which are common to any strong EWSBS. Thus,
using this Lagrangian it is possible to mimic thelow-energy

behaviorof any strong EWSBS. The difference between un-
derlying theories appears through the values of the param-
eters in the chiral Lagrangian. There are already published
chiral parameter estimates for several models such as the
MSM with a heavy Higgs boson@5,6# or technicolor@7#.
There are also studies which indicate that at least part of the
interesting parameter space will be accessible at the CERN
Large Hadron Collider~LHC! @8#.

However, the usual chiral Lagrangian approach does not
respect unitarity. At low energies the violations are very
small, but they increase with the energy. As a consequence it
is not possible to reproduce resonances unless it is modified.
There are several ways to unitarize chiral amplitudes. Many
of them are simple mathematical tricks whose results very
frequently differ, which is an obvious criticism to such pro-
cedures. Nevertheless, over the last few years, a technique
has been developed, known as the inverse amplitude method
~IAM ! @9–12#, whose results have been successfully tested in
ChPT. It is based on dispersion theory and it can accommo-
date all the analytic structure required to reproduce reso-
nances. Namely, the elastic cut and poles in the second Rie-
mann sheet. When applied to low-energy hadron physics, it
is indeed able to reproduce the lightest resonances. The IAM
seems very reliable at least at the qualitative level.

Concerning the EWSBS, the method was first applied to
mimic a heavy Higgs boson and a QCD-like scenario at su-
percolliders@13#. The results of the IAM are once again con-
sistent with the expected resonances.

The aim of this work is to explore the interesting part of
the chiral parameter space using the IAM method. In so do-
ing, we expect to obtain a description of the low resonance
spectrum of the general strong EWSBS.

The paper is organized as follows. In Sec. II we discuss
the theoretical framework used in this work. First we intro-
duce the chiral formalism; next, we address some technical
issues related to the equivalence theorem. We then define
partial waves and state the unitarity problem. As a solution,
the IAM is briefly reviewed, whose derivation is given in the
Appendix. Section III is devoted to the IAM results. First, for
reference models, we illustrate different analytical and physi-
cal features, such as saturation. We then show where these
phenomena appear in parameter space. The problem of uni-
tarity in the I52 channel and whether it can be used to
exclude part of the parameter space is also addressed in Sec.
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III. In Sec. IV we discuss these results and we gather them in
the conclusion.

II. RESONANCES IN THE CHIRAL FORMALISM

A. The chiral Lagrangian

Let us remember that we have to break the
SU(2)L3U(1)Y gaugesymmetry down to U(1)EM . There-
fore we need aglobal breaking from a groupG down to
anotherH. It should provide three Goldstone bosons~GB’s!
that will become the logitudinal components of the gauge
bosons through the Higgs mechanism. We also want to in-
clude the custodial SU(2)L1R , which naturally yields a
r.1 parameter@14#. It can be shown that these constraints
lead to G5SU(2)L3SU(2)R and H5SU(2)L1R @1,15#.
Thus, the GB fieldsp i can be seen as coordinates in the
G/H;SU(2)L2R coset. Hence, we will parametrize them in
an SU(2) matrix asU5exp(ip is i/v). The parameter
v.256 GeV plays here the same role asf p in ChPT and sets
the scale of the EWSBS.

Within the chiral approach we build the low-energy La-
grangian as an expansion in derivatives~momenta! of the GB
fields. Since we will work up toO(p4), we should look for a
complete set of SU(2)L3U(1)Y , Lorentz, C- and
P-invariant operators containing up to four derivatives.
These have been obtained in@4#, but they are too general for
our purposes. Indeed, we want an exact SU(2)L1R symmetry
on the hidden sector once the gauge couplingsg andg8 are
set to zero. In addition, we are only interested in gauge boson
elastic scattering and we can neglectCP-violating effects.

With those assumptions, the only operator that we can
build with two derivatives is

L~2!5
v2

4
trDmUD

mU†, ~1!

whereDmU5]mU2WmU1UBm is a covariant derivative
with Wm52 igsaWm

a /2 andBm52 igs3Bm/2. It is impor-
tant to observe that this Lagrangian only depends on the
symmetry-breaking pattern and the scale. In this sense, the
amplitudes obtained fromL(2) are universal. That is why
they are called low-energy theorems~LET’s! @1#.

Notice also that the Lagrangian in Eq.~1! is that of the
nonlinears model and thus it is not renormalizable. In fact it
is not possible to absorb the loop divergencies by introducing
a finite set of new counterterms and constants. Nevertheless,
we are only interested in the low-energy behavior and there-
fore it is enough to work up to a given order in the external
momenta. For instance, if we want to obtain gauge boson
scattering amplitudes atO(p2), the only contributions come
from L(2) at tree level. If we calculate atO(p4), we will
have to consider theL(4) Lagrangian at the tree level as well
asL(2) to one loop. These last contributions are divergent,
but their divergencies can be absorbed in theL(4) param-
eters. In this sense, the calculations are renormalizable and
finite. This procedure can be generalized toO(pN), but we
will work only up toO(p4).

There are many possible terms in theL(4) Lagrangian@4#.
However, according to the above restrictions, we are only
interested in

L~4!5L1~ trDmUD
mU†!21L2~ trDmUD

nU†!21tr@~L9LW
mn

1L9RB
mn!DmUDnU

†#1L10trU
†BmnUWmn , ~2!

whereWmn and Bmn are the strength tensors of the gauge
fields.

Finally, let us remark that using these Lagrangians we
will obtain the chiral amplitudes as truncated series ins, the
usual Mandelstam variable. That is

t~s!.t ~0!~s!1t ~1!~s!1O~s3!, ~3!

where t (0)(s) is O(s) and reproduces the LET’s. It is ob-
tained fromL(2) at the tree level. Thet (1)(s) contribution is
O(s2) and comes from theL(4) at the tree level andL(2) at
one loop. The loops yield logarithmic contributions which
are very relevant at low energies. However, at higher ener-
gies our amplitudes behave essentially as polynomials ins.

B. Chiral parameters

In contrast with theL(2) Lagrangian, the one in Eq.~2! is
not completely fixed by symmetry and the scale. Indeed each
operator has a parameter which depends on the specific
breaking mechanism. Thus, for every strong EWSBS without
relevant light modes and our assumed symmetry-breaking
pattern, there should be a different set of chiral parameters.
Notice, however, that nothing ensures the reciprocal. It is not
clear that for every set of chiral parameters there should be
an underlying consistent and renormalizable quantum field
theory ~QFT!.

Unfortunately, the very nature of strongly coupled theo-
ries does not allow a calculation of these parameters. There
are, however, estimates for the heavy Higgs MSM, which are
obtained from a matching of one loop Green functions@5#.
For the QCD-like model, they are obtained by rescaling the
QCD parameters@12#. We will use these models as a refer-
ence and thus we have listed their parameters in Table I.

Very recently several studies have appeared concerning
the LHC capabilities to determine these parameters in case
there is a strong EWSBS@8#. Notice that their expected val-
ues are in the 1022 to 1023 range. Note also that the sign of
the parameters may play an essential role. From these pre-
liminary studies it seems that LHC could be able to reach
531023, even in the hardest nonresonant case. However,
that will require two detectors taking data for several years at
full design luminosity and the highest center-of-mass energy.

C. The equivalence theorem

As we have already seen, the most relevant modes of the
EWSBS at low energy are the GB. However, once we in-
clude the electroweak interactions, the GB disappear from
the physical spectrum and become the longitudinal compo-
nents of the gauge bosons (VL). Somehow we can identify

TABLE I. Chiral parameters for different reference models.

L1 L2

MSM (MH;1 TeV! 0.007 -0.002
QCD-like -0.001 0.001
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the GB and their behavior with that of the gauge bosons. The
precise formulation of the previous statement is known as the
equivalence theorem~ET! @16,17#:

T~VL
a1 , . . . ,VL

an!.S )
j51

l

Ka j

aj DT~pa1
•••pan

!1OSmE D ,
~4!

wherem is the mass of the gauge boson. TheK factors,
which include renormalization and higher orderg effects, are
basically 11O(g2) @18#. In short, the ET allows us to iden-
tify, at energiesE@m, the longitudinal gauge boson ampli-
tudes with those of their associated GB. It is very useful in
two senses. First it allows us to link the physical measure-
ments with the hidden sector. Second, it helps in the calcu-
lation of theVL amplitudes, which are much easier to obtain
using scalar particles such as GB.

It is important to notice that the ET is a high-energy limit.
In contrast, the chiral formalism is a low-energy approach.
Nevertheless, it has been recently shown that there is a win-
dow of applicability for the ET together with the chiral ap-
proach@15,19#. The above equation remains valid, but only
at lowest orderin g andg8.

In the following sections we will be thoroughly using the
ET. Therefore we will work at lowest order in the elec-
troweak couplings. As a consequence, onlyL1 andL2 will be
relevant for our calculations.

D. Partial waves, unitarity, and resonances

As long as we have an SU(2)L1R symmetry in the
EWSBS, we can also define a weak isospinI . In analogy to
pp scattering, we have three possible weak isospin channels
I50,1,2. It is then usual to project the amplitudes in partial
waves with definite angular momentumJ and isospinI . At
low energies we are only interested in the lowestJ, and thus
we will study thet IJ5t00,t11, and t20 partial waves. Their
expressions for the EWSBS are given in@13#. Customarily
the results of elastic scattering are presented in terms of their
complex phases, which are known as phase shifts.

As we have already remarked, one of the most striking
features of a strongly interacting EWSBS could be the ap-
pearance of resonances. For instance, for the MSM with
MH.1 TeV, we expect a very broad scalar resonance
around 1 TeV. In QCD-like models one expects a vector
resonance~similar to ther in pion physics! around 2 TeV.

However, the chiral formalism by itself is not able to
reproduce resonances. Their very existence is closely related
to the saturation of unitarity. But the chiral amplitudes do not
even satisfy the elastic unitarity condition

Imt IJ~s!5s~s!ut IJ~s!u2, ~5!

wheres(s) is the two-body phase space. Nevertheless, they
satisfy it perturbatively

Imt IJ
~1!~s!5s~s!ut IJ

~0!~s!u21O~s3!. ~6!

Notice that the violation of unitarity is very small only at low
energies.

Therefore, in order to accommodate resonances we have
to unitarize the chiral amplitudes. There are many math-

ematical tricks to impose unitarity, which very often lead to
different results. Obviously, that is the main criticism to uni-
tarization. There is, however, a method that has been tested
in ChPT and is able to reproduce ther andK* resonances
@10–12#. It is based on dispersion theory and apart from
satisfying Eq.~5!, it provides the correct unitarity cut on the
complex s plane, as well as poles in the second Riemann
sheet.

E. The inverse amplitude method

Elastic amplitudes in the complexs plane have a left and
a right ~or unitarity! cut. A dispersion relation is nothing but
Cauchy’s Theorem applied to these amplitudes. They are
very useful since we can obtain the values of the amplitude
in any point in terms of integrals of their imaginary parts
over the cuts.

We have just seen that chiral amplitudes are not a good
approximation at high energies on the elastic cut. Thus, they
are not very well suited for a dispersive approach. The key
point is to notice that we can calculate the imaginary part of
the inverse amplitudeexactlyon theelastic cut. Indeed, us-
ing Eqs.~5! and ~6!,

Im
1

t IJ
52

Imt IJ
ut IJu2

52s. ~7!

We can thus write a dispersion relation for 1/t IJ whose inte-
gral over the elastic cut is exact. Nevertheless, the other ana-
lytical features are still approximate. In the Appendix, we
give a detailed derivation and we comment on these approxi-
mations. Finally, it is possible to solve fort IJ and we get

t IJ.
t IJ
~0!2

t IJ
~0!2t IJ

~1! . ~8!

That is the IAM. Apart from its simplicity, it has several
advantages.

~i! At low energies it reduces again to the very same chi-
ral amplitudes in Eq.~3!.

~ii ! It satisfies elastic unitarity, Eq.~5!, exactly.
~iii ! The right cut is correctly reproduced and we get the

appropriate analytic structure. In particular we get those
poles in the second Riemann sheet which are near the uni-
tarity cut @12#.

~iv! It can be easily extended to higher orders@11,12#.
Of course it also has limitations. We comment on them

thoroughly in the Appendix. However, they are mostly re-
lated to analytical structures~such as some poles or the left
cut!, which are far away from the energy range where we
expect the resonances or unitarity effects. In the elastic re-
gion we expect the IAM to be a good approximation.

Indeed, the IAM has been applied both to pion elastic
scattering andpK scattering. The first example is very simi-
lar to the EWSBS, although there the GB are massive. In
both cases it is possible to reproduce the lowest lying reso-
nances: Ther(770) and theK* (892) respectively@10–12#.
When only low-energy data is used, their masses lie about
15% off from the actual values. It is, however, possible to fit
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the masses and widths using high-energy data. Notice that
this can be achieved without introducing any other field or
parameter.

It is also important to remark that the IAM also improves
considerably the nonresonant channels@11,12#. In fact, the
I52 channel inpp and I53/2 in pK scattering do not
present any low resonance. In spite of that, the results of the
chiral amplitudes only match the data at low energies. The
IAM results fit the data remarkably well up to much higher
energies.

In addition the appearance of resonances is completely
consistent with the QFT description. They are associated to
poles in the second Riemann sheet, whose position is cor-
rectly related to the physical mass and width. The analytical
structure of the IAM amplitudes is the correct one in the
elastic region. We therefore consider that the chiral formal-
ism, together with the IAM, is a reliable method to obtain, at
least, a qualitative description of the resonance spectrum in
strongly coupled systems.

III. RESULTS

A. Reference models: Resonances and saturation

The IAM in the chiral Lagrangian context was first ap-
plied to a MSM and a QCD-like model in@13#. There it was
shown that it is possible to reproduce the expected reso-

nances: a broad scalar resonance in the heavy Higgs MSM,
and a technirho at about 2 TeV in the QCD-like model. As
an illustration, we show in Fig. 1 the phase shifts obtained
when the IAM is applied to the chiral amplitudes.

They have been obtained using the parameters given in
Table I, which have been actualized. Naively, the resonant
masses can be obtained from the point where the correspond-
ing phase shift crosses 90°. The width can be obtained as-
suming the typical Breit-Wigner for ther-like resonance and
M r.2240 GeV, Gr.620 GeV shape. Their values are
Ms.800 GeV,Gs.185 GeV for the Higgs-like resonance.
Notice that in this work we are also giving the results for the
I52 channel. It is related to like-sign pair production of
gauge bosons, where the signal to background ratio seems
very favorable, as it has been pointed out in@17,20#. In Fig.
1 it can be seen that the results using the IAM may vary
significantly from those without unitarization. For instance,
in the QCD-like case even the qualitative behavior is com-
pletely different. Comparing with QCD data, the correct be-
havior is the one given by the IAM@11,12#.

Finally, in Fig. 2, we show the position of the poles in the
second Riemann sheet. Figure 2~a! is the pole that appears in
the (I ,J)5(0,0) channel when using the MSM parameters of
Table I. Figure 2~b! is the one that appears in the vector
channel when using the QCD-like parameters. Notice that

FIG. 2. Contour plots of the
imaginary part of the VLVL

→VLVL chiral amplitudes. It has
been extended continuously
through the cut. Thus, above the
real axis~straight line! is the first
Riemann sheet, and below the sec-
ond. ~a! Pole of the scalar reso-
nance in theMH51 TeV MSM.
~b! Pole of ther-like resonance in
the QCD-like channel.

FIG. 1. Phase shifts in strongVLVL scattering. The dashed lines are the plain chiral amplitudes and the continuous lines those using the
IAM. They have been obtained both for a heavy-Higgs MSM and a QCD-like model using the parameters in Table I.
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the positions of the poles satisfyAspole;M res1 iG res/2.

B. The scalar and vector channels

1. Saturation

We have been paying special attention to resonances, but
there are other interesting features. In particular, it could
happen that the amplitude saturates unitarity although there
is no clear resonant shape. At this point it is important to
notice that the criterion ofd IJ crossing 90° is only applicable
to the cleanest cases. A resonance should be associated with
a pole near the real axis which causes a steep raise in the
phase shift. This pole reflects the existence of an almost
bound state. When there is no other phase background this
leads to our naive 90° criterion. In such cases we can apply
the usual Breit-Wigner description and relate, as above, the
resonance physical constants with the pole position.

But it could well happen that there is a big phase shift
background without a nearby pole. Then the phase shift can
cross 90° and saturate unitarity but we will not see the sud-
den increase in the phase shift. That we will call ‘‘satura-
tion.’’ As a matter of fact such big background phases are
also produced by poles, but they are very far away from the
real axis. Then it is either possible to say that there is no
resonance or a very broad one. That is, for instance, the case
of the (I ,J)5(0,0) channel inpp scattering. That channel
has a huge enhancement in the phase shift that grows very
rapidly at small energies~see Fig. 1, which is a rescaled
version!. Such an enhancement has sometimes been inter-
preted as a resonance: thes particle. We will not address the
s problem here. The only thing that is more or less clear is
that such rapid enhancement should be produced by a pole
@21# which is not very close to the real axis. Such a pole has
been found using the IAM and ChPT in approximately the
correct position@12#.

The position of the poles in our amplitudes does obvi-
ously depend on the chiral parameters. Thus by varyingL1
andL2 we can move the pole far away from the real axis and
create such saturation effects. In Fig. 3 can be seen an ex-
ample of that situation. Following the discussion above, the
pole is much farther away from the real axis than those in
Fig. 2. As a consequence, the Breit-Wigner relations between
its position and the physical parameters of an hypothetical
resonance, no longer hold. Notice also that the pole has
changed its orientation.

2. Resonances in parameter space

We have seen that the IAM and the chiral formalism
yields reasonable results in both reference models. Not only
in terms of resonances but also in nonresonant channels. We
have also shown how the different features are described
accordingly to the requirements of analyticity and dispersion
theory. Let us then explore the chiral parameter space in
order to get a qualitative description of the possible EWSBS.

In Fig. 4 we show different contour plots in theL1 ,L2
plane. We display the 1022 to 1023 range, since generically
we expect the parameters to be of that order.

The contour plots have been obtained from the calculation
of the phase shifts in a 60360 grid. Using these phase shifts,
we have extracted two parameters:M , which is the energy
at whichd IJ590° and

G.SM dd~s!

ds D 21

. ~9!

The interpretation of these parameters has to be made care-
fully. When G!M they correspond to the mass and the
width of a resonance in the Breit-Wigner approximation.
Otherwise, the situation is similar to our previous ‘‘satura-
tion’’ example andM is just the point where the amplitudes
saturate unitarity. In such a case,G should not be interpreted
as the width of a particle, although the saturation shape is
broader for biggerG. In addition,M andG are not related to
the pole position as in the Breit-Wigner formula. Remember
from Fig. 3 that the pole not only moves away from the real
axis, but it also changes its orientation.

We are showing three plots for the (I ,J)5(0,0) and
(1,1) channels separately. The contour plot on the left shows
the values ofM . That on the center is a contour plot ofG. In
order to clarify the meaning of these parameters, but also to
get a qualitative picture of the many possible strong sce-
narios, we have added a third plot on the right. The dark gray
area corresponds to ‘‘narrow’’ resonances. For illustrative
purposes, we define narrow asG,M /4. Roughly, this is
what is usually understood by a resonance. Indeed, in QCD
both ther(770) andK* (892) satisfy this criterion. The light
gray area stands at thoseL1 ,L2 values where we get a broad
resonance. In this case, broad meansG.M /4 but even
though the width is not very small, it is still possible to
describe it with a pole and a Breit-Wigner description. Ob-
viously, if we make theG/M ratio even bigger the Breit-

FIG. 3. On the left we show
the phase shift of a channel dis-
playing a ‘‘saturation’’ effect. For
the same model we show on the
right the contour plots of the
imaginary part of the amplitudes.
Notice the change of the scale
with respect to Fig. 2. Observe
that the pole is far away from the
axis and has changed the orienta-
tion too.
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Wigner description is no longer valid. That happens more or
less at aboutG.3M /4 and at those points the black area
starts, pointing the existence of a saturation effect.

C. The I52 channel

We have already reviewed how the IAM in the chiral
approach is able to reproduce theI50 or I51 resonances of
our reference models. In the literature, there have also been
proposed models withI52 resonances~see@22# or @23#, and
references therein!. However, they do not correspond to the
kind of models that we are dealing with, since they always
present light resonances or states. Indeed, in@22# two models
were built with I52 resonances, one of them with elemen-
tary and the other with composite doubly charged states. In
both cases their masses areM11&160 GeV and there are
also single charge states withM1.100 GeV.

Even more, the authors in@23# slightly modified the MSM
including an I52 resonance. Using a tree level unitarity,
they found that the model does not make sense if its mass is
bigger than;375 GeV. That bound becomes even smaller as
the scalar Higgs-like resonance gets heavier. In the literature
there are no models with anI52 resonance and without light
modes at the same time, that respect the custodial symmetry.

Within our approach, we find a similar result but for the
general case. As soon as anI52 resonant shape appears in

the spectrum, the models do not make sense. Indeed, they
present poles in the first Riemann sheet, within the IAM
applicability region.

1. Poles in the first sheet

The (I ,J)5(2,0) phase shift is negative and that can give
rise to several problems related to causality. In fact, satura-
tion can also occur atd205290°. However, if we apply
blindly Eq. ~9!, we get a negative value. Thus, even when
uGu!M we cannot say that there is a resonance, since its
width would be negative. From the analytical point of view,
that situation corresponds to a pole in the first Riemann
sheet, which is forbidden.

As a matter of fact, the IAM yields poles in the first
Riemann sheet of the (I ,J)5(2,0) amplitude. For instance, it
is possible to find poles int20 in the first Riemann sheet at
aboutAspole;33001 i1750 andAspole;47001 i7000 for the
QCD-like and MSM parameters of Table I. However, in the
chiral approach we are only allowed to use the IAM for
energiesAs&4pv;3 TeV. We should not worry about the
IAM results outside that region, since it is not a good ap-
proximation there. These poles are well outside a circle of
that radius in the complex plane and are not real predictions
of the approach. In addition, when looking at pion physics,
the description ofd20 is correct with the IAM and qualita-

FIG. 4. Plots in theL1 ,L2 plane for the (I ,J)5(0,0) and (1,1) channels. The plots on the left give contour levels ofM . Those on the
center giveG. The dark grey areas stand for narrow (G,4M ) resonances. The light grey areas for broad (M /4,G,3M /4) resonances and
the black areas for saturation. White is no resonance or saturation below 3 TeV. The black circles stand at the values ofLi that mimic a MSM
with MH5800, 1000, and 1200 GeV. The black triangles represent QCD-like models with 3 or 5 colors.
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tively wrong ~at high energies! with plain ChPT@11,12#.
The problem is that the position of those poles depends on

L1 andL2. In fact, it is possible to bring them close to the
real axis and then the amplitudes do not have a physical
meaning.

Let us now recall that the chiral Lagrangian does not meet
all the requirements of a relativistic QFT. It respects Hermi-
ticity, its amplitudes present a cut and an analytic structure,
etc., but it is not renormalizable. It could well happen that,
given a set of chiral parameters, there is no underlying theory
consistent with all the QFT requirements. That could be
enough to yield poles in the first Riemann sheet. If we were
able to develop a method to detect those poles, we could rule
out that parameter set as unphysical. In the Appendix we
have shown that the IAM is able to reproduce these poles
when they are present in the underlying theory.

The next step is to define how far these conflictive poles
should be to accept the IAM results. Looking at the MSM
and QCD-like examples, we notice that they are not a prob-
lem if they lie outside a 4pv53 TeV circle in the complex
plane. However, the IAM is a good approximation only near
the real axis and thus the above criterion could be too strict.
There is a much more intuitive criterion in order to exclude
some values ofL1 andL2.

2. Wigner bound

Indeed, there is a lower bound on the phase shift deriva-
tive due to Wigner@24#. Roughly it can be understood as
follows. Phase shifts can be interpreted as the delay of the
outcoming wave with respect to the incoming one. When it is
negative, the outcoming signal isadvanced. But that advance
cannot be arbitrarily big. In the classical case,
dd/dk.2D, whereD is the radius of the scatterer andk the
momentum of the incoming particle. The wave nature of
particles does allow for a small violation of the previous
equation. Near a resonance, it can be shown that
dd/dk.2(D11/2k) @24#. For a general potential the defi-
nition of D is not so evident, but intuitively it has to be
related to its effective size or range. Notice that this bound is
valid for the elastic case.

Let us then translate the above arguments to our problem.
First, inVLVL scattering we are interested in the c.m. frame,
where the momentum isq25s/42mW

2 . Second, we have
been using theG parameter instead of the slope. Using Eq.
~9! our previous bound, in the c.m., reads

uGu.
2m

M

1

D1m/~M2A124m2/M2!

.
2

M /~8pv2!11/~MA124m2/M2!
, ~10!

where in the last step we have used asD the scattering length
of the t20 wave, which is the one we are interested in. It
seems to be a reasonable estimate of the effective size of the
potential. We will have to check that our results respect this
condition. To start with, both reference models satisfy it. Let
us now see what happens for otherL1 ,L2 values.

3. The IAM results

In Fig. 5 is shown the result of applying the bound in Eq.
~10! to the IAM t20 amplitude. The area in black represents
the area excluded, whereas the white area is no saturation of
unitarity. Notice that there is only a very narrow strip where
the criterion is respected and saturation occurs. In this band,
colored in grey, the saturation pointM is always reached
aboveM.2150 GeV, withuGu.1050. Surprisingly, the al-
lowedM andG values are outside a 3-TeV region. But that
is again the first naive criterion ofuspoleu.4pv. Thus, our
allowed parameters yield amplitudes that satisfy both criteria
at the same time. In the cross section theseM andG param-
eters would give a very broad shape of a resonance~although
it cannot be interpreted as a particle! or a saturation effect.

IV. DISCUSSION

In the previous sections we have obtained the resonance
spectrum for the general strong EWSBS. Let us now review
the physical meaning of the results in the different (I ,J)
channels.
„0,0… channel. Concerning the MSM, we have already

remarked that the IAM yields a Higgs-like resonance. As can
be seen in Fig. 4, its mass is always smaller thanMH . As
long asMH is the only relevant parameter, for a given reso-
nance mass there is a fixed value of the width. With respect
to QCD-like models, we do not get any resonance, but we
get a considerable enhancement in this channel. This is the
analogous of thes particle problem in QCD. There is also a
pole very far from the real axis and it does not saturate uni-
tarity.

In the general case, once we fixM we get a uniqueG too,
since this channel only depends on the 8L115L2 combina-
tion. That is not in conflict with existing models where the
mass and the width of a scalar resonance can be adjusted
@23# independently. In those models, there are resonances
whose masses are;100 GeV. In this work we are only
studying those modelswithout low lying resonances. In ad-
dition, we have simplified the calculation to lowest order in
g. When further corrections are included, otherLi come into

FIG. 5. Contour plot in theL1 ,L2 plane. The black area is
excluded using the slope criterion and the IAM. The shaded area
indicates a broad saturation shape in the cross section. In the white
area there is no saturation below 3 TeV.
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play and different values would changeG. Nevertheless
these effects are weaker and the variations should be rela-
tively small. Let us also notice that we can get narrow reso-
nances, broad resonances and that saturation occurs when
M*1500 ~and then we cannot strictly speak of a mass!.
„1,1… channel. Again there is only oneG for everyM ,

since this channel only depends onL222L1. In contrast with
the previous channel, we can see in Fig. 4 that there are
narrow resonances up toM&2500. The values where we
obtain a broad resonance are limited to a thin band, and we
do not find what we have called ‘‘saturation’’ below 3 TeV.

The IAM yields a clear resonance in the QCD-like mod-
els. It is very narrow although not as much as the realr. That
is due to the fact that in QCD the GB~the pions! are propor-
tionally more massive than their analogous here~theVL). It
is also interesting to notice that vectorlike resonances be-
come lighter when we assume more technicolors. As a con-
sistency check, we do not get any resonance for the MSM.
„2,0… channel. The interpretation of the results in this

channel is more delicate. The IAM is only expected to work
near the elastic cut. It has been tested in pion physics@12#
and it yields the correct behavior in this channel. Neverthe-
less in ChPT it presents poles in the first Riemann sheet,
although very far from the IAM applicability region. They
cannot be considered predictions of the approach. However,
the position of these poles depends on the chiral parameters,
and it is indeed possible to get them very near the axis.

At this point we should remember that the chiral formal-
ism is not renormalizable. It is not guaranteed that for every
value ofL1 andL2 there should be an underlying consistent
theory. We have shown in the Appendix that in case these
inconsistencies caused the appearance of a pole in the first
sheet, and close to the unitarity cut, the IAM should be able
to reproduce it properly. Consistently, when these poles are
present we violate Wigner’s bound on the phase shift slope.
This bound is respected when we take the poles very far
away.

We therefore consider the existence of those poles and the
violation of the Wigner bound as a strong hint that the cor-
respondingL1 and L2 are not allowed. In Fig. 5 we have
shown the corresponding excluded region and those values
where we get a saturation of unitarity, which always occurs
at M*2000. In any case these parameters should never be
mistaken for those of a resonance. Notice, once more, that
theG parameter is fixed for a givenM . That is due to the fact
that this channel only depends onL112L2.

The most striking consequence of this result is that there
cannot be narrow heavyI52 resonances unless some of our
initial assumptions are violated. Similar conclusions were
found when trying to build models with suchI52 reso-
nances@22,23#. It was not possible to make theI52 reso-
nances heavy unless the other particles in the spectrum be-
come very light. Even in that case, theI52 resonances were
never bigger than;375 TeV.

V. CONCLUSIONS

In this work we have used the chiral Lagrangian approach
to describe, with basically two parameters, the symmetry-
breaking sector of the SM. Indeed, to any strong model re-
specting the custodial symmetry and without light reso-

nances, should correspond a value of this two parameters.
However, it is not ensured that for any two parameters there
should be an underlying consistent theory. By means of the
inverse amplitude method, we have scanned this two-
dimensional parameter space in search for resonances or uni-
tarity saturation effects.

We have reviewed how this approach is able to reproduce
the expected behavior of popular models like the minimal
SM or a QCD-like model. Within the expected parameter
range, it is possible to find narrow resonances, broad reso-
nances, or simply saturation of unitarity in both theI50 or
I51 weak isospin channels. We have shown that the de-
scription of these resonances is consistent with the require-
ments of relativistic quantum field theory. Indeed, they are
accompanied by poles in the second Riemann sheet whose
position is correctly related to the resonance mass and width.

Concerning theI52 channel, we have found that impos-
ing elastic unitarity through the dispersive approach leads,
for some values of the parameters, to poles in the first Rie-
mann sheet. We consider that as a strong argument for ex-
cluding those values as unphysical. As a consequence, it
does not seem possible to find heavyI52 resonances in
models respecting the above assumptions. That is in agree-
ment with previous observations concerning specific models
with I52 resonances. Our result refers to the general strong
scenario. Nevertheless, it seems still possible to have very
broad shapes of unitarity saturation.

We have summarized the above results in Fig. 6. We have
colored the excluded area in black. The white areas are la-
beled according to their unitarity features. There are two pos-
sible kinds of narrow resonances: a Higgs-like (H) or a tech-
nirho (r). By narrow we mean that the width is less than one
fourth of the mass. We have denoted a broader saturation
shape in theI channel bySI . Notice that, in contrast to the
most popular models, it is possible to have two narrow reso-
nances, a resonance in one channel and saturation in another,

FIG. 6. Resonance spectrum of the strong EWSBS in the
L1 ,L2 plane. The black area is excluded. On the white areas, we
have represented broad resonances or saturation effects in theI
channel bySI ; Higgs-like narrow resonances by H andr-like nar-
row resonances byr. In the grey area there is no saturation of
unitarity, nor resonances, below 3 TeV. The black dots represent
the MSM with MH5800,1000,12 000 GeV and the triangles a
QCD-like model with 3 or 5 technicolors.
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or saturation in two channels. Finally, the grey area corre-
spond to those parameters that do not saturate unitarity be-
low 3 TeV. For those models it is quite likely that the future
colliders will not give even a hint on the nature of the elec-
troweak symmetry-breaking sector.
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APPENDIX: THE DERIVATION OF THE IAM

In this appendix we will derive the IAM method using
dispersion relations. Let us first remember that an elastic
amplitude has a left and right~or elastic! cut and thus two
Riemann sheets. A dispersion relation is nothing but
Cauchy’s theorem applied to one of these sheets. As a tech-
nical remark, let us notice that our amplitudes are
O(p4);O(s2). Hence, we will have to divide bys3 to en-
sure the vanishing of the closing integral contour at`. That
is, elastic chiral amplitudes satisfy

t IJ~s!5C01C1s1C2s
21

s3

p E
~Ma1Mb!2

` Imt IJ~s8!ds8

s83~s82s2 i e!

1LC~ t IJ!. ~A1!

The Ci subtraction constants can be determined from the
chiral approach.

Of course we only know how to calculatet IJ
(0) and t IJ

(1)

which is just a crude approximation to the above relations:

t IJ
~0!5a01a1s,t IJ

~1!5b01b1s1b2s
2

1
s3

p E
~Ma1Mb!2

` Imt IJ
~1!~s8!ds8

s83~s82s2 i e!

1LC~ t IJ
~1!!. ~A2!

Our aim is to obtain a much better description of the right
cut. That is because resonances are understood as poles in
the second Riemann sheet, which is obtained continuously
from that cut.

The relevant point is to realize that the inverse amplitude
can be calculatedexactlyon theelastic cut. Indeed, using
Eqs.~5! and ~6! we find,on the right cut,

Im
t IJ
~0!2

t IJ
52t IJ

~0!2 Imt IJ
ut IJu2

52t IJ
~0!2s52Imt IJ

~1! . ~A3!

Notice that we have normalized the inverse amplitude with
the real factort IJ

(0)2 . Thus, apart from the poles, our function
has the same analytic structure oft IJ . Observe that the poles
of t IJ are zeros ofG and vice versa. Thus we can write

t IJ
~0!2

t IJ
.a01a1s2b02b1s2b2s

2

2
s3

p E
~Ma1Mb!2

` Imt IJ
~1!~s8!ds8

s83~s82s2 i e!
2LC~ t IJ

~1!!1PC~G!

.t IJ
~0!2t IJ

~1! , ~A4!

where we have approximatedLC(G).LC(t IJ
(1)) and we

have neglectedPC(G). That is

t IJ.
t IJ
~0!2

t IJ
~0!2t IJ

~1! ~A5!

which is the IAM method. In the text we have already com-
mented its advantages, but there are also some limitations.

~i! We have only used elastic unitarity, and that limits the
validity at high energies where the first two-bodyinelastic
threshold appears@12#.

~ii ! We have also neglected the pole contributions ofG
and thus we are not able to describe Adler zeros below
threshold.

~iii ! Finally, we have approximated the left cut of the
inverse function by that oft (1). Hence we violate crossing
symmetry. In addition we only reproduce the leading but not
the subleading logarithms.

Notice, however, that the expansion of the IAM at low
energies is again the chiral expansiont IJ;t IJ

(0)1t IJ
(1) so that

the error in this approximation isO(s3). At higher energies,
the contribution from the left cut and poles below threshold
become less relevant, due to the (s82s) factor in the de-
nominator. Their effect will be to change slightly the posi-
tion of the resonance. In previous applications to ChPT it has
been found that this shift is usually smaller than 15%@12#.
As long as we are only interested in a qualitative description
of resonances, they will be neglected. Very recently, how-
ever, an improved version of the IAM has been proposed
@25#, although it does not yield such a simple formula. That
is why we will not use it here.

Finally, let us remark that we have only needed the dis-
persion relation for the inverse amplitude as well as those for
theapproximatedamplitudes, which do not have poles. Even
if the theory is pathological and presents poles in the first
sheet, the IAM derivation is still valid. These poles in the
amplitude become zeros of the inverse amplitude and they do
not change the analytic structure. We can thus use the very
same expression of the IAM in Eq.~8! to detect poles in the
first Riemman sheet. However, we still have to remember
that the approximations we have done limit the validity of
the method to a region close to the elastic cut. Any feature,
including poles, outside that region do not deserve any con-
sideration.
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