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Critical properties of the four-state commutative random permutation glassy Potts model
in three and four dimensions

L. A. Fernindez,'> A. Maiorano,>* E. Marinari,* V. Martin-Mayor,'?> D. Navarro,>® D. Sciretti,>’
A. Tarancén,>” and J. L. Velasco®’
1Departamem‘o de Fisica Teorica I, Facultad de Fisicas, Universidad de Complutense, 28040 Madrid, Spain
2Instituto de Biocomputacion y Fisica de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain

3Dipartimento di Fisica, Universita di Ferrara, 1-44100 Ferrara, Italy
“Dipartimento Fisica, INFN and INFM, Sapienza Universita di Roma, 00185 Roma, Italy
SInstituto de Investigacion en Ingenieria de Aragon (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
SDepartamento de Ingenieria Electronica y Comunicaciones, Centro Politécnico Superior, Universidad de Zaragoza,
50018 Zaragoza, Spain
7Deparlament0 de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
(Received 26 October 2007; revised manuscript received 26 February 2008; published 24 March 2008)

We investigate the critical properties of the four-state commutative random permutation glassy Potts model
in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using
a field programmable gate array, we have been able to thermalize a large number of samples of systems with
large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical
properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless
transition, but also with different scenarios: transient effects due to a value of the lower critical dimension

slightly below 3 could be very important.
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I. INTRODUCTION

In the last years, spin-glass models without spin-inversion
symmetry'~ have received a large amount of attention: prob-
ably the main reason for this large effort is that these models
are thought to describe structural glasses that in nature, as
opposed to spin glasses, do not enjoy this symmetry. One of
them, the ferro—Potts-glass (FPG) model,>? is a very direct
generalization of the Ising-Edwards-Anderson spin-glass
model: the spins can take p different values, and two neigh-
boring spins contribute to the total energy a factor —J;; if they
are in the same state and a factor +J;; if they are in different
states. The bonds J;; are quenched random variables that can
be distributed, for example, under a Gaussian or under a
bimodal distribution. In the FPG model, as we will discuss
better in the following, the missing spin-inversion symmetry
has the collateral effect of allowing the existence of a ferro-
magnetic phase at low values of the temperature (this is why
we define it as a ferro—Potts-glass model): because of this
possible contamination, the analysis of the glassy critical
points of the model can potentially become very complex
and even lead to misleading conclusions. In fact, as we will
discuss below, progress can be expected from the consider-
ation of more refined models, where gauge symmetry forbids
the ferromagnetic phase.

The FPG model is a candidate for describing orientational
glasses: a p-state spin models a quadrupole moment which
can be directed in p (discrete) directions.'® However, its
main interest maybe originates from some of the properties
of its infinite-range version: for p>4, for example, the
mean-field FPG undergoes a glass transition* where the order
parameter is discontinuous.!" A number of different lattice
models,'3>-%12 in other words, can be analyzed to clarify the
finite-range behavior of systems showing the equilibrium
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properties typical of glasses: it is also important to remember
that a number of important connections have been found!!#
between the mean-field dynamical equations of the model
and the mode-coupling theory of the structural glass
transition,'>!% which describes the evolution of the density
correlations in a supercooled liquid above the dynamical
transition temperature.

Even if the mean-field results are an important starting
point, in a next step, since real systems have short-range
interactions, it is important to study finite-dimensional sys-
tems. A great part of the mainly numerical effort has been
focused on the p=3 model in d=3 to model a realistic qua-
drupolar glass.!” The first numerical studies'®-?> found that
the lower critical dimension d is close to 3. In a numerical
study with a zero-temperature scaling approach, Banavar and
Cieplak'® suggested that the FPG with Gaussian couplings
has a d, slightly greater than 3, while the FPG with bimodal
couplings has a d, slightly below 3 (but such a measurement
had large intrinsic errors). A few months later Monte Carlo
simulations?*2! hinted that the transition seems to take place
at a temperature compatible with 7.=0 for both families of
couplings, which suggested indeed that d;=3. Further simu-
lations in the bimodal*> and Gaussian>} models were consis-
tent with these results, although one could not exclude the
possibility of 7, being small but larger than zero. A later
study based on a high-temperature expansion®*? did not al-
low a final conclusion to be reached. Only recently have we
started to have clearer evidence about the situation: a large-
scale numerical study, based on a finite-size scaling analysis
of the correlation length,?® gives what looks like reliable evi-
dence of a transition to a glass phase at finite 7, making in
this way a strong case for d; being slightly below 3 for the
three-state FPG model.

Another interesting model that has been studied in detail
is the p=10 model in d=3, because of the intrinsic interest of
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the limit of a large number of states. Ol and recen
numerical simulations seem to suggest that there is no spin-
glass transition at finite temperature (but all the warnings
about the dangers of ferromagnetic effects at low T in this
model stay in effect). This finding is in marked contrast with
the predictions of mean-field theory, which indeed undergoes
two transitions'>!*: new models could be useful to under-
stand better the connections among the mean-field and finite-
dimensional picture, and, for example, Potts-glass models
with medium-range interactions>’-?® could be relevant for this
effect.

It has also been argued® (although some controversy
exists?®) that the choice of the coupling distribution might be
relevant in removing the phase transition on the p=10
model. The deficiency of the FPG model that we have dis-
cussed before is the designated culprit: the lack of spin in-
version symmetry (which in Ising spin glasses is connected
to a gauge symmetry that forbids a spontaneous
magnetization’®) allows ferromagnetic ordering at low
temperatures.>? A partial relief to this problem can be ob-
tained by using a distribution of couplings nonsymmetric
around zero,2®27 but this choice does not recover the lost
(important) gauge invariance.

A different (and natural) definition of a frustrated Potts
model containing quenched disorder, the random-
permutation Potts-glass (RPPG) model, was introduced a
few years ago.® The key point of the RPPG model [and of a
similar model where only a set of possible couplings is al-
lowed, the commutative random-permutation Potts glass
(CRPPG) model, where an additional symmetry is very use-
ful to help checking thermalization; see Sec. Il A] is that it
retains the gauge invariance which prevents Ising spin
glasses from entering ferromagnetic ordering at low tempera-
ture. The same paper® analyzed numerically the p=4, four-
dimensional model (in both in the RPPG and CRPPG ver-
sions) on lattices of volume V=4* and V=5* The two
models were found to exhibit the same critical behavior, with
a glassy phase characterized by a divergence of the overlap
susceptibility. A preliminary value of vy was estimated from
that divergence, and the critical temperature was obtained
from the analysis of the Binder parameter: the critical behav-
ior was found to be reached under a discontinuity, which was
related to the one observed in the random-energy model.!? It
is also interesting to note that Carlucci®! has discussed the
relation connecting the (C)RPPG and the chiral-Potts model,
the latter introduced by Nishimori and Stephen,> which in
mean field shows the same type of transition for p>4.43!
The authors of Ref. 6 also present a dynamical study of their
models, and they observe clear aging effects.

In this work we investigate, by means of Monte Carlo
simulation and finite-size scaling analysis, the critical prop-
erties of the three- and four-dimensional p=4 CRPPG
model. In d=3, the finite-size behavior makes it possible for
the system to undergo a Kosterlitz-Thouless transition, al-
though a d, barely lower than 3 is surely compatible with the
significance of our numerical data. In d=4, we confirm the
existence of the spin-glass transition reported in Ref. 6, but
the use of a field programmable gate array (FPGA) computer
(see the Appendix and Ref. 32) allows us to obtain more
accurate estimates of the critical exponents, universal dimen-
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sionless quantities, and nonuniversal critical couplings of the
model.

The remainder of this work is organized as follows. In
Sec. II A we define the model and comment on its symme-
tries. We describe the relevant observables in Sec. II B. Sec-
tion III is devoted to a discussion of the numerical methods:
the details of the simulations are described in Sec. III A and
the finite-size scaling method in Sec. III B. Further details
about the computation are given in Sec. III C, while the
problem of thermalization is addressed in Sec. III D. The
results for the d=3 model are discussed in Sec. IV, and those
for d=4 are discussed in Sec. V. We present our conclusions
in Sec. VI. In the Appendix we give details about the FPGA
and about how they have actually been used.

II. MODEL
A. Model and symmetries

We consider a system of spins {o;} defined on a d=3 (and
d=4) dimensional simple cubic lattice of linear size L (vol-
ume V=L9) and periodic boundary conditions. The Hamil-
tonian is

H=-2 8,11 (o) (1)

. LAY A
(@)

where the sum runs over all pairs of nearest-neighboring
sites. The spins can take the values {0,1,2,3}, and II;; are
quenched permutations of {0,1,2,3}, defined on the links of
the lattice.33 We define our quenched couplings (to imple-
ment the commutative model of Ref. 6) by extracting ran-
dom permutations of (0,1,2,3) that commute with our “refer-
ence permutation” R=(0,1,2,3)—(2,3,0,1). Only links
from i to j such that o;=1II;;(0;) give a nonzero contribution
to the energy. The RPPG and CRPPG models are deeply
connected®! to the chiral-Potts model analyzed by Nishimori
and Stephen.’

The symmetry with respect to the reference permutation R
helps in defining an order parameter ¢ governed by a prob-
ability distribution symmetric under ¢ — —g (this turns out to
be crucial for checking that the system has reached thermal
equilibrium®). We define two copies of the system (two real
replicas) {0'51)},{0'52)}, and we allow them to evolve indepen-
dently at the same temperature and the same realization of
quenched random couplings II;;. The modified overlap be-
tween the two replicas at site i is defined as

1 if 0'51)2 0'52),
gi={-1 if oV #0? and o"=(c!?+2)mod 2,
0 elsewhere.

()

B. Observables

The main quantities that we will consider here are defined
in terms of the Fourier transform of g;:

~f 1 kT
g(k) = ‘_/2 e * 'q;- (3)
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The momentum-space propagator is defined from the relation
G(k) = V(g(k)?). (4)

In the thermodynamic limit and at the critical point, the
propagator is expected to have poles at k=0:
. zZEm
Glk) = ————., (5)
(k)™ + &
where the correlation length & diverges at the critical point
and §||k]|<< 1. We also define the nonconnected susceptibility

x=G(0). (6)

On a finite lattice an extremely useful definition of the cor-
relation length can be obtained from the discrete derivative
of G(k). Using k=(2m/L)é ,.» Where ¢, belongs to the canoni-
cal Cartesian basis, one obtaing3*3>

. ( G(0)/G(R) -1 )”2

7
4 sin*(m/L) @)
We also compute and analyze the cumulant
@)
Us==— o (8)
((0))
We define the energy as
4 1
=—(H)- -, 9
a3 )

so that it lies in the [0,1] interval. When we need to estimate
the derivative with respect to 8 of an observable O, we es-
timate it by measuring the connected correlation function
(OH),. Bias-corrected®® reweighting techniques®-"-3¥ allow
us to use the numerical data taken at temperature 7 to com-
pute expectation values at nearby temperature values 7’ and
to get in this way estimates that cover all the relevant parts of
the critical region.

III. NUMERICAL METHODS
A. Simulations

In the d=3 model we have analyzed lattices of linear sizes
L=6, 8, 10, and 16. The critical behavior of the model (see
Sec. IV) has suggested to simulate a wide range of values of
B, ranging from 1.5 to 2.7. We have analyzed between 200
and 400 different samples of the smaller systems and around
1000 samples for L=16.

In d=4, we have analyzed lattices of linear sizes L=8, 12,
and 16, with 8 ranging from 1.385 to 1.5. The main com-
puter effort has been accomplished around 8=1.405 and B
=1.41, close to the critical point. At these temperatures, we
have simulated 1000 samples for L=8 and 2000 samples for
L>8. For the other B values we have simulated between 200
and 400 samples. We have also analyzed 50 samples of the
system deep into the low-temperature region, at S=1.5.
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B. Finite-size scaling

We give here a few details about the finite-size scaling
approach that we have used for our analysis. When using the
quotient method®-°*" one compares the mean value of an
observable O, in two systems of sizes L; and L,, using the
value B where the correlation length in units of the lattice
sizes coincides for both systems. If, for the infinite-volume
system, (O)(B) «|B—B.|™¢, the basic equation of the quo-
tient method is

QLI,LzE <O(ﬂ’L2)>
¢ (0(B.L)))

E(Ly.PEL;.B)=Ly/L,

L xolv
:(L—2> (1+AL”+ ), (10)
1

where the ellipsis stands for higher-order scaling corrections,
v is the correlation length critical exponent, w is the (univer-
sal) first irrelevant critical exponent, and A, is a nonuniver-
sal amplitude.

Just below the lower critical dimension, at a distance ¢,
the critical exponent 1/v is expected to be of order e. This
means that, for a limited range of lattice sizes, the slope of
the &/L curves at T, grows very slowly (almost logarithmi-
cally) with L. This could make it difficult for a numerical
study where one looks for a crossing of the &/ L curves, since
the curves for the different lattice sizes would be basically
parallel in the critical region. In other words, distinguishing a
merging of the &/L curves from a crossing becomes very
hard. If one works precisely at the lower critical dimension
(i.e., e=0), one may expect that one of two mutually exclud-
ing scenarios is realized. If 7.=0, the curves for £/ L would
not join (if plotted versus 1/7, the curves for lattices of size
L and 2L should displace uniformly by an L-independent
amount). On the other hand, if 7,>0, one would have a
Kosterlitz-Thouless picture, where the curves for &/L merge
for all T<T,. It is clear that distinguishing a Kosterlitz-
Thouless scenario from €>0 but very small is numerically
challenging.

The most precise way of extracting the critical point 8. is
to consider the crossing point of dimensionless quantities
such as &/L and U,. When comparing their values in two
systems of size L; and L,, one finds that they take a common
value at

1= (Ly/L;)™
G (11)

»li_g yp——=—"1
185 Be (Lz/Ll)I/v_l 1

The nonuniversal amplitude B depends on the dimensionless
quantity that one considers.

C. Computational details

In order to compute equilibrium expectation values we
update the spins with a sequential Metropolis algorithm, we
bring them to equilibrium and during the equilibrium dynam-
ics we measure the interesting physical quantities. Using our
optimized FPGA-based processor, we have been able to run
large-scale simulations: for example using strong thermaliza-
tion tests, we can be sure that we have thermalized systems
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TABLE 1. For each lattice size of the d=3 model, we show the
simulated temperatures, number of samples, number of EMCSs per
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TABLE II. Same as Table I for d=4.

sample, and EMCSs per measurement. L B Namples X 10 EMCS X 10° EMCS/meas.
L B NumpesX 10> EMCSX10°  EMCS/meas. 8 141 10 4 40
8 1.44 10 4 40
6 1.6 2 4 40 15 10 4 40
6 20 2 4 40 12 141 20 6 40
6 24 4 4 40 16 1385 2.8 60 5% 10
8 16 2 4 40 16 1395 8.5 60 5% 10
8 18 2 8 40 16 1.405 10 60 5% 10°
8 20 4 8 40 16 141 25 200 5% 10°
8 24 4 4 40 16 144 438 500 5% 10°
1015 2 4 40 16 15 0.5 1000 10°
10 1.8 2 12 40
:g 2(2) j g ig As a first tool we have.used a logarithmic b@nning. proce-
dure. Let us say that during a Monte Carlo simulation we
10 24 4 24 40 have collected estimates for an observable quantity O at all
16 1.8 10 60 5X10° integer times ¢ in the interval [0, 7). We divide these data in
16 20 10 60 5%10° bins I,=[T/2"',T/2") for n=0,1,2,3,.... The usual disor-
16 22 10 60 5% 105 der average of O, (0), is obtained (after assuming that all
16 24 9 600 2% 106 data are at equilibrium) by averaging all Monte Carlo data—

of volume V=16 and V=16 at high  values, already deep
in the broken phase. We define an elementary Monte Carlo
sweep (EMCS) as V sequential trial updates of lattice spin
(considered in lexicographic order). To produce the needed
pseudorandom numbers we use the Parisi-Rapuano shift reg-
ister method.*!

The d=3 small lattices, from L=6 to 10, have been simu-
lated at the cluster of the Instituto de Biocomputacién y
Fisica de Sistemas Complejos (BIFI). We have taken our
measurements after every 40 EMCSs. The total simulation
time for this set of lattices has been equivalent of 0.2 years of
a Pentium IV processor running at 3.2 GHz. Our main effort
in d=3 has concerned the large, L=16 lattice and has been
simulated in a single FPGA (see Sec. VI for details). The
total simulation time corresponds to almost 22 years of Pen-
tium IV at 3.2 GHz. Table I shows the details of the compu-
tation.

In the d=4 model, lattices with L=8 and L=12 have been
simulated at the BIFI Cluster. The total simulation time has
been the equivalent to about 3 years of Pentium IV at 3.2
GHz. Again, the core of the simulation corresponds to lattice
L=16, and has been computed with the FPGA. The total
simulation time has been about 300 years-equivalent of Pen-
tium IV. Measurements have been made every 5X10°
EMCS. The details of the computation are shown in Table II.

D. Thermalization tests

This large computer effort has allowed us to thermalize in
the broken phase lattices of volume including up to 65 536
spins (a large number). The thermalization issue is crucial in
spin glasses, and we have checked it by several independent
tests.

i.e., the data over all bins. Information about thermalization
can be obtained by averaging separately over samples the
time series in the different bins. We get in this way the loga-
rithmic running disorder averages O,=(0),. In the usual
logarithmic data binning, if thermalization has been
achieved, one expects that O, becomes n independent for
small n (the last bins). We show this quantity (shifted by O,
for a better comparison with §,0; see below) in the case of
the nonconnected susceptibility as a function of the logarith-
mic binning level n in Fig. 1. The data correspond to the
four-dimensional system of volume V=16* at two values of
the temperature, one very close to the critical point and one
in the low-temperature phase: the errors are drawn with a
thin line.

An even better control of the convergence with time to the
asymptotic result can be obtained by computing the differ-
ence of the thermal expectation value in bin n and the value

0.01 il
><:
. 0.005 E
=
>

0

FIG. 1. (Color online) Logarithmic data binning analysis (see
text) of the nonconnected susceptibility for the d=4 model, L=16,
B=1.41, and B=1.5. Notice that the large time region appears on
the left in the figure.
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FIG. 2. (Color online) Correlation length in units of the linear
size L as a function of B for d=3 systems of different volumes.

in bin 0 in each sample, and averaging this quantity over the

disorder. In other words, we define 8,0=(0),—{0),. This
way, one can obtain much smaller statistical uncertainty: we
plot this quantity for the nonconnected susceptibility in Fig.
1 by drawing the errors with thick lines.

For both B values of Fig. 1 both indicators show that
convergence has been reached. Errors in &,y (thick error
bars) are much smaller, but they still show that the last part
of our samples has reached a steady state (even if the error is
very small, all the data of the last bin are at the level of one
standard deviation from zero: also notice that the data for
different data bins are correlated, which implies that corre-
lated discrepancies have to be expected). We can claim that
the data of the n=0 bin are surely well thermalized, and we
use them for computing the equilibrium expectation values
that we discuss in this paper.

We have also estimated the integrated autocorrelation
time 7 for the observables that we have measured: we want
to be sure that the total time length of our numerical simu-
lation is far larger than 7.

In d=3, for our larger system L=16, at B=2.4 (a high
value of B, deep inside the broken phase), we find that for
the internal energy 7=5 X 107 EMCSs (and it turns out to be
smaller for the other observables). This implies that our nu-
merical simulation has been running for a time close to 127.
In d=4, the length of the numerical simulation of the L
=16 system at B values close to the critical point turns out to
be close to 107.

We have also used a further test of thermalization by con-
sidering the data of the n=0 bin. We have done that by
selecting a set of B values to use as starting points of the
reweighting extrapolation.*® Figures 2 and 3 show an ex-
ample of how data originated from different disorder samples
and independent numerical simulations yield consistent re-
sults. The choice of using a different set of samples for dif-
ferent B values (the starting points of the different reweight-
ings that appear in the figure as neighboring groups of points
of the same type) does not optimize the quality of the final
extrapolation of the data (in the full B interval that we con-
sider), but gives a further check of both the quality of the
thermalization and of the quality of the sample average. In
our case, the test is obviously successful.
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FIG. 3. (Color online) The cumulant U, as defined in Eq. (8) as
a function of B for d=3 systems of different volumes.

Even if these general thermalization checks are very use-
ful and they give strong hints that the system is thermalized,
the Z, symmetry of the model (see Sec. Il A), which has
been introduced exactly with this goal in mind, is crucial to
check thermalization. Let us repeat that the allowed cou-
plings have been selected exactly such that the probability
distribution of the modified overlap, P(g), has to be symmet-
ric at equilibrium. We show, in Figs. 4 and 5, P(g) for d=3
and d=4 (computed by using the data of the n=0 bin—i.e.,
the last half of the data of the numerical simulation). These
disorder-averaged distributions show very clearly the ex-
pected symmetry.

At last we have also studied the dynamics of different
observables (for example of the modified overlap) in indi-
vidual samples and we show an example in Fig. 6. We can
observe a number of complete reversals of the global modi-
fied overlap, which gives us a new estimate of the time scale
on which the system becomes modified: this time scale is
compatible with what we have estimated before. We stress
again that the determination of this time scale is further evi-
dence that we are indeed at thermal equilibrium.

We believe that this discussion clearly shows that it is safe
to use for an equilibrium analysis the data from the n=0 bin
(i.e., the last half of the simulation), since it is fully thermal-
ized.

; f=18 e
25 ¢ N B=2.0 wae
d A =22 ot
& ' (=24 s
2t f ]

P(q)

FIG. 4. (Color online) Distribution of the overlap in the d=3,
L=16 system at several temperatures.
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P(q)

FIG. 5. (Color online) Distribution of the overlap in the d=4
model at low temperature (8=1.44) for two different lattice sizes.

IV. RESULTS FOR THE d=3 MODEL

We show in Fig. 2 the correlation length in units of L as a
function of B for the three-dimensional (3D) model. In the
high-temperature regime the curves for different lattice sizes
are well separated: for increasing $ the different curves ap-
proach each other, and for values of 8 close to 2.3 they seem
to have merged in a single curve. In the limits of our statis-
tical accuracy, we do not see any sign of a splitting of the
curves in the high-T phase (a crossing point at 7, and a
splitting in both the low-7 and high-T" phases is the usual
signature of a usual phase transition): such a merging (with-
out an eventual splitting) for increasing B is what would
happen in a Kosterlitz-Thouless (KT) transition (see, for ex-
ample, Ref. 42).

The first (of the many) delicate issue about this potential
behavior concerns thermalization of the system: we have to
be sure that we are not being misled by the fact that we have
not thermalized the larger lattice sizes (this could produce an
effect hiding a crossing in the high-B region). This is why we
have studied, and discussed before, thermalization in detail:
the thermalization checks described in Sec. III make us con-
fident that we have reached equilibrium for all the lattice
sizes that we have considered. We should not forget that

0 2 4 6 8 10
EMCSx 108

FIG. 6. (Color online) Evolution of the overlap of a representa-
tive sample of the d=4 model, L=16 system. Here S=1.5.
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there are other possible issues that could hide from us, even
in a very-large-scale simulation like the one discussed here,
the asymptotic result: we could need, for example, a better
statistical accuracy to discriminate a weak crossing, we could
need large lattices to see the crossing appearing, or we could
need to go to higher B values. The issue of a very weak
transition is a very delicate one, and reliable statements must
be phrased with great care. Here we claim that a KT scenario
is a possible choice given the data that we have been able to
measure in d=3,

In a KT scenario the quantity &/L is expected to remain
invariant in a finite low-temperature region adjacent to the
critical point. One way to be quantitative about that is to
compute the crossing points Bﬁ"LZ for the dimensionless
quantity Uy,; see Eq. (11). In Fig. 3, we plot the cumulant U,
for several lattice sizes. The curves for different lattice sizes
cross close to 8=2.0 (look, for example, at the L=8 and the
L=16 lattices) at a temperature where the curves for &/L on
different lattice sizes did not yet merge (i.e., where the cor-
relation length has the high-T behavior). The region of the
crossing is quite narrow, so that is very implausible that the
scaling corrections to U, (usually larger than that of &/L)
will shift the crossings as much as to get them close to 3
=2.4. Therefore, within our numerical accuracy, we do ob-
serve that /L remains invariant in an interval of tempera-
tures lower than that of the crossings of the cumulant.

The features we have described are consistent with a tran-
sition of the KT type.*? Nevertheless, as we have discussed
before, many possible effects could lead to difficult conclu-
sions (for example, the value of the lower critical dimension
to be slightly smaller than 3). It is clear, in any case, that in
d=3 we are indeed sitting very close to the lower critical
dimension.

V. RESULTS FOR THE d=4 MODEL

The authors of Ref. 6, where the CRPPG model that we
investigate here was proposed, found that the four-
dimensional CRPPG undergoes a transition to a spin-glass
phase at T=1.5 (by analyzing lattices of size L=4 and 5).

In order to analyze the transition, we study here the scal-
ing behavior of quantities as /L and Uy, that are expected to
be L independent at the critical point. In Fig. 7 we plot the
correlation length in units of the lattice size as a function of
B. The reweighting extrapolations of these quantities for
pairs of lattices L; and L, do intersect in the region around
B=1.41. In order to be sure of the existence of the crossing
we have thermalized lattices of linear size L=8 and L=16
deep in the low-temperature region: the normalized correla-
tion length of the larger lattice is well above the one of the
smaller lattice for B values ranging from 1.44 to 1.5.

In Fig. 8 we bring the region closer to our putative cross-
ing. In this region we have also a thermalized lattice of linear
size L=12, and we include the L=12 data in the figure and in
our analysis.

In Table III we give the values of the crossing points
Bﬁl’Lz obtained by the crossing of the &/L curves. Already
from Fig. 8 it is clear that the accuracy of the size-dependent
estimates ﬁfl’LZ is not high enough to allow an estimation of
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FIG. 7. (Color online) Correlation length in units of L as a
function of B in the d=4 model.

the scaling corrections. This is because reaching thermal
equilibrium for L> 16 was not in the scope of our numerical
simulation (bound to run on a single FPGA chip), while lat-
tices with linear size L <8 would have probably been too
small to show the true asymptotic scaling corrections.

Since the cumulant U, scales like &/ L at the critical point,
it might have played the same role than ¢/L [by using Eg.
(11)]. However, we find that it has much larger scaling cor-
rections than &/L, and that these corrections shift the cross-
ing points to higher temperatures, out of the range that we
have analyzed (and where we believe the real asymptotic
critical behavior can be observed). We have therefore not
used U, in our study of the critical point. Our results com-
pare fairly with the ones obtained in Ref. 6 by analyzing
systems of linear sizes L=4 and L=5 (8 must be renormal-
ized since our Hamiltonian differs by a factor of 2 from the
one of Ref. 6).

To obtain the critical exponents we consider the operators
dgé and x, whose associated exponents [see Eq. (10)] are
Xgg= v+1 and x,=y=v(2- 7). Taking the logarithm of the
quotients of these expectation values at the crossing points of
&/L, we obtain the effective size-dependent exponents that
we show in Table III. We can summarize our best estimate
for the d=4 exponents as B,=1.41(1), £&/L=047(2), v
=1.1(2), =-0.31(3), and y=2.5(4): these errors are statis-
tical in nature and cannot, obviously, fully take care of the
systematic effects.

As was happening in the determination of the value of the
critical coupling, the estimated exponents lack the precision
necessary for obtaining a reliable infinite-volume extrapola-
tion. Reference 6 quoted a value of vy in the range between
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FIG. 8. (Color online) Close-up of the data of Fig. 7 close to the
estimated critical point.

1.3 and 1.5, obtained from a study of the overlap suscepti-
bility in the warm phase of a lattice L=8. Although our es-
timate is not very close to this value, it is clear that we are
still dealing with lattice of intermediate size and that a care-
ful analysis of scaling corrections, which we hope will soon
be possible, will probably lead to a reconciliation of these
results. Our results should characterize, if universality holds,
the spin-glass transition to a Potts glass, independently from
the detailed model one selects.

Finally, we also show in Table III the finite-size estimates
of the universal quantity &/L—i.e., &/ L evaluated at the
critical coupling.

VI. CONCLUSIONS

We have presented a numerical study of the four-state
CRPPG model in d=4 and d=3: we have used Monte Carlo
simulations, reweighting techniques, and a finite-size scaling
analysis. In d=3 our evidence clearly shows that we are very
close to the lower critical dimension and suggests that a
Kosterlitz-Thouless like behavior is possible, even if we
could be dealing with a transient effect. In d=4 we are able
to collect a large number of thermalized samples for systems
defined on large lattices of linear size L=16. Because of such
a large-scale numerical simulation, we are able to qualify the
spin-glass transition first found in Ref. 6 and we obtain size-
dependent estimates of the critical coupling of the critical
exponents v and 7 and of the scale-invariant quantity &*/L.

In both cases, the use of a FPGA gives us the power
needed to achieve thermalization, a target very ambitious for
standard computers. We have been very careful in checking

TABLE III. Our best estimates for the size dependent effective critical coupling and for a number of
universal quantities, as obtained from (L;,L,) pairs. y is obtained from the hyperscaling relation y=v(2

-7).
L L B &/L v 7 y
8 12 1.41(1) 0.47(2) 1.1(1) -0.35(3) 2.6(2)
8 16 1.41(1) 0.47(1) 1.1(2) -0.33(2) 2.5(4)
12 16 1.41(1) 0.46(2) 1.0(4) —-0.29(5) 2.4(9)
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thermalization, and also as a result of the built-in symmetry
of the CRPPG, we have succeeded in this task.
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APPENDIX: THE FPGA DEVICE

The problem of the glassy state, for example, is a typical
problem of very high complexity. A large (maybe infinite)
number of time scales is involved, and numerical simulations
have to try to give hints about dynamics at very long times:
very large correlation and thermalization times imply that,
already on lattices of medium size, a huge computational
effort is required. This is a typical situation where conven-
tional computers could be not enough to do the job.

The use of FPGA programmable chips for the simulation
of spin systems was proposed several years ago*’: conven-
tional computers are not optimized toward the computational
tasks relevant for our typical calculation, and a FPGA can be
programmed (at run time) in order to optimize the execution
of the specific problem that one wants to solve.

FPGA devices come with numerous embedded and siz-
able memory blocks (RAM blocks) and thousands of config-
urable logic blocks with programmable interconnections. A
configurable logic blocks can be programmed to perform
complex logic operations and provide storage (flip-flop reg-
isters) at the same time.

A number of features that characterize our model are in-
deed optimal for being dealt with by a FPGA: we have dis-
crete variables that can take a small number of values (4 for

PHYSICAL REVIEW B 77, 104432 (2008)

our p=4 system), and the interaction is local in physical
space. The Metropolis algorithm and the random number
generators discussed in Sec. III C have been implemented in
the FPGA in a very effective way.

RAM blocks have a natural 2D (width X depth) grid struc-
ture. A 3D cubic matrix of bits can be obtained by stacking
many of them, and access to all of them with the same
memory address corresponds to addressing an entire plane in
a 3D grid. We consider one such structure per each bit
needed to represent fields (and interactions) defined on the
sites of a simple cubic lattice.

Locality of interactions (nearest neighbors) allows for a
high grade of internal parallelism: in a checkerboard scheme,
all black or all white sites of a lattice plane can be updated
simultaneously (i.e., at the same clock cycle). Moreover,
when simulating two real replicas and mixing black (white)
sites of a system with white (black) ones of its replica, all
sites in a plane can be processed in parallel. Simultaneous
local updates can then be performed by replicating small
computation cells, each executing the few simple logical op-
erations to compute local energies and including a 32-bit
comparator for the Metropolis test. Precomputed transition
probabilities (which allow to avoid lengthy computations of
transcendental functions) are stored as several small look-up
tables in configurable logic (distributed RAM) and addressed
by the computed energy variations values (each look-up table
serves two distinct computation cells). The iterative pro-
cesses involving 32-bit integer arithmetics for random num-
ber generators have also been parallelized by cascading
many 32-bit integer adders and XORs, and allowing for the
generation of hundreds of 32-bit random numbers per clock
cycle. For further details, see Ref. 32.

We use the FPGA device Virtex 4/L.X200, manufactured
by Xilinx. Depending on lattice size and number of parallel
updates (between 64 and 256) our designs run at clock
speeds between 50 and 100 MHz.

In Ref. 32 its performances have been compared with the
ones of a 3.2-GHz Pentium IV device: for the d=3 model the
FPGA performs 1800 times faster than a Pentium, while this
factor is 2300 in d=4.
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