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Abstract. In this work we study continuity properties of convex combinations in Busemann

convex geodesic spaces and apply them to obtain two extension results for continuous and Lipschitz

mappings with values in a Busemann convex space.

1. Introduction

Convex combinations in geodesic spaces are difficult elements to deal with. In
a uniquely geodesic space X, the convex combination of two points x1, x2 ∈ X
with coefficients a1, a2 ∈ [0, 1] satisfying a1 + a2 = 1 is the only point, denoted by
a1x1⊕a2x2, that belongs to the geodesic segment joining x1 and x2 with the property
that d(a1x1 ⊕ a2x2, x1) = a2d(x1, x2) and d(a1x1 ⊕ a2x2, x2) = a1d(x1, x2). However,
if we consider three points x1, x2, x3 ∈ X and three coefficients a1, a2, a3 ∈ [0, 1] that
sum to 1, then their corresponding convex combination is not clearly defined in the
same way as before since it may depend on the order of combining the points. In
this case, the points

a1x1⊕(1−a1)

(

a2
1− a1

x2 ⊕
a3

1− a1
x3

)

and a2x2⊕(1−a2)

(

a1
1− a2

x1 ⊕
a3

1− a2
x3

)

,

which may not coincide, can be, for instance, two different options for the convex
combination.

The problem of finding a suitable definition for the convex combination of a
finite set of points was recently taken up by Alghamdi, Kirk and Shahzad [1] in the
context of Busemann convex spaces. Similar techniques were considered by Navas [18]
to define a notion of barycenter and finally obtain an ergodic theorem for mappings
with values in Busemann convex spaces. Both methods used in [1] and [18] actually
recover ideas from [11].

Here, we follow [1] and further study, in the setting of Busemann convex spaces,
convex combinations and continuity properties thereof, which allows us to obtain
two Borsuk–Dugundji type extension theorems. In Section 2 we give basic defini-
tions and properties, and address some details regarding the construction of convex
combinations proposed in [1]. Section 3 mainly deals with a continuity property of
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convex combinations and briefly relates it to a corresponding one that can be ob-
tained for an alternative notion of convex combinations defined using the approach
from [18]. In Section 4 we prove counterparts of the Borsuk–Dugundji theorem for
continuous and Lipschitz mappings defined on a closed subset of a metric space and
taking values in a complete Busemann convex space. For the Lipschitz extension
result, either the domain of the mapping or its complement are assumed to be with
bounded Nagata dimension. This result is in fact a consequence of two general exten-
sion results proved by Lang and Schlichenmaier in [16] for Lipschitz mappings whose
target space satisfies a Lipschitz connectedness condition that holds, in particular, in
any Busemann convex space. However, our approach to the proof is to directly define
the desired extension via convex combinations in the Busemann convex target space,
which results in a rather simple argument and shows as well that the extension acts
in a simultaneously nonexpansive way and its image belongs to the closed convex
hull of the image of the original mapping.

A characterization of Nagata dimension in terms of the Lipschitz extension prop-
erty is given in [7]. Spaces of finite Nagata dimension include important classes of
metric spaces such as doubling ones (see [16]). Doubling metric spaces and doubling
measures constitute the appropriate framework for the development of analysis in
nonsmooth spaces. An excellent introduction to the needed tools and main topics
in analysis in metric spaces can be found in the lecture notes by Heinonen [12] or
Ambrosio and Tilli [2].

2. Preliminaries

Let (X, d) be a metric space. For x ∈ X and r > 0, we denote the open ball
centered at x with radius r by B(x, r). If A is a nonempty subset of X, the diameter
of A is diamA = sup{d(a, a′) : a, a′ ∈ A} and the distance of a point x ∈ X to A is
d(x,A) = inf{d(x, a) : a ∈ A}. The distance between two nonempty subsets A and
B of X is given by d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Let x, y ∈ X. A geodesic path from x to y is a mapping c : [0, l] ⊆ R → X such
that c(0) = x, c(l) = y and d (c(t), c(t′)) = |t− t′| for every t, t′ ∈ [0, l]. The image
of c forms a geodesic segment which joins x and y and we denote it by [x, y] when
it is unique. (X, d) is a (uniquely) geodesic space if every two points in X can be
joined by a (unique) geodesic path. A point z ∈ X belongs to a geodesic segment
joining x and y if and only if there exists t ∈ [0, 1] such that d(z, x) = td(x, y) and
d(z, y) = (1− t)d(x, y), and we write z = (1− t)x⊕ ty. In this case z = c(tl), where
c : [0, l] → X is a geodesic path from x to y whose image is the geodesic segment in
question. A subset A of X is convex if it contains any geodesic segment joining each
two points in A. More on geodesic metric spaces can be found, for instance, in [5, 6].

Let (X, d) be a geodesic space. The metric d : X ×X → R is called convex if for
every x ∈ X and every geodesic path c : [0, l] → X we have

d(x, c(tl)) ≤ (1− t)d(x, c(0)) + td(x, c(l)) for any t ∈ [0, 1].

X is said to be Busemann convex if given any pair of geodesic paths c1 : [0, l1] → X
and c2 : [0, l2] → X with c1(0) = c2(0) one has

d(c1(tl1), c2(tl2)) ≤ td(c1(l1), c2(l2)) for any t ∈ [0, 1].

It is easy to see that in the definition of Busemann convexity one can drop the
condition c1(0) = c2(0). Then,

d(c1(tl1), c2(tl2)) ≤ (1− t)d(c1(0), c2(0)) + td(c1(l1), c2(l2)) for any t ∈ [0, 1].
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A Busemann convex space is uniquely geodesic and has a convex metric. Any CAT(0)
space (also known as a geodesic space of nonpositive curvature in the sense of Alexan-
drov) is Busemann convex. We refer to [5, 6] for a detailed discussion on Alexandrov
spaces.

2.1. Construction of convex combinations. Let (X, d) be a complete Buse-
mann convex space and k ≥ 2. Recall that the standard (k − 1)-simplex, denoted
by ∆k−1, is the set of all k-tuples of nonnegative numbers that sum to 1. We de-
scribe next the construction of the convex combination introduced in [1] for a k-tuple
(x1, . . . , xk) of points in X and a k-tuple (a1, . . . , ak) of coefficients in ∆k−1. We will
denote this convex combination by ⊕̇

k

i=1
aixi or simply by ⊕̇aixi if no confusion arises.

We point out some details concerning this construction that are relevant for results
in this work and which were not explicitly proved in [1].

First, note that if aj = 1 for some j, we set ⊕̇aixi = xj . Thus, we can assume
in the following that there are at least two positive coefficients. We also use the
notation x0

i for xi.
For k = 2, one has the standard definition ⊕̇

2

i=1
aixi = a1x1⊕a2x2. Now let k = 3

and consider, for 1 ≤ j ≤ 3, the sequences (xn
j ) given by























































xn
1
= a1x

n−1

1
⊕(1− a1)

(

a2
1−a1

xn−1

2
⊕ a3

1−a1
xn−1

3

)

= a1x
n−1

1
⊕(1− a1)

(

a3
1−a1

xn−1

3
⊕ a2

1−a1
xn−1

2

)

,

xn
2
= a2x

n−1

2
⊕(1− a2)

(

a1
1−a2

xn−1

1
⊕ a3

1−a2
xn−1

3

)

= a2x
n−1

2
⊕(1− a2)

(

a3
1−a2

xn−1

3
⊕ a1

1−a2
xn−1

1

)

,

xn
3
= a3x

n−1

3
⊕(1− a3)

(

a1
1−a3

xn−1

1
⊕ a2

1−a3
xn−1

2

)

= a3x
n−1

3
⊕(1− a3)

(

a2
1−a3

xn−1

2
⊕ a1

1−a3
xn−1

1

)

.

It is shown in [1] that the sequences (xn
j ) converge to a same point which defines

the convex combination ⊕̇
3

i=1
aixi. Clearly, by the construction method, this limit

is independent of the order the points xi are arranged in the 3-tuple (assuming the
correspondence between points and coefficients is maintained). Moreover, if, for
instance, a3 = 0, then ⊕̇

3

i=1
aixi = ⊕̇

2

i=1
aixi. Indeed, it is immediate that x1

1
= x1

2
=

x1

3
= a1x1 ⊕ a2x2 = ⊕̇

2

i=1
aixi and so xn

j = ⊕̇
2

i=1
aixi for 1 ≤ j ≤ 3 and n ≥ 1, from

where ⊕̇
3

i=1
aixi = ⊕̇

2

i=1
aixi. Additionally,

d(⊕̇
3

i=1
aixi, ⊕̇

3

i=1
aiyi) ≤

3
∑

i=1

aid(xi, yi) for any 3-tuple (y1, y2, y3) of points in X.

To see this, let (y1, y2, y3) be a 3-tuple of points in X. Then it is an easy consequence
of Busemann convexity that

d(xn
j , y

n
j ) ≤ a1d(x

n−1

1
, yn−1

1
) + a2d(x

n−1

2
, yn−1

2
) + a3d(x

n−1

3
, yn−1

3
)

for 1 ≤ j ≤ 3 and n ≥ 1. Iterating, we have

d(xn
1
, yn

1
) ≤ a1d(x

n−1

1
, yn−1

1
) + a2d(x

n−1

2
, yn−1

2
) + a3d(x

n−1

3
, yn−1

3
)
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≤ a1

(

3
∑

i=1

aid(x
n−2

i , yn−2

i )
)

+ a2

(

3
∑

i=1

aid(x
n−2

i , yn−2

i )
)

+ a3

(

3
∑

i=1

aid(x
n−2

i , yn−2

i )
)

.

Using the fact that
∑

3

i=1
ai = 1, we get

d(xn
1
, yn

1
) ≤ a1d(x

n−2

1
, yn−2

1
) + a2d(x

n−2

2
, yn−2

2
) + a3d(x

n−2

3
, yn−2

3
).

Continuing in this way, we finally obtain d(xn
1
, yn

1
) ≤ a1d(x1, y1) + a2d(x2, y2) +

a3d(x3, y3) and we only need to take limit on n.
Inductively, we consider next the general case. Let k ≥ 4, (a1, . . . , ak) be a k-tuple

of coefficients in ∆k−1 such that at least two of them are positive and let (x1, . . . , xk)
be a k-tuple of points in X. Suppose that for tuples of at most k−1 points in X, the
convex combination with nonnegative coefficients that sum to 1 is defined and that it
does not vary with respect to the order of points in the tuple. Assume also that the
addition of a point with zero coefficient to any tuple of at most k − 2 points leaves
its convex combination unchanged. Moreover, suppose that for any (k − 1)-tuples
(u1, . . . , uk−1) and (v1, . . . , vk−1) of points in X and (b1, . . . , bk−1) ∈ ∆k−2,

(1) d(⊕̇
k−1

i=1
biui, ⊕̇

k−1

i=1
bivi) ≤

k−1
∑

i=1

bid(ui, vi).

In particular, if for some u ∈ X, ui = u for all 1 ≤ i ≤ k − 1, then

(2) d(u, ⊕̇
k−1

i=1
bivi) ≤

k−1
∑

i=1

bid(u, vi).

Take now, for 1 ≤ j ≤ k, the sequences (xn
j ) defined by































xn
1
= a1x

n−1

1
⊕(1− a1)

(

⊕̇
k

i=2

ai
1−a1

xn−1

i

)

,

xn
2
= a2x

n−1

2
⊕(1− a2)

(

⊕̇
k

i=1
i6=2

ai
1−a2

xn−1

i

)

,

...

xn
k = akx

n−1

k ⊕(1− ak)
(

⊕̇
k−1

i=1

ai
1−ak

xn−1

i

)

.

Following the method given in [1] (for this one needs to apply (2)), the sequences (xn
j )

converge to a same point which defines the convex combination ⊕̇
k

i=1
aixi regardless

of the order the points are originally arranged. Again, if, for example, ak = 0, then


























xn
1
= a1x

n−1

1
⊕(1− a1)

(

⊕̇
k−1

i=2

ai
1−a1

xn−1

i

)

,

xn
2
= a2x

n−1

2
⊕(1− a2)

(

⊕̇
k−1

i=1
i6=2

ai
1−a2

xn−1

i

)

,

...

xn
k = ⊕̇

k−1

i=1
aix

n−1

i .

Note that the sequences (xn
j ), where 1 ≤ j ≤ k−1, coincide with the corresponding se-

quences used in the construction of ⊕̇k−1

i=1
aixi, which means that ⊕̇k

i=1
aixi = ⊕̇

k−1

i=1
aixi.
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Furthermore,

(3) d(⊕̇
k

i=1
aixi, ⊕̇

k

i=1
aiyi) ≤

k
∑

i=1

aid(xi, yi)

for any k-tuple (y1, . . . , yk) of points in X. The above inequality follows similarly as
before by applying Busemann convexity and (1). In particular, we have that

(4) d(x, ⊕̇
k

i=1
aixi) ≤

k
∑

i=1

aid(x, xi) for any x ∈ X.

Note that by the argument in [1, p. 52], for any n ≥ 1,

(5) max
1≤i,j≤k

d(xn
i , x

n
j ) ≤

(

1−
k
∑

i=1

a2i

)

max
1≤i,j≤k

d(xn−1

i , xn−1

j ).

2.2. Partitions of unity and spaces of finite Nagata dimension. Let X
be a topological space. Recall that a partition of unity on X is a family {pi}i∈I of
continuous functions pi : X → [0, 1] satisfying

(i) for every x ∈ X there exists a neighborhood U of x with pi|U = 0 for all but
finitely many i ∈ I;

(ii)
∑

i∈I pi = 1 and supX pi 6= 0 for all i ∈ I.

A partition of unity {pi}i∈I on X is subordinate to an open cover {Uα}α∈A of X if for
every i ∈ I there exists α ∈ A such that supp pi = {x ∈ X : pi(x) 6= 0} ⊆ Uα. If X is
in particular a metric space, then every open cover of X has a subordinate partition
of unity.

Let X be a metric space. The Nagata dimension of X introduced in [17, 3] is
the least non-negative integer n for which there exists a constant c > 0 such that for
all s > 0, X has a cover B = {Bi}i∈I with the property that diamBi ≤ cs for every
i ∈ I and every subset of X of diameter at most s meets at most n + 1 members of
B.

Let X be a metric space, n ≥ 0, A ( X nonempty and closed and denote
Ω = X \A. Suppose that either Ω or A have Nagata dimension ≤ n with a constant
c. Then, as shown in the proofs of [16, Theorems 1.5, 1.6, 5.2], one can find two
numbers α > 0 and δ ∈ (0, 1) that only depend on n and c and a cover {Bi}i∈I of Ω
by subsets of Ω such that

(i’) diamBi ≤ αd(Bi, A) for all i ∈ I;
(ii’) the family {σi}i∈I of nonexpansive (i.e. 1-Lipschitz) functions σi : Ω → [0,∞)

defined by

σi(x) = max{0, δd(A,Bi)− d(x,Bi)}

satisfies the property that for every x ∈ Ω, σi(x) > 0 for at most n+2 indices
i ∈ I.

In this case, denoting σ =
∑

i∈I σi, one considers the family {ϕi}i∈I of functions
ϕi : Ω → [0, 1] given by

(6) ϕi(x) =
σi(x)

σ(x)
.



230 Rafa Espínola, Óscar Madiedo and Adriana Nicolae

Then for every x, y ∈ Ω and all i ∈ I,

|ϕi(x)− ϕi(y)| =

∣

∣

∣

∣

σi(x)

σ(x)
−

σi(y)

σ(y)

∣

∣

∣

∣

≤

∣

∣

∣

∣

σi(x)

σ(x)
−

σi(y)

σ(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

σi(y)

σ(x)
−

σi(y)

σ(y)

∣

∣

∣

∣

≤
1

σ(x)
(|σi(x)− σi(y)|+ |σ(x)− σ(y)|) .

Since there are at most 2n + 4 indices j ∈ I with σj(x) > 0 or σj(y) > 0, it follows
that

(7) |ϕi(x)− ϕi(y)| ≤
2n+ 5

σ(x)
d(x, y).

3. Continuity properties of convex combinations

We focus here on some continuity properties of convex combinations which are
crucial in proving the extension theorems given in Section 4. In the sequel we assume
that (X, d) is a complete Busemann convex space and k ≥ 2.

Proposition 3.1. Let (x1, . . . , xk) be a k-tuple of points in X and suppose that

(a1, . . . , ak) and (b1, . . . , bk) are k-tuples of coefficients in ∆k−1. Then

(8) d(⊕̇
k

i=1
aixi, ⊕̇

k

i=1
bixi) ≤

(

k
∏

i=3

i2

)

D

2

k
∑

i=1

|ai − bi|,

where

D = max
1≤i,j≤k

d(xi, xj).

Proof. If aj = 1 for some j ∈ {1, . . . , k}, then

d(⊕̇
k

i=1
aixi, ⊕̇

k

i=1
bixi) = d(xj , ⊕̇

k

i=1
bixi) ≤

k
∑

i=1

bid(xi, xj) =

k
∑

i=1
i6=j

bid(xi, xj)

≤ D

k
∑

i=1
i6=j

bi =
D

2

k
∑

i=1

|ai − bi|.

In a similar way one can show that (8) holds when bj = 1 for some j and so we may
assume henceforth that there are at least two positive coefficients in each k-tuple
(a1, . . . , ak) and (b1, . . . , bk). For simplicity, we denote next δ = 1 −

∑k

i=1
b2i . Note

that under the previous assumption, δ ∈ (0, 1).
If k = 2,

d(⊕̇
2

i=1
aixi, ⊕̇

2

i=1
bixi) = |a1 − b1|D = |a2 − b2|D =

D

2

2
∑

i=1

|ai − bi|.

Let now k = 3 and for 1 ≤ j ≤ 3 denote by (xn
j ) and (znj ) the sequences involved

in the construction of the convex combinations ⊕̇aixi and ⊕̇bixi, respectively (as
explained in Section 2.1). Let also for n ≥ 0,

un =
a2

1− a1
xn
2
⊕

a3
1− a1

xn
3
, vn =

a2
1− a1

zn
2
⊕

a3
1− a1

zn
3

and wn =
b2

1− b1
zn
2
⊕

b3
1− b1

zn
3
.

Then, for all n ≥ 1,

xn
1
= a1x

n−1

1
⊕ (1− a1)u

n−1 and zn
1
= b1z

n−1

1
⊕ (1− b1)w

n−1,
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and

d(xn
1
, zn

1
) ≤ d(xn

1
, a1z

n−1

1
⊕ (1− a1)v

n−1) + d(a1z
n−1

1
⊕ (1− a1)v

n−1, zn
1
).

By Busemann convexity,

d(xn
1
, a1z

n−1

1
⊕ (1− a1)v

n−1) ≤ a1d(x
n−1

1
, zn−1

1
) + (1− a1)d(u

n−1, vn−1)

≤
3
∑

i=1

aid(x
n−1

i , zn−1

i )

and

d(a1z
n−1

1
⊕ (1− a1)v

n−1, zn
1
) ≤ d(a1z

n−1

1
⊕ (1− a1)v

n−1, a1z
n−1

1
⊕ (1− a1)w

n−1)

+ d(a1z
n−1

1
⊕ (1− a1)w

n−1, zn
1
)

≤ (1− a1)d(v
n−1, wn−1) + |a1 − b1|d(z

n−1

1
, wn−1).

Since

d(vn−1, wn−1) =

∣

∣

∣

∣

a2
1− a1

−
b2

1− b1

∣

∣

∣

∣

d(zn−1

2
, zn−1

3
)

≤
|a1 − b1|+ |a2 − b2|

1− a1
max

1≤i,j≤3

d(zn−1

i , zn−1

j )

as
∣

∣

∣

∣

a2
1− a1

−
b2

1− b1

∣

∣

∣

∣

=

∣

∣

∣

∣

a2
1− a1

−
b2

1− a1
+

b2
1− a1

−
b2

1− b1

∣

∣

∣

∣

≤
|a2 − b2|

1− a1
+

|a1 − b1|

1− a1

b2
1− b1

≤
|a1 − b1|+ |a2 − b2|

1− a1
because

b2
1− b1

=
b2

b2 + b3
≤ 1,

and, by metric convexity,

d(zn−1

1
, wn−1) ≤

b2
1− b1

d(zn−1

1
, zn−1

2
) +

b3
1− b1

d(zn−1

1
, zn−1

3
) ≤ max

1≤i,j≤3

d(zn−1

i , zn−1

j ),

it follows that

d(xn
1
, zn

1
) ≤

3
∑

i=1

aid(x
n−1

i , zn−1

i ) + (2|a1 − b1|+ |a2 − b2|) max
1≤i,j≤3

d(zn−1

i , zn−1

j ).

Since

2|a1 − b1|+ |a2 − b2| ≤
3

2

3
∑

i=1

|ai − bi| and max
1≤i,j≤3

d(zn−1

i , zn−1

j ) ≤ δn−1D by (5),

we obtain

d(xn
1
, zn

1
) ≤

3
∑

i=1

aid(x
n−1

i , zn−1

i ) + 3δn−1
D

2

3
∑

i=1

|ai − bi|.

In fact, one can show in this way that

d(xn
j , z

n
j ) ≤

3
∑

i=1

aid(x
n−1

i , zn−1

i ) + 3δn−1
D

2

3
∑

i=1

|ai − bi| for 1 ≤ j ≤ 3.
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Thus,
3
∑

i=1

aid(x
n
i , z

n
i ) ≤

3
∑

i=1

aid(x
n−1

i , zn−1

i ) + 3δn−1
D

2

3
∑

i=1

|ai − bi|.

Iterating we have
3
∑

i=1

aid(x
n
i , z

n
i ) ≤ 3(1 + δ + . . .+ δn−1)

D

2

3
∑

i=1

|ai − bi|

and so, taking limit on n and recalling that, by the Cauchy–Schwarz inequality,
1− δ =

∑

3

i=1
b2i ≥ 1/3,

d(⊕̇
3

i=1
aixi, ⊕̇

3

i=1
bixi) ≤ 9

D

2

3
∑

i=1

|ai − bi|.

In general, assume that (8) holds for k − 1. Denote now for n ≥ 0,

un = ⊕̇
k

i=2

ai
1− a1

xn
i , vn = ⊕̇

k

i=2

ai
1− a1

zni and wn = ⊕̇
k

i=2

bi
1− b1

zni .

Then, for any n ≥ 1,

xn
1
= a1x

n−1

1
⊕ (1− a1)u

n−1 and zn
1
= b1z

n−1

1
⊕ (1− b1)w

n−1,

and again, using Busemann convexity and (3),

d(xn
1
, zn

1
) ≤

k
∑

i=1

aid(x
n−1

i , zn−1

i ) + (1− a1)d(v
n−1, wn−1) + |a1 − b1|d(z

n−1

1
, wn−1).

By the induction hypothesis,

d(vn−1, wn−1) ≤

(

k−1
∏

i=3

i2

) max
2≤i,j≤k

d(zn−1

i , zn−1

j )

2

k
∑

i=2

∣

∣

∣

∣

ai
1− a1

−
bi

1− b1

∣

∣

∣

∣

≤

(

k−1
∏

i=3

i2

)

δn−1
D

2

k
∑

i=2

|a1 − b1|+ |ai − bi|

1− a1

and, by (4),

d(zn−1

1
, wn−1) ≤

k
∑

i=2

bi
1− b1

d(zn−1

1
, zn−1

i ) ≤ max
1≤i,j≤k

d(zn−1

i , zn−1

j ) ≤ δn−1D.

Therefore,

d(xn
1
, zn

1
) ≤

k
∑

i=1

aid(x
n−1

i , zn−1

i ) + k

(

k−1
∏

i=3

i2

)

δn−1
D

2

k
∑

i=1

|ai − bi|

and similarly

d(xn
j , z

n
j ) ≤

k
∑

i=1

aid(x
n−1

i , zn−1

i ) + k

(

k−1
∏

i=3

i2

)

δn−1
D

2

k
∑

i=1

|ai − bi| for 1 ≤ j ≤ k.

Hence, we find
k
∑

i=1

aid(x
n
i , z

n
i ) ≤

k
∑

i=1

aid(x
n−1

i , zn−1

i ) + k

(

k−1
∏

i=3

i2

)

δn−1
D

2

k
∑

i=1

|ai − bi|
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and so
k
∑

i=1

aid(x
n
i , z

n
i ) ≤ k

(

k−1
∏

i=3

i2

)

(1 + δ + . . .+ δn−1)
D

2

k
∑

i=1

|ai − bi|.

Passing to limit as before and using the fact that 1−δ ≥ 1/k concludes the induction
reasoning. �

Theorem 3.2. Let (x1, . . . , xk) be a k-tuple of points in X and (a1, . . . , ak) a k-

tuple of coefficients in ∆k−1. For each n ∈ N, consider the k-tuples (z1(n), . . . , zk(n))
of points in X and (b1(n), . . . , bk(n)) of coefficients in ∆k−1 such that

(z1(n), . . . , zk(n)) → (x1, . . . , xk) and (b1(n), . . . , bk(n)) → (a1, . . . , ak),

as n goes to infinity. Then ⊕̇
k

i=1
bi(n)zi(n) → ⊕̇

k

i=1
aixi, as n goes to infinity.

Proof. By (3) and Proposition 3.1,

d(⊕̇
k

i=1
bi(n)zi(n), ⊕̇

k

i=1
aixi) ≤ d(⊕̇

k

i=1
bi(n)zi(n), ⊕̇

k

i=1
bi(n)xi)

+ d(⊕̇
k

i=1
bi(n)xi, ⊕̇

k

i=1
aixi)

≤
k
∑

i=1

bi(n)d(zi(n), xi) +

(

k
∏

i=3

i2

)

D

2

k
∑

i=1

|ai − bi(n)|,

where D is as in Proposition 3.1.

Clearly, the above inequality proves the desired convergence. �

Remark 3.3. Let S ⊆ X. The (closed) convex hull of S is the smallest (closed)
convex set containing S. We denote the convex hull and the closed convex hull of S
by conv(S) and conv(S), respectively. Given A ⊆ X, let G1(A) be the union of all
geodesic segments with endpoints in A. Setting, for n ≥ 2, Gn(S) = G1(Gn−1(S)),
then conv(S) =

⋃

n∈NGn(S). It is easy to see that in a Busemann convex space, the
closure of conv(S) is convex and hence coincides with conv(S). As far as we know,
even in the setting of CAT(0) spaces, it is still an open question whether conv(S) is
a compact set if S is finite (see also the discussion in [19]).

Let k ≥ 2, S = {x1, . . . , xk} ⊆ X and co(S) be the set of all convex combinations
of (x1, . . . , xk) with coefficients in ∆k−1. Consider the onto mapping α : ∆k−1 → co(S)

defined by α((a1, . . . , ak)) = ⊕̇
k

i=1
aixi. Then, by Proposition 3.1, α is also continuous,

so co(S) is compact and connected as a continuous image of a compact and connected
set. Note that by the construction of convex combinations, co(S) ⊆ conv(S), but it
is not clear if these two sets are actually the same. Moreover, it is not immediate
whether co(S) is contractible, nor if it has the fixed point property for continuous
mappings.

Convex combinations can in fact be considered in the same way not only in com-
plete Busemann convex spaces, but also in complete metric spaces where for any
two points one can choose a constant speed geodesic joining them such that the re-
sulting selection of constant speed geodesics (called a geodesic bicombing) satisfies
the Busemann convexity condition. These spaces are not necessarily uniquely geo-
desic. More precisely, a geodesic bicombing on a metric space (X, d) is a mapping
σ : X × X × [0, 1] → X such that for every x, y ∈ X, σxy = σ(x, y, ·) is a geodesic
of constant speed d(x, y) from x to y (i.e. d(σxy(t), σxy(t

′)) = |t − t′|d(x, y) for all
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t, t′ ∈ [0, 1] and σxy(0) = x, σxy(1) = y). In addition, we assume that for any
x, y, x′, y′ ∈ X,

(i) σxy(t) = σyx(1− t) for all t ∈ [0, 1];
(ii) d(σxy(t), σx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′) for all t ∈ [0, 1].

In this case, a set S ⊆ X is called σ-convex if the image of σxy is contained in S for
all x, y ∈ S and one can define the (closed) σ-convex hull of S as the smallest (closed)
σ-convex set containing S. Note as well that the properties given in this section hold
true in this more general setting.

Recently, the barycenter construction given by Navas [18] has also been consid-
ered in metric spaces with a geodesic bicombing in [4, 9]. In fact, one could use this
barycenter map to define an alternative notion of convex combinations to the one
given before. Let (X, d) be a complete Busemann convex space, B(X) the σ-algebra
of Borel subsets of X and denote by P1(X) the set of Radon probability measures of
(X,B(X)) that have finite first moment, that is,

ˆ

X

d(x, y) dµ(x) < ∞

for some (and hence for all) y ∈ X. Then one can construct a nonexpansive
mapping bar∗ : (P1(X),W ) → (X, d) which satisfies bar∗(δx) = x for all x ∈ X,
where W is the 1-Wasserstein distance and δx is the Dirac measure at x (see [4,
9, 18]). In this way, it is possible to define the convex combination for a k-tuple
(x1, . . . , xk) of points in X and a k-tuple (a1, . . . , ak) of coefficients in ∆k−1 as
bar∗(

∑k

i=1
aiδxi

). Applying a general version of the Kantorovich-Rubinstein duality
theorem (see [14, Theorem 1]), one can easily show that for any k-tuple (x1, . . . , xk)
of points in X and any k-tuples (a1, . . . , ak) and (b1, . . . , bk) of coefficients in ∆k−1,
W (
∑k

i=1
aiδxi

,
∑k

i=1
biδxi

) ≤ (D/2)
∑k

i=1
|ai−bi|, where D = max1≤i,j≤k d(xi, xj) (see

also [9]). Thus, d(bar∗(
∑k

i=1
aiδxi

), bar∗(
∑k

i=1
biδxi

)) ≤ (D/2)
∑k

i=1
|ai − bi|, which

is a continuity property similar to (8) with an improved bound. To see that this
inequality is sharp, take k = 2, a1 = a2 = 1/2 and denote m = bar∗(δx1

/2 + δx2
/2).

For b1 = 1, b2 = 0, we get d(m, x1) ≤ d(x1, x2)/2 and for b1 = 0, b2 = 1, d(m, x2) ≤
d(x1, x2)/2. Thus, m = (1/2)x1 ⊕ (1/2)x2 and in both cases equality is attained.

In contrast to this line, the approach that we followed only relies on elementary
properties of Busemann convex spaces. Note that one cannot use the above upper
bound in (8) as the following example shows. Consider a tripod of endpoints x1,
x2, x3 and center o such that d(o, x1) = 4 and d(o, x2) = d(o, x3) = 1. Then, for
a1 = a2 = a3 = 1/3, b1 = 1/6, b2 = 1/3 and b3 = 1/2, ⊕̇

3

i=1
aixi ∈ [o, x1] with

d(o, ⊕̇
3

i=1
aixi) = 8/9 and ⊕̇

3

i=1
bixi ∈ [o, x3] with d(o, ⊕̇

3

i=1
bixi) = 1/108. Thus,

d(⊕̇
3

i=1
aixi, ⊕̇

3

i=1
bixi) =

97

108
>

5

6
=

D

2

3
∑

i=1

|ai − bi|.

Still, the obtained continuity properties are sufficient to prove the extension results
given in the sequel.

4. Borsuk–Dugundji type extension results

This section contains our two extension results which are obtained by applying
the continuity properties of convex combinations discussed previously. Note that,
instead of complete Busemann convex spaces, we can actually consider mappings
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taking values in complete metric spaces with a geodesic bicombing, as pointed out
before. This allows, in particular, to recover the results for Banach-valued mappings.

We prove first a counterpart of the Borsuk–Dugundji extension theorem for con-
tinuous mappings. The proof of this result follows standard patterns (see [8, Theo-
rem 1.8, p. 15]).

Theorem 4.1. Let A be a nonempty closed subset of a metric space X, Y a

complete Busemann convex space and f : A → Y a continuous mapping. Then there

exists a continuous extension F : X → Y of f to X such that F (X) ⊆ conv(f(A)).

Proof. We may assume that the open set Ω = X \ A is nonempty. Cover Ω by
balls Bm = B(m, rm) with m ∈ Ω and rm = d(m,A)/3. Note that Bm ⊆ Ω for each
m ∈ Ω. Let {pi}i∈I be a partition of unity subordinate to this cover. For each i ∈ I
pick two points zi ∈ supp pi and yi ∈ A such that d(yi, zi) < 2d(zi, A).

For x ∈ Ω, denote Ix = {i ∈ I : pi(x) 6= 0} and define

F (x) =

{

f(x) if x ∈ A,

⊕̇i∈Ixpi(x)f(yi) if x ∈ Ω.

Clearly, the mapping F extends f and is well-defined as Ix is always finite for each
x ∈ Ω. We claim that F is continuous. Obviously, it is continuous on the interior
of A. We prove next the continuity on Ω. For x ∈ Ω take a neighborhood U of
x and a finite set J ⊆ I with pi|U = 0 for all i ∈ I \ J . Now, for u ∈ U , it is
immediate that Iu ⊆ J and so ⊕̇i∈Jpi(u)f(yi) is the same convex combination that
defines F (u) except, at most, a finite collection of points with zero coefficients which
do not modify its value as explained in Section 2.1. Since x ∈ U , this also means
that F (x) = ⊕̇i∈Jpi(x)f(yi). Therefore, Theorem 3.2 proves the continuity at x.

It only rests to prove that F is continuous on the boundary of A, ∂A. Let
m ∈ ∂A and Um be an open ball in Y centered at f(m). Take δ > 0 such that
f(A ∩B(m, δ)) ⊆ Um. We check that for m′ ∈ Ω,

d(m,m′) <
δ

6
implies F (m′) ∈ Um,

which, of course, proves the claim. Notice that F (m′) is a convex combination of
points f(yi) with i ∈ Im′ , hence it suffices to prove that f(yi) ∈ Um for each i ∈ Im′ .
To this end, given i ∈ Im′ , choose mi ∈ Ω so that supp pi ⊆ Bmi

. Then m′ ∈ Bmi

and we have

d(mi, A) ≤ d(mi, m) ≤ d(mi, m
′) + d(m′, m) <

1

3
d(mi, A) +

δ

6
.

These inequalities also imply that d(mi, A) < δ/4 and d(mi, m) < δ/4, from where

d(zi, m) ≤ d(zi, mi) + d(mi, m) <
1

3
d(mi, A) +

δ

4
<

δ

3
.

Finally, we have

d(yi, m) ≤ d(yi, zi) + d(zi, m) < 2d(zi, A) +
δ

3
≤ 2d(zi, m) +

δ

3
< δ.

This means that yi ∈ A ∩ B(m, δ), so f(yi) ∈ Um. Hence the continuity of F is
proved. �

We prove next a related Lipschitz extension result which also mainly follows from
[16, Theorems 1.5, 1.6]. However, as mentioned in the introductory section, our proof
method consists of constructing the extension in terms of convex combinations. A
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corresponding result for Banach-valued maps defined on subsets of doubling metric
spaces can be found in [13, Theorem 4.1.21, p. 105].

Theorem 4.2. Let n ≥ 0 and A be a nonempty and closed subset of a metric

space X such that either A or X \ A has Nagata dimension ≤ n with a constant

c. Suppose Y is a complete Busemann convex space and f : A → Y an L-Lipschitz

mapping. Then there exists a CL-Lipschitz extension F : X → Y of f to X such

that F (X) ⊆ conv(f(A)), where C ≥ 1 is a constant that depends only on n and c.

Proof. We may assume that the open set Ω = X \ A is nonempty. As in
Section 2.2, take α > 0 and δ ∈ (0, 1) depending only on n and c, a cover {Bi}i∈I
of Ω and the family of functions {σi}i∈I satisfying (i’) and (ii’). Moreover, consider
the family of functions {ϕi}i∈I given by (6) and for each i ∈ I, let yi ∈ A such that
d(yi, Bi) ≤ (2− δ)d(A,Bi). This point exists since 2− δ > 1.

For x ∈ Ω, denote Ix = {i ∈ I : ϕi(x) 6= 0} and define

F (x) =

{

f(x) if x ∈ A,

⊕̇i∈Ixϕi(x)f(yi) if x ∈ Ω.

The mapping F extends f and is well-defined because, by (ii’), Ix is always finite for
each x ∈ Ω. If x ∈ Ω and i ∈ Ix, then σi(x) > 0, so d(x,Bi) < δd(A,Bi) and

d(x, yi) ≤ d(x,Bi) + diamBi + d(yi, Bi)

< δd(A,Bi) + αd(A,Bi) + (2− δ)d(A,Bi) = (α + 2)d(A,Bi).
(9)

We show next that F is CL-Lipschitz. Note that in the sequel C ≥ 1 stands for
any constant that depends solely on n and c.

Obviously, F is L-Lipschitz on A. Now, for b ∈ Ω and a ∈ A, we have

d(F (a), F (b)) = d
(

f(a), ⊕̇i∈Ibϕi(b)f(yi)
)

≤
∑

i∈Ib

ϕi(b)d(f(a), f(yi)) by (4)

≤ max
i∈Ib

d(f(a), f(yi)) ≤ Lmax
i∈Ib

d(a, yi).

If i ∈ Ib, then d(A,Bi) ≤ d(a, Bi) ≤ d(a, b) + d(b, Bi) < d(a, b) + δd(A,Bi) and this
yields d(A,Bi) < (1− δ)−1d(a, b). Using (9), we then get

d(a, yi) ≤ d(a, b) + d(b, yi) < d(a, b) + (α+ 2)d(A,Bi) <

(

1 +
α + 2

1− δ

)

d(a, b).

Thus, d(F (a), F (b)) ≤ CLd(a, b).
Let next a, b ∈ Ω. Suppose first that there exists j ∈ Ia ∩ Ib. By (ii’), the set

Ia ∪ Ib contains at most 2n + 3 indices i ∈ I. Moreover, F (a) = ⊕̇i∈Ia∪Ibϕi(a)f(yi)
and F (b) = ⊕̇i∈Ia∪Ibϕi(b)f(yi) since we are not adding more than a finite collection
of points with zero coefficients which do not change a convex combination (see Sec-
tion 2.1). By the Cauchy–Schwarz inequality,

∑

i∈Ia∪Ib
ϕi(a)

2 ≥ 1/(n+2). Applying
Proposition 3.1 we obtain that

d(F (a), F (b)) ≤ C max
i,k∈Ia∪Ib

d(f(yi), f(yk))
∑

i∈Ia∪Ib

|ϕi(a)− ϕi(b)| .

Note that

max
i,k∈Ia∪Ib

d(f(yi), f(yk)) ≤ L max
i,k∈Ia∪Ib

d(yi, yk) ≤ 2L max
i∈Ia∪Ib

d(yi, yj).

Let i ∈ Ia. Since

d(A,Bj) ≤ d(yi, Bj) ≤ d(yi, a) + d(a, Bj) < (α + 2)d(A,Bi) + δd(A,Bj) by (9),
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it follows that d(A,Bj) ≤ (α+ 2)(1− δ)−1d(A,Bi). Similarly,

d(A,Bi) ≤ (α + 2)(1− δ)−1d(A,Bj).

Then, again by (9),

d(yi, yj) ≤ d(yi, a) + d(a, yj) ≤ (α + 2) (d(A,Bi) + d(A,Bj))

≤ (α + 2)

(

1 +
α + 2

1− δ

)

d(A,Bj).

Note that the above inequality can also be proved by the same argument in the case
i ∈ Ib. By (7),

d(F (a), F (b)) ≤ CLd(A,Bj)
∑

i∈Ia∪Ib

d(a, b)

σ(a)
.

Let m ∈ I such that a ∈ Bm. Then m ∈ Ia and

σ(a) ≥ σm(a) = δd(A,Bm) ≥ δ
1− δ

α + 2
d(A,Bj).

This shows that d(F (a), F (b)) ≤ CLd(a, b).
Suppose now Ia ∩ Ib = ∅. Since a ∈ Bm for some m ∈ Ia, we then have that

σm(b) = 0, which yields d(A,Bm) ≤ δ−1d(b, Bm) ≤ δ−1d(b, a). Applying (9),

(10) d(a, ym) ≤ (α+ 2)d(A,Bm) ≤
α + 2

δ
d(a, b).

Hence,

d(F (a), F (b)) ≤ d(F (a), F (ym)) + d(F (ym), F (b)) ≤ CL (d(a, ym) + d(ym, b))

≤ CL (2d(a, ym) + d(a, b)) ≤ CLd(a, b),

where the last inequality follows using (10) and adjusting the constant C. �

Remark 4.3. The extensions constructed in Theorems 4.1 and 4.2 act in a
simultaneously nonexpansive way, that is, for f and g continuous (resp. Lipschitz)
mappings from A to Y we have that

sup
x∈X

d(F (x), G(x)) ≤ sup
x∈A

d(f(x), g(x)),

which is an immediate consequence of (3).
Thus, considering the multivalued extension operator which assigns to every

bounded continuous (resp. bounded L-Lipschitz) mapping all its bounded contin-
uous (resp. bounded CL-Lipschitz) extensions, one can find a nonexpansive selection
of it with respect to the supremum norm. Recent results on parameter dependence of
extensions of Lipschitz mappings have been obtained in the setting of Hilbert spaces
in [15] and in Alexandrov spaces in [10].
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