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Resonance spectrum of the strongly interacting symmetry-breaking sector
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Within the chiral Lagrangian formalism it is possible to describe the general strongly coupled symmetry-
breaking sector in terms of a few parameters. Based on a dispersive approach we study the resonance spectrum
up to 3 TeV in chiral parameter space. This procedure could also be useful to extract higher energy resonant
behavior from low-energy collider data. It is also shown how the method reproduces the correct pole structure
of resonances as well as other analytic features. The results also hint at a possible excluded region of parameter
space[S0556-282197)02307-2
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I. INTRODUCTION behaviorof any strong EWSBS. The difference between un-
derlying theories appears through the values of the param-

The main purpose of the next generation of colliders is tceters in the chiral Lagrangian. There are already published
unveil the nature of the electroweak symmetry-breaking secehiral parameter estimates for several models such as the
tor (EWSBS. Despite the remarkable success of the standartMSM with a heavy Higgs bosof5,6] or technicolor[7].
model (SM) with the present precision electroweak data, theThere are also studies which indicate that at least part of the
mechanism responsible of this breaking remains unknowrinteresting parameter space will be accessible at the CERN
There are, however, many theoretical models which, venf.arge Hadron Collidef{LHC) [8].
roughly, can be divided in two categories: weakly or strongly However, the usual chiral Lagrangian approach does not
coupled. respect unitarity. At low energies the violations are very

In the weak case light particles are expected below themall, but they increase with the energy. As a consequence it
TeV scale. Typical examples are the minimal SMSM) is not possible to reproduce resonances unless it is modified.
with a light Higgs boson or most supersymmetric models-There are several ways to unitarize chiral amplitudes. Many
These models have become very popular and have been stuaf-them are simple mathematical tricks whose results very
ied in great detail. That is not possible in the strong casefrequently differ, which is an obvious criticism to such pro-
where the strength of the interactions makes the usual pecedures. Nevertheless, over the last few years, a technigque
turbative approach unreliable. In particular, there are no lighhas been developed, known as the inverse amplitude method
particles to control the generic enhancement of gauge bosdifAM ) [9-12], whose results have been successfully tested in
production. As a consequence, the perturbative calculationShPT. It is based on dispersion theory and it can accommo-
suffer from severe unitarity violations. Nevertheless, such amlate all the analytic structure required to reproduce reso-
enhancement would be the experimental signature of aances. Namely, the elastic cut and poles in the second Rie-
strong EWSBS. The most promising process is longitudinamann sheet. When applied to low-energy hadron physics, it
gauge boson scattering, where the most striking features indeed able to reproduce the lightest resonances. The IAM
would be the appearance of heavy resonances. seems very reliable at least at the qualitative level.

There are also several models of strongly coupled Concerning the EWSBS, the method was first applied to
EWSBS'’s, like the MSM with a heavy Higgs boson, techni- mimic a heavy Higgs boson and a QCD-like scenario at su-
color, composite models, etc. From very general symmetrypercolliderq 13]. The results of the IAM are once again con-
considerations all of them share the same dynamics at lowistent with the expected resonances.
energieqd 1]. However, the predictions of these models can The aim of this work is to explore the interesting part of
vary greatly from one another. the chiral parameter space using the IAM method. In so do-

Several years ago it was introduced a theoretical frameing, we expect to obtain a description of the low resonance
work that is able to describe generically the strong interacspectrum of the general strong EWSBS.
tions of electroweak gauge bosof. It is based on chiral The paper is organized as follows. In Sec. Il we discuss
perturbation theory(ChPT) [3], which works remarkably the theoretical framework used in this work. First we intro-
well for pion physics. The idea is to write an effective chiral duce the chiral formalism; next, we address some technical
Lagrangian including operators up to dimension fdf. issues related to the equivalence theorem. We then define
The form of the terms is only constrained by symmetry con-partial waves and state the unitarity problem. As a solution,
siderations which are common to any strong EWSBS. Thushe IAM is briefly reviewed, whose derivation is given in the
using this Lagrangian it is possible to mimic tlwv-energy  Appendix. Section Il is devoted to the IAM results. First, for

reference models, we illustrate different analytical and physi-
cal features, such as saturation. We then show where these
*On leave of absence from Departamento dsidai Tegica, Uni-  phenomena appear in parameter space. The problem of uni-
versidad Complutense, 28040 Madrid, Spain. Electronic addresdarity in the =2 channel and whether it can be used to
pelaez@theorm.lbl.gov, pelaez@vxcern.cern.ch exclude part of the parameter space is also addressed in Sec.

0556-2821/97/547)/419310)/$10.00 55 4193 © 1997 The American Physical Society



4194 J. R. PEL/EZ 55

[ll. In Sec. IV we discuss these results and we gather them in  TABLE I. Chiral parameters for different reference models.
the conclusion.

Ly Lo
II. RESONANCES IN THE CHIRAL FORMALISM MSM (My~1 TeV) 0.007 -0.002
QCD-like -0.001 0.001

A. The chiral Lagrangian

Let us remember that we have to break the
SU(2). x U(1)y gaugesymmetry down to U(13y. There-  £L#=L,(trD,UD*U")2+L,(trD,UD"U")2+tr[ (Lo WH”
fore we need global breaking from a grougs down to v t traur
anotherH. It should provide three Goldstone bosdf@B'’s) +LorB#")D,UD U]+ LgrU BXUW,,, @)
that will become the logitudinal components of the gauge Y Y
bosons through the Higgs mechanism. We also want to in:é\/r}(ejrewﬂ and B*” are the strength tensors of the gauge
clude the custodial SU(2) g, which naturally yields a 1€las. . .
p=1 parametef14]. It can be shown that these constraints _Flnally, let us.remark _that using these Lagrgngl_ans we
lead to G=SU(2) X SU(2)x and H=SU(2)_,x [1,15. will obtain the chiral ar_nplltudes as truncated series,ithe
Thus, the GB fieldsr' can be seen as coordinates in theusual Mandelstam variable. That is
G/H~SU(2), _g coset. Hence, we will parametrize them in __+(0) (1) 3
an SU(2) matrix asU=exp(w'c'lv). The parameter He)=tAs) +17(s) +O(sD), @
v =256 GeV plays here the same rolefgsn ChPT and sets
the scale of the EWSBS.

Within the chiral approach we build the low-energy La-
grangian as an expansion in derivativemmenta of the GB
fields. Since we will work up t®(p*), we should look for a
complete set of SU(2)XU(1)y, Lorentz, C- and
P-invariant operators containing up to four derivatives.
These have been obtained[#l, but they are too general for
our purposes. Indeed, we want an exact SY(2)symmetry

wheret(®)(s) is O(s) and reproduces the LET’s. It is ob-
tained from£(? at the tree level. Th&*)(s) contribution is
0(s?) and comes from th&€®) at the tree level and(® at

one loop. The loops yield logarithmic contributions which
are very relevant at low energies. However, at higher ener-
gies our amplitudes behave essentially as polynomiats in

B. Chiral parameters

on the hidden sector once the gauge coupliggsdg’ are In contrast with theC(?) Lagrangian, the one in E@R) is

set to zero. In addition, we are only interested in gauge bosonot completely fixed by symmetry and the scale. Indeed each

elastic scattering and we can negl€&d®-violating effects. operator has a parameter which depends on the specific

With those assumptions, the only operator that we camreaking mechanism. Thus, for every strong EWSBS without

build with two derivatives is relevant light modes and our assumed symmetry-breaking

’ pattern, there should be a different set of chiral parameters.
£<2>=v—trD up~y’ (1) Notice, however, that nothing ensures the reciprocal. It is not

4 w ' clear that for every set of chiral parameters there should be

an underlying consistent and renormalizable quantum field

where D ,U=4d,U—W,U+UB, is a covariant derivative theory(QFT).
with W, = —igo®Wa/2 and B,= —iga'3BM/2. It is impor- ' Unfortunately, the very nature of strongly coupled theo-
tant to observe that this Lagrangian only depends on th&8€S does not aIIo_W a calculation of the§e parameters'. There
symmetry-breaking pattern and the scale. In this sense, tHi€: however, estimates for the heavy Higgs MSM, which are
amplitudes obtained front® are universal. That is why obtained from a matching of one loop Green functig5
they are called low-energy theorefisET's) [1]. For the QCD-like model, they are obtained by rescaling the

Notice also that the Lagrangian in E(.) is that of the QCD parameter12]. We_wiII use .these models asa refer-
nonlineare model and thus it is not renormalizable. In fact it €1¢® and thus we have listed their parameters in Table I.

is not possible to absorb the loop divergencies by introducin Very recently_s_,everal stud|e_s have appeared concerning
a finite set of new counterterms and constants. Neverthele%,e LHC capabilities to determ!ne these parameters in case
we are only interested in the low-energy behavior and therelhere 1s a strong EWSB,@' Notice that their expecteq val-
fore it is enough to work up to a given order in the externall€S are in the 107 to 10"* range. Note also that the sign of
momenta. For instance, if we want to obtain gauge bosoﬁhe parameters may play an essential role. From these pre-

scattering amplitudes @(p?), the only contributions come liminary studies. it seems that LHC could be able to reach
from £ at tree level. If we calculate @(p?), we will 5x 1073, even in the hardest nonresonant case. However,

have to consider thé®) Lagrangian at the tree level as well that will require two detectors taking data for several years at

as £ to one loop. These last contributions are divergent,fUII design luminosity and the highest center-of-mass energy.

but their divergencies can be absorbed in & param-
eters. In this sense, the calculations are renormalizable and
finite. This procedure can be generalizedagp"), but we As we have already seen, the most relevant modes of the
will work only up to O(p%). EWSBS at low energy are the GB. However, once we in-
There are many possible terms in th&) Lagrangiar{4]. clude the electroweak interactions, the GB disappear from
However, according to the above restrictions, we are onlghe physical spectrum and become the longitudinal compo-
interested in nents of the gauge boson¥|(). Somehow we can identify

C. The equivalence theorem
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the GB and their behavior with that of the gauge bosons. Thematical tricks to impose unitarity, which very often lead to
precise formulation of the previous statement is known as thdifferent results. Obviously, that is the main criticism to uni-

equivalence theoreET) [16,17): tarization. There is, however, a method that has been tested
| in ChPT and is able to reproduce theand K* resonances
a am a m [10-12. It is based on dispersion theory and apart from
TV V)= ,1:[1 Kajj T(may - me)+O E) satisfying Eq.(5), it provides the correct unitarity cut on the

(4) complexs plane, as well as poles in the second Riemann
sheet.
wherem is the mass of the gauge boson. TKefactors,
which include renormalization and higher ordgeffects, are
basically 1+ O(g?) [18]. In short, the ET allows us to iden-
tify, at energiesE>m, the longitudinal gauge boson ampli-  Elastic amplitudes in the complexplane have a left and
tudes with those of their associated GB. It is very useful ind right(or unitarity) cut. A dispersion relation is nothing but
two senses. First it allows us to link the physical measureCauchy’s Theorem applied to these amplitudes. They are
ments with the hidden sector. Second, it helps in the calcuvery useful since we can obtain the values of the amplitude
lation of theV/, amplitudes, which are much easier to obtainin any point in terms of integrals of their imaginary parts
using scalar particles such as GB. over the cuts.
It is important to notice that the ET is a high-energy limit. ~ We have just seen that chiral amplitudes are not a good
In contrast, the chiral formalism is a low-energy approachapproximation at high energies on the elastic cut. Thus, they
Nevertheless, it has been recently shown that there is a wire not very well suited for a dispersive approach. The key
dow of applicability for the ET together with the chiral ap- Point is to notice that we can calculate the imaginary part of
proach[15,19. The above equation remains valid, but only the inverse amplitudexactlyon theelastic cut Indeed, us-

E. The inverse amplitude method

at lowest orderin g andg’. ing Egs.(5) and(6),

In the following sections we will be thoroughly using the 1 Imt
ET. Therefore we will work at lowest order in the elec- Im— = — '25':_0. 7
troweak couplings. As a consequence, dnjyandL, will be ty |tis]

relevant for our calculations.

We can thus write a dispersion relation fot,1Avhose inte-

gral over the elastic cut is exact. Nevertheless, the other ana-
As long as we have an SU(2)gr symmetry in the lytical features are still approximate. In the Appendix, we

EWSBS, we can also define a weak isoshitn analogy to  give a detailed derivation and we comment on these approxi-

a1 scattering, we have three possible weak isospin channefsations. Finally, it is possible to solve foy; and we get

=0,1,2. It is then usual to project the amplitudes in partial

D. Partial waves, unitarity, and resonances

waves with definite angular momentudnand isospinl . At tf?)z
low energies we are only interested in the low&sand thus ty=o 0" (8
we will study thet,;=tqg,t11, andtyg partial waves. Their Ly =t

expressions for the EWSBS are given[i8]. Customarily

the results of elastic scattering are presented in terms of thej . L
complex phases, which are known as phase shifts. elrg\?;r:fag; IAM. Apart from its simplicity, it has several

As we have already remarked, one of the most striking (i) At low energies it reduces again to the very same chi-

features of a strongly interacting EWSBS could be the ap. 1 amolitudes in E 3)
pearance of resonances. For instance, for the MSM with™ . plitudes ).
(ii) It satisfies elastic unitarity, E@5), exactly.

Myu=1 TeV, we expect a very broad scalar resonance ;.. . i
argund 1 TeV. In Q%D-Iike mo)(/:iels one expects a vector (iii) The right cut is correctly reproduced and we get the

e T ) appropriate analytic structure. In particular we get those
resﬁg@gﬁ/ﬁ'”}ﬂ? E%itrg??olpmgﬁgn?hg;lﬁi;;og n?]ozt Lf)\l/e. o poles in the second Riemann sheet which are near the uni-

. . ; tgrity cut[12].
reproduce resonances. Their very existence is closely relate (iv) It can be easily extended to higher ordft4,17]

te?/;hnessa?t}:;;tt'ﬁg Zlfaljsr':il(l;alljlla)i/tla?il:; tct]:n?jri]tlii)ar! amplitudes do not Of course it also has Ii.mitations. We comment on them
thoroughly in the Appendix. However, they are mostly re-
Imt, ;(s) = o(S)|t5(5) |2, (5) lated to analytical structuresuch as some poles or the left

cut), which are far away from the energy range where we

whereo(s) is the two-body phase space. Nevertheless, thegxpect the resonances or unitarity effects. In the elastic re-

satisfy it perturbatively gion we expect the 1AM to be a good approximation.
Indeed, the IAM has been applied both to pion elastic
Imt{P(s)=0(s)[t|9(s)|2+ O(s%). (6)  scattering andrK scattering. The first example is very simi-

lar to the EWSBS, although there the GB are massive. In
Notice that the violation of unitarity is very small only at low both cases it is possible to reproduce the lowest lying reso-
energies. nances: The(770) and theK* (892) respectively10-12.
Therefore, in order to accommodate resonances we hawyhen only low-energy data is used, their masses lie about
to unitarize the chiral amplitudes. There are many math415% off from the actual values. It is, however, possible to fit
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FIG. 1. Phase shifts in strong V, scattering. The dashed lines are the plain chiral amplitudes and the continuous lines those using the
IAM. They have been obtained both for a heavy-Higgs MSM and a QCD-like model using the parameters in Table I.

the masses and widths using high-energy data. Notice thaiances: a broad scalar resonance in the heavy Higgs MSM,
this can be achieved without introducing any other field orand a technirho at about 2 TeV in the QCD-like model. As

parameter. an illustration, we show in Fig. 1 the phase shifts obtained
It is also important to remark that the IAM also improves when the IAM is applied to the chiral amplitudes.
considerably the nonresonant chanridl$,12. In fact, the They have been obtained using the parameters given in

=2 channel inm7 and 1=3/2 in 7K scattering do not Taple I, which have been actualized. Naively, the resonant

present any low resonance. In spite of that, the results of thg,asses can be obtained from the point where the correspond-
chiral amplitudes only match the data at low energies. The?ng phase shift crosses 90°. The width can be obtained as-
IAM results fit the data remarkably well up to much higher suming the typical Breit-Wigner for thelike resonance and

energies. M,=2240 GeV, I',~620 GeV shape. Their values are

In addition the appearance of resonances is completelp(/lpw800 GeV,T'.~185 GeV for the Higgs-like resonance
consistent with the QFT description. They are associated tQ S . C S L '
poles in the second Riemann sheet, whose position is COR_Iotlce that in this work we are also giving the results for the

rectly related to the physical mass and width. The analytica =2 channel. It Is related t.o like-sign pair producyon of
structure of the IAM amplitudes is the correct one in the92uge bosons, where the signal to background ratio seems
elastic region. We therefore consider that the chiral formalVery favorable, as it has been pointed ouf17,20. In Fig.

ism, together with the 1AM, is a reliable method to obtain, at® it can be seen that the results using the IAM may vary
least, a qualitative description of the resonance spectrum ifignificantly from those without unitarization. For instance,

strongly coupled systems. in the QCD-like case even the qualitative behavior is com-
pletely different. Comparing with QCD data, the correct be-
Il. RESULTS havior is the one given by the 1ANt11,12.

Finally, in Fig. 2, we show the position of the poles in the
second Riemann sheet. Figur@?s the pole that appears in

The IAM in the chiral Lagrangian context was first ap- the (I,J)=(0,0) channel when using the MSM parameters of
plied to a MSM and a QCD-like model {i13]. There itwas Table I. Figure 2b) is the one that appears in the vector
shown that it is possible to reproduce the expected resachannel when using the QCD-like parameters. Notice that

A. Reference models: Resonances and saturation

100 100
A=A MSM A=A QCD-like
7 1=04J=0 5 el FIG. 2. Contour plots of the
imaginary part of the V V,_
t S —V_V, chiral amplitudes. It has
-100 ¢ ‘ -0 - been extended continuously
through the cut. Thus, above the
=200 - =200 - ' real axis(straight ling is the first
: Riemann sheet, and below the sec-
-300 -300 - ond. (a) Pole of the scalar reso-
nance in theMy=1 TeV MSM.
=450 _400 L , (b) Pole of thep-like resonance in
the QCD-like channel.

-500 500

I _ I ! ! I L
5(]30 1 O‘OO 1500 20|00 25‘00 3000 500 1000 1500 2000 2500 3000
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120 L o the phase shift of a channel dis-
-200 1 s playing a “saturation” effect. For

the same model we show on the
right the contour plots of the
imaginary part of the amplitudes.
Notice the change of the scale
with respect to Fig. 2. Observe
that the pole is far away from the
axis and has changed the orienta-
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40 [
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the positions of the poles satisffSoe~ M est il ed2. 2. Resonances in parameter space
We have seen that the IAM and the chiral formalism
B. The scalar and vector channels yields reasonable results in both reference models. Not only

in terms of resonances but also in nonresonant channels. We
have also shown how the different features are described
We have been paying special attention to resonances, batcordingly to the requirements of analyticity and dispersion
there are other interesting features. In particular, it couldheory. Let us then explore the chiral parameter space in
happen that the amplitude saturates unitarity although thererder to get a qualitative description of the possible EWSBS.
is no clear resonant shape. At this point it is important to In Fig. 4 we show different contour plots in thg L,
notice that the criterion of,, crossing 90° is only applicable Plane. We display the IG to 10~° range, since generically
to the cleanest cases. A resonance should be associated witg €xpect the parameters to be of that order.
a pole near the real axis which causes a steep raise in the The contour _plot_s have been obtained from the calculation
phase shift. This pole reflects the existence of an almo<?f the phase shifts in a 6060 grid. Using these phase shifts,
bound state. When there is no other phase background thy¥e have extracted two parametersvl, which is the energy
leads to our naive 90° criterion. In such cases we can appl@t Which,;=90° and
the usual Breit-Wigner description and relate, as above, the 1
resonance physical constants with the pole position. Fz( d5(3)) )
But it could well happen that there is a big phase shift ds
background without a nearby pole. Then the phase shift can
cross 90° and saturate unitarity but we will not see the sudThe interpretation of these parameters has to be made care-
den increase in the phase shift. That we will call “satura-fully. When I'<M they correspond to the mass and the
tion.” As a matter of fact such big background phases arevidth of a resonance in the Breit-Wigner approximation.
also produced by poles, but they are very far away from thétherwise, the situation is similar to our previous “satura-
real axis. Then it is either possible to say that there is ndion” example andM is just the point where the amplitudes
resonance or a very broad one. That is, for instance, the casaturate unitarity. In such a cadéshould not be interpreted
of the (1,J)=(0,0) channel inm scattering. That channel as the width of a particle, although the saturation shape is
has a huge enhancement in the phase shift that grows vebyoader for biggef™. In addition,M andI" are not related to
rapidly at small energiessee Fig. 1, which is a rescaled the pole position as in the Breit-Wigner formula. Remember
version. Such an enhancement has sometimes been intefrom Fig. 3 that the pole not only moves away from the real
preted as a resonance: ihigarticle. We will not address the axis, but it also changes its orientation.
o problem here. The only thing that is more or less clear is We are showing three plots for thd,{)=(0,0) and
that such rapid enhancement should be produced by a po(d,1) channels separately. The contour plot on the left shows
[21] which is not very close to the real axis. Such a pole haghe values oM. That on the center is a contour plotIof In
been found using the IAM and ChPT in approximately theorder to clarify the meaning of these parameters, but also to
correct position12]. get a qualitative picture of the many possible strong sce-
The position of the poles in our amplitudes does obvi-narios, we have added a third plot on the right. The dark gray
ously depend on the chiral parameters. Thus by varying area corresponds to “narrow” resonances. For illustrative
andL, we can move the pole far away from the real axis andpurposes, we define narrow as<M/4. Roughly, this is
create such saturation effects. In Fig. 3 can be seen an ewhat is usually understood by a resonance. Indeed, in QCD
ample of that situation. Following the discussion above, théoth thep(770) andK* (892) satisfy this criterion. The light
pole is much farther away from the real axis than those irgray area stands at thoke, L, values where we get a broad
Fig. 2. As a consequence, the Breit-Wigner relations betweeresonance. In this case, broad medhs M/4 but even
its position and the physical parameters of an hypotheticahough the width is not very small, it is still possible to
resonance, no longer hold. Notice also that the pole hadescribe it with a pole and a Breit-Wigner description. Ob-
changed its orientation. viously, if we make thel'/M ratio even bigger the Breit-

1. Saturation
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FIG. 4. Plots in the_,,L, plane for the [,J)=(0,0) and (1,1) channels. The plots on the left give contour leveM oThose on the
center givel'. The dark grey areas stand for narroli<{4M) resonances. The light grey areas for broktd4<I"<3M/4) resonances and
the black areas for saturation. White is no resonance or saturation below 3 TeV. The black circles stand at thelyahegtsnaiinic a MSM
with My =800, 1000, and 1200 GeV. The black triangles represent QCD-like models with 3 or 5 colors.

Wigner description is no longer valid. That happens more othe spectrum, the models do not make sense. Indeed, they
less at aboul’>3M/4 and at those points the black areapresent poles in the first Riemann sheet, within the IAM
starts, pointing the existence of a saturation effect. applicability region.

C Thel=2 channel 1. Poles in the first sheet

We have already reviewed how the IAM in the chiral . TTe (I,J)ZEZ,O)bpl)hase Slh";t gspegatlvelimdlth?t ct:an gtlve
approach is able to reproduce the0 orl =1 resonances of rise 1o several problems refated to causality. In fact, satura-

our reference models. In the literature, there have also bedfP" Can also occur aby=—90°. However, if we apply
proposed models with=2 resonancesee[22] or [23], and blindly Eq. (9), we get a negative yalue. Thus, even_when
references thereinHowever, they do not correspond to the |F_|<M we cannot say that there is a resonance, since its
kind of models that we are dealing with, since they aIwaysW'dth would be negative. From the analytical point of view,
present ||ght resonances or states. |ndeet22}htwo models that situation Corresponds to a pOle in the first Riemann
were built with1=2 resonances, one of them with elemen-sheet, which is forbidden.
tary and the other with composite doubly charged states. In As a matter of fact, the IAM yields poles in the first
both cases their masses dvke, , <160 GeV and there are Riemann sheet of thd (J)=(2,0) amplitude. For instance, it
also single charge states wilh, =100 GeV. is possible to find poles ity in the first Riemann sheet at
Even more, the authors [23] slightly modified the MSM  about\/Sye~ 3300+ 1750 andy/s,qe~4700+i7000 for the
including anl=2 resonance. Using a tree level unitarity, QCD-like and MSM parameters of Table I. However, in the
they found that the model does not make sense if its mass @hiral approach we are only allowed to use the IAM for
bigger than~375 GeV. That bound becomes even smaller aenergies\/s<4mv~3 TeV. We should not worry about the
the scalar Higgs-like resonance gets heavier. In the literaturAM results outside that region, since it is not a good ap-
there are no models with dr=2 resonance and without light proximation there. These poles are well outside a circle of
modes at the same time, that respect the custodial symmetrghat radius in the complex plane and are not real predictions
Within our approach, we find a similar result but for the of the approach. In addition, when looking at pion physics,
general case. As soon as bn2 resonant shape appears in the description ofs, is correct with the IAM and qualita-
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tively wrong (at high energigswith plain ChPT[11,12. L,

The problem is that the position of those poles depends on
L, andL,. In fact, it is possible to bring them close to the
real axis and then the amplitudes do not have a physical
meaning. 0.005

Let us now recall that the chiral Lagrangian does not meet
all the requirements of a relativistic QFT. It respects Hermi-
ticity, its amplitudes present a cut and an analytic structure,
etc., but it is not renormalizable. It could well happen that,
given a set of chiral parameters, there is no underlying theory ~0.005
consistent with all the QFT requirements. That could be
enough to yield poles in the first Riemann sheet. If we were
able to develop a method to detect those poles, we could rule
out that parameter set as_unphysical. In the Appendix we o0l —0005 0 0005 001
have shown that the IAM is able to reproduce these poles Ly
when they are present in the underlying theory.

The next step is to define how far these conflictive poles FIG. 5. Contour plot in theL;,L, plane. The black area is
should be to accept the IAM results. Looking at the MSM excluded using the slope criterion and the IAM. The shaded area
and QCD-like examples, we notice that they are not a prob'mdicates a broad saturation shape in the cross section. In the white
lem if they lie outside a 4v =3 TeV circle in the complex 2area there is no saturation below 3 TeV.
plane. However, the IAM is a good approximation only near
the real axis and thus the above criterion could be too strict. 3. The 1AM results
There is a much more intuitive criterion in order to exclude |n Fig. 5 is shown the result of applying the bound in Eq.
some values ok ; andL,. (10) to the IAM t,o amplitude. The area in black represents

the area excluded, whereas the white area is no saturation of
2. Wigner bound unitarity. Notice that there is only a very narrow strip where

Indeed, there is a lower bound on the phase shift derivat-he criterion is respected and saturation occurs. In this band,

. . . colored in grey, the saturation poiM is always reached
tive due to Wigner{24]. Roughly it can be understood as : L i
follows. Phase shifts can be interpreted as the delay of thaboveM>2150 GeV, with|'| >1050. Surprisingly, the al

. ) . ; ' fBwed M andT values are outside a 3-TeV region. But that
outcoming wave with respect to the incoming one. When it is

negative, the outcoming signalasivancedBut that advance ~, 292N the first naive criterion dpod>4mv. Thus, our
o ) : allowed parameters yield amplitudes that satisfy both criteria
cannot be arbitrarily big. In the classical case,

dé/dk>—D, whereD is the radius of the scatterer akdhe Zietpsev:c?mo? t'iyeeéIcetrhebﬁgc;zsssrgtgg ftghr{i‘sigggamimr;
momentum of the incoming particle. The wave nature of; ) y b 9

particles does allow for a small violation of the previous it cannot be interpreted as a particls a saturation effect.
equation. Near a resonance, it can be shown that

ds/dk>—(D+1/2k) [24]. For a general potential the defi- IV. DISCUSSION

nition of D is not so evident, but intuitively it has to be

related to its effective size or range. Notice that this bound isS (Iarc]:tm; %ervtlk?g ° jﬁggn;r\gﬁ hg\\//\?s%bstall?eetdu?ic:\?vsr%z?gv(\:/e
valid for the elastic case. P 9 9 '

Let us then translate the above arguments to our problerﬁhe physical meaning of the results in the differentJf

L X ; . channels.
First, inV_ V| scattering yv(; are |nter2ested in the c.m. frame, (0,0) channel. Concerning the MSM, we have already
where the momentum ig“=s/4—my,. Second, we have

been using thd' parameter instead of the slope. Using Eq.remarked that the IAM yields a Higgs-like resonance. As can

, . be seen in Fig. 4, its mass is always smaller thap. As
(9) our previous bound, in the c.m., reads long asMy is the only relevant parameter, for a given reso-

nance mass there is a fixed value of the width. With respect
to QCD-like models, we do not get any resonance, but we

2m 1 : : X I
I — get a considerable enhancement in this channel. This is the
M D+m/(M?{1—4m?/M?) analogous of the particle problem in QCD. There is also a
pole very far from the real axis and it does not saturate uni-
2 tarity.

(10 In the general case, once we fik we get a uniqué’ too,

since this channel only depends on tHe; & 5L, combina-

tion. That is not in conflict with existing models where the
where in the last step we have usedathe scattering length mass and the width of a scalar resonance can be adjusted
of the t,, wave, which is the one we are interested in. It[23] independently. In those models, there are resonances
seems to be a reasonable estimate of the effective size of thehose masses are 100 GeV. In this work we are only
potential. We will have to check that our results respect thistudying those modelwithout low lying resonances. In ad-
condition. To start with, both reference models satisfy it. Letdition, we have simplified the calculation to lowest order in
us now see what happens for other,L, values. g. When further corrections are included, othgrcome into

N M/(87v2)+ 1M \1—4mZM?)’
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play and different values would chandé. Nevertheless L
these effects are weaker and the variations should be rela- 2
tively small. Let us also notice that we can get narrow reso-
nances, broad resonances and that saturation occurs when
M =1500 (and then we cannot strictly speak of a mass
(1,2) channel. Again there is only ond” for every M,
since this channel only dependslos+ 2L ;. In contrast with
the previous channel, we can see in Fig. 4 that there are
narrow resonances up tel<2500. The values where we
obtain a broad resonance are limited to a thin band, and we
do not find what we have called “saturation” below 3 TeV.
The IAM yields a clear resonance in the QCD-like mod-
els. It is very narrow although not as much as the pedihat
is due to the fact that in QCD the Ghe piong are propor-
tionally more massive than their analogous hghe V). It 7001 -0.005 0 0005 0.01 |
is also interesting to notice that vectorlike resonances be- !
come lighter when we assume more technicolors. As a con-
sistency check, we do not get any resonance for the MSM. FIG. 6. Resonance spectrum of the strong EWSBS in the
(2,0) channel. The interpreta‘[ion of the results in this Li,Lo plane. The black area is excluded. On the white areas, we
channel is more delicate. The IAM is only expected to workhave represente_d brc_)ad resonances or saturation ef_fects in the
near the elastic cut. It has been tested in pion phygigs channel byS; Higgs-like narrow resonances by H apéike nar-
and it yields the correct behavior in this channel. Neverthe—r%"i‘;arr‘i“’tior;gr‘czss Obrﬁl'n'cnesthie?éa’ 3arTe:VthTerr]ee ISIar::(Ij( (Sj?)ttiriggpe;;nt
less in ChPT it presents poles in the flrst Rlemann Shee{tJhe MSM with M,;=800,1000,12 000 GeV and the triangles a
although very far from the 1AM applicability region. They CD-like model with 3 or 5 technicolors
cannot be considered predictions of the approach. However; '

the position of these poles depends on the chiral parameterigances, should correspond a value of this two parameters.
and it is indeed possible to get them very near the axis.  However, it is not ensured that for any two parameters there
At this point we should remember that the chiral formal- should be an underlying consistent theory. By means of the
ism is not renormalizable. It is not guaranteed that for evenynverse amp"tude method, we have scanned this two-
value ofL, andL, there should be an underlying consistentdimensional parameter space in search for resonances or uni-
theory. We have shown in the Appendix that in case thes%rity saturation effects.
inconsistencies caused the appearance of a pole in the first \we have reviewed how this approach is able to reproduce
Sheet, and close to the unitarity cut, the 1AM should be alehe expected behavior of popu|ar models like the minimal
to reproduce it properly. Consistently, when these poles argm or a QCD-like model. Within the expected parameter
present we violate Wigner's bound on the phase shift sloperange, it is possible to find narrow resonances, broad reso-
This bound is respected when we take the poles very fafances, or simply saturation of unitarity in both the0 or
away. I=1 weak isospin channels. We have shown that the de-
We therefore consider the existence of those poles and thg:ription of these resonances is consistent with the require-
violation of the Wigner bound as a strong hint that the cor-ments of relativistic quantum field theory. Indeed, they are
respondinglL; andL, are not allowed. In Fig. 5 we have accompanied by poles in the second Riemann sheet whose
shown the corresponding excluded region and those valugspsition is correctly related to the resonance mass and width.
where we get a saturation of unitarity, which always occurs  concerning the =2 channel, we have found that impos-
at M=2000. In any case these parameters should never hfg elastic unitarity through the dispersive approach leads,
mistaken for those of a resonance. Notice, once more, thagyr some values of the parameters, to poles in the first Rie-
thel' parameter is fixed for a glvdbl . That is due to the fact mann sheet. We consider that as a Strong argument for ex-
that this channel only depends @a+2L,. cluding those values as unphysical. As a consequence, it
The most striking consequence of this result is that thergioes not seem possible to find heals 2 resonances in
cannot be narrow heawy=2 resonances unless some of ourmodels respecting the above assumptions. That is in agree-
initial assumptions are violated. Similar conclusions werément with previous observations Concerning Specific models
found when trying to build models with such=2 reso-  with | =2 resonances. Our result refers to the general strong
nances22,23. It was not possible to make tHe=2 reso-  scenario. Nevertheless, it seems still possible to have very
nances heavy unless the other particles in the spectrum bgroad shapes of unitarity saturation.
come very light. Even in that case, the 2 resonances were e have summarized the above results in Fig. 6. We have
never bigger than-375 TeV. colored the excluded area in black. The white areas are la-
beled according to their unitarity features. There are two pos-
sible kinds of narrow resonances: a Higgs-liké) (or a tech-
nirho (p). By narrow we mean that the width is less than one
In this work we have used the chiral Lagrangian approactiourth of the mass. We have denoted a broader saturation
to describe, with basically two parameters, the symmetryshape in thd channel byS,. Notice that, in contrast to the
breaking sector of the SM. Indeed, to any strong model remost popular models, it is possible to have two narrow reso-
specting the custodial symmetry and without light reso-nances, a resonance in one channel and saturation in another,

V. CONCLUSIONS
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or saturation in two channels. Finally, the grey area correNotice that we have normalized the inverse amplitude with

spond to those parameters that do not saturate unitarity behe real facto[fg’)z. Thus, apart from the poles, our function

low 3 TeV. For those models it is quite likely that the future has the same analytic structuretgf. Observe that the poles
colliders will not give even a hint on the nature of the elec-of t,; are zeros of5 and vice versa. Thus we can write
troweak symmetry-breaking sector.
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APPENDIX: THE DERIVATION OF THE IAM t,= W (A5)
13

In this appendix we will derive the IAM method using
dispersion relations. Let us first remember that an elastic
amplitude has a left and rigffor elastig cut and thus two  which is the IAM method. In the text we have already com-
Riemann sheets. A dispersion relation is nothing buimented its advantages, but there are also some limitations.
Cauchy’s theorem applied to one of these sheets. As a tech- (i) We have only used elastic unitarity, and that limits the
nical remark, let us notice that our amplitudes arevalidity at high energies where the first two-bothelastic
O(p*)~0(s?). Hence, we will have to divide bg® to en-  threshold appeard?].

sure the vanishing of the closing integral contourcafThat (i) We have also neglected the pole contributionsGof
is, elastic chiral amplitudes satisfy and thus we are not able to describe Adler zeros below
threshold.

o Imt,;(s’)ds’ (i) Finally, we have approximated the left cut of the
25'3(s' —s5—ie) inverse function by that of®). Hence we violate crossing
M+ Mg) €) ) )
symmetry. In addition we only reproduce the leading but not
+LC(t,). (A1)  the subleading logarithms. _
Notice, however, that the expansion of the IAM at low
energies is again the chiral expansignt{)+1t(3) so that
The C; subtraction constants can be determined from thehe error in this approximation i©(s®). At higher energies,
chiral approach. the contribution from the left cut and poles below threshold
Of course we only know how to calculaté)’ andt(})  become less relevant, due to th& {s) factor in the de-
which is just a crude approximation to the above relations: nominator. Their effect will be to change slightly the posi-
tion of the resonance. In previous applications to ChPT it has

3
S
tu(S):Co"‘ C]_S+ C252+ ;j
(

t9=ag+a;s,tV=by+b;s+b,s? been found that this shift is usually smaller than 1522].
As long as we are only interested in a qualitative description
3 [ Imt(M(s")ds’ of resonances, they will be neglected. Very recently, how-
1J . .
+— — ever, an improved version of the IAM has been proposed

TJ(My+Mp?S" (8" =S i€) [25], although it does not yield such a simple formula. That
is why we will not use it here.

Finally, let us remark that we have only needed the dis-
persion relation for the inverse amplitude as well as those for
theapproximatecamplitudes, which do not have poles. Even
if.r%he theory is pathological and presents poles in the first

heet, the IAM derivation is still valid. These poles in the

+LC(t{}). (A2)

Our aim is to obtain a much better description of the right
cut. That is because resonances are understood as poles

the second Riemann sheet, which is obtained continuousl mplitude become zeros of the inverse amplitude and they do

from that cut, not change the analytic structure. We can thus use the ver
The relevant point is to realize that the inverse amplitude 9 y : y

can be calculate@xactly on the elastic cut Indeed, using ;?sT??Exngﬁ:\zlosnhgéttheH(l)evl\gvlgrEﬁ)a tgti(ljlert\z?/teptoc!efelrﬂgrfber
Egs.(5) and(6) we find, on the right cut : '

that the approximations we have done limit the validity of
the method to a region close to the elastic cut. Any feature,
including poles, outside that region do not deserve any con-
sideration.

m—=—t{3 > =—t{%c=—Imt{}). (A3)
by [t
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