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1. Introduction

The literature of realizations of Lie algebras as vector fields on manifolds is extensive, having
many ramifications in different disciplines, ranging from the theory of differential equations and
differential geometric problems to cohomology theories as well a s integrable systems and General
Relativity (see e.g. [1, 2, 3, 4, 5] and references therein). Among the pioneering contributions
to the field, we may refer to the work of Dickson on differential equations from the Lie group
perspective [6], an approach that revitalized Lie’s classical theory and motivated later studies
on the Lie symmetry method [7, 8] from both the mathematical and physical perspective [9].
Special types of realizations, corresponding to the coadjoint representation of Lie algebras,
have been shown to be an indispensable tool in the modelization and interpretation of physical
phenomena [10, 11], such as the symmetry groups of physical systems, and constitutes nowadays
a well-established research subject. A relevant research line that combines the analytical and
geometrical properties of Lie groups is given by those systems of differential equations admitting
a nonlinear superposition principle [12, 13, 14], an approach that has provided new tools for the
elucidation of physical properties at the classical and quantum level.

In this work we analyze some features of realizations of Lie algebras by vector fields from the
perspective of the representation theory and its relation to the branching rules of representations
for embeddings of (simple) Lie algebras. It turns out that the analysis of the invariants of a
given realization can provide useful information concerning the embedding of a Lie algebra
g′ into another algebra g, allowing to determine the corresponding conjugacy class within g.

http://creativecommons.org/licenses/by/3.0
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This can further be used to decide whether a subalgebra in a given realization corresponds to
an irreducible embedding, or either determine the multiplicity of the trivial representation in
the branching rules. An an application to second-order dynamical systems, it is shown that
invariants of realizations can be used for the construction of (non-conservative) Lagrangian
systems having an exact prescribed Lie algebra of Lie point and/or Noether symmetries.

Unless otherwise stated, any Lie algebra g and any representation is considered over the field R
of real numbers. The Einstein summation convention is used.

2. Realizations of Lie algebras by vector fields

Let {X1, · · · , Xr} be a basis of a Lie algebra g and consider a realization by vector fields in
n-coordinates, i.e., a map Φ : g→ X (Rn) such that Φ(Xα) 6= 0 holds for all α and satisfying the
property Φ [Xα, Xβ] = [Φ(Xα),Φ(Xβ)] for all α, β. In matrix terms, the map Φ can be described
as

(Φ (Xα))α = AΦ (g)
∂

∂x
, (1)

with AΦ (g) =
(
ξji (x)

)
∈ Mr×n (C∞ (Rn)) being a the functional matrix that specifies the

components of Xα = Φ (Xα) in the coordinates
{
x1, · · · , xn

}
. We recall that {X1, · · · ,Xs} are

linearly independent as first-order differential operators if a dependence relation

λ1 (x) X1 + · · ·+ λs (x) Xs = 0 (2)

with λ1 (x) ∈ C∞ (Rn) implies that λ1 (x) = · · · = λs (x) = 0. In this context, it is important
to observe that albeit the generators X1, . . . , Xr are independent, this does generally not
imply that the vector fields X1, · · · ,Xr are linearly independent.1 The number of linearly
independent vector fields is given by the rank rΦ (g) of the coefficient matrix AΦ (g), from
which rΦ (g) ≤ dim g = r follows. As obviously the maximal possible number of linearly
independent vector fields is given by the number of independent variables n, in any case the
bound rΦ (g) ≤ min (dim g, n) holds. Dependence relations of the type (2) are necessarily given
whenever the inequality n < dim g holds.

Invariant functions of a realization Φ : g→ X (Rn) correspond to elements F (x) ∈ C∞ (Rn)
such that the linear first-order system of PDEs

AΦ (g)
∂F

∂x
=

 ξ1
1 · · · ξn1
...

...
ξ1
r · · · ξnr




∂F
∂x1

...
∂F
∂xn

 = 0 (3)

is satisfied. As the vector fields span a finite-dimensional Lie algebra, the system (3) is always
complete, and can thus be reduced to its Jacobian form [15]. A particularly relevant case is given
when AΦ (g) is the coefficient matrix of the realization associated to the coadjoint representation
of the Lie algebra g, where these functions coincide with the (generalized) Casimir invariants
of g [10]. In the general case, if the matrix AΦ (g) has rank rΦ (g), the solution of (3) is given
in terms of χ0 = n − rΦ (g) independent functions Jk that can be taken as the fundamental
invariants. We observe that if J is a solution of (3), then for any vector field Xα ∈ Φ (g) the
condition

Xα (J) = ξlα (x)
∂J

∂xl
= ξlα (x)

∂J

∂xk
dxk

(
∂

∂xl

)
= dJ (Xα) = 0 (4)

1 While for g a dependence relation is always expressed by scalars, for Φ (g) dependence relations are given in
terms of functions.



3

1234567890 ‘’“”

Symmetries in Science XVII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1071 (2018) 012005  doi :10.1088/1742-6596/1071/1/012005

is satisfied, showing that the total differential dJ of the scalar field J annihilates the realization
[2].

Assuming that the rank of AΦ (g) is k < n, we can suppose without loss of generality that, after
a reordering of the indices, the vector fields Xi with 1 ≤ i ≤ k are linearly independent. For the
remaining generators we thus have dependence relations

Xk+s = λ1
s(x)X1 + · · ·λks(x)Xk, 1 ≤ s ≤ r − k. (5)

In these conditions, we can find linearly independent differential 1-forms ωj ∈ Ω1(Rn) such that

ωi(Xj) = δji for 1 ≤ i, j ≤ k and ωi(Xk+s) = λks(x) for 1 ≤ s ≤ r − k. As k < n, the set{
ω1, · · · , ωk

}
can be augmented with (n − k) 1-forms θl (1 ≤ l ≤ n − k) such that θl(Xj) = 0

for 1 ≤ j ≤ k and 1 ≤ l ≤ n − k, implying that θl belongs to the annihilator Ann(Φ(g))
of the realization Φ(g) [2]. Hence, if J is an invariant of the realization, then necessarily
dJ ∈ Ann(Φ(g)). As the vector fields span the Lie algebra g, it follows that Ann(Φ(g)) is a
differential ideal, meaning that for each θ ∈ Ann(Φ(g)), the exterior derivative dθ also belongs
to Ann(Φ(g)) [1]. We remark that this reformulation in terms of differential forms can be seen
as an algebraic approach to find the solutions of the system (3), up to the determination of
integrating factors. Indeed, if θ ∈ Ann(Φ(g)), we can ask whether there exists some function
J ∈ C∞(Rn) such that dJ = θ. Although θ is not necessarily an exact 1-form, we can (at
least locally, under certain natural assumptions) find functions f, J ′ such that θ = fdJ ′. The
condition to be satisfied for this to happen (see e.g. [1]) is that

θ ∧ dθ = 0 (6)

holds. This result can be easily extended to a (local) basis of independent one-forms ωi

(1 ≤ i ≤ χ0) in the annihilator Ann(Φ(g)) of the realization, requiring that for the relative
volume form Ω = ω1 ∧ · · · ∧ ωχ0 , the constraints

dωi ∧ Ω = 0, 1 ≤ i ≤ χ0 (7)

are satisfied. As a consequence, for any invariant J of the realization (3), it follows that the
total differential is a combination of the ωi:

dJ = ϕj(x)ωi, ϕ(x) ∈ C∞(Rn). (8)

Letting ω = ωi (x) dxi ∈ Ω1 (Rn), the action of ω on the (linearly independent) vector fields Xα

leads to relations of the type

ω (Xα) = ωi (x) ξiα (x) = 0, 1 ≤ α ≤ rΦ(g) (9)

that can formally be solved with respect to χ0 = n−rΦ(g) components ω1, · · · , ωχ0 of ω, so that
the latter is expressed as

ω =

χ0∑
k=1

ωk (x) dxk +

n∑
l=χ0+1

Ψl

(
ω1, · · · , ωχ0 , ξ

1
α, · · · , ξnα

)
dxl. (10)

Evaluating now the exterior derivative dω = 0 provides us with a system of conditions on the
components ωk that eventually allow us to derive independent scalar fields {Θ1(x), · · · ,Θχ0(x)}
such that the relations

ωk =

χ0∑
a

∂Θa

∂xk
, Ψl =

χ0∑
a

∂Θa

∂xl
, 1 ≤ k ≤ χ0, χ0 + 1 ≤ l ≤ n (11)
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are simultaneously satisfied. It then follows that ω = dΘ1 + · · ·+dΘχ0 is a total differential, and
the solutions {Θ1(x), · · · ,Θχ0(x)} can be taken as a set of fundamental invariants of the system.
Although this procedure is certainly not simpler than solving directly the first-order system (3)
by the usual methods [15], it gives some hints on the structure of the invariants, specially for
nonlinear realizations.

As an illustrating example, consider the five-dimensional (solvable) Lie algebra g generated by
the vector fields in R5:

X1 = x1 ∂
∂x5

, X2 =
(
x1 + x2

)
∂
∂x5

, X3 =
(
x2 + x3

)
∂
∂x5

, X4 =
(
x3 + x4

)
∂
∂x5

,

X5 = x1 ∂
∂x1

+
(
x1 + x2

)
∂
∂x2

+
(
x2 + x3

)
∂
∂x3

+
(
x3 + x4

)
∂
∂x4

.

If ω = ωi(x)dxi ∈ Ω1
(
R5
)

belongs to the annihilator, the condition ω (X1) = 0 implies that
ω5 (x) = 0. A dependence condition relating the remaining components ωi(x) is obtained from
the identity ω (X5) = 0:

x1ω1 (x) +
(
x1 + x2

)
ω2 (x) +

(
x2 + x3

)
ω3 (x) +

(
x3 + x4

)
ω4 (x) = 0.

As at most three of these functions can be chosen freely, the realization admits three invariants
(alternatively, the rank of the matrix AΦ (g) is two). Taking e.g. ω3 (x) = ω4 (x) = 0 gives the
1-form

θ1 = −
(
x1 + x2

)
ω2 (x)

x1
dx1 + ω2 (x) dx2.

Now θ1 is closed (dθ1 = 0) whenever ω2 (x) = 1
x1
F
(
x2

x1
− lnx1

)
holds. The simplest solution

can thus be taken as ω2 (x) = exp
(
−x2

x1

)
. A routine computation shows that

θ1 = exp

(
−x

2

x1

)(
−
(
x1 + x2

)
x1

dx1 + dx2

)
= d

(
x1 exp

(
−x

2

x1

))
,

from which we conclude that θ1 is an exact form. In analogous manner, the remaining
fundamental invariants

J2 =
2x1x3 −

(
x2
)2

(x1)2 , J3 =
3
(
x1
)2
x4 − 3x1x2x3 +

(
x2
)3

(x1)3

can be easily found starting from the choices

ω1(x) =
2((x2)2 − x1x3)

(x1)3
, ω2(x) = − 2x2

(x1)2
, ω3(x) =

2

x1
, ω4(x) = 0

and

ω1(x) =
6x1x2x3 − 3(x2)3 − 2(x1)2x4

(x1)4
, ω2(x) =

3((x2)2 − x1x3)

(x1)3
, ω3(x) = − 3x2

(x1)2
, ω4(x) =

2

x1
,

respectively.



5

1234567890 ‘’“”

Symmetries in Science XVII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1071 (2018) 012005  doi :10.1088/1742-6596/1071/1/012005

2.1. First-order systems and realizations

As already observed, vector field realizations of Lie algebras have important applications in the
analysis of systems of ordinary differential equations, such as the study of superposition formulae
[12, 13]. A first-order system

ẋi = F i (t,x) , 1 ≤ i ≤ n (12)

is said to have a fundamental system of solutions if the general solution can be written in terms
of m independent particular solutions {y1, · · · ,ym} and n constants {C1, · · · , Cn}:

xi = ϕi (y1, · · · ,ym, C1, · · · , Cn) . (13)

An expression of the latter type is called a (nonlinear) superposition formula or principle.
A classical criterion due to Lie [12] establishes that such a principle exists whenever the
independent variable t and the dependent coordinates xi can be separated by means of a
realization Φ : g→ X(Rn) such that the identity

ẋi = F i (t,x) = ϕ1(t)ξi1 (x) + · · ·+ ϕr(t)ξ
i
r (x) (14)

holds for each index, where Xα = ξlα (x) ∂
∂xl

with 1 ≤ α ≤ r = dim g form a basis of g. A
system (12) can be thought of as a (nonautonomous) dynamical system in phase space (albeit
not necessarily Hamiltonian), for which reason the notion of cyclic coordinates arises at once.
If for some i0 ∈ {1, · · · , n} the constraint ξi0α = 0 is satisfied for 1 ≤ α ≤ r, then clearly ẋi0 = 0
and xi0 can be seen as a cyclic coordinate in the classical sense, implying that the system can
be reduced by one degree of freedom, a fact that translates to the realization of the Lie algebra:

X̃α =

i0−1∑
i=1

ξiα (x)
∂

∂xi
+

r∑
i0+1

ξiα (x)
∂

∂xi
, 1 ≤ α ≤ r. (15)

If Φ : g→ X (Rn) is a realization of g of rank rΦ (g) and J is an invariant, then it follows at once
from (14) that

J̇ = ẋi
∂J

∂xi
=

r∑
s=1

ϕs(t)ξ
i
s(x)

∂J

∂xi
= 0, (16)

a fact that enables us to consider a new reference
{
y1, · · · , yn

}
in which yn = J is a (generalized)

cyclic coordinate, as well as to reduce the system by one degree of freedom. Clearly, the maximal
number of such cyclic coordinates is given by χ0.

Under specific circumstances, it may be useful to simplify a realization normalizing one of the
vector fields, i.e., introducing a reference

{
y1, · · · , yn

}
in which X̃1 = ∂

∂y1
holds. Clearly, the

new coordinates
{
y1, · · · , yn

}
are obtained as solutions of the system

X1

(
yk
)

= ξ1
1 (x̃)

∂yk

∂x1
+ · · ·+ ξn1 (x̃)

∂yk

∂x1
= δk1 , (17)

with x̃ =
(
x1, · · · , xn

)
and 2 ≤ k ≤ n. This implies that the coordinates

{
y2, · · · , yn

}
are

invariant functions of the differential operator X1, while y1 is obtained as a particular solution
of an inhomogeneous equation.2

2 Depending on the solutions chosen, standard forms can correspond to non-equivalent realizations of the Lie
algebra g. This may alter the physical interpretation of the symmetry generators.
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3. Linear representations and embeddings

In this section, we analyze some properties of realizations related to linear representations of
Lie algebras and its consequences for branching rules of representations in embedding problems
g′ ⊂ g.

Realizations of a Lie algebra g by vector fields having linear components

Xα = aαjkx
j ∂

∂xk
, 1 ≤ α ≤ r, (18)

naturally correspond to a (faithful) representation F of g, the matrix elements of which are
obtained by matrix transposition:

F (Xα) = AXα ; (AXα)jk = aαkj , 1 ≤ j, k ≤ n. (19)

In this context, we convene to call a realization Φ : g→ X (Rn) nonlinear if it is not equivalent, by
a change of coordinates, to a realization arising from a linear representation of g. It follows that
if the Lie algebra g does not have a faithful n-dimensional real representation, any realization
in n coordinates Φ : g→ X (Rn) is necessarily nonlinear.

Consider an embedding f : g′ −→ g of a (simple) Lie algebra g′ into a (simple) Lie algebra g.
Any embedding of Lie algebras determines an integer factor jf given by the relation(

f(X), f(X ′
)

= jf
(
X,X ′

)
, (20)

where (., .) is the usual scalar product in g obtained from the root system. The scalar jf is
generally called the embedding index of g′ in the Lie algebra g [16, 17]. Given disjoint subalgebras
g′j of g, the direct sum of the subalgebras defines an embedding f =

∑
fj , the index of which

is simply the sum of the various indices jfj . Further, for reduction chains g ⊃ g′ ⊃ g′′, the
index of the last algebra in g is the product of the corresponding indices of the chain members
[18]. Given an embedding f : g′ → g and a linear representation F of g, the embedding index is
determined by the formula:

jf =
lfF
lF
, (21)

where lF and lfF denote the index of F and the subduced representation fF on the subalgebra,
respectively. We recall that the index lF of any representation is obtained from the quadratic
Casimir operator C2 of g by means of the formula

lF =
dimF

dim g
C2(F ). (22)

Embeddings (and hence the index) are characterized by the branching rule obtained from the
lowest dimensional (irreducible) representation of g, and have been tabulated for all simple Lie
algebras (see e.g. [17, 19]).

Let Φ : g→ X (Rn) be a realization and g′ ⊂ g a subalgebra. The restriction Φ|g′ : g′ → X (Rn)
provides us with a realization of g′ such that rΦ|g′ (g

′) ≤ rΦ (g). Now, as we are dealing with

a subalgebra, the subduced realization may admit cyclic coordinates, arising from invariant
functions specifically related to the embedding g′ ⊂ g. In this context, we remark that the
missing label problem corresponds to a special case of subduced realizations, associated to the
coadjoint representation of Lie algebras [20, 21, 23].
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Proposition 1 Let g′ ⊂ g be a proper subalgebra and Φ(g) the realization associated to the
representation Γ of g. Let Γ ↓ Γ′1⊕· · ·⊕Γ′l be the branching rule as sum of representations of g′.
If the multiplicity multΓ′0

(Γ) of the trivial representation Γ′0 of g′ in Γ is k, then the subduced

realization Φ|g′ : g′ → X (Rn) admits k linear invariants.

Suppose that Γ ↓ Γ′1⊕· · ·⊕Γ′l contains k copies of the trivial representation Γ′0 of g′. Reordering
the coordinates if necessary, for any generator X ∈ g′, the representation matrix AF (X)
decomposes as a block matrix with respect to the branching rule of Γ:

AΓ(X) =


AΓ′1

(X)

AΓ′2
(X)

. . .

AkΓ′0
(X)

 , (23)

and it follows from (18) that the vector field X associated to X is given by

X = x AΓ(X)
∂

∂x
. (24)

Now take the basis of 1-forms
{
dx1, · · · , dxn

}
dual to the coordinates. It is immediate to verify

that dxj(X) = 0 holds for j = n − k + 1, · · · , n, showing that
{
xn−k+1, · · · , xn

}
are invariants

of the subduced realization, from which the assertion follows.

It is clear that any invariant of a realization of g is also an invariant for the subduced realization
associated to the embedding g′ ⊂ g. Additionally it may happen, depending on the particular
branching rule, that such an invariant splits up as a sum of the invariants of the subalgebra,
hence leading to independent invariants in g′. In this frame, it is worthy to be mentioned
that the computation of invariants of realizations associated to linear representations is deeply
connected with the problem of determining the generalized Casimir invariants of inhomogeneous
Lie algebras [24].

The converse of the preceding result also holds, and can be used as an indirect procedure to
determine the embedding of a Lie algebra into another:

Proposition 2 Let g′ ⊂ g be a proper subalgebra and Γ a representation of g. If the subduced
realization of g′ by vector fields possesses k linear invariants, then the branching rule of Γ
contains k copies of the trivial representation of g′.

We indicate that the latter result, the proof of which follows at once reversing the argumentation
in Proposition 1, can be used to distinguish non-conjugate subalgebras of a given Lie algebra, as
well as to decide whether a Lie algebra g′ ⊂ g in a given realization results from the restriction
of a realization of g with the same number of coordinates.

To exemplify this situation, consider in X(R3) the Lie algebra g generated by the vector fields
X1 = x ∂

∂z , X2 = y ∂
∂x and X3 = z ∂

∂y . A routine computation shows that g ' sl(3,R) and that

the realization arises from the fundamental three-dimensional representation Γ = [1, 0]. Now
consider the subalgebras generated by the vector fields

Y1 = x
∂

∂z
, Y2 = z

∂

∂x
, Y3 = x

∂

∂x
−z ∂

∂z
; Z1 = x

∂

∂z
+z

∂

∂x
, Z2 = y

∂

∂z
+z

∂

∂y
, Z3 = y

∂

∂x
−x ∂

∂y

The Lie algebras generated by the Yi respectively Zi are both isomorphic to sl(2,R), as can be
easily verified. It follows at once that the sl(2,R)-copy generated by the Yi possesses the linear
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invariant y, indicating that the representation Γ branches as the direct sum of the irreducible
2-dimensional and the trivial representation of sl(2,R). On the contrary, for the copy generated
by the vector fields Zi there is no linear invariant, and the subduced representation remains
necessarily irreducible. As conjugate subalgebras must give rise to the same branching rules [18],
we conclude that the two copies of sl(2,R) are not conjugate, and in particular nonequivalent
as sl(2,R)-subalgebras of vector fields in R3.

In a general frame, the detailed analysis of the branching rules of semisimple Lie algebras (see
e.g. [17]) indicates additional patterns that can be potentially useful for the obtainment and
characterization of invariants of (linear) realizations. Two of such properties, that still have to be
justified for arbitrary representations of simple Lie algebras of rank l ≥ 8 and their corresponding
real forms of representations, can be enumerated as follows:

(i) If the Lie algebra g′ is irreducibly embedded into g and ΦΓ : g→ X (Rn) is a realization
associated to the lowest dimensional irreducible representation Γ of g and dim Γ < dim g′,
then rΓ′ (g

′) = rΓ (g) and both realizations have the same invariants.

(ii) The rank of a realization of g associated to a reducible representation Γ ⊕ Γ∗ with
dim Γ < 1

2 dim g and Γ∗ the dual representation satisfies the relation r(g) ≤ 2 rΓ(g)− 1.

3.1. Subduced realizations of so (7)

In order to illustrate some of the preceding properties, we analyze the compact simple exceptional
Lie algebra G2(−14) as a subalgebra of the compact orthogonal algebra so (7) in some detail.
Restricting the adjoint representation [0, 1, 0] of so (7) to G2, we obtain the branching rule

[0, 1, 0] ↓ [1, 0]⊕ [0, 1] , (25)

where [1, 0] is the adjoint representation of G2 and [0, 1] is defining 7-dimensional representation.
Actually, this representation characterizes the embeddingG2(−14) ⊂ so (7), that has index jf = 1.
From the realization of so (7) associated to the fundamental 7-dimensional representation [1, 0, 0],
given by the vector fields Eij = xi ∂

∂xj
− xj ∂

∂xi
(i 6= j) the restriction to G2(−14) provides the

following realization as vector fields in R7:

X1 = −x7 ∂
∂x1

+ x4 ∂
∂x2
− x2 ∂

∂x4
+ x1 ∂

∂x7
,

X2 = x2 ∂
∂x1
− x1 ∂

∂x2
− x7 ∂

∂x4
+ x4 ∂

∂x7
,

X4 = x6 ∂
∂x1

+ x4 ∂
∂x3
− x3 ∂

∂x4
− x1 ∂

∂x6
,

X11 = −
√

3x6 ∂
∂x1
− 2
√

3x3 ∂
∂x2

+
√

3x4 ∂
∂x3
−
√

3x3 ∂
∂x4

+ 2
√

3x2 ∂
∂x5 +

√
3x1 ∂

∂x6
,

X13 = −2
√

3x5 ∂
∂x1

+
√

3x6 ∂
∂x2

+
√

3x7 ∂
∂x3

+ 2
√

3x1 ∂
∂x5 −

√
3x2 ∂

∂x6
−
√

3x3 ∂
∂x7

.

(26)

The remaining vector fields corresponding to generators of G2(−14) follow from the commutators:

[X1,X2] =
1

2
X3, [X1,X4] = X7, [X1,X11] = X14, [X1,X13] = −X12, [X2,X4] = X6,

[X4,X13] = X10, [X1,X6] = X5, [X4,X14] = −X9, [X6,X7]− [X4,X5] =
2√
3
X8. (27)

It hence suffices to analyze the properties of the symmetry generators X1,X2,X4,X11 and X13,
as all the remaining elements of the basis are expressible as commutators of these five elements.
As dimG2(−14) > 7, the fact that the reduction [1, 0, 0] ↓ [0, 1] is irreducible implies that the rank
of the realization matrix is preserved, according to the property (i) above. Clearly there is only

one invariant function F (x), given by the quadratic form Q2 =
∑7

k=1

(
xi
)2

. Introducing Q2 as
a new coordinate allows us to consider it as cyclic, and hence the realization can be reduced to a
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genuinely nonlinear one in R6, as [0, 1] is the lowest dimensional faithful representation ofG2(−14).
Further, considering the embedding su (3) ⊂ G2(−14), where the subalgebra is generated by
{X1,X2,X4} and their commutators, the branching rule is given by [0, 1] ↓ (1, 0)⊕(0, 1)⊕(0, 0),
where the representation (1, 0)⊕ (0, 1) is reducible as a complex representation, but irreducible
as a real one. As a copy of the trivial representation of su(3) appears, we have an additional
coordinate that is cyclic. Hence the realization in R7 of su(3) possesses two invariants, one being
Q2, as well as x5 (observe that this provides an example of the property (ii) in the preceding
paragraph). With respect to a new set of coordinates

{
y1, · · · , y5

}
=
{
x1, · · · , x4, x6

}
, we write

the realization of su (3) in X
(
R5
)

as

X1 = −J0
∂
∂y1

+y4 ∂
∂y2

−y2 ∂
∂y4

X2 = y2 ∂
∂y1

−y1 ∂
∂y2

−J0
∂
∂y4

X4 = y5 ∂
∂y1

+y4 ∂
∂y3

−y3 ∂
∂y4

−y1 ∂
∂y5

, (28)

where J0 =
√∑5

k=1 (yk)
2

+ λ for some constant λ and the remaining vector fields are obtained

from (27). Finally, if we extend the chain to so(3) ⊂ su(3) ⊂ G2(−14), the resulting real

representation for so(3) is RII1/2⊕Γ3
0, with invariants J1 =

√
(y1)2 + (y2)2 + (y4)2 + λ and three

linear ones.

On the other hand let the realization of so(3) as subalgebra of so(7) be given by

X1 = −
√

3
2x

4 ∂
∂x1

+
√

3
2x

3 ∂
∂x2
−
(√

3
2x

2 +
√

5
2x

6
)

∂
∂x3

+
√

3
2x

1 ∂
∂x4

+
√

5
2x

5 ∂
∂x4
−
√

5
2x

4 ∂
∂x5

+
√

5
2x

3 ∂
∂x6
−
√

6x7 ∂
∂x6

+
√

6x6 ∂
∂x7

,

X2 = −
√

3
2x

3 ∂
∂x1
−
√

3
2x

4 ∂
∂x2

+
(

+
√

3
2x

1 −
√

5
2x

5
)

∂
∂x3

+
√

3
2x

2 ∂
∂x4

−
√

5
2x

6 ∂
∂x4

+
√

5
2x

3 ∂
∂x5

+
√

6x7 ∂
∂x5

+
√

5
2x

4 ∂
∂x6
−
√

6x5 ∂
∂x7

,

X2 = 3x2 ∂
∂x1
− 3x1 ∂

∂x2
+ 2x4 ∂

∂x3
− 2x3 ∂

∂x4
+ x6 ∂

∂x5
− x5 ∂

∂x6
.

(29)

It is clear that no linear invariants of the realization can exist as the rank of the realization
matrix is three. By the preceding results, we conclude that the branching rule associated to
[1, 0, 0] does not contain a copy of the trivial representation of so(3). As the latter is not a
maximal subalgebra of so(7), it follows that so(3) must be contained in either G2(−14), su(4) or

su(2)3, that correspond to the semisimple maximal subalgebras of so(7). From the branching
rules (see e.g. [17]) it follows that the only possibility to provide the irreducible representation
associated to (29) is given by G2(−14), from which we deduce that so(3) is irreducibly embedded
into G2(−14) with embedding index jf = 28.

4. The Lie algebra so(3) as a principal subalgebra of so(2J + 1)

As is well known, for any integer J the so(3)-representation RIJ of dimension 2J + 1 and
highest weight 2J is of the first class (that is, its complexification remains irreducible, see [25]).
Therefore, so (3) can be represented as a subalgebra of the compact Lie algebra so (2J + 1).
Indeed, as follows from the structure theory, for J 6= 3 the Lie algebra so(3) is irreducibly
embedded into so(2J+1) as a three-dimensional principal subalgebra, meaning in particular that
the branching rule for the defining representation

[
1, 0(J−1)

]
of so(2J + 1) remains irreducible

when restricted to so(3).3 The explicit construction of representation matrices for the real

3 The exceptional case J = 3 corresponds to the chain so(3) ⊂ G2(−14) ⊂ so(7) that has been crucial in atomic
spectroscopy [10].
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irreducible representations of so(3) was developed in [26], for which reason we merely recall the
construction. For any J ≥ 1 define the scalars

al =

√
2l J − l (l − 1)

4
, 1 ≤ l ≤ J − 1; ν0 =

√
J (J + 1)

2
. (30)

Let {e1, · · · , e2J+1} denote a basis of the representation space of the real representation RIJ .
Further let

[
n
2

]
denote the integer part of n

2 . Then the matrix elements are given by

〈ek|RIJ (X1) |el〉 =

(
1 + (−1)k−1

2

)(
δlk+3 a([ k+1

2 ]) + δl+1
k a([ k−1

2 ])

)
− (aJ + ν0)×

(
δl2J+1δ

2J
k − δl2Jδ2J+1

k

)
−

(
1 + (−1)k

2

)(
δlk+1a([ k2 ]) + δl+3

k a([ k−2
2 ])

)
, (31)

〈ek|RIJ (X2) |el〉 = δlk+2 a([ k+1
2 ]) − δ

l+2
k a([ k−1

2 ]) − (aJ + ν0)
(
δl2J+1δ

2J−1
k − δl2J−1δ

2J+1
k

)
,

〈ek|RIJ (X3) |el〉 =

(
1 + (−1)k

)
δl+1
k (2J + 2− k) +

(
(−1)k − 1

)
δk+1
l (2J + 1− k)

4
,

where 1 ≤ k, l ≤ 2J + 1. The matrices RIJ (Xk) constructed with these values are clearly
skew-symmetric, and thus belong to so (2J + 1), showing that the linear map

ϕJ : so (3)→ so (2J + 1) ; Xk 7→ RIJ (Xk) (32)

defines a Lie algebra homomorphism and an irreducible embedding. The case J = 1 is somewhat
degenerate, as it corresponds to the adjoint representation of so(3), thus possessing the quadratic
Casimir operator as only invariant. Denoting for J ≥ 2

〈ek|RIJ (Xα) |el〉 =
(
RIJ (Xα)

)
k,l
, α = 1, 2, 3, (33)

it follows at once that the vector fields corresponding to each representation RIJ are given by

Xα = xk
(
RIJ (Xα)

)
k,l

∂

∂xl
, α = 1, 2, 3. (34)

It can be easily verified that for any j ∈ {1, · · · , 2J + 1} there is always an α such that the
condition

dxj (Xα) =
(
RIJ (Xα)

)
k,j
6= 0, (35)

is satisfied, showing that there are no linear invariants. On the other hand, due to the
embedding so(3) ⊂ so(2J + 1), the quadratic form Q =

∑2J+1
p=1 (xp)2 is an invariant. In this

case, for any J ≥ 2, the rank of the coefficient matrix is always three, and thus the realization
possesses exactly 2J − 2 fundamental invariants. The explicit obtainment of the invariants of
these realizations, either in the semi-algebraic formulation developed in an earlier section, or
solving the corresponding systems of PDEs, presents considerable difficulties, and is currently
not explicitly solved. Without going into the computation details, that shall be given elsewhere,
we remark that the invariants of realizations associated to the real representations RIj are divided
into two cases, according to the parity of J :

(i) If J = 2q ≥ 2 is even, then the fundamental invariants of (34) can be chosen to have degrees
d = 2, 3, · · · , 2J − 1.



11

1234567890 ‘’“”

Symmetries in Science XVII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1071 (2018) 012005  doi :10.1088/1742-6596/1071/1/012005

(ii) If J = 2q + 1 ≥ 1 is odd, then any invariant of the realization (34) has even degree.

It may be observed that for half-integer values, the real irreducible representations RIIJ/2 of so(3)

corresponding to the real form of the representations DJ/2 with highest weight J are of the
second class, meaning that their complexification is reducible as a complex representation [25].
Although these representations define an embedding so(3) ⊂ so(4J + 2), it is not embedded as
a maximal subalgebra [18]. In this situation, the pertinent Lie algebras to be analyzed with
respect to the embedding are the symplectic algebras [27, 28]. As for half-integer values J/2 the
scalar J is necessarily odd, the corresponding invariants of the realization are all of even degree,
in analogy to the integer case.

5. Symmetries of second-order dynamical (Lagrangian) systems

Invariants of realizations can also be used directly for the construction and symmetry analysis
of second-order dynamical systems, either as Lie-point or Noether symmetries [4, 29]. Here,
the representation theory can further be applied to study the symmetry-breaking phenomena of
systems with a given (maximal) symmetry by means of additional potential terms, as well as to
guarantee that a given realization of a Lie algebra corresponds to the maximal symmetry of a
system.

Among the various methods to compute symmetries of differential equations, those of most
common use are the direct prolongation method and the formulation in terms of differential
operators [7]. Any system of n second-order ordinary differential equations

ẍ = ωα (t,x) , 1 ≤ α ≤ n, (36)

can be rewritten in equivalent form as the partial differential equation

Af =

(
∂

∂t
+ ẋi

∂

∂xi
+ ωi (t,x)

∂

∂ẋi

)
f = 0. (37)

In this context, a vector field X = ζ (t,x) ∂
∂t + ηi (t,x) ∂

∂xi
∈ X

(
Rn+1

)
is a Lie point symmetry

of the system (36) whenever the prolonged vector field Ẋ = X + η̇i (t,x, ẋ) ∂
∂ẋi

satisfies the
commutator [

Ẋ,A
]

= −dζ
dt

A, (38)

where η̇i = −dζ
dt ẋi + dηi

dt . The advantage of this reformulation is that the prolongation of the
symmetry generator X is already contained in the commutator, the symmetry condition being
given by the coefficients in ∂

∂ẋi
. Whenever the system arises from a variational principle, a point

symmetry that satisfies the condition

Ẋ (L) + A (ζ)−A (V ) = 0 (39)

is called a Noether symmetry, where V (t,x) a function independent on ẋ and L is an admissible
Lagrangian of the system. By some abuse of notation, we shall call a symmetry satisfying (39)
with ζ = V = 0 a variational symmetry. Noether symmetries can alternatively be deduced from
a constant of the motion, i.e., a function J (q̇j , qj , t) such that

dJ

dt
=
∂J

∂t
+ ẋi

∂J

∂xi
+ ẍi

∂J

∂ẋi
= A (J) = 0. (40)
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Any first integral of (36) determines (up to a gauge term) a Noether symmetry

XJ = ζ (t,x, ẋ)
∂

∂t
+ ηα (t,x, ẋ)

∂

∂xα
+ η̇α (t,x, ẋ)

∂

∂q̇α
, (41)

the components of which are recovered using the relations

∂2L

∂ẋα∂ẋβ
(ηα − ẋαζ) +

dJ

dẋβ
= 0. (42)

As vector field, XJ is always a point symmetry if the components do not depend on the ẋ.4

Proposition 3 Let Φ : g→ X(Rn) be a realization of a Lie algebra g associated to a linear skew-
symmetric representation Γ and J an invariant of the realization. Then Φ(g) can be realized as
a Lie algebra of Lie point symmetries of the second-order dynamical system with equations of
the motion

ẍi − ϕ(t)
∂J

∂xi
= 0, 1 ≤ i ≤ n (43)

arising from the regular Lagrangian L = 1
2

∑n
k=1(ẋi)2 + ϕ(t)J(x).

The equations of the motion, expressed as a vector field, are in this case

A =
∂

∂t
+ ẋi

∂

∂xi
+ ϕ (t)

∂J

∂xi
∂

∂ẋi
,

while the first prolongation of X is given by

Ẋα = ξα
∂

∂xj
+ ẋi

∂ξjα
∂xi

∂

∂ẋj
.

Evaluating the commutator (38) gives

[
Ẋα,A

]
=

(
ẋi
∂ξjα
∂xi
− ξ̇jα

)
∂

∂xj
+

(
ẋi
∂ξ̇jα
∂xi

+ ϕ (t)
∂J

∂xi
∂ξ̇iα
∂ẋj
− ϕ (t) ξiα

∂2J

∂xi∂xj

)
∂

∂ẋj
. (44)

The term in ∂
∂xj

is obviously zero by the definition of ξ̇jα, hence the symmetry condition reduces
to

ẋi
∂ξ̇jα
∂xi

+ ϕ (t)
∂J

∂xi
∂ξ̇iα
∂ẋj
− ϕ (t) ξiα

∂2J

∂xi∂xj
= 0, 1 ≤ j ≤ n (45)

where
∂ξ̇jα
∂xi

= ẋl
∂2ξjα
∂xi∂xl

,
∂ξ̇jα
∂ẋi

=
∂ξjα
∂xi

= −∂ξ
i
α

∂xj
, 1 ≤ i, j ≤ n.

Inserting these expression in (45) gives the equation

ẋi

(
ẋl

∂2ξjα
∂xi∂xl

)
+ ϕ (t)

(
∂J

∂xi
∂ξjα
∂xi
− ξiα

∂2J

∂xi∂xj

)
= ẋiẋl

∂2ξjα
∂xi∂xl

− ϕ (t)
∂

∂xj

(
ξiα
∂J

∂xi

)
. (46)

As J is an invariant of the realization, the last term is zero, while the first one vanishes whenever
the component functions ξjα are linear. The latter requirement is fulfilled because the realization

4 Noether symmetries that are not point symmetries are sometimes called dynamical symmetries, like in [7],
although there is no such restriction in Noether’s original approach [30].
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arises from a skew-symmetric linear representation of g, so that
[
Ẋα,A

]
= 0 holds and we

conclude that Xα is a point symmetry of the system.

As the result does not depend on the particular structure of the invariant, it allows us to
construct dynamical systems with a given Lie algebra of point symmetries. We observe that
the approach is valid for both conservative and non-conservative Lagrangian systems, as the
function ϕ(t) in the potential does not explicitly intervene in the commutator. The procedure
can be easily extended to subalgebras. If g′ ⊂ g is a subalgebra and {J1, · · · , Jk} are invariants
of the subduced realization of g′, then for generic functions {ϕ1 (t) , · · · , ϕk (t)} the system

ẍi =
k∑
l=1

ϕl (t)
∂Jl
∂xi

1 ≤ j ≤ n (47)

turns out to have exactly a Lie-point symmetry algebra isomorphic to g′. Starting from the
system associated to an invariant of g, the restriction to subalgebras g′ and the addition of
potential terms corresponding to invariants of the latter (and not of the former) can be seen as
a recursive procedure of breaking the symmetry of a system. In connection with the branching
rules, it also allows to determine whether a given subalgebra can be realized as a maximal
symmetry algebra or not.

Let us illustrate this fact considering once more the compact Lie algebra so (7) in the fundamental

7-dimensional representation Γ = [100] and the quadratic invariant J =
(
x1
)2

+ · · · +
(
x7
)2

of
the realization. As the rank of the realization remains irreducible when restricted to G2(−14), it
turns out that a system of the type

ẍi = ϕ (t)
∂F (J)

∂xi
, (48)

where F (J) is an arbitrary function of J , is always G2(−14)-invariant, but there is no possibility
to break the maximal symmetry of so (7) to the subalgebra, as both have the same invariant
functions for the realization associated to the corresponding representations. A dimensional
reduction of the symmetry algebra would require an additional term invariant by the generators
of G2(−14), but not invariant by all of so (7). Such a symmetry-breaking can be obtained, for
example, taking the principal so (3)-subalgebra of index jf = 28, as in this case, although the
embedding is still irreducible, there are 3 invariants of the subduced realization. As commented
before, the fundamental invariants can be chosen as J , as well as a fourth and sixth order
invariants J2 and J3 respectively, with J2 being explicitly given by:

J2 =
(
x1
)4

+
(
x2
)4 − 3

4

((
x3
)4

+
(
x4
)4)

+ 3
5

((
x5
)4

+
(
x6
)4

+
(x7)

4

10

)
+(

4
((
x1
)2

+
(
x2
)2)

+ 7
(
x7
)2)((

x5
)2

+
(
x6
)2)

+ 2
(
x1x2

)2 − 3
(
x3x4

)2
+2
((
x1
)2

+
(
x2
)2)((

x3
)2

+
(
x4
)2)

+ 4
√

3
5

(
x2
(
x6
)3 − x1

(
x5
)3)

+2
√

15
(
x1x5 − x2x6

) ((
x3
)2 − (x4

)2)
+ 5

((
x3
)2

+
(
x4
)2) (

x7
)2

+4
√

3
5

((
x5
)2 (

x3x7 − 3x2x6
)
−
(
x6
)2 (

x3x7 − 3x1x5
))

+ 6
5

(
x5
)2 (

x6
)2

+1
5

(
x7
)2 ((

x5
)2

+
(
x6
)2)

+ 4
√

15x3x4
(
x1x6 + x2x5

)
−12x2x7

(
x4x5 + x3x6

)
− 12x1x7

(
x3x5 − x4x6

)
+ 8
√

3
5x

4x5x6x7.

A routine computation shows that the equations of the motion

ẍi = ϕ (t)
∂F (J)

∂xi
+ ψ (t)

∂G(J2)

∂xi
(49)
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are so (3)-invariant, and that no other generator of G2(−14) possesses J2 as an invariant. For
generic functions ϕ (t) and ψ (t), it is straightforward to verify that no other point symmetry,
specifically with components in ∂

∂t , can exist.

We finally comment how, for realizations related to orthogonal representations, the dynamical
systems (48) having potentials associated to invariants of the realization are not only point
symmetries, but also special Noether symmetries, namely variational symmetries.

Proposition 4 Let ΦΓ : g → X (Rn) be the subduced realization associated to the embedding
g ⊂ so (N). Let {J1, · · · , Jχ0} be invariants of the realization. Then the generators Xα of Φ (g)
are variational symmetries of the Lagrangian

L =
1

2

n∑
k=1

(
ẋi
)2 − χ0∑

k=1

ϕk (t) Jk. (50)

In order to satisfy the Noether symmetry condition, the equation (39) must be satisfied
identically. Evaluating it we obtain

Ẋ (L)−A (ζ)−A (V ) = −ϕk (t) ξjα (x)
∂Jk
∂xj

+ ẋl
∂ξjα
∂xl

ẋj − ∂V

∂t
− ẋl ∂V

∂xl
. (51)

The first term automatically vanishes as Jk is an invariant of the realization for any k. The
terms linear in ẋ imply that V is at most a time function, hence implying that V must be a
constant in order to fulfill (51). Finally, the quadratic term in ẋ can be rewritten as

n∑
k=1

(
ẋk
)2 ∂ξkα

∂xk
+
∑
l<j

ẋlẋj

(
∂ξjα
∂xl

+
∂ξlα
∂xj

)
(52)

As the realization arises from the restriction of a representation of so (N), the representation
matrices are skew-symmetric, and hence the vector fields satisfy the constraints

∂ξkα
∂xk

= 0,
∂ξjα
∂xl

+
∂ξlα
∂xj

= 0, 1 ≤ α ≤ dim g, (53)

showing that (52) and hence (51) vanishes.

As an explicit example leading to systems of this type we may consider the vector fields in
formula (29). For generic choices of the functions ϕ(t) and ψ(t) the Lie point and Noether
symmetry algebras of the system determined by the equations of motion (49) coincide and are
isomorphic to so(3).

6. Concluding remarks

The approach to realizations by vector fields of Lie algebras by means of linear representations
and their invariants has been shown to exhibit some interesting connections with the branching
rules for the embedding problem of Lie algebras, such as the properties of irreducibly embedded
subalgebras or the multiplicity of representations by subduction. This analysis allows to
distinguish between nonconjugate subalgebras of a given Lie algebra by means of the invariants
of a given realization, without knowing a priori the embedding index or the corresponding
branching rule. Some properties that hold at least for low ranks have been recognized, and their
validity in the arbitrary case could be of potential use in the context of a further systematization
of computational criteria for branching rules, as well as for the Clebsch-Gordan problem. On the
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other hand, the study of the orders and structure of the invariants of a realization suggests, in
some sense, a natural extension of the analysis of generalized Casimir invariants in Lie algebras
and the associated missing label problem, a relevant problem in applications, where the exact
implications with the invariant theory of inhomogeneous Lie algebras has still to be studied in
detail.

Some applications to the construction of second-order dynamical systems with prescribed
symmetry, as well as a procedure to break the symmetry to that of a proper subalgebra, have
been indicated. An interesting question that arises in this context is whether similar statements
concerning second-order dynamical systems and potentials determined by the invariants of a
nonlinear realization can be established, and to what extent these criteria are further related
with the representation theory, e.g. by means of projections. Within this frame, a problem
that is worthy to be mentioned is the possibility of extending the constructions to symmetries
explicitly depending on the velocities, generalizing the method to Noether symmetries that are
no more point symmetries of a system. Even if such an ansatz only succeeds partially, any
progress in this direction would be of interest for the structural analysis of the constants of the
motion of dynamical systems.
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