Multiplicative functionals on function algebras

J. GÓMEZ and J. G. LLAVONA¹

ABSTRACT. Let X be a completely regular Hausdorff space and C(X) the algebra of all continuous \mathbb{K} -valued functions on X ($\mathbb{K} = \mathbb{R}$ o \mathbb{C}). If $A \subseteq C(X)$ is a subalgebra, in [4] can be found conditions on A under which each character of A, i.e., each non-zero \mathbb{K} -linear multiplicative functional $\phi: A \to \mathbb{K}$, is given by a point evaluation at some point of X.

In this paper we present a «Michael» type theorem for the particular case in which X is a real Banach space. As consequence it is showed that if E is a separable Banach space or E is the topological dual space of a separable Banach space and E is the algebra of all real analytic or the algebra of all real E-functions, E is the every character E of E is a point evaluation at some point of E.

Let E be a real Banach space with topological dual E' and let C(E) be the algebra of all continuous \mathbb{R} -valued functions on E. Let $l^1(\mathbb{N}) = \{\alpha = (\alpha_n) \in \mathbb{R}^{\mathbb{N}} : \sum_{n=1}^{\infty} |\alpha_n| < \infty \}$.

Theorem 1. Assume that there exists $(\phi_n)_{n=1}^{\infty} \subset E'$, $||\phi_n|| \le 1$ for every $n \in \mathbb{N}$, such that (ϕ_n) separates points of E. Let $A \subseteq C(E)$ be a subalgebra with $1 \in A$. Assume:

- (i) If $f \in A$, $f(x) \neq 0$ for all $x \in E$, then $1/f \in A$.
- (ii) $E' \subset A$ and for every $\alpha = (\alpha_n) \in l^1(\mathbb{N})$, the function $\sum_{n=1}^{\infty} \alpha_n \cdot \phi_n^2$ belongs to A.

Then every character $\phi: A \to \mathbb{R}$, such that $\phi(\phi_n) = \phi_n(a)$ for every $n \in \mathbb{N}$ and some $a \in E$, is the point evaluation at a.

Research partially supported by CAICYT grant PR83-2197.
1980 Mathematics Subject Classification (1985 revision): 46E25.
Editorial de la Universidad Complutense. Madrid, 1988.

Proof. Let $\alpha = (\alpha_n) \in l^1(\mathbb{N})$ with $\alpha_n > 0$ for all $n \in \mathbb{N}$. Condition (ii) implies that the functions:

$$f(x) = \sum_{n=1}^{\infty} \alpha_n \phi_n^2(x-a)$$
 and $g(x) = \sum_{n=1}^{\infty} \frac{\alpha_n}{n} \phi_n^2(x-a)$ belong to A

For each $N \in \mathbb{N}$, let $x \in E$ such that $\phi(f) = f(x)$; $\phi(g) = g(x)$ and $\phi(\phi_i) = \phi_i(x)$, i = 1, ..., N (a such x exists after condition (i)). For this $x \in E$, we have

$$\phi(f) = \sum_{N+1}^{\infty} \alpha_n \phi_n^2(x-a)$$
; $\phi(g) = \sum_{N+1}^{\infty} \frac{\alpha_n}{n} \phi_n^2(x-a)$

Therefore $0 \le N\phi(g) \le \phi(f)$ and it follows that $\phi(g) = 0$.

If $h \in A$ is given, let $y \in E$ such that $\phi(h) = h(y)$ and $\phi(g) = g(y)$. Since $\phi(g) = g(y) = 0$, it follows that $\phi_n(y) = \phi_n(a)$ for all $n \in \mathbb{N}$, i.e., y = a and $\phi(h) = h(a)$.

Remark 1. The hypothesis on the real Banach space E in Theorem 1 is equivalent to say that E' is $\sigma(E'; E)$ -separable. Therefore it holds when E is a separable Banach space and when E is the topological dual space of a separable Banach space.

Consequences

Let A(E) be, respectively $C^m(E)$ $(m=0, 1, ..., \infty)$, the subalgebra of C(E) of all real analytic functions (see [2]), respectively of all C^m -functions in the Fréchet sense, on E.

Corollary 1. If E is finite dimensional and A = A(E) or $A = C^m(E)$, then every character $\phi: A \to \mathbb{R}$ is a point evaluation at some point of E.

Proof. This follows from Theorem 1 if we consider (ϕ_n) as the canonical projections.

Proposition 1. For every character $\phi:A(E)\to\mathbb{R}$, the restriction $\phi_{|E'|}$ is $\sigma(E';E)$ -sequentially continuous.

Proof. Assume that $(x'_n) \subset E'$ converges to zero for the $\sigma(E'; E)$ -topology. If $\phi(x'_n) \neq 0$, there are $\alpha > 0$ and (x'_{np}) , subsequence of (x'_n) , such that

$$\left[\phi\left[\frac{x'_{n_p}}{\sqrt{\alpha}}\right]\right]^2 > 1$$

for every $p \in \mathbb{N}$. Since $(x'_{np}) \to 0$ $(p \to \infty)$ for the $\sigma(E'; E)$ -topology,

the function

$$f(x) = \sum_{p=1}^{\infty} \left[\frac{x'_{np}(x)}{\sqrt{\alpha}} \right]^{2p}$$

is well defined and $f \in A(E)$. (See ([2], Th. 6)). For each $N \in \mathbb{N}$,

$$\phi(f) \geqslant \phi \left[\sum_{p=1}^{N} \left[\frac{x'_{np}}{\sqrt{\alpha}} \right]^{2p} \right] = \sum_{p=1}^{N} \left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p}$$

Therefore
$$\sum_{p=1}^{\infty} \left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p} < \infty$$
 and then $\left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p} \to 0 \ (p \to \infty)$, which is a

contradiction because
$$\left[\phi\left[\frac{x'_{np}}{\sqrt{\alpha}}\right]\right]^2 > 1$$
 for all $p \in \mathbb{N}$.

Corollary 2. Let E be a separable Banach space and $\phi:A(E)\to\mathbb{R}$ a character. Then ϕ_{1E} is a point evaluation at some point of E.

Proof. This is immediate from Prop. 1, since by ([5], Ch. IV; Th. 6.2 and Corollary 3) for $\phi_{|E'|}$ to be $\sigma(E'; E)$ -continuous it suffices to show that $\phi_{|E'|}$ is $\sigma(E'; E)$ -sequentially continuous.

Corollary 3. Let E be a separable Banach space and $\phi:A(E)\to\mathbb{R}$ a character. Then ϕ is a point evaluation at some point of E.

Proof. This is immediate from Theorem 1, Remark 1 and Corollary 2.

Let F be a separable Banach space and $(y_n)_{n=1}^{\infty}$ a dense subset in $\{y \in F : ||y|| \le 1\}$. Let E = F'. Let $\phi_n : E \to \mathbb{R}$ be defined as $\phi_n(x) = x(y_n)$. Then $\phi_n \in E'$, $||\phi_n|| \le 1$ and $(\phi_n)_{n=1}^{\infty}$ separates points of E. The mapping $y \to \phi_y$, defined as $\phi_y(x) = x(y)$, allow us identify F with a subspace of E' = F''. Thus, if $\phi: A(E) \to \mathbb{R}$ is a character, Prop. 1 implies that $\phi_{|F|}$ is $||\cdot||$ -continuous, therefore $\phi_{|F|} \in F' = E$. Then, it follows that there exists $a \in E$ such that $\phi(\phi_n) = \phi_n(a)$ for all $n \in \mathbb{N}$. Now the following Corollary is clear after Theorem 1.

Corollary 4. Let E be a topological dual space of a separable Banach space and $\phi: A(E) \to \mathbb{R}$ a character. Then ϕ is a point evaluation at some point of E.

Corollary 5. Assume that E is a separable Banach space or E is the topological dual space of a separable Banach space. Then every character $\phi: C^m(E) \to \mathbb{R}$, $m = 0, 1, ..., \infty$, is a point evaluation at some point of E.

Proof. $\phi_{|A(E)}$ is a point evaluation by Corollary 3 and Corollary 4. Thus, ϕ satisfies conditions of Theorem 1 with $A = C^m(E)$.

Remark 2. The Corollary 5, for the particular case E a separable Banach space and $m = \infty$, can be found in [1]. Also, for E with C^m -partitions of unity and $m < \infty$, see [3].

References

- [1] ARIAS-DE-REYNA, J. «Real Valued Homomorphisms on Algebras of Differentiable Functions». (preprint).
- [2] BOCHNAK, J. «Analytic Functions in Banach Spaces». Studia Math. T. XXXV (1970), 273-292.
- [3] JARAMILLO, J. A. «Topologies and Homomorphisms on Algebras of Differentiable Functions». (*Preprint*).
- [4] MICHAEL, E. A. «Locally Multiplicatively-Convex Topological Algebras». Memoirs of the A.M.S., number 11 (1952).
- [5] SCHAEFER, H. H. «Topological Vector Spaces». Graduate Texts in Math. Springer-Verlag (1971).

Departamento de Análisis Matemático Facultad de CC. Matemáticas Universidad Complutense 28040 Madrid Recibido: 12 de febrero de 1988