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Abstract. Recently, potential applications of the magnetic heating for heterogeneous catalysis 

or organic synthesis have been reported. As these new applications are not limited by 

biocompatibility requirements, a wide range of possibilities for non-aqueous colloidal 

nanoparticles with enhanced magnetic properties is open. In this work, manganese and cobalt 

ferrite nanoparticles are synthesized by co-precipitation method with average particle size 

around 12 nm. The particles are either coated with tetramethylammonium hydroxide (TMAOH) 

and dispersed in water or with oleic acid (OA) and dispersed in hexane to produce aggregated or 

disaggregated nanoparticles, respectively. It is observed that the particle disaggregation 

improves significantly the heating efficiency from 12 to 96 W/g in the case of cobalt ferrite, and 

from 120 to 413 W/g for the manganese ferrite. The main responsible for this improvement is 

the reduction of hydrodynamic volume that allows a faster Brownian relaxation. This work also 

discusses the relevance of the size distribution. 
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1. Introduction 

The heating efficiency of magnetic nanoparticle is nowadays intensively investigated because 

the applications to magnetic cancer therapy.
1-6

 However, the potential applications for 

heterogeneous catalysis has been recently been reported.
7
 Additionally, there is recent evidences 

that different chemical reactions in liquid media can be triggered using heating induced by iron 

oxide nanoparticles.
8
 These new concepts consist in taking advantage of the heating efficiency 

of the nanoparticles under alternating magnetic field to produce in-situ catalysis or to induce 

organic synthesis. This opens a new and wide range of possibilities in the area of heating 

efficiency of nanoparticles. First of all, biocompatibility is no more a requirement, thus, any 

kind of metals or metal alloys (Fe, Co, Ni, FeCo, etc) or any magnetic oxide with enhanced 

magnetic properties can be used.
7, 9-13

 Second, the dispersion media can be organic or inorganic; 

this provides different magnetic properties to the nanoparticles compared to the aqueous 

colloids.
9, 14

 Finally, new frequency and amplitude field ranges can be explored because no 

limitation in the product Hf < 5x10
9
 A/ms [see Ref. 

15
] is necessary for a catalytic process.  

At present, ferrite nanoparticles are the most common material for hyperthermia because the 

low toxicity, good magnetic properties and straightforward synthesis by ecofriendly routes, 

where the spinel structures can be obtained with high crystallinity degree. Thus, the heating 

efficiency in aqueous colloids of these materials is well established.
16-21

  

It is know that for an assembly of interacting particles which are at the limit of 

superparamagnetic to ferromagnetic behavior, the role of dipolar interactions on the heating 

efficiency is to diminish the effective field acting on a particle, i.e., for isolated non-interacting 

particles, the heating is more effective than in the case of interacting particles.
22-27

 At very low 

concentrations, the state of interacting or non-interacting particles depends on aggregation 

degree. Nanoparticles dispersed in water form aggregates, therefore, the particles are interacting 

independently of the concentration.
14, 16

 On the other hand, particles synthesized in organic 

media are disaggregated and the interactions depend then on concentration; thus, the heating 

efficiency can be improved significantly by disaggregating the particles.
14

  

In addition, the aggregation degree also plays a significant role for those particles whose heating 

mechanism is mainly given by Brownian relaxation. Specially, this is the case for the magnetic 

nanoparticles with high magnetic anisotropy, as the cobalt ferrite. In the case of aggregates, 

large hydrodynamic sizes slow down the Brownian relaxation diminishing the heating 

efficiency; the particles must be disaggregated in order to get faster relaxations. On the other 

hand, manganese ferrites are soft materials which main relaxation mechanism in given by Neel 

although Brownian relaxation cannot be discarded at all.  
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This work discusses the influence of aggregation degree and size distribution on the SAR for the 

case of cobalt and manganese ferrites. We show that the disaggregation of nanoparticles 

improves significantly the heating efficiency because the release of the Brownian relaxations. 

 

2. Experimental Methods  

2.1. Materials  

Manganese (II) chloride tetrahydrate (99%) is purchased from Alfa Aesar. Iron (III) chloride 

hexahydrate (97%), cobalt (II) hexahydrate (98%), tetramethylammonium hydroxide solution 

(10%wt), hexane (95%), hydrochloric acid (37%) and oleic acid are purchased from Sigma 

Aldrich. Sodium hydroxide (analytical grade) is purchased from Merck. All reagents are used 

without further purification. 

2.2. Synthesis of MnFe2O4 and CoFe2O4  

To synthetize the MNPs, 2.5 mmol of MCl2nH2O (n=6 for M = Co and n=4 for M = Mn) is 

dissolved in 250 µL of HCl (37%) and 4 mL of water is added. On the other hand, 5 mmol of 

FeCl3
.
6H2O is dissolved in 10 ml of water. Both solutions are heated at 50 

o
C, mixed and added 

to a solution of 50 ml NaOH (3 M) at 100 
o
C. The stirring is adjusted to 600 rpm, and a black 

precipitate is formed immediately. The synthesis temperature is kept constant at 100 ºC with 

different reaction times t at 15, 30 and 60 min, in order to get different particle sizes. The 

samples are called M-t, with M = Mn, Co and t = 15, 30, 60, indicating the corresponding ferrite 

and the reaction time of the synthesis. After that, the mixture is cooled down to room 

temperature and magnetically separated, washed several times with distilled water under 

sonication. Finally, the precipitate is dispersed in 0.1 M TMAOH.
28

 All samples are fractioned 

by centrifugation in order to select the smallest particle sizes.
29-30

 

2.3. Oleic Acid Coating (OA) 

To reduce particle agglomeration and produce a non-polar stable ferrofluid, 3 ml of dispersed 

NPs are magnetically separated from the TMAOH solution and then mixed with 500 µL of OA 

and 2 mL of hexane under vigorous stirring during 10 minutes.
31

 

2.4. Structural and colloidal characterization 

X-ray diffraction (XRD) patterns are measured by a multipurpose PANalytical X´pert MPD 

with Cu-Kα source. The X-ray patterns are collected between 10
o
 and 70

o
 in 2θ. The average 
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crystallite size (DXRD) is calculated using the Scherrer equation with the full-width-half-

maximum (FWHM) of the (311) peak.  

The size and shape of the particles are measured by transmission electron microscopy (TEM) 

using a JEOL-2000FXII at 200 kV, and a high-resolution transmission electron microscope 

(HRTEM) with XEDS detector JEOL JEM 3000F operated at 300 kV. The samples are 

prepared by diluting MNPs in ethanol, a droplet of diluted sample is placed on a carbon coated 

copper grid and the solvent is evaporated at room temperature. The mean particle size and 

distribution are evaluated by measuring more than 100 particles by means of Digital 

Micrograph
™

. Afterwards, data are fitted to a Gaussian distribution to obtain the mean particle 

size (dNP) and standard deviation (σ). The polydispersity degree is calculated as σ/dNP, and is 

considered to be representative of the homogeneity of the particle sizes. In addition, an 

elemental analysis by energy dispersive spectroscopy (EDS) is performed in each sample. 

Colloidal properties are studied in a Zetasizer Nano S, from Malvern Instruments. 

Hydrodynamic sizes of the particles in suspension, dh, are measured by Dynamic Light 

Scattering (DLS) with the samples dispersed in water and hexane. Each hydrodynamic value is 

the result of three different measurements at different dilutions to avoid errors coming from 

multiple scattering; the scattering index for the solvent of the colloid, water or hexane, is used. 

The dh is measured by DLS in volume because the presence of some few large aggregates could 

overestimates dh when are obtained from the intensity data.  

The Fe concentration is measured with an Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES) Perkin Elmer Optima 2100 DV. For this purpose samples are digested 

with nitric acid to oxidize the organic coating and then, with hydrochloric acid to dissolve the 

particles.  

2.5. Magnetic characterization 

Static magnetic measurements are carried out on powder samples by means of a Quantum 

Design vibrating sample magnetometer. Magnetization curves are measured up to 5 T at 5 K 

and 300 K. Zero field-cooled and field-cooled curves (ZFC-FC) are obtained from 5 to 300 K at 

100 Oe applied magnetic field.  

Heating capacities of the MNPs are measured with a commercial system Magnetherm 1.5 

(Nanotherics) with a close circuit of water maintained at 16 
o
C that cools the coils. Additionally, 

the samples are placed inside a Dewar to avoid heat loss by convection or conduction. The 

samples are characterized under radiofrequency field with 110 kHz and 200 Oe field frequency 

and amplitude, respectively.  
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The temperature of the colloids is measured with a fiberoptical thermometer and registered with 

a computer. Prior to turning the magnetic field on, the sample temperature is recorded for about 

30 s in order to ensure thermal stability and to have a baseline for the calculation of SAR. As 

the field is turned on, the temperature rise is measured either during 300 s or up to 80 °C for 

aqueous colloids and 40 ºC for hexane colloids, well below the corresponding boiling 

temperatures 100 ºC and 69 ºC, respectively. By performing a linear fit of data (temperature 

versus time) in the initial time interval, the slope ΔT/Δt can be obtained. As the measurements 

are performed in non-adiabatic conditions, the curve slopes ΔT/Δt are fitted only in the first few 

seconds after turning the magnetic field on. The time range is selected such as the slope is 

maximum, typically during the first 30 s.
32

 Previously to any measurement, a blank sample 

containing only water is measured under the same conditions to ensure that there is no heating 

transfer from the coils. 

Since the Fe concentrations are in the range 1−10 wt %, the SAR values can be calculated as 

SAR = (Cliq/cFe)(ΔT/Δt), where Cliq is the specific heat capacity of water (4.185 J/gK) or hexane 

(2.28 J/gK) and cFe is the Fe weight concentration in the colloid.
18

 Then, the SAR values are 

obtained by fitting the experimental heating curves and normalizing to the iron mass (W/gFe).  

 

3. Results and Discussion 

3.1. Structure, morphology and colloidal properties 

The formation/growth of ferrite nanoparticles can be rationalized according with the well-

known mechanism associated to the co-precipitation method. Initially, appropriate 

stoichiometric amounts of hydroxylated Fe(III) and Mn(II) or Co(II) ions are formed under 

acidic pH (1 to 4-5) conditions and mixed at low temperatures to obtain an homogeneous 

mixture. The hydroxylated metal complexes are highly unstable in solution and after rapid 

addition into a basic solution (pH 9-11), they rapidly condense through a two-step associative 

process, forming an oxo bridge (oxolation mechanism), reaching the saturation concentration in 

the solution, generating nuclei that act as seeds for crystal growth.
33

  Polydispersibility and 

crystallinity of growing nanoparticles depend on the temperature and the reaction time. Lower 

times yield smaller nanoparticles with low polydispersibility, while longer times produce larger 

nanoparticles and greater dispersibilities.  

Under the experimental synthetic conditions, highly crystalline Mn and Co ferrite nanoparticles 

are obtained with sizes that may correspond to single crystals or small crystalline domains 

aggregates. According to XRD patterns, the characteristic diffraction patterns correspond to a 

spinel structure. The diffraction peaks are indexed with manganese ferrite spinel (PDF # 73-
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1964) and cobalt ferrite spinel (PDF # 03-0864); see Supporting Information (SI) figure S1. The 

average crystalline sizes calculated by the Scherrer formula are 49 and 27 nm for Mn-60 and 

Co-60, respectively. 

TEM images of Mn and Co-ferrites at different time reactions are shown in SI figure S2. The 

polydispersity degree observed in these images can be explained by the synthesis temperature. 

The diffusion coefficient of the ions in the solution is governed by temperature, i.e., at high 

temperature there is a higher ion diffusion resulting in a faster and more erratic nanoparticle 

growth and thus, in higher polydispersity.
17

 A lower temperature would produce particles with 

low polydispersity degree; however, to obtain particles with high crystallinity degree and 

homogeneous cations distribution (the magnetic properties strongly depend on both) high 

temperature is required.
34

 Some authors report that, for coprecipitation method, temperature 

higher than 80 ºC is needed to achieve cobalt and manganese ferrite with large crystallinity 

degree.
31, 35-36

 Therefore, the reaction times and the temperatures for the synthesis must be 

chosen as a compromise to obtain the lowest polidispersity and the highest crystallinity degree. 

The frequency of the particle sizes and the corresponding Gaussian distribution fits are shown in 

SI figure S3. As can be seen, the reaction times play a very different role in the synthesis of both 

ferrites. In the case of Mn-t, reducing the reaction time from 60 to 30 min reduces dramatically 

the average dNP, from 43 to 11.7 nm (see table 1 and figure S3). Further reduction of the 

reaction time does not affect the particle size. Therefore, the chosen reaction time for Mn ferrite 

is 30 min, in order to get the smallest size with the largest crystallinity degree. In the case of Co-

t, a reaction time of 60 min produces particle sizes of around 18.6 nm; by decreasing it to 30 

min, the dNP is reduced to 17.0 nm with a large polydispersity. Finally, a reaction time of 15 min 

gives place to particles with 12.7 nm mean size and a relative low polydispersity (0.2). 

Therefore, the reaction time for Co ferrite is 15 min because it is possible to produce the 

smallest particles with the lowest polydispersity. The final average size of both ferrites is around 

12 nm. Figure 1 shows HRTEM images for Mn-30 and Co-15, the samples have a relative good 

crystallinity degree as can be observed. 

Additionally, EDS analyses in manganese and cobalt ferrites show an average composition 

Mn1.01(3)Fe1.98(3)O4 and Co0.97(3)Fe2.03(3)O4, which, taking into account the experimental errors, fits 

pretty well to the nominal one.  

Table 1: Experimental results on mean particle sizes obtained by TEM and XRD and 

hydrodynamic size in volume with TMAOH and OA particle coating as characterized by DLS. 

Polydispersity degree (standard deviation/mean size) is included in parentheses. 
(a)

 The 

hydrodynamic size distribution of Mn-30 in TMAOH shows two population distributions, one 

around 30 nm and the other, with a much smaller contribution, above 200 nm. 
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 Particle size dNP (nm) Hydrodynamic size dh (nm) 

Sample 

Crystallite size 

(311) DXRD  

Particle size 

DTEM TMAOH OA 

Co-60 27 18.6(0.2)   

Co-30  17.0(0.3)   

Co-15  12.7(0.3)      38(0.4)   15(0.4) 

Mn-60 49 43(>0.5)   

Mn-30  11.7(0.3) 30(0.4)
(a) 

14(0.4) 

Mn-15  11.3(0.3)   

 

 

 

Figure 1. HRTEM images of (A) Mn-30 and (B) Co-15 (right) ferrites. 

 

As expected, the hydrodynamic sizes are markedly different for particles coated with TMAOH 

and OA (see table 1 and figure. 2). DLS results show that TMAOH particles have larger 

hydrodynamic sizes than those with OA-coating. The hydrodynamic sizes for Co-15 can be 

reduced from 30 to 16 nm by coating the samples with OA instead TMAOH. On the other hand, 

the hydrodynamic size of the M-30 coated with TMAOH have a binomial volume distribution, 

one centered around 30 nm and the other, with a much smaller contribution, above 200 nm that 

can be reduced to 14 nm by OA coating (see Fig. 2). 
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Figure 2. DLS in volume for Co-15 (upper panel) and Mn-30 (bottom panel) coated with 

TMAOH (blue line) and OA (red line).  

It can be concluded that OA-coating disaggregates the Co and Mn ferrites nanoparticles leading 

to nearly individual particles stable in organic media (hexane). The table 1 summarizes the 

experimental results on particle sizes as well as the hydrodynamic sizes measured in water and 

hexane. 

 

3.2. Magnetic properties 

Spinel structure presents a face-centered cubic symmetry cell with 64 tetrahedral sites and 32 

octahedral possible positions for cations, from which only 8 tetrahedral (A) sites and 16 

octahedral [B] sites are occupied.
19

 In particular, CoFe2O4 and MnFe2O4 in bulk present inverse 

spinel structures (Fe)[MFe]O4 (M: Co, Mn), where () and [] mean A and B sites, respectively. 

At the nanometric scale, due to the large contribution of surface atoms, these ferrites present a 

mixed-spinel structure (Fe1−xMx)[Fe1+xM1−x]O4 (0 < x < 1), where x is the inversion degree that 

indicates the cation distribution in the spinel structure.
37

 It is known that inversion degree of 
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ferrites strongly affects their magnetic properties. Commonly, the exchange integrals JAB, JBB, 

JAA are negative and the antiferromagnetic A–B interaction is stronger that the A–A and B–B 

interactions; therefore, ferrimagnetism arises from the decompensation of the magnetic 

moments in the A and B sublattices. 

The field and thermal dependence of the magnetization provide information about the magnetic 

properties of these ferrites nanoparticles (see figures 3 and 4). As can be seen from table 2, the 

saturation magnetizations Ms values of Co-15 and Mn-30 are 77% and 72% of the 

corresponding bulk values.
38

 Since for very small particles the proportion of coupled moment 

carriers is lower than in larger particles due to the high surface/volume ratio, it follows that the 

small particles have a lower net magnetization than the bulk samples. This can be thought as a 

kind of dead layer at the nanoparticle surface that decreases the net magnetization at T = 5 K in 

a factor 0.75bulk

s sM M  , thus, the magnetic volume of the particle is smaller than the 

particle volume and the dead layer thickness can be estimated to be around 10% of the particle 

size.  

 

Figure 3. Magnetization loops (left panel) and ZFCFC curves (right panel) of samples Co-15 

(bottom) and Co-60 (top). 
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Figure 4: Magnetization loops (left panel) and ZFCFC curves (right panel) of samples Mn-30 

(bottom) and Mn-60 (top). 

Table 2: Saturation magnetization (Ms), coercive fields (Hc) and effective anisotropy (Ka) for 

manganese and cobalt ferrites. The bulk values are included for comparison. 

Sample Ms (emu/g) Hc (Oe) Ka (erg/cm
3
) 

 5 K 300 K 5 K 300 K 5 K 

Co-60 68 52 8600 260  

Co-15 68 53 9800 277 1.6x10
6
 

Bulk 90 80   4.4x10
6
  

Mn-60 72 47 206 50  

Mn-30 86 57 260 <10 0.1x10
6
 

Bulk 120 80   0.2x10
6
 

 

As shown in Table 2, the coercive field increases as particle size decreases for Co-t 

nanoparticles. In the case of Mn-60 and Mn-30, similar behavior is observed at 5 K, i.e. the 

coercive field increases with decreasing particle size. However, at 300 K, the magnetization 

curve shows an almost superparamagnetic behavior, with a negligible coercive field for the 

smallest particles Mn-30 whereas the largest Mn-60 nanoparticles show a ferromagnetic 

behavior with a small coercive field. The observation of coercivity at RT for Co-t and Mn-60 

indicates that the magnetic moments are blocked whereas Mn-30 is superparamagnetic.  

The different coercivity values at 5 K among the samples can be ascribed to the strong 

dependence of coercive field to structural properties like particle size, particle size distribution, 

surface atoms, crystallinity degree, etc.
13

 At 5 K, the rise of coercivity with the decreasing 

particle size could be related to the interactions between the surface layers formed by canted 

spins.
39-40

 These interactions seem to modify the surface anisotropy, leading to an increase of the 

effective anisotropy Keff. As it is known, the coercivity decrease with temperature is due to 

thermal energy that favors the particle moment reversal. 

The full convergence of the ZFC and FC for Co-t curves just at RT (see fig. 3) indicates that the 

magnetic moments are blocked even at high temperature, confirming the results observed by the 

hysteresis loops. The critical size for superparamagnetism at RT in cobalt ferrites can be 

estimated from the equation 25a c B BK V k T , with kB the Boltzman constant, TB the blocking 

temperature, Ka the magnetic anisotropy of bulk, and Vc the critical volume. On the other hand, 

the effective anisotropy Keff of the samples can be estimated form the anisotropy field 

0 2K eff sH K M  , with Ms the saturation magnetization. 0 KH can be obtained from the 

coercive field at 5 K as 0 0 (5 K)K cH H   since 0 0( ) (1 )c K BH T H T T    and 

300 KBT  for both ferrites. By considering the measured values Hc and Ms at 5 K, the 
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effective magnetic anisotropy is Keff = 1.6x10
6
 erg/cm

3
, smaller than Ka = 4.4x10

6
 erg/cm

3
 for 

bulk cobalt ferrite at low temperature.
38

 The critical volume for observation of 

superparamagnetism at RT is calculated to be around 8 nm. Therefore, no superparamagnetic 

behavior is expected for the 12.7 nm Co-ferrite nanoparticles even when Keff is used for the 

calculation of the critical volume. 

On the other hand, the magnetization of the Mn-t shows a different thermal behavior (see figure 

4). The ZFC-FC curves of Mn-60 indicate that blocking temperature is well above RT whereas 

Mn-30 seems to be at the limit of superparamagnetic to ferromagnetic regimen. The calculated 

value Keff = 0.1x10
6
 erg/cm

3 
by means of Hc at 5 K is comparable to the bulk value Ka  0.2 10

6
 

erg/cm
3 

(see Ref. 
38

). The superparamagnetic behavior takes place only for particle sizes below 

20 nm. However, the average particle sizes for Mn-30 is around 12 nm with a relative high 

polydispersity degree. Thus, the thermal dependence of the magnetization reflects the 

contribution of the largest particles, which are the limit of superparamagnetic to ferromagnetic 

behavior.  

 

3.3. Nanoparticle heating efficiency 

For the following discussion we distinguish three different average particle volume: i) the 

magnetic volume  
3

6
M MV d


 , estimated from the reduced Ms values at 5 K (previous 

section), ii) the particle volume  
3

6
NP NPV d


 , measured by TEM, and iii) the hydrodynamic 

volume  
3

6
h hV d


 , measured by DLS. The different particle sizes obey the following 

relationship: M NP hd d d  . 

Magnetic hyperthermia relies on the ability of the nanoparticles to convert the work of the 

magnetic field into thermal energy. The magnetic moment of a particle suspended in a fluid can 

relax after magnetic field removal by two different mechanisms described by

0 exp
eff M

N

B

K V

k T
   and 

3 h
B

B

V

k T


  , the Neel and Brown relaxations, respectively,

41-42
 where 

   is a length of time of the material usually between 10
-9

 to 10
-11

 s, Keff is the anisotropy 

constant of the material, T is the temperature,   is the fluid viscosity and kB is the Boltzmann 

constant.  
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The heating efficiency of magnetic nanoparticles is quantified by the SAR which, under the 

linear response theory (LRT), is expressed as     2 2

0 2 1 2R RSAR H f f     
 

, 

where H0 is the applied field, τR the relaxation time of the magnetic moments and f the 

measuring frequency.
43

 The LRT is valid under the condition 0 0s M BM V H k T  ; thus, for a 

given H0 and T, the maximum dM for which the LRT can be applied is determined by Ms. Taking 

the Ms values from table 2 and considering the applied field amplitude 200 Oe (20 mT), the 

LRT is valid only for those nanoparticles with dM smaller than 11.5 and 11.2 nm for Co-15 and 

Mn-30, respectively. These values are close to the average dNP of each ferrite (see table 1) and, 

as previously discussed, M NPd d  because of the presence of a dead layer at the nanoparticle 

surface.  

Figure 5 shows the distribution of dNP for Co-15 and Mn-30 and the validity range of the LRT 

which is calculated for VNP (black solid line). Actually, the LRT is limited by the VM (black dot 

line) that cannot be measured but roughly estimated from the loss of Ms. As we are dealing with 

distribution of particle sizes, it follows that the heating mechanism of part of the particles obeys 

the LRT whereas the rest does not. 

 

Figure 5: Maximum values of 0 0H as a function of size for validity range of the LRT: 

0 0s BM VH k T  (black solid curve). The blue and red solid line represents the particle size 

distribution for Mn-30 and Co-15, respectively.  For 0 0 20 mTH  (horizontal line) the 

maximum particle size is dNP = 11.7 nm (vertical line), the magnetic response of those particles 

with dNP >11.7 nm cannot be modeled by the LRT. If VM instead VNP is considered for the LRT 

validity range (black dotted curve); then, the limiting particle size shifts to larger sizes (vertical 

dotted line). 
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The heating mechanism of most of the particle can be described by the LRT if VM instead VNP is 

considered for the validity range of LRT. For the sake of simplicity, let us assume the LRT is 

valid for the whole particle sizes. For a given frequency, the maximum power loss is reached at 

2 1Rf   , which determines the relaxation time regarding the measuring frequency for the 

maximum heating efficiency; longer or shorter relaxation times lead to a SAR decrease. For the 

working frequency 110 kHz, the characteristic relaxation times τR is 1.4x10
-6

 s. Let´s define a 

time window ΔτR such as those magnetic moments with relaxation times within the interval 

0.4 2 2.6Rf    give SAR values which are at least two third of the maximum SAR.
44

 We 

assume that, all the magnetic moments with τR within this time window, R R   , can 

contribute significantly to the heating.  

The Neel relaxation is determined by Keff and VM; whereas the Brownian motion is governed by 

 and Vh. The large volume of the aggregates slows down the Brownian relaxation of the 

magnetic moments diminishing the heating efficiency; in order to shorten the relaxation time 

and get faster relaxations, Vh must be reduced. To achieve this, the cobalt and manganese 

ferrites are coated with OA and dispersed in hexane; OA has a high affinity to iron oxide and 

can stabilize the nanoparticles by steric repulsions.
45

 Recently, maghemite nanoparticles 

produced by co-precipitation method have been successfully disaggregated by coating the 

particles with OA and dispersed them in hexane, resulting in an increase of the heating 

efficiency.
14

  

The temperature increases as a function of time for cobalt and manganese ferrites are shown in 

figure 6. As can be seen, all the samples are able to heat, even the cobalt ferrites nanoparticles 

dispersed in water. The small temperature increase observed in the Co-60 and Co-15 

nanoparticles coated with TMOAH and dispersed in water (figure 6A) can be unquestionably 

ascribed to the heating capacity of the sample when it is compared to the blank sample. The 

fitting of the heating curves (described in the experimental method) gives the SAR values 

shown in figure 7 and table 3. As can be seen, the OA coating improves the heating efficiencies 

in most of the cases with the exception of sample Mn-60, probably due to the large size of the 

particles (DXRD > 40 nm).  
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Figure 6: Heating curve at 110 kHz and 200 Oe of samples Co-60, Co-15, Mn-60 and Mn-30 

with TMAOH dispersed in water (A, C) and coated with OA and dispersed with hexane (BD). 

The result for blank sample with pure water is shown in (A) with blue points. 

Table 3: Iron concentration of the colloids, calculated Brownian relaxation times τB, SAR and 

ILP values at 110 kHz and 200 Oe for the TMAOH- and OA-coated Co-15 and Mn-30. The 

characteristic relaxation time at this frequency is τR = 1.4x10
-6

 s. 

 TMAOH OA 

 

CFe 

(mgFe/ml) 

τB  

(μs) 

SAR 

(W/g) 

ILP 

(nHm
2
/kg) 

CFe 

(mgFe/ml) 

τB  

(μs)  

SAR 

(W/g) 

ILP 

(nHm
2
/kg) 

Co-15 6 20.0
 

12 0.43 3 0.3 96 3.46 

Mn-30 5 10.4 120 4.33 2 0.2 413 14.90 

 

According to the ZFC-FC measurements, the Co-15 nanoparticles are blocked at RT; therefore, 

the main relaxation mechanism is due to Brownian movement of the aggregates.
16

 The τB can be 

calculated from dh (see table 3). When comparing both relaxation times, it is observed that the 

mean τB value for the particles with TMAOH in water is about 10 times longer than τR, whereas 

it becomes about 5 times shorter for the particles coated with OA in hexane. This reveals that, at 

this frequency, the relaxation of magnetic moments is too slow for the aggregated particles 

(particles in TMAOH) and too fast for the OA-coated particles to produce the maximum heating 

efficiency. However, the significant improvement of SAR for the disaggregated OA-coated 

ferrites, despite the too short τB, could be originated by the distribution of the hydrodynamic 

sizes (see figure 9). In size dispersed systems there exists a distribution of relaxation times 

because their volume dependence.
46
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Figure 7: SAR values for Co and Mn ferrites coated with TMAOH and dispersed in water, and 

coated with OA and dispersed in hexane. 

As in Co-15 the magnetic relaxations are given mainly by Brownian motion of the aggregates, 

then τR can be estimated with 
3 h

R B

B

V

k T


   by considering the aggregate sizes and the 

different viscosity of water (1 cP) and hexane (0.2 cP). Figure 8 shows the calculated τB and the 

frequency of the hydrodynamic sizes for water and hexane, figure 8(A) and (B), respectively. 

The selected time window ΔτR, for which SAR values are at least two third of the maximum, is 

indicated with two horizontal lines. As can be inferred from figure 8, in the case of Co-15 

coated with TMOAH and dispersed in water, τR for each hydrodynamic size is virtually much 

longer than the upper limit of ΔτR, denoting that the magnetic relaxations are too slow to 

contribute to the heating. In the case of Co-15 coated with OA and dispersed in hexane, the 

relaxation is too fast for those aggregate sizes which are smaller than the average hydrodynamic 

size. However, in this case, there exists a significant contribution to the heating due to the large 

aggregates. Those particle sizes with R R    are indicated by the shadow area of the size 

distribution. As can be seen, the number of aggregates that can contribute to the heating 

increases significantly in the case of OA coating regarding to TMOAH. 
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Figure 8: Hydrodynamic size distribution (red curve, right axis), calculated Brownian 

relaxation times τB (vertical bars, left axis) and time window Δ R (limited by the two horizontal 

lines) for A) Co-15 coated with TMAOH and dispersed in water, and B) Co-15 coated with  OA 

and dispersed in hexane. The characteristic relaxation time at this frequency is τR = 1.4x10
-6

 s; 

the time window Δ R  is chosen such as the relaxation times within the range 

0.4 2 2.6Rf    lead to at least two third of the maximum SAR value. The shadows areas 

indicate the fraction of particle volume with τR  Δ R . 

 

It is worth to noting that the LRT can be valid for hydrodynamic sizes dh as large as those 

shown in figure 8 because the validity of the LRT is given by the magnetic size dM << dh. 

For the Mn-30 particles, this analysis is more complicated because magnetization is at the limit 

from superparamagnetic to ferromagnetic behavior, and, thus, both relaxation mechanism, Neel 

and Brown, are present. The presence of both kind of mechanisms cause a relaxation given by 

1 1 1

R N B  
  , where τN depends exponentially on VM whereas τB depends linearly with Vh. 

However, there exists also a significant enhancement of the SAR when the particles are coated 

with OA, from 120 to 413 W/g, confirming the assumption that both relaxation mechanisms are 

present in manganese ferrites. The low magnetic anisotropy of manganese ferrite makes it a 

promising material as heating source because Neel and Brown relaxations can contribute to the 
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heating. Recently, a SAR value around 1600 W/g has been reported in Mn0.5Fe2.5O4 around 20 

nm in size. 

The release of the Brownian motion is not the only responsible for the heating increase in the 

OA coated nanoparticles. It has been recently shown that 13 nm Fe2O3 particles, which are at 

the limit from superparamagnetic to ferromagnetic behavior, can improve significantly the 

heating efficiency with decreasing concentration when coated with OA and dispersed in hexane 

regarding the same particles dispersed in water.
14

 This effect is mainly due to the lacking of 

dipolar interactions for disaggregated particles at low concentrations maximizes the effective 

field acting on the particle enhancing thus the heating efficiency.
23

 As the particles coated with 

OA and TMOAH are produced in the same batch, i.e, they have the same magnetic and 

structural properties, and SAR measurements are performed at very low concentration, the 

cancelation of the particle interactions seems to contribute also to the improvement of the 

heating efficiency in OA- coated particles.  

Another possible mechanism that can enhance the SAR is the particle chain formation.
27

 

However, the formation of chains requires of magnetic fields high enough to saturate low 

magnetic anisotropy nanoparticles. In this work we are working with magnetic fields within the 

validity range of the LRT, i.e, well below the saturation.  Although the formation of chains 

cannot be discarded, the applied field is too low for such effect to be considered. 

Unlike SAR, an intrinsic loss power (ILP) defined as 2

0ILP SAR fH allows the comparison 

of the particle intrinsic properties.
47

 This definition requires that the imaginary component of the 

magnetic susceptibility, χ’’(t), is frequency independent in the range of frequency measurements 

and that the SAR characterization satisfies the condition of the LRT. Assuming that the previous 

conditions are valid in our system, we find an ILP value of 4.33 nHm
2
/kg for Mn-30 in 

TMAOH, as can be seen in table 3, which makes this material very suitable for hyperthermia 

application because most of the ILP values for commercial ferrofluids are reported to be in the 

range 0.2 to 3.1 nHm
2
/kg. In the case of OA-coated nanoparticles, they have still larger ILP 

values, which make them suitable for technological applications like in-situ heterogeneous 

catalysis or chemical reactions in liquid media.
7-8

 

 

4. Conclusions 

Manganese and cobalt ferrite nanoparticles synthesized by co-precipitation method with 12 nm 

average particle size, can be either coated with TMAOH or OA to form aqueous or organic 

colloids, respectively. The aqueous colloids form aggregates with high polidispersity, whereas 
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OA-coating disaggregates the nanoparticles and led to near individual particles with 

hydrodynamic sizes determined by the particle size plus the organic chain. The magnetic 

properties show that the cobalt ferrites are blocked at RT whereas manganese ferrites are at the 

limit from superparamagnetic to ferromagnetic behavior. It is observed that the particle 

disaggregation improves significantly the heating efficiency from 12 to 96 W/g in the case of 

cobalt ferrite, from 120 to 413 W/g for the manganese ferrite when measured under an 

alternating magnetic field of 110 kHz and 200 Oe. The particle disaggregation reduces the 

hydrodynamic volume allowing a faster Brownian relaxation; however, there exist other 

mechanisms, like cancellation of dipolar interactions or the formation of particle chains, which 

can contribute significantly to the enhancement of the particle heating efficiency.   

These results show that manganese and cobalt ferrites can be promising materials for catalysis 

processes activated by heating magnetic nanoparticles under an alternating magnetic field.  
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