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Introducción xi

1 Grothendieck-Riemann-Roch 1

1.1 Universal property of K-theory . . . . . . . . . . . . . . . . . . 1

1.2 Grothendieck-Riemann-Roch theorem . . . . . . . . . . . . . . . 9

2 Preliminaries 15

2.1 Simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Classification of torsors . . . . . . . . . . . . . . . . . . . 20

2.2 Big Nisnevich site . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Sheaves and presheaves . . . . . . . . . . . . . . . . . . . 28

2.2.2 Functoriality: Inverse, direct image and p] . . . . . . . . 33

2.3 Model categories . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Functoriality: total derived functors . . . . . . . . . . . . 48

2.3.2 Triangulated categories . . . . . . . . . . . . . . . . . . . 51

2.3.3 Bousfield localization . . . . . . . . . . . . . . . . . . . . 55

3 Motivic homotopy theory 59

3.1 The homotopy category H(S) . . . . . . . . . . . . . . . . . . . 59

3.1.1 Functoriality, localization, blow-up and homotopy purity 64

3.1.2 Classification of torsors . . . . . . . . . . . . . . . . . . . 69

3.2 The stable homotopy category SH(S) . . . . . . . . . . . . . . . 74

3.2.1 Symmetric spectra . . . . . . . . . . . . . . . . . . . . . 79

3.2.2 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.3 Localization, Mayer-Vietoris, blow-up and homotopy pu-
rity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.4 Exceptional functors . . . . . . . . . . . . . . . . . . . . 86

i



ii CONTENTS

4 Riemann-Roch theorems and Gysin morphisms 87
4.1 Cohomology and its operations . . . . . . . . . . . . . . . . . . 87

4.1.1 Examples of modules . . . . . . . . . . . . . . . . . . . . 95
4.1.2 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.3 Chern class with support . . . . . . . . . . . . . . . . . . 105

4.2 Gysin morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.1 Regular immersions . . . . . . . . . . . . . . . . . . . . . 107
4.2.2 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.3 The projective lci case . . . . . . . . . . . . . . . . . . . 120

4.3 Motivic Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 129
4.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Riemann-Roch without denominators . . . . . . . . . . . . . . . 138

5 Appendix 143
5.1 Absolute Hodge cohomology . . . . . . . . . . . . . . . . . . . . 143



Introduction

The original Grothendieck’s Riemann-Roch theorem states that for any proper
morphism f : Y → X, between nonsingular quasiprojective irreducible vari-
eties over a field, and any element a ∈ K0(Y ) of the Grothendieck group of
vector bundles the relation

ch(f!(a)) = f∗
(
Td(Tf ) · ch(a)

)
holds (cf. [BS58]). Recall that ch denotes the Chern character, Td(Tf ) the
Todd class of the relative tangent bundle and f∗ and f! the direct image in
the Chow ring and K0 respectively. Later Baum, Fulton and MacPherson
proved in [BFM75] the Riemann-Roch theorem for locally complete intersec-
tion morphisms between singular projective algebraic schemes (i.e., locally of
finite type separated schemes over a field). In [FG83] Fulton and Gillet proved
the theorem without projective assumptions on the schemes.

The remarkable extension to higher K-theory and schemes over a regular
base was proved by Gillet in [Gil81]. The Riemann-Roch theorem proved there
is for projective morphisms between smooth quasiprojective schemes. However,
note that in the case over a field Gillet’s theorem does not recover the result of
[BFM75]. The furthest generalization of the Riemann-Roch theorem I know
is [Dég14] and [HS15] where Déglise and Holmstrom-Scholbach independently
obtained the Riemann-Roch theorem for higher K-theory and projective lci
morphisms between regular schemes over a finite dimensional noetherian base.

After the work of Cisinski in [Cis13] on Weibel’s homotopy invariant K-
theory one may apply Voevodsky’s motivic homotopy theory to it. With Cisin-
ski’s result, we present a Riemann-Roch theorem for homotopy invariant K-
theory and projective lci morphisms without smoothness assumptions on the
schemes. More concretely, the theorem we prove for motivic cohomology and
schemes over a finite dimensional noetherian base S is the following:

iii
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Theorem: Let f : Y → X be a projective lci morphism of S-schemes and
denote Tf ∈ K0(Y ) the virtual tangent bundle and Td the multiplicative ex-
tension of the series given by t

1−e−t . Then the diagram

KH(Y )Q
f∗ //

Td(Tf )ch

��

KH(X)Q

ch
��

HM(Y,Q)
f∗ // HM(X,Q)

commutes. In other words, for a ∈ KH(Y )Q we have

ch(f∗(a)) = f∗
(
Td(Tf ) · ch(a)

)
.

From here, we deduce Riemann-Roch theorems for many cohomologies. In
particular, for real absolute Hodge and Deligne Beilinson cohomology, rigid
syntomic cohomology and mixed Weil cohomologies such as algebraic de Rham
and geometric étale cohomology.

In order to prove this result, the addition we make to the theory is the
construction of the Gysin morphism for regular immersions and every coho-
mology given by spectra. Since its beginnings, the standard construction of the
Gysin morphism in motivic homotopy theory relies on the Thom space and
the purity isomorphism. However, purity requires smoothness assumptions
(cf. [MV99]). Our approach is a different one: We lift the work of Gabber
for étale cohomology to the motivic homotopy setting and, thus, obtain Gysin
morphisms for regular immersions without smoothness assumptions on the
schemes. This leads to the construction of new Gysin morphisms for many
theories like homotopy invariant K-theory, motivic cohomology, real absolute
Hodge and Deligne-Beilinson cohomology, rigid syntomic cohomology, and any
cohomology coming from a mixed Weil theory.

Modules over a cohomology theory are notable geometric and arithmetic in-
variants. Recall from [HS15] that arithmetic K-theory and arithmetic motivic
cohomology are modules over K-theory and motivic cohomology respectively.
In addition, for any cohomology the relative cohomology of a morphism is also
module. Note that the cohomology with proper support, the cohomology with
support on a closed subscheme, and the reduced cohomology are the relative
cohomology of a closed immersion, an open immersion and the projection over
a base point respectively.

We deduce from our results new Gysin morphisms and a Riemann-Roch
theorem for abstract modules. In particular, we prove a new Riemann-Roch
theorem for relative cohomology.
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Theorem: Let f : Y → X be a morphism of schemes, g : T → X be a projec-
tive lci morphism. Denote fT : Y ×X T → T , Tg ∈ K0(Y ) the virtual tangent
bundle of g and KH(f) and HM(f,Q) the relative homotopy invariant K-
theory and motivic cohomology of f respectively. Assume in addition either f
is proper or g is smooth, then the diagram

KH(fT )Q
g∗ //

Td(Tg)ch

��

KH(f)Q

ch
��

HM(fT ,Q)
g∗ // HM(f,Q)

commutes. In other words, for m ∈ KH(fT )Q we have

ch(g∗(m)) = g∗
(
Td(Tg) · ch(m)

)
.

We also obtain the arithmetic Riemann-Roch theorem of [HS15] and the
residual Riemann-Roch theorem of [Dég14].

Finally, we improve a classic formula on this subject: the Riemann-Roch
without denominators. Grothendieck conjectured it itself in [SGA6], it was
first proved by Jouanolou in [Jou70] for smooth quasiprojective schemes and
later generalized into the singular context ([Ful98]). The furthest generaliza-
tion I know is Gillet’s statement in [Gil81] for higher K-theory and smooth
quasiprojective schemes over a regular base. Our theorem is proved once again
in the singular context and without projective assumptions on the schemes.

Theorem: Let i : Z → X be a regular immersion of codimension d. Denote
qi : KH(Z) → KHZ(X) and pi : HM(Z,Z) → HM,Z(X,Z) the refined Gysin
morphisms, cZq,r : KHr,Z(X) → HM,Z(X,Z) the r-th Chern class with support
on Z (cf. 4.4.1 and Definition 4.2.8 respectively) and P d

q (r, x1, · · · ; y1, · · · )
the polynomials with integers coefficients defined in [Jou70]. Then for any
a ∈ KHr(Z) we have

cZq,r(qi(a)) = pi
(
P d
q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(NZ/X), . . . , cq−d(NZ/X))

)
.

We describe the organization of this dissertation.

1. Grothendieck-Riemann-Roch

Using Panin’s framework from [Pan04] we prove that Grothendieck’s K-
theory is the universal cohomology theory on smooth varieties over a field
with Chern classes following the multiplicative law x+ y− xy. We deduce the
Grothendieck-Riemann-Roch theorem for the Grothendieck group of vector
bundles and for the graduated of the K-theory by the support codimension
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filtration. Although no new formula is proven in this chapter, I believe it
contains the main ideas of this dissertation.

2 and 3. Preliminaries and Motivic homotopy theory

We give an introduction to motivic homotopy theory for algebraic geome-
ters. We put emphasis into the basic functoriality of the big Nisnevich site
and the classification of torsors. We do not pretend to be neither complete
nor self contained and most proofs are omitted. The only result not found
in the literature is the classification of pseudo divisors in Proposition 3.1.43.
Regarding the classification of torsors, we include complete proofs.

4. Riemann-Roch theorems and Gysin morphism

In section 4.1 we recall the notion of absolute oriented ring spectra and
module over an absolute ring spectrum. We introduce the relative cohomology
in the context of motivic stable homotopy theory and construct an absolute
spectrum which represents relative cohomology under some conditions. In sec-
tion 4.2 we construct Gysin morphisms using Gabber’s ideas for the case of reg-
ular immersions and prove a unicity criteria. We prove the motivic Riemann-
Roch theorem in section 4.3 (cf. Theorem 4.3.7) and obtain the Riemann-Roch
theorem for homotopy invariant K-theory as a result. We deduce a Riemann-
Roch theorem for modules and therefore obtain an arithmetic Riemann-Roch
theorem and the Riemann-Roch theorem for relative cohomology. Finally, in
section 4.4 we deal with the Riemann-Roch without denominators.

5. Appendix

The Appendix is devoted to the explicit construction of the real absolute
Hodge spectrum using Burgos’ complex (cf. [Bur98]) and to check that this
spectrum, as well as the Deligne-Beilinson spectrum of [HS15], represent their
cohomologies also in the singular context.
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Le théorème de Riemann-Roch originale affirme que pour tout morphisme
propre f : Y → X entre variétés quasi-projectifs lisses sur un corps, et tout
élément a ∈ K0(Y ) du groupe de Grothendieck des fibrés vectoriels on a

ch(f!(a)) = f∗
(
Td(Tf ) · ch(a)

)
(cf. [BS58]). Ici ch est le caractère de Chern, Td(Tf ) est la classe de Todd du
fibré tangent relative et f∗ et f! sont les images directes de l’anneau de Chow
et K0 respectivement. Après, Baum, Fulton et MacPherson ont démontré en
[BFM75] le théorème de Riemann-Roch pour des morphismes localement inter-
section complète entre des schémas algébriques (schémas séparés et localement
de type fini sur un corps) projectifs et singulières. En [FG83] Fulton et Gillet
ont démontré le théorème sans hypothèses projectifs.

L’extension à la théorie K supérieure pour des schémas régulières sur
une base fut démontré par Gillet en [Gil81]. Le théorème de Riemann-Roch
qu’il prouve est pour des morphismes projectifs entre des schémas lisses et
quasi-projectifs. Donc, dans le cas des schémas sur un corps, le résultat de
Gillet n’inclus pas le théorème de [BFM75]. La plus grande généralisation du
théorème de Riemann-Roch que je connais est [Dég14] et [HS15], où Déglise et
Holmstrom-Scholbach obtiennent indépendamment le théorème de Riemann-
Roch pour laK-théorie supérieure et les morphismes projectifs lic entre schémas
régulières sur une base noetherienne de dimension finie.

Après les travaux de Cisinski en [Cis13] sur la K-théorie homotopiquement
invariant de Weibel on peut appliquer la théorie de l’homotopie des schémas. À
l’aide des résultats de Cisinski, nous présentons un théorème de Riemann-Roch
pour la K-théorie homotopiquement invariant et les morphismes projectifs lic
sans hypothèses projectifs sur les schémas. Le théorème que nous prouvons
pour la cohomologie motivique et les schémas de dimension finie sur une base
S est

vii
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Théorème: Soit f : Y → X un morphisme projectif lic entre des S-schémas
et soit Tf ∈ K0(Y ) le fibré tangent virtuel et Td l’extension multiplicatif de la
série t

1−e−t . Alors le diagramme

KH(Y )Q
f∗ //

Td(Tf )ch

��

KH(X)Q

ch
��

HM(Y,Q)
f∗ // HM(X,Q)

est commutative. C’est à dire, pour tout a ∈ KH(Y )Q on a

ch(f∗(a)) = f∗
(
Td(Tf ) · ch(a)

)
.

On en déduit des théorèmes de Riemann-Roch pour beaucoup de cohomologies.
En particulier, pour la cohomologie de Deligne-Beilinson et la cohomologie ab-
solu de Hodge réelle, pour la cohomologie rigide syntomique et pour les coho-
mologies de Weil mixtes, comme la cohomologie de deRham et la cohomologie
étale géométrique.

Pour démontrer ce résultat, notre contribution à la théorie est la construc-
tion du morphisme de Gysin pour des immersions régulières et tout coho-
mologie définie par des spectres. La construction usuelle du morphisme de
Gysin dans la théorie homotopique des schémas utilise l’espace de Thom et
l’isomorphisme de pureté. Mais la pureté exige des hypothèses de lissitude (cf.
[MV99]). Notre approche est différente: on étend les idées de Gabber pour la
cohomologie étale à l’homotopie des schémas. Cela nous permet de construire
le morphisme de Gysin pour des immersions régulières sans des hypothèses de
lissitude sur les schémas. On obtient des nouveaux morphismes de Gysin pour
beaucoup des théories: la K-théorie homotopiquement invariant, la cohomolo-
gie motivique, la cohomologie absolu de Hodge et de Deligne-Beilinson réelle,
la cohomologie rigide syntomique, et tout cohomologie de Weil mixte.

Les modules sur un théorie cohomologique sont des invariants arithmétiques
et géométriques remarquables. La K-théorie arithmétique et la cohomologie
motivique arithmétique sont des modules sur la K-théorie et la cohomologie
motivique respectivement (cf. [HS15]). Aussi, la cohomologie relative d’un
morphisme est toujours un module. Il faut remarquer que la cohomologie à
supportes propres, la cohomologie à supportes dans un fermé, et la cohomologie
réduite, sont la cohomologie relative d’une immersion fermée, d’une immersion
ouverte, et de la projection sur un point respectivement.

On déduit de nos résultats des morphismes de Gysin et un théorème de
Riemann-Roch pour des modules en général. En particulier, on prouve un
nouveau théorème de Riemann-Roch pour la cohomologie relative.
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Théorème: Soit f : Y → X un morphisme de schémas et g : T → X un
morphisme projectif lic. Soit fT : Y ×X T → T , Tg ∈ K0(Y ) le fibré tangent
virtuel de g et KH(f) et HM(f,Q) la K-théorie homotopiquement invariant
et la cohomologie motivique relative de f respectivement. Si f est propre ou g
est lisse, alors le diagramme

KH(fT )Q
g∗ //

Td(Tg)ch

��

KH(f)Q

ch
��

HM(fT ,Q)
g∗ // HM(f,Q)

est commutative. C’est à dire, pour tout m ∈ KH(fT )Q on a

ch(g∗(m)) = g∗
(
Td(Tg) · ch(m)

)
.

On obtient aussi le théorème de Riemann-Roch arithmétique de [HS15] et
le théorème de Riemann-Roch résiduel de [Dég14].

Finalement, on améliore une formule classique: le théorème de Riemann-
Roch sans dénominateurs. Conjecturé par Grothendieck en [SGA6], il était
démontré par Jouanolou en [Jou70] pour des schémas projectifs et lisses. Après,
il fut généralisé aux cas singulier ([Ful98]). La plus grande généralisation que
je connais est celle de Gillet en [Gil81] pour la K-théorie supérieure et des
schémas lisses et quasi-projectifs sur une base régulière. Notre théorème est
démontré dans un contexte singulier et sans hypothèses de projectivité sur les
schémas.

Théorème: Soit i : Z → X une immersion régulière de codimension d. On de-
note qi : KH(Z)→ KHZ(X) et pi : HM(Z,Z)→ HM,Z(X,Z) les morphismes
de Gysin raffinés, cZq,r : KHr,Z(X) → HM,Z(X,Z) la r-ème classe de Chern
à support dans Z (cf. 4.4.1 et la définition 4.2.8 respectivement), et soient
P d
q (r, x1, · · · ; y1, · · · ) les polynômes à coefficients entières définis en [Jou70].

Alors pour tout a ∈ KHr(Z) on a

cZq,r(qi(a)) = pi
(
P d
q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(NZ/X), . . . , cq−d(NZ/X))

)
.

Voilà l’organisation de cette mémoire:

1. Grothendieck-Riemann-Roch

On utilise les axiomes de Panin [Pan04] et on prouve que la K-théorie
de Grothendieck est la cohomologie universelle pour les variétés lisses sur un
corps, lorsque les classes de Chern suivent la loi multiplicatif x + y − xy. On
en déduit le théorème de Grothendieck-Riemann-Roch pour le K-groupe de
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Grothendieck des fibrés vectoriels et pour le gradué de la K-théorie par la
filtration qui donne la codimension du support. On ne donne aucun résultat
nouveau dans ce chapitre, mais je crois qu’il contient les plus importantes idées
de cette mémoire.

2 et 3. Préliminaires et théorie homotopique des schémas

On présente une introduction à la théorie de l’homotopie des schémas pour
de géomètres algébriques. On remarque la functorialité basique du grand site
de Nisnevich et la classification des torseurs. On ne prétend pas être complet
ni ”self contained”, donc la plupart des preuves sont omises. Le seul résultat
qu’on ne peut pas trouver dans la littérature est la proposition 3.1.43. Pour la
classification des torseurs, on donne des preuves complètes.

4. Théorèmes de Riemann-Roch et morphismes de Gysin

Dans la section 4.1 on rappelle la notion de spectre en anneaux orienté
absolu et de module sur un spectre en anneaux absolu. On introduit la coho-
mologie relative dans le cadre de l’homotopie des schémas et on construit le
spectre absolu qui, sous des conditions convenables, représente la cohomolo-
gie relative. Dans la section 4.2 on construit le morphisme de Gysin à l’aide
des idées de Gabber pour des immersions régulières et on prouve un résultat
d’unicité. On démontre le théorème de Riemann-Roch motivique dans la sec-
tion 4.3 (cf. Théorème 4.3.7) et on obtient le théorème de Riemann-Roch pour
la K-théorie homotopiquement invariant comme un corollaire. On en déduit
le théorème de Riemann-Roch pour les modules et on obtient un théorème
arithmétique de Riemann-Roch et un théorème de Riemann-Roch pour la co-
homologie relative. Finalement, dans la section 4.4 on étude le théorème de
Riemann-Roch sans dénominateurs.

5. Appendice

L’appendice est dédié à la construction explicite du spectre de Hodge ab-
solu réel à l’aide du complexe de Burgos (cf. [Bur98]) et on prouve que cet
spectre, aussi bien que le spectre de Deligne-Beilinson de [HS15], représentent
ces cohomologies dans le cadre singulier.



Introducción

El teorema de Riemann-Roch original de Grothendieck afirma que para todo
morfismo propio f : Y → X, entre variedades irreducibles quasiproyectivas
lisas sobre un cuerpo, y todo elemento a ∈ K0(Y ) del grupo de Grothendieck
de fibrados vectoriales se satisface la relación

ch(f!(a)) = f∗
(
Td(Tf ) · ch(a)

)
(cf. [BS58]). Recuérdese que ch denota el carácter de Chern, Td(Tf ) la clase
de Todd del fibrado tangente relativo y f∗ y f! las imágenes directas en el
anillo de Chow y K0 respectivamente. Más tarde Baum, Fulton MacPherson
probaron en [BFM75] el teorema de Riemann-Roch para morfismos localmente
intersección completa entre esquemas algebraicos (es decir, esquemas separa-
dos localmente de tipo finito sobre cuerpo) proyectivos singulares. En [FG83]
Fulton y Gillet probaron el teorema sin hipótesis proyectivas.

La notable extensión a la teoŕıa K superior para esquemas regulares so-
bre una base fue probada por Gillet en [Gil81]. El teorema de Riemann-Roch
alĺı probado es para morfismos proyectivos entre esquemas lisos quasiproyec-
tivos. Sin embargo, obsérvese que en el caso de esquemas sobre cuerpo el
resultado de Gillet no recupera el teorema de [BFM75]. La mayor general-
ización del teorema de Riemann-Roch que yo conozco es [Dég14] y [HS15]
donde Déglise y Holmstrom-Scholbach obtuvieron independientemente el teo-
rema de Riemann-Roch para teoŕıa K superior y morfismos proyectivos lic
entre esquemas regulares sobre una base noetheriana finito dimensional.

Tras los trabajos de Cisinski en [Cis13] sobre la teoŕıa K homotópicamente
invariante de Weibel podemos aplicar la teoŕıa homotópica de esquemas a ella.
Apoyados en los resultados de Cisinski, presentamos un teorema de Riemann-
Roch para la teoŕıa K homotópicamente invariante y morfismos proyectivos
lic sin hipótesis proyectivas en los esquemas. En concreto, el teorema que
probamos para la cohomoloǵıa mot́ıvica y esquemas finito dimensionales sobre
una base S es el siguiente

xi
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Teorema: Sea f : Y → X un morfismo proyectivo lic entre S-schemes y
notemos Tf ∈ K0(Y ) el fibrado tangente virtual y Td la extensión multiplica-
tiva de la serie t

1−e−t . Entonces el diagrama

KH(Y )Q
f∗ //

Td(Tf )ch

��

KH(X)Q

ch
��

HM(Y,Q)
f∗ // HM(X,Q)

conmuta. Es decir, para toda a ∈ KH(Y )Q tenemos

ch(f∗(a)) = f∗
(
Td(Tf ) · ch(a)

)
.

De este resultado deducimos teoremas de Riemann-Roch para muchas coho-
moloǵıas. En particular, para la cohomoloǵıa de Deligne-Beilinson y de Hodge
absoluta reales, para la cohomoloǵıa ŕıgida sintómica y para cualquier coho-
moloǵıa de Weil mixta como la cohomoloǵıa de deRham y étale geométrica.

Para probar este resultado, nuestra contribución a la teoŕıa es la con-
strucción del morfismo de Gysin para inmersiones regulares y cualquier co-
homoloǵıa dada por espectros. Desde sus comienzos, la construcción estándar
del morfismo de Gysin en teoŕıa de homotoṕıa de esquemas se apoya en el
espacio de Thom y el isomorfismo de pureza. Sin embargo, la pureza requiere
hipótesis de lisitud (cf. [MV99]). Nuestro estrategia es distinta: desarrol-
lamos las ideas de Gabber para la cohomoloǵıa étale en el contexto de la
homotoṕıa de esquemas y obtenemos morfismos de Gysin para inmersiones
regulares sin hipótesis de lisitud en los esquemas. Esto nos lleva a la con-
strucción de nuevos morfismos de Gysin para muchas teoŕıas como la teoŕıa
K homotópicamente invariante, la cohomoloǵıa mot́ıvica, la cohomoloǵıa de
Hodge absoluta y de Deligne-Beilinson real, la cohomoloǵıa ŕıgida sintómica,
y cualquier cohomoloǵıa dada por una teoŕıa de Weil mixta.

Los módulos sobre una teoŕıa cohomológica son invariantes aritméticos y
geométricos notables. La teoŕıa K aritmética y la cohomoloǵıa mot́ıvica ar-
itmética son módulos sobre la teoŕıa K y la cohomoloǵıa mot́ıvica respectiva-
mente (cf. [HS15]). Además, en cualquier cohomoloǵıa la cohomoloǵıa relativa
a un morfismo también es un módulo. Obsérvese que la cohomoloǵıa con so-
portes propios, la cohomoloǵıa con soporte en un cerrado, y la cohomoloǵıa
reducida son la cohomoloǵıa relativa a una inmersión cerrada, a una inmersión
abierta y a la proyección sobre el punto base respectivamente.

Deducimos de nuestros resultados nuevos morfismos de Gysin y un teorema
de Riemann-Roch para módulos en general. En particular, probamos un nuevo
teorema de Riemann-Roch para la cohomoloǵıa relativa.
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Teorema: Sea f : Y → X un morfismo de esquemas y g : T → X un morfismo
proyectivo lic. Denotamos fT : Y ×X T → T , Tg ∈ K0(Y ) el fibrado tangente
virtual de g y KH(f) y HM(f,Q) la teoŕıa K homotópicamente invariante y
cohomoloǵıa mot́ıvica relativa de f respectivamente. Si además f es propio o
g es liso, entonces el diagrama

KH(fT )Q
g∗ //

Td(Tg)ch

��

KH(f)Q

ch
��

HM(fT ,Q)
g∗ // HM(f,Q)

conmuta. Es decir, para todo m ∈ KH(fT )Q tenemos

ch(g∗(m)) = g∗
(
Td(Tg) · ch(m)

)
.

También obtenemos el teorema de Riemann-Roch aritmético de [HS15] el
teorema de Riemann-Roch residual de [Dég14].

Finalmente mejoramos una fórmula clásica en esta materia: el Riemann-
Roch sin denominadores. Conjeturado por el propio Grothendieck en [SGA6],
fue probado por primera vez por Jouanolou en [Jou70] para esquemas quasiproyec-
tivos lisos y después generalizado a contexto singular ([Ful98]). La mayor gen-
eralización que yo conozco es el enunciado de Gillet en [Gil81] para la teoŕıa
K superior y esquemas lisos quasiproyectivos sobre una base regular. Nuestro
teorema es probado otra vez en contexto singular y sin hipótesis proyectivas
en los esquemas.

Teorema: Sea i : Z → X una inmersión regular de codimensión d y de-
notemos qi : KH(Z) → KHZ(X) y pi : HM(Z,Z) → HM,Z(X,Z) los mor-
fismos de Gysin refinados, cZq,r : KHr,Z(X) → HM,Z(X,Z) la r-ésima clase
de Chern con soporte en Z (cf. 4.4.1 y Definición 4.2.8 respectivamente),
y P d

q (r, x1, · · · ; y1, · · · ) los polinomios con coeficientes enteros definidos en
[Jou70]. Entonces para todo a ∈ KHr(Z) tenemos

cZq,r(qi(a)) = pi
(
P d
q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(NZ/X), . . . , cq−d(NZ/X))

)
.

A continuación describimos la organización de esta memoria.

1. Grothendieck-Riemann-Roch

Usando la axiomática de Panin en [Pan04] probamos que la teoŕıa K de
Grothendieck es la cohomoloǵıa universal para variedades lisas sobre un cuerpo
con clases de Chern siguiendo la ley multiplicativa x + y − xy. Deducimos el
teorema de Grothendieck-Riemann-Roch para el grupo K de Grothendieck de
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fibrados vectoriales y para el graduado de la teoŕıa K por la filtración de la
codimensión del soporte. Aunque no probamos ninguna fórmula nueva en este
caṕıtulo, creo que contiene las ideas principales de esta memoria.

2 y 3. Preliminares y teoŕıa homotópica de esquemas

Damos una introducción a la teoŕıa homotópica de esquemas para geómetras
algebraicos. Ponemos énfasis en la funtorialidad básica en el lugar grande de
Nisnevich y a la clasificación de torsores. No pretendemos ser ni completo y
autocontenido por lo que la mayoŕıa de las pruebas se omiten. El único resul-
tado que no se encuentra en la literatura es la clasificación de pseudo divisores
de la Proposición 3.1.43. En cuanto a la clasificación de torsores, incluimos
pruebas completas.

4. Teoremas de Riemann-Roch y morfismos de Gysin

En la sección 4.1 recordamos la noción de espectro en anillos orientado
absoluto y módulo sobre un espectro absoluto en anillos. Introducimos la co-
homoloǵıa relativa en el contexto de la teoŕıa de homotoṕıa de esquemas y
construimos el espectro absoluto que bajo ciertas condiciones representa la
cohomoloǵıa relativa. En la sección 4.2 construimos el morfismo de Gysin us-
ando las ideas de Gabber para el caso de inmersiones regulares y probamos
un criterio de unicidad. Probamos el teorema mot́ıvico de Riemann-Roch en
la sección 4.3 (cf. Teorema 4.3.7) y obtenemos el teorema de Riemann-Roch
para la teoŕıa K homotópicamente invariante como corolario. Deducimos un
teorema de Riemann-Roch para módulos y por tanto obtenemos un teorema
aritmético de Riemann-Roch y un teorema de Riemann-Roch para la coho-
moloǵıa relativa. Finalmente, en la sección 4.4. abordamos el teorema de
Riemann-Roch sin denominadores.

5. Apéndice

El Apéndice está dedicado a la construcción expĺıcita del espectro de Hodge
absoluto real usando el complejo de Burgos (cf. [Bur98]) y para comprobar que
este espectro, aśı como el espectro de Deligne-Beilinson de [HS15], representan
estas cohomoloǵıas también en contexto singular.
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y a mis hermanos Juan y José, y también a Clara, todo su apoyo. También
ellos han sido imprescindibles y el tiempo que he dedicado a esta tesis era en
justicia suyo.

Por último, quiero dedicar esta memoria a mi padre. No puedo expresar
con palabras la deuda que esta memoria le tiene y cuánto he recibido, también
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Chapter 1

Grothendieck-Riemann-Roch

1.1 Universal property of K-theory

Let k be a field of characteristic zero. Denote Vark the category of smooth
algebraic varieties over k and Rings the category of commutative rings.

Definition 1.1.1 We call a cohomology theory to a contravariant functor
A : Vark −→ Rings such that

1. We have i∗1 + i∗2 : A(X1 tX2)
∼−→ A(X1)⊕A(X2) for any two schemes X1

and X2;

2. (Homotopy invariance) We have π∗ : A(X)
∼−→ A(P ) for any affine bundle

π : P → X;

For every projective morphism f : Y → X we have a morphism called direct
image f∗ : A(Y )→ A(X) satisfying that

3. (Functoriality) Id∗ = Id and for g : Z → Y another projective morphism
(fg)∗ = f∗g∗;

4. (Projection formula) The map f∗ is a morphism of A(X)-modules, i.e.,
a · f∗(b) = f∗(f

∗(a) · b), ∀ a ∈ A(X), b ∈ A(Y );

5. If f transversal to a smooth closed subvariety i : Z → X (in other words,
f ∗NZ/X

∼−→ NZ′/Y for Z ′ = Z ×X Y and i′ : Z ′ → Y ) then the square

A(Z ′)
i′∗ // A(Y )

A(Z)

f∗

OO

i∗ // A(X)

f∗

OO

commutes;

1



2 1. GROTHENDIECK-RIEMANN-ROCH

6. (Localization) For any smooth closed subscheme i : Z → X of open com-
plement j : U → X there is an exact sequence

A(Z)
i∗−→ A(X)

j∗−→ A(U);

7. For any projective bundle π : P(E) → X and any morphism g : Y → X
the square

A(P(E))
g∗ //

π∗
��

A(P(g∗E)

π∗
��

A(X)
g∗ // A(Y )

commutes;

8. (Projection bundle theorem) For any vector bundle E → X of rank r
there is a natural isomorphism

A(P(E)) = A(X)⊕ A(X)y ⊕ . . .⊕ A(X)yr−1

where y = s∗0s0∗(1) the s0 zero section of OPn(E)(1).

A morphism of cohomology theories ϕ : A→ Ā is a natural transformation
which preserves direct images. In other words,

ϕ(a+ b) = ϕ(a) + ϕ(b) , ϕ(ab) = ϕ(a) · ϕ(b) , ϕ(1) = 1 ,

ϕ(f ∗(a)) = f ∗(ϕ(a)) and ϕ(f∗(a)) = f∗(ϕ(a)).

Let A be a cohomology theory. Let L → X be a line bundle and s : X → L
be a section, we call the first Chern class of L to c1(L) = s∗s0∗(1) (note it
does not depend on the section from axiom 2 and that in axiom 8 we have
y = c1(OPn(E)(1))). Let Z → X be a smooth closed subvariety, we call the
fundamental class of Z in X to ηXZ = i∗(1).

Remark 1.1.2 These axioms are taken from [Pan04].

Remark 1.1.3 Let A be a cohomology theory, and i : Z → X be a smooth
hypersurface. Denote LZ the line bundle defined by the dual of the sheaf of
ideals IZ . The line bundle LZ always admit a section transversal to the zero
section which vanishes on Z. Therefore

c1(LZ) = i∗(1) = ηXZ .

In particular, in axiom 8 for the projective space we have y = ηP
n

H = c1(LH)
= c1(OP(E)(1)) for a hyperplane H → Pn. Let f : Y → X be a morphism,
note that f ∗c1(L) = c1(f ∗L) since the zero section s0 is transversal to f . The
following result shows that, as expected, it is equivalent to state axiom 8 for
c1(OP(E)(−1)).
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Proposition 1.1.4 Let A be a cohomology theory, E → X be a vector bundle
of rank r and denote x = c1(OP(E)(−1)). Then

A(P(E)) = A(X)⊕ A(X)x⊕ . . .⊕ A(X)xr−1.

Proof: Consider P(E)×XP(E∗). The natural incidence relation defines a closed
subvariety whose open complement we denote U . Note that π1 : U → P(E)
and π2 : U → P(E∗) are affine bundles. Since the natural pairing

π∗1OP(E)(−1)⊗ π∗2OP(E∗)(−1)→ π∗1E ⊗ π∗2E∗ → OP(E)×XP(E∗)

is an isomorphism on U then π∗1OP(E)(−1) is isomorphic to π∗2OP(E∗)(1) on U .
By axiom 2 we have A(P(E)) ' A(U) ' A(P(E∗)) and we conclude.

�

Proposition 1.1.5 Let A be a cohomology theory and f = f1tf2 : Y1tY2 → X
be projective morphism, we have f∗ = f1∗ ⊕ f2∗ : A(Y1)⊕ A(Y2)→ A(X).

Proof: Consider the notation of axiom 1, note that the inverse of i∗1+i∗2 : A(X1t
X2)→ A(X1)⊕A(X2) is i1∗⊕ i2∗ since both i1 and i2 are transversal to i1 and
i2.

�

Notation 1.1.6 Let A be a cohomology theory. We denote Lx a line bundle
whose first Chern class is c1(Lx) = x. We say that a cohomology theory follows
the law x+ y or the additive group law if c1(Lx ⊗ Ly) = x+ y. We say that a
cohomology theory follows the law x + y − xy or the multiplicative group law
if c1(Lx ⊗ Ly) = x+ y − xy.1

Example 1.1.7 Every classic cohomology is a cohomology theory. Let us
review the main examples:

• Grothendieck’s K-theory of vector bundles K0(X) is a cohomology the-
ory (cf. [Nav12, §12] for example). In this case we denote the direct
image of a morphism f by f!. The fundamental class of a subvariety Z
is OZ and the first Chern class of line bundle L is c1(L) = 1 − L∗. In
addition, first Chern classes are nilpotent (c1(L)n = 0 for n > dimX).
Note that (1−L∗1⊗L∗2) = (1−L∗1) + (1−L∗2)− (1−L∗1)(1−L∗2) ∈ K(X)
so we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2)− c1(L1)c1(L2).

Therefore K-theory follows the law x+ y − xy.

1They are the laws of the additive and multiplicative group respectively in one variable
with origin in the neutral element. Indeed, for the multiplicative law (1 − x)(1 − y) =
1− (x+ y − xy).
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• The graduated of the K-theory of vector bundles by the support codi-
mension filtration GK(X) is a cohomology theory (cf. [Nav12, §12]
for example). The fundamental class of a subvariety Z of X is [OZ ]
and they generate GK(X). The first Chern class of a line bundle is
c1(L) = [1−L∗]. The preceding computation concludes that in this case

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

so that GK follows the law x+ y.

• Denote CH(X) the Chow ring of X. It is a cohomology theory (cf.
[Ful98] for example). The fundamental class of a subvariety Z is given
by the class [Z] and in this case c1(L1 ⊗ L2) = c1(L1) + c1(L2) so that
CH follows the law x+ y.

• Let X be a smooth algebraic variety over a field k of characteristic zero
endowed with an embedding k → C and denote X̄ = X × Spec(C).
Denote H2•

Bet(X,Z) =
⊕

pH
2p
Bet(X̄,Z) where Hp

Bet(X̄,Z) denotes the Betti
cohomology of the classical topological space associated to the closed
points of X̄. Then H2•

Bet(X,Z) is a cohomology theory. The fundamental
class of a subvariety Z is given by duality by the homology class defined
by Z̄. Once again we have c1(L1 ⊗ L2) = c1(L1) + c1(L2) so that H2•

Bet

follows the law x+ y.

We review the theory of Chern classes in this context.

Definition 1.1.8 Let A be a cohomology theory, E → X be a vector bundle
of rank r and denote x = c1(OP(E)(−1)). We define the Chern classes of E
as the unique classes cA1 (E), . . . , cAr (E) ∈ A(X) such that

xr − cA1 (E)xr−1 + · · ·+ (−1)rcAr (E) = 0.

We denote them simply ci(E) if no confusion is possible.
We denote the characteristic polynomial of the endomorphism ·x by c(E) =

tr − c1(E)tr−1 + · · ·+ (−1)rcr(E) ∈ A(X)[t].

Remark 1.1.9 Let L→ X be a line bundle, then P(L) = X and OP(L)(−1) =
L so that the above definition of first Chern class agrees with that of Definition
1.1.1.

Theorem 1.1.10 Let A be a cohomology theory and E → X be a vector
bundle. The Chern classes ci(E) are functorial. In other words, let f : Y → X
be a morphism, then f ∗ci(E) = ci(f

∗E) for all i.
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Proof: Since f ∗c1(OP(E)(−1)) = c1(f ∗OP(E)(−1)) = c1(OP(f∗E)(−1)) then the
result follows. �

Theorem 1.1.11 Let A be a cohomology theory. The Chern classes are addi-
tive. In other words, let 0→ E1 → E → E2 → 0 be a short exact sequence of
vector bundles, then

c(E) = c(E1) · c(E2) ,

ck(E) =
∑
i+j=k

ci(E1)cj(E2) i, j, k ∈ N.

Proof: After the base change P(E1) → X and by induction on the rank of
E1 we can assume that E1 is a line bundle. Therefore i : X = P(E1) →
P(E) is a section of P(E) → X, so that i∗ is injective. Denote j : U →
P(E) the complement of P(E1). The natural projection U → P(E2) is an
affine bundle (of associated vector bundle Hom(OP(E2)(−1), E1)) so that the
morphism j∗ : A(P(E)) → A(U) = A(P(E2)) is surjective, because j∗(xnE) =
xnE2

for xEi = c1(OP(Ei)(−1)).
Since xE1 = i∗xE and due to the projection formula the diagram

0 // A(P(E1))

·xE1

��

i∗ // A(P(E))
j∗ //

·xE
��

A(P(E2)) //

·xE2

��

0

0 // A(P(E1))
i∗ // A(P(E))

j∗ // A(P(E2)) // 0

is commutative. Since it is made of exact rows we conclude recalling that
characteristic polynomials are additive.

�

Corollary 1.1.12 Let A be a cohomology theory, denote x = c1(OPd(−1)),
y = c1(OPd(1)) and S = Spec(k). We have that

A(Pd) = A(S)[x]/(xd+1) = A(S)[y]/(yd+1).

Proof: Since Chern classes are additive by the previous theorem it follows that
a trivial vector bundle has null Chern classes. �

Example 1.1.13 Let E → X be a vector bundle of rank r, let us recall
the splitting principle. Consider the projective bundle π : P(E) → X. We
have the canonical exact sequence 0 → O(−1) → π∗E → Q → 0 where
Q = (π∗E)/O(−1). Iterating this construction with Q we obtain a base change
p : X ′ → X such that p∗ : A(X)→ A(X ′) is injective and such that p∗E is sum
of line bundles Li in K(X ′). Since c1(Li) = 1− L∗i , we have in K(X) that

c1(E) = rankE − E∗ . (1.1)
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Theorem 1.1.14 (Universal property of K-theory) Let A be a cohomol-
ogy theory with multiplicative law x+ y − xy. Then there exist a unique mor-
phism of cohomology theories

ϕ : K → A.

Proof: Let E → X be a vector bundle. Due to equation (1.1) we have
E = rankE − cK1 (E∗) in K(X). Therefore the unique possible morphism
of cohomology theories ϕ : K → A is

ϕ(E) := rankE − cA1 (E∗) . (1.2)

Let us see it is well defined. Since rank and cA1 are additive the map ϕ is
an additive map on vector bundles. Therefore ϕ defines a group morphism
ϕ : K(X) → A(X). This morphism ϕ commutes with inverse images since
rank and cA1 commute with inverse images.

The map ϕ preserves products of line bundles since Chern classes follows
the same law in A and in the K-theory:

ϕ(L1 · L2) = 1− cA1 (L∗1 ⊗ L∗2) = 1− cA1 (L∗1)− cA1 (L∗2) + cA1 (L∗1)cA1 (L∗2)

=
(
1− cA1 (L∗1)

)(
1− cA1 (L∗2)

)
= ϕ(L1) · ϕ(L2).

Let E1 → X, E2 → X be two vector bundles. By the splitting principle we
may assume they are sums of line bundles in K(X). Therefore ϕ preserves
products.

It is only left to prove that ϕ preserves direct images. The map ϕ preserves
Chern classes of line bundles:

ϕ
(
cK1 (L)

)
= ϕ(1− L∗) = 1− ϕ(L∗) = 1−

(
1− cA1 (L)

)
= cA1 (L).

Therefore ϕ preserves fundamental classes of smooth hypersurfaces. We con-
clude due to the following lemma. �

Panin’s lemma: Let A and Ā be two cohomology theories and ϕ : A→ Ā be a
natural transformation which preserves the fundamental class of hypersurfaces.
Then ϕ is a morphism of cohomology theories:

ϕ(f∗(a)) = f∗(ϕ(a)) (1.3)

for f : Y → X projective and a ∈ A(Y ).

Proof: Note that if the lemma is true for two morphism then it is true for the
compostion, therefore it is enough to prove the lemma for closed immersions
i : Z → X and canonical projections πX : PnX → X.
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1. Let i : Z → X be a closed immersion. If equation (1.3) holds for the zero
section s : Z → N̄ = P(1⊕NZ/X) of the projective closure of the normal
bundle then it also holds for i.

Proof: Consider the deformation to the projective closure of the normal
bundle. That is to say, consider the commutative diagram

N
i0 // X ′ X

i1oo

Z //

s0

OO

A1
Z

ι

OO

Zoo

i

OO

where X ′ = BY×{0}A1
X , the blow-up of A1

X on Y × {0}. Denote U =
X ′ − (A1

Z), by axiom 6 we have a commutative diagram

Ā(U)

Ā(N̄) Ā(X ′)
i∗0oo

j∗

OO

Ā(Z)

s∗

OO

Ā(A1
Z).

i∗

OO

i∗0
∼
oo

Note that (Ker i∗0)∩ (Ker j∗) = 0. Indeed the column is exact by axiom 3
and s∗ is injective since p∗s∗ = Id for the natural projection p : N̄ → Z.

Consider the commutative diagram

Ā(U)

Ā(N) Ā(X ′)oo

j∗

OO

// Ā(X)

A(Z)

Ψ1

OO

A(A1
Z)∼oo

Ψ2

OO

∼ // A(Z)

Ψ3

OO

where the vertical arrows are the difference of the morphism that theorem
states that coincide (Ψi = f∗ϕ−ϕf∗). The map Ψ1 is zero by hypothesis,
the Ψ2 is zero since (Ker i∗0) ∩ (Ker j∗) = 0 and we conclude that Ψ3 is
zero.

2. Equation (1.3) holds for the zero section s : Z → Ē = P(1 ⊕ E) of the
projective closure of a vector bundle E → Z.
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Proof: Let E = L→ Z be a line bundle. Note that s∗ : A(L̄)→ A(Z) is
surjective, and that ϕ(s∗(1)) = s∗(1) since Z is a hypersurface of L̄. Set
a = s∗b ∈ A(Y ), then

ϕ(s∗s
∗b) = ϕ(b · s∗(1)) = ϕ(b) · s∗(1) = s∗(s

∗ϕ(b)) = s∗(ϕ(s∗b))

and equation (1.3) holds.

Assume E admits a filtration {Ei} such that the quotients Ei/Ei−1 are
line bundles. The equation holds for the zero section Z → Ē1 and the
morphisms Ē1 → Ē2 → . . . → Ēr = Ē. Therefore it holds for the
composition s : Z → Ē.

In the general case, due to the splitting principle there is a morphism
π : Z ′ → Z such that π∗ is injective and such that E ′ = π∗E admits a
filtration as before. The equation (1.3) holds for the zero section s′ : Z ′ →
Ē ′, and we conclude by axiom 5 applied to π : Ē ′ → Ē and s : Y → Ē,

π∗s∗(ϕ(a)) = s′∗π
∗ϕ(a) = s′∗ϕ(π∗a) = ϕ(s′∗π

∗a) = ϕ(π∗s∗a) = π∗ϕ(s∗a).

3. If equation 1.3 holds for the canonical projection π : Pn → p then it also
holds for the canonical projection πX : PnX → X.

Proof: It follows from axiom axiom 7.

4. The equation (1.3) holds for the canonical projection π : Pn → p.

Proof: Consider the closed immersion i : Pn−1 → Pn and set

A = A(p), xn = c1(OPn(1)) = i∗(1) ∈ A(Pn) and

Ā = Ā(p), x̄n = c̄1(OPn(1)) = ī∗(1) ∈ Ā(Pn).

By hypothesis ϕ(xn) = x̄n, and therefore ϕ(xrn) = x̄rn so that the mor-
phism ϕ : A(Pn)→ Ā(Pn) induces an isomorphism of Ā-algebrasA(Pn)⊗A
Ā = Ā(Pn). We have to check that the 1-form p̄∗ : Ā(Pn)→ Ā is obtained
by change of scalars from the 1-form p∗ : A(Pn)→ A.

Consider the fundamental class of the diagonal ∆: Pn → Pn × Pn and
denote it ∆n = ∆∗(1) ∈ A(Pn × Pn) = A(Pn)⊗A A(Pn). We have

(p∗ ⊗ 1)(∆n) = π∗∆∗(1) = Id∗(1) = 1,

where π : Pn × Pn → Pn is the second projection. In other words, the
polarity defined by the diagonal ω 7→ (ω ⊗ 1)(∆n) maps p∗ to the unit.

According to the next Proposition 1.1.15, the 1-form p∗ is determined
by the previous condition. Note that the fundamental class of the diag-
onal is stable by change of scalars (since equation (1.3) hold for closed
immersions) and we obtain that p∗ is stable by change of scalars.

�
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Proposition 1.1.15 The polarity defined by the diagonal A(Pn)∗ → A(Pn),
ω 7→ (ω ⊗ 1)(∆n), is an isomorphism.

Proof: In fact, by induction on n we prove that

∆n =
n∑

r,s=0

arsx
r
n ⊗ xsn =


0 0 1

•
0

1 • •


where ars = 0 when r + s < n, and ars = 1 when r + s = n. Indeed,

i∗(x
r
n−1) = i∗i

∗(xrn) = xrn · i∗(1) = xr+1
n ,

and by axiom 5 we have that (i∗ ⊗ 1)(∆n) is the fundamental class for the
diagonal of Pn−1 in Pn−1 × Pn. Note tat

(i∗ ⊗ 1)(∆n) =
∑

r,sarsx
r
n−1 ⊗ xsn and

(1⊗ i∗)(∆n−1) =
∑

r,sa
′
rsx

r
n−1 ⊗ xs+1

n

where ∆n−1 =
∑

rs a
′
rsx

r
n−1⊗ xsn−1. By induction on n we obtain the result for

ars, r < n. By symmetry we also obtain it for ars, s < n, and we conclude.
�

1.2 Grothendieck-Riemann-Roch theorem

Definition 1.2.1 We define a graded Q-cohomology theory A• to be a
cohomology theory with values in the category positive graded commutative
Q-algebras (i.e., A•(X) = ⊕n≥0A

n(X)), such that

9. For every projective morphism f : Y → X between connected varieties
the direct image changes the degree f∗ : A

n(Y ) → An+d(Xi) where d =
dimX − dimY ;

10. It follows the additive law c1(Lx ⊗ Ly) = x+ y.

A morphism of graded Q-cohomology theories is a Q-linear morphism of
cohomology theories which preserves the degree.

Example 1.2.2 • The graduated of the K theory and the Chow ring de-
fine graded Q-cohomology theories GK(X)Q = GK(X) ⊗ Q and also
CH(X)Q = CH(X) ⊗ Q. Betti cohomology with rational coefficients
also defines a graded Q-cohomology H2•

Bet(X̄,Q) = ⊕iH2i
Bet(X̄,Q).
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• Let A• be a graded Q-cohomology theory, then Â•(X) :=
∏

nA
n(X) is

cohomology theory.

• Let A• be a graded Q-cohomology theory, the fundamental class of a
smooth subvariety Z → X of codimension d belongs to Ad(X). In partic-
ular, first Chern classes of line bundles belong to A1(X) and, in general,
for any vector bundle E → X we have ci(E) ∈ Ai(X).

Let E → X be a vector bundle and A• be a graded Q-cohomology the-
ory. By the splitting principle, after a base change π : X ′ → X such that
π∗ : A•(X) → A•(X ′) is injective we have π∗E = Lα1 + · · ·Lαr in K(X ′) for
Lα1 , . . . , Lαr line bundles. Therefore the Chern classes of E are the elementary
symmetric functions of α1, . . . , αr.

Definition 1.2.3 Let E → X be a vector bundle, A• be a graded Q-cohomology
theory and F (t) =

∑
n ant

n ∈ Q[[t]] be a formal series with rational coefficients.
We denote

F+(E) = F (α1) + . . .+ F (αr) ∈ Â•(X) =
∏

nA
n(X)

where F+(E) is a symmetric function on α1, . . ., αr and therefore a function
on the Chern classes of E. Note that F+ defines an additive function on vector
bundles. Therefore it also defines a functorial morphism of groups

F+ : K(X) −→ Â•(X)

which we call the additive extension of F .
Let F = 1 + a1t+ . . . ∈ Q[[t]] be a formal series where a0 = 1, we denote

F×(E) = F (α1) · . . . · F (αr) ∈ Â•(X)∗

where F×(E) is a function on the Chern classes of E. The assignation F× also
defines an additive function on vector bundles, therefore it defines a functorial
morphism of groups

F× : K(X)→ Â•(X)∗

which we call the multiplicative extension of F .

1.2.4 (Change of direct image) LetA• be a graded Q-cohomology theory.
Given a series F (t) = 1 + . . . ∈ Q[[t]] with a0 = 1 we can change direct images

in Â• so that so that the first Chern class of a line bundle Lx is cnew
1 (Lx) =

xF (x) = x + . . ., turning Â• into a (non graded) cohomology theory. Let
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f : Y → X be a projective morphism and consider the virtual tangent bundle
Tf := TY − f !TX ∈ K(Y ). Denote

fnew
∗ (a) := f∗

(
F×(−Tf ) a

)
= f∗

(
F×(Tf )

−1a
)

= F×(TX)f∗
(
F×(TY )−1a

)
,

so that for i : Z → X a hypersurface we have

inew
∗ (1) = i∗

(
F×(NZ/X)

)
= i∗

(
F×(i∗LZ)

)
= F×(LZ)i∗(1) = F (Z)Z.

Proposition 1.2.5 Let A• be a graded Q-cohomology theory and F (t) = 1 +

· · · ∈ Q[[t]] be a series such that a0 = 1. Then Â• with the new direct images
fnew
∗ given by F is a cohomology theory.

Proof: All axioms are direct except for the projective bundle theorem. Note
that Â•(X) has a natural filtration whose graded ring is A•(X). Let E → X
be a vector bundle and denote x = xE = c1(OP(E)(1)) ∈ A1(P(E)), y = xnew

E =

xF (x) = x+ . . . ∈ Â•(P(E)), so that yn = xn + . . .. The morphism

Â•(X)⊕ Â•(X)[−1]⊕ . . .⊕ Â•(X)[−r] −→ Â•(P(E))

defined by 1, y, . . . , yr induce on its graduated the isomorphism

A•(X)⊕ A•(X)[−1]⊕ . . .⊕ A•(X)[−r] −→ A•(P(E))

defined by 1, x, . . . , xr. Therefore the original map is an isomorphism and
1, y, . . . , yr define a base of the free Â•(X)-module Â•(P(E)).

�

Recall that A• follows the law x + y. We can change direct images by the
exponential series so that it follows the law x+y−xy. Indeed, e−x = 1−(1−e−x)
and 1− e−x = x+ · · · so that we set

cnew(Lx) = 1− e−x = x+ . . . = xF (x)

where F (t) = 1−e−t
t

= 1 + . . .. By the universal property of K-theory 1.1.14
there exists a unique morphism of cohomology theories

ch: K → Â•.

Proposition 1.2.6 Let A• be a graded Q-cohomology theory. The Chern
classes are nilpotent.

Proof: Consider the above new direct images on Â• so that it follows the law
x+y−xy. Consider the morphism of cohomology theories ch: K → Â•. Recall
that in K-theory Chern classes are nilpotent. Therefore cnew

1 (Lx) = x ·F (x) is
nilpotent and we conclude that x is also nilpotent.

�
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Remark 1.2.7 Let A• be a graded Q-cohomology theory. Since Chern classes
are nilpotent we can replace Â• by A• in Definition 1.2.3 so that both the
multiplicative and additive extension take values in A•. We have used Â•

just to define the multiplicative and additive extension and then prove that
Chern classes are nilpotent. One can prove this by using Jouanolou’s trick (cf.
[Wei89, 4.4]). Using Jouanolou’s trick it is also possible to remove axiom 10.

Corollary 1.2.8 Let A• be a graded Q-cohomology theory and F (t) ∈ Q[[t]] be
a series such that a0 = 1. Then A• with the new direct images is a cohomology
theory.

�

In particular, for F (t) = 1−e−t
t

then A• follows the law x + y − xy. By
the universal property of K-theory there is a unique morphism of cohomology
theories

ch: K → A•

that we call the Chern character. Moreover, ch is the multiplicative exten-
sion of et because

ch(Lx) = 1− cnew
1 (L∗x) = 1− (1− ex) = ex.

Let f : Y → X be a projective morphism, since ch commutes with direct
images we have that

ch(f!(y)) = fnew
∗ (ch(y)) = f∗

[
F (f ∗TX−TY )·ch(y)

]
= F (TX)f∗

[
F (TY )−1ch(y)

]
.

We define the Todd class to be the multiplicative extension Td of the series

F (t)−1 =
t

1− e−t
=

(
1− t

2!
+
t2

3!
− t3

4!
+
t4

5!
− . . .

)−1

= 1+
t

2
+
t2

12
− t4

720
+. . . .

Making the substitution in the above formula we obtain the following.

Grothendieck-Riemann-Roch theorem: Let A• be a graded Q-cohomology
theory defined on smooth varieties over a field k. For every projective mor-
phism f : Y → X between smooth varieties over k the square

K(Y )
f! //

Td(TY )·ch
��

K(X)

Td(TX)·ch
��

A•(Y )
f∗ // A•(X)
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commutes. In other words, for a ∈ K(Y )

f∗
(
Td(TY ) · ch(a)

)
= Td(TX) · ch(f!(a)).

�

From here we deduce the following universal property.

Theorem 1.2.9 (Universal property of GKQ) Let k be an field of charac-
teristic zero or algebraically closed and A• be a graded Q-cohomology theory
defined on smooth varieties over k. There exist a unique morphism of graded
Q-cohomology theories

GKQ −→ A•.

Proof: First we construct a morphism from GK(X) to A(X) for all X and
compatible with inverse images. Let Z be a closed subvariety of X of codi-
mension d. If Z is smooth then by the Grothendieck-Riemann-Roch theorem
applied to i : Z → X, we have that

ch(OZ) = ηXZ + . . . ∈
⊕

p≥dA
p(X).

In the general case, since k is algebraically closed or characteristic zero, Z is
smooth on the open complement of a closed subvariety Zsing of codimension
> d. Denote j : U = X − Zsing → X. We have injective maps

j∗ : Ap(X) −→ Ap(U), p ≤ d.

Since j∗(ch(OZ)) = ch(j!OZ) = pU(Z ∩ U) + ... it follows that the Chern
character ch: K(X) → A•(X) preserves the filtrations so that it induces a
morphism of rings pX : GK(X)→ A•(X) compatible with inverse images.

Due to Panin’s lemma, if p preserves the first Chern class of line bundles
then p is a morphism of cohomology theories. Denote α = c1(L) ∈ A1(X),
then

pX [1− L∗] = pX [L− 1] = [ch(L− 1)] = [eα − 1] = [α + . . .] = α.

so p is morphism of cohomology theories.
Since the group GK(X) is generated by the class of closed subvarieties, the

morphism of cohomology theories p is unique by construction. �
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Chapter 2

Preliminaries

2.1 Simplicial sets

We recall in this section some concepts and notations regarding simplicial sets
that we will use afterwards. There are many references on the subject, the
reader may check [GJ99] for a detailed exposition including the classification
of torsors.

Definition 2.1.1 We denote by ∆ the category consisting of the finite ordered
sets

[n] = {0 < 1 < 2 · · · < n}

for n ∈ N and order-preserving maps. A simplicial set is a functor

∆op → Sets

where Sets is the category of sets and a map of simplicial sets is a natural
transformation. We denote by sSets the category of simplicial sets with maps
of simplicial sets.

Remark 2.1.2 The category ∆ has distinguished maps. Consider the map
di : [n− 1]→ [n] which is injective and ”skips i ”. In other words,

di(j) =

{
j j < i

j + 1 j ≥ i.

Consider si : [n+1]→ [n] the map which is surjective and ”hits i twice”. More
concretely,

si(j) =

{
j j ≤ i

j − 1 j > i.

15
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It is easy to check that every map in ∆ has a factorization as a composition of
these maps. Moreover, these maps satisfy the so called cosimplicial identities.
Let us recall them:

djdi =didj−1 for i < j

sjsi =sisj+1 for i > j

sjdi =


disj−1 for i < j

id for i = j , j + 1

di−1sj for i > j + 1.

As a consequence, a simplicial set X is defined by the sets Xn image of [n] and
the maps di, si image of di and si respectively. In other words, by a diagram

X0
// X1

oo
oo //

//
X2

oo
oo

oo · · · .

The maps di and si are called face and degeneracy maps respectively and
satisfy at least the transpose of the cosimplicial identities. They can satisfy
more relations.

Example 2.1.3 • Consider n ∈ N. The functor

[q] 7→ Hom∆([q], [n]) = {order preserving maps [q]→ [n]}

is a simplicial set that we call the standard simplicial n-simplex
∆n. Note that the face and degeneracy maps satisfy no more than the
transpose of the cosimplicial identities.

• Every set X defines a simplicial set by setting Xi = X and setting all face
and degeneracy maps to be the identity. We still denote this simplicial
set as X so, in particular, ∗ denotes a point seen as a simplicial set.

• Let S0 = ∗ and S1 = {r, s0(∗)} have only one nondegenerate element
with the only possible face a degeneracy maps between them. Let Sm
have only degenerate elements for m > 1 with the natural face and
degeneracy maps. We call this simplicial set the simplicial circle S1.
We analogously define the simplicial n-sphere Sn who has only two non
degenerate elements, one in Sn0 = ∗ and the other in Snn .

• We denote Λn[i] the union of all faces except the i-th one of the standard
simplicial set ∆n and we call it the i-th horn of ∆n.

Let us recall two notions that will be use later.
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Definition 2.1.4 We say that a simplicial set has simplicial dimension
zero if every element on Xi for all i > 0 is a degeneration of an element in
Xi−1.

We denote by sSets• the category of pointed simplicial sets whose ob-
jects are morphisms of simplicial sets ∗ → X, which we may simply denote X,
and morphisms are maps of simplicial sets which maps the distinguished point
onto the distinguished point.

Example 2.1.5 • Ever simplicial set X defines a pointed simplicial set
X+ = X t ∗.

• The simplicial n-sphere is naturally pointed since Sn0 = ∗.

Definition 2.1.6 Denote Top the category of topological spaces. We define
the standard topological n-simplex to be

∆[n] =
{

(t0, . . . , tn) ∈ Rn+1 :
n∑
i=0

t = 1 and tj ∈ [0, 1] ∀ 0 ≤ j ≤ n
}
⊂ Rn+1.

It is easy to check that the collection of standard topological n-simplices defines
a functor ∆→ Top which sends the distinguished maps di and si to:

di(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

si(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1)

If X is a simplicial set, we define the realization of X to be the quotient
topological space

|X| = (
∐
n

Xn ×∆[n])/ ∼

where the equivalence relation is defined as follows: if (x, u) ∈ Xm ×∆n and
ϕ : [n] → [m] ∈ ∆ then (ϕ∗x, u) ∼ (x, ϕ∗u). It is easy to check that the
realization defines a functor

| | : sSets→ Top.

Example 2.1.7 As expected, the realization of the standard simplicial n-
simplex ∆n is the standard topological n-simplex ∆[n] and the realization of
the simplicial sphere Sn is the classic sphere. Note that the degeneracy maps

Definition 2.1.8 Let A be a topological space, we define the singular com-
plex of A to be the simplicial set singA defined as

(singA)n = HomTop(∆[n], Y )
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with the natural face a degeneracy maps given by those of ∆[n]. The singular
complex defines a functor

sing : Top→ sSets.

For the sake of completeness, let us remark the following direct result.

Proposition 2.1.9 The realization functor is left adjoint of the singular func-
tor. In other words, for every simplicial set X and every topological space A
we have

HomTop(|X|, A) = HomsSets(X, singA).

�

Notation 2.1.10 Let f : A → B and g : B → A be two functors. On the
following we will say that the pair of functors

f : A � B : g

are adjoint to mean that the functor f is left adjoint to g or, equivalently, that
g is right adjoint to f . We also write that the pair of functors (f, g) are adjoint

The realization of a pointed simplicial set defines a pointed topological
space. Therefore, we may consider the following definitions.

Definition 2.1.11 Let X be a pointed simplicial set. We define the n-th
homotopy group of X to be πn(X) = πn(|X|).

Let X and Y be two simplicial sets, a map of simplicial sets f : X → Y is
a weak equivalence if the induced map |f | : |X| → |Y | is a weak equivalence
for any choice of base point.

Definition 2.1.12 Let X and Y be pointed sets. We define the wedge X∨Y
to be the set

X t Y/∗X ∼ ∗Y .

Note that this set is the coproduct of X and Y in the category of pointed sets.
We define the smash product of X and Y to be

X ∧ Y = X × Y/X ∨ Y,

which is the product of X and Y in the category of pointed sets. If X and Y
are pointed simplicial sets we define analogously the wedge and smash product.

Let X be a pointed simplicial set, we define the suspension of X to be
ΣX = S1 ∧X where S1 is the simplicial circle.
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Example 2.1.13 It is easy to check that Sn ∧ S1 = Sn+1.

The category of sSets and sSets• have internal Hom objects. More con-
cretely, if X and Y are simplicial sets denote Hom(X, Y ) the simplicial set
defined by

Hom(X, Y )q = HomsSets(X ×∆q, Y )

with natural face and degeneracy maps. If X and Y are pointed simplicial sets
denote Hom(X, Y ) as well the pointed simplicial set defined by

Hom(X, Y )q = HomsSets•(X ∧∆q, Y ).

Remark 2.1.14 Let X and Y be pointed topological spaces, by abuse of
notation we will still denote Hom(X, Y ) to the simplicial set given by

Hom(X, Y )q = HomTop(X ∧∆[q], Y ).

The following result is immediate.

Proposition 2.1.15 Let X be a pointed simplicial set, the pair of functors

X ∧ : sSets• � sSets• : Hom(X, )

are adjoint.

�

Definition 2.1.16 Let X be a pointed simplicial set, we define the loop
space of X to be the simplicial set

Hom(S1, sing |X|).

We are ready for the definition of spectra.

Definition 2.1.17 Let T be a pointed simplicial set. A T -spectrum is a
sequence of pointed simplicial sets E = {E0, E1, E2, . . .} together with maps
T ∧ Ek → Ek+1 for k ≥ 0. If no confusion is possible we call it simply a
spectrum. A map of spectra f : E → F is a sequence of maps f : Ek → F k

compatible with the structural maps, i.e., such that the diagrams

T ∧ Ek //

1T∧fk
��

E
k+1

fk+1
��

T ∧ F k // F k+1

commute. We denote by Spt the category of spectra.
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Finally, let us recall a concept we will use later.

Definition 2.1.18 Let f1, f2 : Y → X be two maps in a category C. We say
that g : Z → Y is the equalizer of f1 and f2 if it is universal among morphisms
h : W → Y such that f1 ◦ h = f2 ◦ h. We say that the sequence

Z
g // Y

f1 //

f2
// X

is exact.
Note that if f1 and f2 are maps of simplicial sets then g : Z → Y is the

equalizer of f1 and f2 if and only if gn is the equalizer of f1,n and f2,n. The
sequence

Z
g // Y

f1 //

f2
// X

is exact if and only if gn, f1,n and f2,n give exact sequences of sets for every n.

2.1.1 Classification of torsors

Every group in this section is considered to be an abelian group.

Definition 2.1.19 Let (G, µ, e) be a group where µ and e denote the opera-
tion and the neutral element respectively. An action of G on a simplicial set
X is morphism a : G×X → X such that the diagrams

G×G×X µ×1X //

1G×a
��

G×X
a

��
G×X a // X

,

X
e×1X // G×X

a

��
X

commute. We also say that X is a G-set. We say that the action is free if the
map G×X → X ×X, which maps (g, x) to (a(g, x), x), is a monomorphism.
Let X and Y be G-sets, we say that a map of simplicial sets f : X → Y is a
morphism of G-sets if for every x ∈ Xn we have f(g(x)) = g(f(x)).

A G-torsor over X is a morphism T → X of simplicial sets (or sets) with
a free action of G on T over X such that the canonical morphism T/G → X
is an isomorphism. Let p : T → X and p′ : T ′ → X be G-torsors over X, we
say that a morphisms of G-sets f : T → T ′ is a morphism of G-torsors if
p = p′ ◦ f . We denote by P (X,G) the set of isomorphism classes of G-torsors
over X.

Example 2.1.20 • Consider the second projection π : G×X → X, then
G×X is the trivial G-torsor. Note that therefore the set P (X,G) is non
empty and we chose the trivial torsor as a base point.
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• Let f : Y → X be a morphism of simplicial sheaves and T → X be a G
torsor. Then f ∗T = T ×X Y is a G-torsor over Y .

Definition 2.1.21 Let T → X be a G-torsor, x ∈ Xn be an n-simplex and
∆n → X the morphism defined by x. We define the fiber at x to be the
simplicial set Fx = T ×X ∆n.

The following lemma is direct.

Lemma 2.1.22 Let G be a group, T be a G-torsor over X and x ∈ Xn be an
n-simplex. Then Fx = ∆n × G is the trivial torsor over ∆n. Moreover, given
an action of G on a simplicial set T over X, then T is a G-torsor over X if
and only if Tn is a G-torsor (of sets) over Xn for all n.

Definition 2.1.23 We say that a morphism of simplicial sets f : X → Y is a
Kan fibration if for every horn Λn[k]→ ∆n and every commutative diagram

Λn[k] //

��

X

f
��

∆n // Y

there exists a map ∆n → X making the diagram

Λn[k] //

��

X

f
��

∆n //

<<

Y

commutative. We say that a simplicial set X is Kan fibrant if the projection
X → ∗ is a Kan fibration.

Proposition 2.1.24 Let T be a G-torsor over X, then the canonical projec-
tion T → X is a Kan fibration.

Proof: We have to prove that for every n-simplex x : ∆n → X and any i-th
horn there is the lifting property for the diagram

Λn[i] //

��

T

��
∆n x // X.

We can replace T by Fx = G×∆n and the proof is direct.
�

The abstract definition of homotopy in a model category defines in sSets
the classical notion. We recall it.
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Definition 2.1.25 Two maps of simplicial sets f, g : X → Y are homotopic
if there is a commutative diagram

X tX

ftg
&&

i0ti1 // X ×∆1

h
��
Y.

The map h : X → Y is called a homotopy between f and g.

Proposition 2.1.26 Let T be a G-torsor over Y and f, g : X → Y be two
homotopic maps. Then

f ∗T ' g∗T.

Proof: By hypothesis there is a homotopy X × ∆1 → Y between f and g.
Therefore it is enough to prove that for any G-torsor T over X × ∆1 the
restriction i∗0T → X is isomorphic to i∗1T → X. Note that there exists a lifting

i∗0T //

i0
��

T

p

��
i∗0T ×∆1

88

// X ×∆1

since i0 is a trivial cofibration and p is a Kan fibration. Since the map i∗0T ×
∆1 → T is a morphism of G-torsors it is bijective. We conclude by applying
the same argument to i1.

�

Corollary 2.1.27 Every G-torsor T over a contractible space is trivial.

2.1.28 Let G be a group. We denote by EG the simplicial set defined in each
term as

EGn = G× n+1· · · ×G

with face maps given by the diagonal and degeneracy maps given by projec-
tions. Note that EG is naturally a simplicial group and also has an action of
G. Denote

BG = EG/G

and note that the natural projection turns EG into a G-torsor over BG. We
call EG the universal G-torsor and BG the classifying space of G.

Proposition 2.1.29 Let G be a group. The simplicial set EG is weakly con-
tractible.
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Proof: Note that there are natural maps en : EGn → EGn+1 defined as
en((g0, . . . , gn)) = (e, g0, . . . , gn). Denote coneEG the simplicial set defined
as

coneEG = lim−→
p : ∆n→EG

∆n+1.

Clearly π0(coneEG) = π0(EG) and πi(coneEG) = 0 for i > 0 and a direct
computation shows π0(EG) = {∗}.

The coface maps d0 : [n] → [n + 1] induce inclusions d0 : ∆n → ∆n+1 and
therefore an inclusion j : EG → coneEG. It is enough to prove that the
identity 1EG factors as

EG
1EG //

j

��

EG

coneEG.
f
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Define f as follows. By construction every n-simplex x : ∆n → coneEG is
defined by an n−1-simplex y = (g0, . . . gn) : ∆n−1 → EG such that the diagram

∆n x // coneEG

∆n

d0

OO

y // EG.

j

OO

commutes. Define f(x) = (e, g0, . . . , gn).
�

Proposition 2.1.30 If G is a simplicial group, then G is Kan fibrant. In
particular, if G is a group the simplicial set EG is fibrant.

Proof: Let G be a simplicial group and x1, . . . , xi−1, xi+1, . . . , xn be in Gn−1

defining a i-th horn Λn[i] → G. We give the explicit n-simplex that fill the
horn:

• If i = 0. Set yn = sn−1(xn) ∈ Gn and yk = yk+1 · (sk−1dk(yk+1))−1 ·
sk−1(xk) for k = n, · · · , 1. Then y1 ∈ Gn is the filler n-simplex.

• If 0 < i < n let y0 = s0(x0) and yk = yk−1 · (skdk(yk−1))−1sk(xk) for
k = 0, . . . , i− 1. Now set yn = yi−1 · (sn−1dn(yi−1))−1 · sn−1(xn) and take
yk = yk+1 · (sk−1dk(wk+1)−1 · sk−1(xk) for k = n, · · · , k + 1. Then yi+1 is
the filler.

• If i = n. Set y0 = s0(x0) and yk = yk−1 · (skdk(yk−1))−1 · sk(xk) for
k = 0, . . . , n− 1. Then yn−1 is the filler

�
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Corollary 2.1.31 Let G be a group, the simplicial set BG is fibrant.

Proof: Consider a horn Λn[i] → BG. Note that, since Λn[i] is contractible,
the pullback of EG is therefore isomorphic to G× Λn[i]. Therefore we have a
diagram

G× Λn[i] //

��

EG

��
Λn[i] //

99

BG.

Since EG is Kan fibrant the horn Λn[i]→ EG can be filled, so the horn of BG
can also be filled.

�

Theorem 2.1.32 Let G be a group and X be a simplicial set. Then the natural
map

[X,BG] −→ P (X,G)

given by f 7→ f ∗EG is a bijection.

Proof: Recall that since BG is fibrant and X is cofibrant we have that the
set HomHo(sSets)(X,BG) = [X,BG] is the set HomsSets(X,BG)/ ∼, where
∼ denotes the homotopy relation. Due to Proposition 2.1.26 the map is well
defined. It is enough to construct the inverse. Let T be a G-torsor over X
and consider EG ×G T = EG × T/G. The first projection induces a map
p1 : EG ×G T → EG/G = BG and the second projection induces a map
p2 : EG ×G T → T/G = X. Observe that p2 is a simplicial weak equivalence
since the fibers are isomorphic to EG. Therefore p2 has an inverse in the
homotopy category which defines an element in [X,BG]. This assignation is
inverse to the map of the statement since p∗1EG ' p∗2T ' EG× T .

�
Let us introduce some notation for a result that we will need for the case

of sheaves of simplicial sets.

Definition 2.1.33 Let f : X → Y be a map of simplicial sets. We define the
relative π0 to be the simplicial set π0(f) defined on every n by the set

π0(Hom(∆n, X)×Hom(∆n,Y ) Yn)

with the natural face and degeneracy maps. Note that we had abused notation
to write Yn for the simplicial set defined by the set Yn. Also note that there is
a map of simplicial sets Yn → Hom(∆n, Y ) which maps any y ∈ (Yn)0 = Yn to
the n-simplex ∆n → Y it defines.
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Proposition 2.1.34 Let p : T → X be a G-torsor and f : X → Y be a trivial
Kan fibration. Then π0(f ◦ p) is a G-torsor over Y .

Proof: Consider a n-simplex y : ∆n → Y . We have cartesian squares

F ′y //

��

Fy
g //

��

∆n

��
T

p // X
f // Y

where Fy and F ′y denote the fiber of f and p◦f respectively. By Lemma 2.1.22
it is enough to prove that π0(F ′y) is a G-torsor over ∆n. Note that g is a trivial
Kan fibration and therefore Fy is contractible. In addition, F ′y is a G-torsor
over Fy so that F ′y = G × Fy. We finish recalling that G has the discrete
topology.

�

2.2 Big Nisnevich site

The original reference for topos theory is [SGA4] and every result is a conse-
quence of this section follows from them. However it is written with a generality
we do not use so we follow a more concrete approach.

In this section C will be a small category with fiber products.

Remark 2.2.1 Since we will not compare topologies we will not introduce the
whole notation of Grothendieck topologies. In particular, we will not define
the concept of sieves. Notice that the definition we are using is analogue to
the basis of a topology in the classical sense. Apart from studying when two
different basis define the same topology, all concepts and definitions of topology
may be given in terms of a basis.

Definition 2.2.2 Let C be a category. A Grothendieck topology τ on C
is the data for each object X of C of a set Covτ (X) of coverings of X, where
a covering is a set of morphisms {fα : Uα → X} in C, satisfying:

1. The identity 1X is in Covτ (X) for any X.

2. Let g : Y → X be a morphism in C and {fα : Uα → X} be a covering of
X, then {p2 : Uα ×X Y → Y } is a covering of Y .

3. Let {fα : Uα → X} be a covering of X and {gαβ : Vαβ → Uα} for every
index α be a covering of Uα, then {fα ◦ gαβ : Vαβ → X} is a covering of
X.
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We call the pair (C, τ) of a category with a Grothendieck topology a site.

Example 2.2.3 • Let T be a topological space and let C = Op(T ) where
Op(T ) is the category of open subsets of T with morphisms the inclusion
of subsets. For any open subset U ⊂ T we let CovT (U) be the family of
classic coverings. They define a Grothendieck topology on Op(T ).

• Let T be a topological space and B be a basis of its topology such that if
U ∈ B then any open set V ⊂ U is in B. For example, consider coordi-
nated open sets in a smooth manifold, or open sets in Rn with compact
closure. Consider for any open subset U ⊂ T the family Cov′T (U) of clas-
sic coverings of U made of basic open subsets (and the identity). They
define another Grothendieck topology on Op(T ). Our definition is not
convenient to compare them.

Now we give some examples of topologies on categories of schemes. Denote
SchS the category of schemes over a base scheme S and SmS its smooth
variant.

• Let X be a scheme and consider C = Op(X) the category of Zariski open
subschemes of X and morphisms the immersions of open subschemes.
For every open subscheme U of X we let Covzar(Y ) be the family of
coverings (in the usual sense) of U made of open subschemes. We call
Zariski topology and small Zariski site the topology and site they define.
We denote the site Xzar. Note that this example is a particular case of
the first example.

• We define the Zariski topology on SchS as follows. LetX be an S-scheme,
set CovZar(X) = Covzar(X). We call the big Zariski site the site they
define. We denote the site SchS,Zar and SmS,Zar its smooth variant.

• Let X be a scheme and consider C = ét(X) the category of étale mor-
phisms Y → X of finite type and morphisms of X-schemes. For every
étale morphism of finite type U → X we let Covét(U) be the set of
families {fα : Uα → U} where fα is étale of finite type and such that∐
|Uα| → |U | is surjective. We call étale topology and small étale site

the topology and site they define. We denote the site Xét.

• As in the Zariski topology, we define the étale topology on SchS con-
sidering for every scheme X the set of coverings CovÉt(X) = Covét(X).
We call the big étale site the site they define and denote it SchS,Ét and
SmS,Ét its smooth variant.
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The main example of topology we will use is the following one, which is finer
than the Zariski topology and coarser than the étale topology.

• Let X be a scheme and consider C = ét(X) as before. For every étale
morphism of finite type U → X we define the set of Nisnevich cov-
erings Covnis(U) to be the set of étale coverings {fα : Uα → U} such
that for every (possibly non-closed) point x ∈ U there exists a point
y ∈ Uα for some α such that fα(y) = x and the induced map of residue
fields k(x) → k(y) is an isomorphism. We call Nisnevich topology
and small Nisnevich site the topology and site they define. We denote
the site Xnis.

• We define the Nisnevich topology on SchS considering for every scheme
X the set of Nisnevich coverings CovNis(X) = Covnis(X). We call the big
Nisnevich site the site they define and denote it SchS,Nis and SmS,Nis

its smooth variant.

For the sake of completeness let us recall other topologies that appear in mo-
tivic homotopy theory.

• Recall that a morphism of schemes f : Y → X is a topological epimor-
phism if the map on the underlying topological spaces |f | : |Y | → |X|
identifies |X| with a quotient of |Y | (equivalently, if |f | is surjective and
U ⊂ |X| is open if and only if |f |−1(U) is open in |Y |). As usual, we
say that f is a universal topological epimorphism if it is a topological
epimorphism for any base change. We define the h-topology on SchS
(or SmS) to be the topology given by the sets Covh(X) of h-coverings
made of finite sets {fi : Ui → X} such that each fi is of finite type and∐

i Ui → X is a universal topological epimorphism.

• We define the qfh-topology on SchS (or SmS) to be the topology given
by the sets Covqfh(X) of qfh-coverings made of h-coverings such that
each fi is quasi-finite.

• We define the cdh-topology on SchS (or SmS) to be the topology given
by the sets Covcdh(X) of cdh-coverings which is generated by:

1. Nisnevich coverings.

2. Families of the form {X ′
∐
F

p
∐
i−−→ X} with p : X ′ → X proper,

i : F → X a closed immersion and p : p−1(X \ i(F )) → X \ i(F ) is
an isomorphism.
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Apart from Nisnevich coverings, the main example of a cdh-covering are
those given by the blowing-up π : BYX → X of a closed subscheme

i : Y → X. The set consisting of one element {BYX
∐
Y

π
∐
i−−−→ X} is a

cdh-covering.

2.2.1 Sheaves and presheaves

On the following we always consider the Nisnevich topology on SmS unless
otherwise stated.

Definition 2.2.4 We define a presheaf (of sets) on SmS to be a contravari-
ant functor F : SmS → Sets. We say that a presheaf F is a Nisnevich sheaf
(of sets) on SmS,Nis if for every smooth scheme X and every covering family
{fα : Uα → X} the sequence of sets

F (X)
∏
f∗α //
∏

α F (Uα)
p∗1,α,β //

p∗2,α,β

//
∏

α,β F (Uα ×X Uβ) (2.1)

is exact.
Analogously, we define a presheaf of simplicial sets on SmS to be a con-

travariant functor F : SmS → sSets. We say that presheaf of simplicial sets is
a Nisnevich sheaf of simplicial sets on SmS if for every smooth scheme X and
every covering family {fα : Uα → X} the analogue of the sequence (2.1) is an
exact sequence of simplicial sets. We denote by PreShv(S) and Shv(S) the
category of presheaves and Nisnevich sheaves of sets respectively. Note that
Shv(S) is a full subcategory of PreShv(S).

Remark 2.2.5 In general, one can define presheaves with values on a general
category and sheaves on any Grothendieck topology with values on a general
category having arbitrary small products. In particular, the properties of this
section and the following hold for sheaves of simplicial sets, sheaves of T -
spectra and sheaves of abelian groups with minor changes (cf. Remark 2.2.26).

Definition 2.2.6 We call a distinguished square to a cartesian diagram on
SmS

W i //

g
��

V

f
��

U
j // X

(2.2)

such that j is an open immersion, f is étale such that the induce map from
f−1((X − U)red) to (X − U)red is an isomorphism. Note that for every distin-
guished square the set {j : U → X , f : V → X} is a Nisnevich covering of
X.
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We prove an important property of the Nisnevich topology in Theorem
2.2.9. We learn it from [MV99].

Definition 2.2.7 Let X be a smooth scheme and U = {fα : Uα → X} be a
Nisnevich covering of X. We say that a sequence of closed subsets of X of the
form

∅ = Zn ⊂ Zn−1 ⊂ · · · ⊂ Z0 = X

is a splitting sequence for U if there are indices α0, . . . , αn−1 such that the
morphisms

fαi|f−1
αi

(Zi−Zi+1) : f−1
αi

(Zi − Zi+1)→ Zi − Zi+1

split, i.e., have sections si.

Lemma 2.2.8 Let X be a smooth scheme and U be a Nisnevich covering of
X. Then there exists a splitting sequence for U .

Proof: Since the scheme X is Noetherian it has a finite number of irreducible
components X = C1 ∪ · · · ∪ Cr. Let x1 be the generic point of C1. By
definition, there exist a Uα1 of U and y1 ∈ Uα1 such that fα1 induces an
isomorphism k(x1) → k(y1) on the residue fields. As a result, there exists a
closed subscheme C ′1 ⊂ C1 such that fα1|C1−C′1 is an isomorphism and therefore
has a section. Consider Z1 = C ′1 ∪C2 ∪ · · ·Cr, then X = Z0 and Z1 satisfy the
condition of the splitting sequence. We apply the same argument to Z1 and
obtain Z2. Since X is Noetherian, iterating this process we obtain Zn = ∅ for
some n. Therefore Zn ⊂ · · · ⊂ Z0 is a splitting sequence for U .

�

Theorem 2.2.9 A presheaf of sets F on SmS is a sheaf for the Nisnevich
topology if and only if for any distinguished square as in (2.2) the following
diagram of sets

F (X) //

��

F (U)

��
F (V ) // F (W )

is cartesian.

Proof: Let F be a Nisnevich sheaf. Since {j : U → X , f : V → X} is a
Nisnevich covering we an exact sequence

F (X) // F (U)× F (V ) ////

F (U ×X U)× F (U ×X V )× F (V ×X U)× F (V ×X V ).
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Note that the morphisms onto F (U ×X V ) and F (V ×X U) give the same
conditions. The morphisms onto F (U ×X U) do not give any condition since
U×XU = U . The morphisms onto F (V×XV ) do not give any further condition
because W ×UW → V ×XV and ∆: V → V ×X V define a Nisnevich covering
of V ×X V . Therefore, the previous exact sequence is equivalent to

F (X) // F (U)× F (V ) //// F (U ×X V ).

This last sequence is clearly equivalent to the cartesian diagram of the state-
ment of the theorem.

Let F be a presheaf satisfying the hypothesis of the theorem. Let X be
a smooth scheme and U = {fα : Uα → U} be a Nisnevich covering of X. We
want to show that the sequence

F (X) //
∐
F (Uα) ////

∐
F (Uα ×X Uβ)

is exact. We proceed by induction on the minimal length of a splitting sequence
of U . If U has a splitting sequence of length zero then the result is direct.

Now, assume U has a splitting sequence of length n+1 and chose a section of
sn : Zn−Zn+1 = Zn → f−1

αn|Zn(Zn). Since fαn is étale we have a decomposition∐
fαn|−1

Zn
(Zn) = Im(sn)

∐
Y ⊂

∐
Uα where Y is a closed subscheme of

∐
Uα.

Now consider U = X − Zn and V = (
∐
Uα) − Y , by construction they form

a distinguished square over X and U ×X U → U is a Nisnevich covering of
U with a splitting sequence of length n. By induction and the hypothesis we
have that the sequences

F (X) // F (U)× F (V ) // // F (U ×X V ) and

F (U) //
∐
F (Uα ×X U) // //

∐
F (Uα ×X Uβ × U)

are exact. To conclude consider sections (vα) ∈
∐
F (Uα) agreeing by the two

restrictions in
∐
F (Uα × Uβ). By base change they define sections (v̄α) ∈∐

F (Uα ×X U) whose restrictions agree on
∐
F (Uα ×X Uβ × U). Therefore

there exists a unique u ∈ F (U) which restricts to (v̄α). Since V is an open
subscheme of

∐
Uα, we also have v = (vα) ∈ F (V ). By construction, the

restrictions of (u, v) agree on F (U×X V ), and therefore we conclude the proof.
�

Definition 2.2.10 Let x be a point of X. A Nisnevich neighborhood of x
is an étale map U → X together with a point u ∈ U mapping to x such that
k(u) ' k(x). We define the local ring at x in the Nisnevich topology to be

(OX)Nis
x = lim−→Γ(U,OU)
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where OU denotes the structural sheaf and the limit is taken over Nisnevich
neighborhoods of x. If F is a Nisnevich sheaf, then we define the stalk of F
at x to be

Fx = lim−→F (U).

We say that a local ring A is Henselian if it satisfies the following condi-
tion:

• Let f(x) be a monic polynomial in A[x] and f̄(x) be its image on k[t], for
k = A/m. Then any factorization of f̄ into a product of two relatively
prime polynomials lifts to a factorization in A[x]. In other words, if
f̄ = p · q for p, q ∈ k[x] monic and relatively prime then there exist p′

and q′ ∈ A[x] such that f = p′ · q′ and p̄′ = p and q̄′ = q.

Let A be a local ring, a Henselian ring Ah together with a morphism A→ Ah

is called the Henselianization of A if it is universal among local morphisms
A→ H where H is Henselian.

The next result follows from the same arguments of the étale site ([Mil13,
§I.4]).

Theorem 2.2.11 Let X be a scheme and x be a point of X. Then

(OX)Nis
x = OhX,x.

�

As in the classical case of sheaves on a topological space, there is a general
construction which associates a sheaf to any presheaf. This general construc-
tion applies to the Nisnevich site. Find it, for example, in [Nor07, Lev.II.9.12].

Theorem 2.2.12 The natural forgetful functor i : Shv(S)→ PreShv(S) ad-
mits a left adjoint

aNis : PreShv(S)→ Shv(S).

�

Example 2.2.13 Let us point out the main examples we will use:

• Every smooth scheme X naturally gives a presheaf HomSmS
( , X).

It can be checked that this presheaf is actually a sheaf in SmS,Nis (cf.
[Nor07, §Lev.II.9]) that we still denote X. Therefore we have a covariant
functor

SmS → Shv(S)

which, by Yoneda’s lemma, is fully faithful.
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• The base scheme S defines the following sheaf: S(X) = ∗ for every
smooth scheme X.

• Let A1
S be the affine line. Then for any smooth S-scheme X we know ex-

plicitly the sections of the sheaf it defines: A1
S(X) = HomSmS

(X,A1
S) =

OX(X), the structural sheaf. We may also denote it O.

• Let C be a set, it defines a constant presheaf on SmS by mapping any
smooth scheme X to C. We still denote C its associated Nisnevich sheaf.

• Let X be a smooth scheme and i : U → X be an open subscheme. Then
i defines a morphism of the associated sheaves U → X. The presheaf
Y 7→ X(Y )/U(Y ) has, by Theorem 2.2.12, an associated Nisnevich sheaf
which we denote X/U .

Example 2.2.14 We show an example of the main difference we have seen
between the small and the big site. Denote S = Spec(Z) and consider the
small Zariski site Szar and the big Zariski site SchS,Zar (cf. Example 2.2.3).
Note that classic sheaves are by definition sheaves on the small Zariski site and
any classic sheaf on S defines, by pullback, a sheaf on the big Zariski site.

Consider the structural sheaf of rings Z̃ and the classic coherent sheaf

defined by Z/2Z. Note that the sheaf of homomorphism Hom(Z̃/2Z, Z̃) is zero
on the small Zariski site. However, this sheaf is not zero on the big Zariski site

since Hom(Z̃/2Z, Z̃)(Spec(Z/2Z)) = {0, 1}.
This example shows that the big an small site relate as restriction in ge-

ometry. A sheaf may be zero on an open subset, but that does not imply it is
zero globally.

The following is a standard property of representable functors stated in our
context.

Proposition 2.2.15 Let X be a smooth S-scheme. Then

HomShv(S)(X,F ) = F (X).

Proof: Let ξ ∈ F (X), it induces maps HomSmS
(Y,X) → F (Y ) where ξ(f) =

F (f)(ξ). Since they are compatible with restrictions they define a functor
still denoted ξ : X → F . It satisfies that ξ(1X) = ξ. We have constructed
F (X)→ HomShv(S)(X,F ). The inverse map is obvious.

�
We introduce some notation that will be needed later in section § 3.1.2.
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Definition 2.2.16 A morphism of presheaves f : F → F ′ is a local epi-
morphism if for every section s ∈ F ′(X) there exists a Nisnevich covering
{Uα → X} and sections sα ∈ F(Uα) such that fα(sα) = s|Uα .

The next statement follows directly from the construction of aNis.

Proposition 2.2.17 Let F be a presheaf on SmS. The natural morphism
F → aNisF is a local epimorphism. That is to say, let s ∈ aNisF(X) there
exists a Nisnevich covering {Uα → X} and sections sα ∈ F(Uα) such that
s|Uα = sα.

�

2.2.2 Functoriality: Inverse, direct image and p]

We recall constructions of functoriality in sites in our specific context. Apart
from one case the reader may use the concrete description of the following
Example 2.2.20 instead of this general construction.

Definition 2.2.18 We define a map of sites f : SmT,Nis → SmS,Nis to be a
functor f−1 : SmS → SmT of the underlying categories. Note that it induces
a functor f∗ : PreShv(T )→ PreShv(S), where f∗F (U) = F (f−1(U)).

We say that a map of sites f : SmT,Nis → SmS,Nis is continuous if f∗ maps
Shv(T ) onto Shv(S). We still denote f∗ : Shv(T ) → Shv(S) the induced
functor.

The following statement is a general result from topos theory relying on
the classic argument of Grothendieck’s representability theorem. Find a proof,
for example, in [Nor07, Lev.II.8.3].

Proposition 2.2.19 Let f : SmT,Nis → SmS,Nis be a continuous map of sites,
there exists a functor f ∗ : Shv(S)→ Shv(T ) left adjoint to f∗.

�

Example 2.2.20 We will only use the following examples:

• Let f : T → S be a morphism of schemes. Then f induces a continuous
map of sites from SmT,Nis to SmS,Nis defined by the functor which maps
any smooth S-scheme X to f−1(X) = X ×S T . We denote the induced
pair of adjoint functors

f ∗ : Shv(S) � Shv(T ) : f∗.

We call them the inverse and direct image of sheaves respectively.



34 2. PRELIMINARIES

By definition the direct image f∗F is the sheaf X 7→ F (X ×S T ). Let F
be a sheaf on S, denote F ′ the presheaf which maps a smooth T -scheme
V to the set F ′(V ) = lim−→F (U), where the limit is taken among smooth
S-schemes U such that

V //

��

U

��
T // S

commutes. By construction, the presheaf F ′ satisfies

HomPreShv(T )(F
′, G) = HomPreShv(S)(F, f∗G).

Therefore the associated sheaf is the inverse image f ∗F .

Let g : Y → T be a morphism of schemes, then we have

(f ◦ g)∗ ' g∗ ◦ f ∗,

(f ◦ g)∗ ' f∗ ◦ g∗.

• Let p : X → S be a smooth morphism. In this case p also induces another
continuous map of sites Φp : SmS,Nis → SmX,Nis defined by the functor
(Φp)−1 which maps any smooth morphism Y → X to Y → X → S.
The functor (Φp)∗ maps any sheaf F in Shv(S) onto its restriction F |X
(defined by F |X(Y ) = F (Y ), for Y a smooth X-scheme). We denote by

p] = (Φp)∗ : Shv(X)→ Shv(S),

which is left adjoint to the restriction. Let q : Y → X be a smooth
morphism, we have

(p ◦ q)] ' p] ◦ q].

We describe the main properties of the inverse and direct image of sheaves.

Proposition 2.2.21 Let S be a scheme, X be a smooth S-scheme and x be a
point of X:

1. Let j : U ↪→ S be an open immersion and F in Shv(U). Then (j∗F )x =
Fy if y = x×S U 6= ∅.

2. Let i : Z ↪→ S be a closed immersion and F in Shv(Z). Then

(i∗F )x =

{
Fy y = x×S Z 6= ∅ ;

∗ x×S Z = ∅.
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Proof: The first claim and the case x ×S Z = ∅ of the second claim follows
taking a ”sufficiently small” neighborhood. The case y = x ×S Z 6= ∅ follows
from standard arguments in étale topology (cf. . [Mil13, 8.3]).

�
Contrary to the small site, the inverse image functor f ∗ on the big Nisnevich

site does not preserve finite limits. It does not even preserve fibre products.
The following example is based on the same idea of Example 2.2.14.

Example 2.2.22 Let i0 : p = Spec(k) → A1
k be the origin. Consider the two

diagonals Y+ and Y− of A2
k as smooth schemes over A1

k by the first projection.
Their intersection Y+ ×A2

k
Y− = p is the origin, and defines the empty sheaf

on SmA1
k
. However, it is easy to check that i∗0(Y+) = i∗0(Y−) = p and therefore

i∗0(Y+)×A1
k
i∗0(Y−) = p is not an empty sheaf on SmSpec(k).

Since the inverse image functor does not preserve finite limits in particular
we cannot describe the stalks of the inverse image of a sheaf as in the classical
case. Nevertheless we have the following properties.

Proposition 2.2.23 Let f : T → S be a morphism of schemes:

1. Let X be an S-smooth scheme. Then f ∗(X) = X ×S T .

2. Let F and G be in Shv(S), then f ∗(F ×G) = f ∗F × f ∗G.

Let p : X → S be a smooth morphism:

3. The functor p∗ is the restriction functor defined in Example 2.2.20.2. In
other words, let Y be a smooth X-scheme and G be in Shv(S), then we
have

p∗(G)(Y ) = G|X(Y ) = G(Y ).

Proof: For the first claim both sheaves have the same morphisms. Indeed,

HomShv(T )(f
∗(X), F ) = HomShv(S)(X, f∗(F )) = f∗(F )(X)

= F (X ×S T ) = HomShv(T )(X ×S T, F ).

For the second claim, let V be a smooth T -scheme. Then we have

(F ×G)′(V ) = lim−→(F ×G)(U) = lim−→F (U)× lim−→G(U) = F ′(V )×G′(V )

so the claim is true for presheaves and it follows for sheaves.
For the third claim note that, since adjoints are unique, it is enough to

prove that the restriction functor is left adjoint to p∗. Let F be a sheaf on X
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and G be a sheaf on S. For any morphism of sheaves ϕ : G|X → F and any
smooth S-scheme V we have a map

G(V ) //

��

F (V ×S X)

G(V ×S X)

ϕ

77

We have constructed a map HomShv(Y )(G|Y , F )→ HomShv(S)(G, p∗F ).
Let Φ: G→ p∗F be a morphism of sheaves and W be a smooth X-scheme.

We have a map
G(W ) //

Φ
��

F (W )

F (W ×S X)

88

We have constructed a map HomShv(S)(G, p∗F ) → HomShv(X)(G|X , F ) which
is inverse to the previous one.

�

Proposition 2.2.24 Let p : X → S be a smooth morphism:

1. The functor p] is left adjoint to p∗.

2. We abuse notation and still denote X the sheaf defined by the Yoneda
embedding either in Shv(X) and Shv(S). Then p](X) = X.

3. Projection formula: For any F in Shv(X) and any G in Shv(S) we
have

p](F × p∗(G)) ' p](F )×G.

4. Let j : U ↪→ S be an open embedding then j] is the ”extension by zero”
functor ( cf. [Mil13, p.62]). More concretely, let F be in Shv(U) and
consider the presheaf

X 7→

{
F (X) if X is U-smooth

∅ otherwise.

for X a smooth S-scheme. The sheaf j]F is the sheaf associated to the
above presheaf. In addition, let x be a point of a smooth S-scheme X
and denote y = x×S U , then

(j]F )x =

{
Fy if y 6= ∅,
∅ if y = ∅.



2.2. BIG NISNEVICH SITE 37

Proof: The first claim is a corollary of the previous result. The second one
is direct from definitions. For the third claim it is enough to check that both
sheaves have the same morphisms. Let H be in Shv(S). On one hand we have

HomShv(S)(p](F × p∗(G)), H) = HomShv(U)(F × p∗G, p∗H)

= HomShv(U)(F,HomU(p∗G, p∗H)),

where HomU(p∗G, p∗H) denotes the internal Hom in Shv(U). On the other
hand we have

HomShv(S)(p]F ×G,H) = HomShv(S)(p]F,HomS(G,H))

= HomShv(U)(F, p
∗HomS(G,H)).

We conclude by observing that p∗HomS(G,H) = HomU(p∗G, p∗H).
For the last claim denote F[ the presheaf of the statement. Note that it

has the required adjunction property for presheaves:

HomPreShv(S)(F[, G) ' HomPreShv(U)(F,G|U).

�

Example 2.2.25 Let X be a smooth S-scheme and j : U → S be an open
immersion. We can describe the sections of sheaf j]j

∗X. Let Y be a smooth
S-scheme:

(j]j
∗X)(Y ) =

{
X(Y ) if Y is U -smooth,

∅ otherwise.

Note that this sheaf is representable by XU = X ×S U . We also denote it as
X −XZ .

Remark 2.2.26 Note that in the category of sets the initial object ∅ is dif-
ferent from the final object ∗. As we have seen, the condition of being zero for
a sheaf of groups translates into two different ways for sheaf of sets.

Consider the category of sheaves of pointed sets Shv•(S). Note that in the
category of pointed sets the initial and final object is ∗. All arguments of this
section apply into this context mutatis mutandis.

Proposition 2.2.27 Consider a cartesian diagram

Y

p′

��

f ′ // X

p
��

T
f // S

where p is a smooth morphism. Then

p∗f∗ = f ′∗p
′∗.
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Proof: Let V be a smooth X-scheme, and F be in Shv(T ). Recall that the
inverse image of a smooth morphism is the restriction functor. Then

(p∗f∗F )(V ) = (f∗F )(V ) = F (V ×S T ) = (p′
∗
F )(V ×S T ) = f ′∗p

′∗F (V )

since V ×S T = V ×X Y .
�

2.3 Model categories

We recall some notations and examples of model categories. The original
reference is [Qui67], although we have also used [GJ99], [Hov99] and [Hir03].
For brevity’s sake we omit most proofs.

In this section C will always denote a category with small limits and col-
imits, in particular with initial object ∅ and with final object ∗.

Definition 2.3.1 Let C be a category and W be a class of morphisms in C.
The localization of C by W is a functor Q : C→ C[W−1] such that for all w
in W the image Q(w) is an isomorphism and such that it is universal for this
property. In other words, for any other functor F : C→ C′ such that F (w) is
an isomorphism for all w in W there exists a unique factorization

C
Q //

F ##

C[W−1]

FW

��
C′.

If a localization exist, we abuse notation and call C[W−1] a localization.

The following result is straightforward.

Proposition 2.3.2 Let C be a category and W be a class of morphisms. If
a localization C → C[W−1] exist then it is unique up to a canonical natural
transformation.

�

Example 2.3.3 • Let Top• be the category of pointed topological spaces
and consider Weakh the class of weak homotopy equivalences. We may
consider the localization Top•[Weakh−1].

• Let CW be the category of CW-complexes with morphisms of topological
spaces. Once again we may consider the class Weak of weak equivalences.
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By Whitehead’s theorem we have that the classic homotopy category of
CW-complexes H is the localization CW[Weak−1]. Therefore we have
a concrete description: objects are CW-complexes and morphisms are
homotopy classes of morphisms.

• Let A be a ring and denote Ch+(A) the category of bounded below
(cochain) complexes of A-modules (note that we assume that the dif-
ferential rises the degree). Denote Qua the class of quasi-isomorphisms.
The localization Ch+(A)[Qua−1] is precisely the derived category D+(A)
of bounded below complexes. Once again we have concrete description of
the localization: objects are bounded below complexes and morphisms
are fractions of homotopy classes of morphisms of complexes. Analo-
gously, we consider Ch−(A) the category of bounded above complexes
of A-modules and we have Ch−(A)[Qua−1] = D−(A). In general, denote
Ch(A) the category of unbounded complexes, then Ch(A)[Qua−1] =
D(A).

Remark 2.3.4 The localization C[W−1] may not exist in general, due to set
theoretic problems. In addition, as we have seen for topological spaces, the
localization may not be easy to describe.

Let us recall some notation before the main definition of this section.

Definition 2.3.5 Let f : Y → X be a morphism in a category C. We say
that Y is a retract of X (through f) if there exists a morphism g : X → Y
such that g ◦ f = 1Y . We also say that g is a retraction (of f).

Let f ′ : Y ′ → X ′ be another morphism in C, we abuse notation and we say
that f is a retract of f ′ if it is a retract of f ′ in the category of arrows of C.
More concretely, if there are morphisms

X

f

��

i // X ′

f ′

��

r // X

f

��
Y

j // Y ′
t // Y

such that r ◦ i = 1X and t ◦ j = 1Y (Note that (r, t) is the retraction of (i, j)).

Definition 2.3.6 Let C be a category and i : U → V and p : X → Y be two
maps. We say that p has the right lifting property with respect to i and
that i has the left lifting property with respect to p if for all commutative
diagrams

U //

i
��

X

p
��

V // Y
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there is a map s : V → X making the diagram

U //

i
��

X

p
��

V //

s

>>

Y

commutative.

The following definition, due to Quillen, provides an adequate framework
for localizations.

Definition 2.3.7 We say that a category C together with three classes of mor-
phisms called weak equivalences, fibrations and cofibrations is a model
category if the following axioms hold:

1. The category C has all small limits and small colimits.

2. If f and g are two composable morphism and two out of f , g and g ◦ f
are weak equivalences then so is the third.

3. If a morphism f is a retract of g and g is either a weak equivalence, a
cofibration or a fibration then so is f .

4. Any fibration has the right lifting property with respect to cofibrations
which are weak equivalences (which we call trivial cofibrations) and
any fibration which is also a weak equivalence (which we call trivial
fibrations) has the right lifting property with respect to cofibrations.

5. Any morphism f can be functorially factorized as a composition p ◦ i
where p is a fibration and i is a trivial cofibration and as a composition
q ◦ j where q is a trivial fibration and j is a cofibration.

Remark 2.3.8 By ”functorially factorized” we mean the following: there
exist two pair of functors (α, β) and (γ, δ) from the category of arrows of
C to the category of arrows of C such that for any morphism f we have
f = α(f) ◦ β(f) = γ(f) ◦ δ(f) and such that α(f) is a fibration, β(f) is trivial
cofibration, γ(f) is trivial cofibration and δ(f) is a cofibration (cf. [Hov99,
1.1.1]). Let us remark that the fifth axiom states not only that there exists a
factorization but that we have a concrete choice of factorization for every mor-
phism. More concretely, the fibrant and cofibrant replacements of paragraph
2.3.12 are also part of the definition.

Denote Weak the class of weak equivalences. We want to describe C[Weak−1]
and, in order to do so, we need more notation.
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Definition 2.3.9 Let C be a model category. We say that an object X is
fibrant if the map X → ∗ to the final object is a fibration. We say that X is
cofibrant if the map ∅ → X from the initial object is a cofibration.

Definition 2.3.10 Let C be a model category and X be an object. A cylin-
der for X is a commutative triangle

X tX
1Xt1X

##

i
��

X̃
h

// X

where i is a cofibration and h is a weak equivalence.
Let f, g : X → Y be two maps. A (left) homotopy between f and g is a

commutative diagram
X tX

ftg

##

i
��

X̃
h

// Y

for some cylinder X̃ for X. A morphism f : X → Y is a homotopy equiv-
alence if there exists a morphism g : Y → X such that g ◦ f and f ◦ g are
homotopic to 1X and 1Y respectively.

Remark 2.3.11 The fifth axiom of model categories applied to 1X t1X : X t
X → X defines a cylinder for X. Therefore cylinders exist for any object.

2.3.12 Let X be an object and consider the morphism ∅ → X. Applying the
fifth axiom there is a factorization

∅

""

j
// Q(X)

qX
��
X

where Q(X) is cofibrant and a map qX : Q(X)→ X which is a trivial fibration.
The functoriality of the fifth axiom implies that Q : C→ C , X 7→ Q(X) is a
functor which we call the cofibrant replacement.

Analogously, if we apply the fifth axiom to the map X → ∗ there is a
factorization

X

""

iX // R(X)

p

��
*
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where iX is a trivial cofibration and R(X) is fibrant. Once again we have a
functor R : C→ C which we call the fibrant replacement.

Denote Ccf the full subcategory of C made of fibrant cofibrant objects. We
denote

RQ : C→ Ccf

the fibrant cofibrant replacement functor.

Let us restate the analogous of Whitehead’s theorem in the context of
model categories. Find a proof in [GJ99, 1.10].

Theorem 2.3.13 (Whitehead) Let C be a model category and f : X → Y a
morphism where both X and Y are fibrant and cofibrant objects. The morphism
f is a weak equivalence if and only if f is a homotopy equivalence.

�

In order to state the main theorem of this section let us recall a technical
result. Find a proof in [Hov99, 1.2.5 and 1.2.7].

Proposition 2.3.14 Let X be cofibrant and Y be an object. Then the ho-
motopy relation is an equivalence relation in HomC(X, Y ) and we denote
the quotient [X, Y ]. In addition, if q : Y ′ → Y is a trivial fibration then
[X, Y ′] = [X, Y ].

Let X and Y be two fibrant cofibrant objects. Then the homotopy relation
is an equivalence relation, stable by composition, in HomC(X, Y ).

�

Now, denote Ho(Ccf) the category with the same objects as Ccf and mor-
phisms homotopy equivalence classes of morphisms. We are ready to state the
main result of this section. Find a proof in [Hov99, 1.2.10].

Theorem 2.3.15 Let C be a model category and denote Weak the class of
weak equivalences. The localization of C by Weak−1 is the fibrant cofibrant
replacement functor RQ : C→ Ho(Ccf). In other words, the localizad category
C[Weak−1] exists and the obvious inclusion

Ho(Ccf)
∼−→ C[Weak−1]

is an equivalence of categories.

�

Now the following notation makes sense.
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Definition 2.3.16 Let C be a model category, we define the homotopy cat-
egory of C to be Ho(C) := C[Weak−1] ' Ho(Ccf).

Corollary 2.3.17 Let X be a cofibrant object and Y be a fibrant object. Then

HomHo(C)(X, Y ) = [X, Y ].

�

The following result is widely used since it assures that, in a model category,
weak equivalences and either fibrations or cofibrations determine the last group
of morphisms. It is an easy consequence of the axioms.

Theorem 2.3.18 Let C be a model category:

• A map i : U → V is a cofibration if and only if i has the left lifting
property with respect to all trivial cofibrations.

• A map i : U → V is a trivial cofibration if and only if it has the left lifting
property with respect to all fibrations.

Analogously, we have:

• A map p : X → Y is a fibration if and only if it has the right lifting
property with respect to all trivial fibrations.

• A map p : X → Y is a trivial fibration if and only if it has the right
lifting property with respect to all cofibrations.

�

Corollary 2.3.19 Let C be a model category:

• The class of cofibrations and trivial cofibrations are closed under compo-
sition and pushout. Any isomorphism is a trivial cofibration.

• The class of fibrations and trivial fibrations are closed under composition
and pullback. Any isomorphism is a trivial fibration.

Definition 2.3.20 We say that a category A is pointed if the initial object
exists and it is also the final object. We also call it the null object and denote
it ∗. Let f : A→ B be a map in a pointed model category. We call the fiber
of f to be the cartesian product of f and ∗ → B. We denote it fib(f). We call
the cofiber of f to be the coproduct of f and A→ ∗. We denote it cofib(f).
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Example 2.3.21 • Let A be a category. Consider isomorphisms to be
weak equivalences and cofibrations and fibrations to be all maps. They
define the trivial model structure on A.

• Simplicial sets: Let sSets be the category of simplicial sets. Let weak
equivalences be weak equivalences of simplicial sets and cofibrations be
injective maps. Taking as fibrations the maps having the required lifting
properties they define a model structure called Quillen’s model structure.
Fibrations turn out to be Kan fibrations ([GJ99, I.11.3]). Pointed sim-
plicial sets with analogous pointed morphisms define a pointed model
category.

• Topological spaces: Denote Top the category of topological spaces. Let
weak equivalences be weak homotopy equivalences and fibrations be the
so called Serre fibrations. Taking as cofibrations the maps having the
required lifting properties they define a model structure on Top called
Quillen’s model structure. Pointed topological spaces with analogous
pointed morphisms define a pointed model category. In this case all
topological spaces are fibrant. CW-complexes are cofibrant and the so
called CW-approximation is the cofibrant replacement. A classic result
due to Quillen states that the realization and singular complex functors
induce equivalence of categories

| | : Ho(sSets•) � Ho(Top•) : sing.

• Cochain complexes: Let A be a ring and Ch+(A) be the category of
bounded below (cochain) complexes of A-modules. We consider quasi-
isomorphisms as weak equivalences, monomorphisms in each degree as
cofibrations and morphisms having the right lifting property with respect
to injective quasi-isomorphisms as fibrations. They define a model struc-
ture which we call the injective model structure. Note that Ch+(A) is
naturally pointed by the zero complex. One can check that fibrations
turn out to be epimorphisms with injective kernel. Therefore the injec-
tive resolution I•(K•) of a complex K• is a fibrant replacement. We have
that

HomD+(A)(K
′•, K•) = [K ′•, I•(K•)].

Analogously, let Ch−(A) be the category of bounded above complexes
of A-modules. We define weak equivalences to be quasi-isomorphisms,
fibrations to be epimorphisms and cofibrations to be those morphisms
having the adequate lifting property. They define a model structure
which we call the projective model structure. One can check that cofi-
brations turn out to be injective morphisms with projective cokernel so
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that the projective resolution P •(K•) of a complex K• is a cofibrant
replacement. Therefore we have that

HomD−(A)(K
′•, K•) = [P •(K ′•), K•].

• The previous construction on bounded above cochain complexes Ch+

also holds if one replaces A-mod for any abelian category with enough
injectives (cf. [Joy84, Theorem 2]). In particular, let X be a topological
space and denote Ch+(Shv(X,A)) the category of positive degree com-
plexes of sheaf of A-modules. The class of quasi-isomorphisms as weak
equivalences, monomorphisms as cofibrations and morphisms having the
right lifting property with respect to injective quasi-isomorphisms define
a model structure. The injective resolution I•(K•) of a complex K• is a
fibrant replacement.

• Unbounded complexes: Let Ch(A) be the category of unbounded com-
plexes. We define weak equivalences to be quasi-isomorphisms, fibra-
tions to be degreewise epimorphisms and cofibrations to be morphism
having the adequate lifting property. They define a model structure on
Ch(A) (cf. [Hov99, §2.3]). Cofibrations are degreewise split injections
with cofibrant cokernel. Cofibrant complexes are degreewise projective
complexes, but not all of them.

The following result is also widely used. Find a proof in [Hov99, 1.1.12].

Theorem 2.3.22 Let f : C → C′ be a functor between two model categories.
If f maps trivial fibrations into weak equivalences then f preserves weak equiv-
alences.

�

We will introduce two concepts in model categories that will be useful:
homotopy pushouts (and pullbacks) and suspension. In order to do so we
will assume that the model categories satisfy the properties described below.
The theory can be developed with more generality but it is needless for this
memoir. For brevity’s sake we just review the main results. We refer to [Hir03]
for more details.

Definition 2.3.23 Let A be a category. We say that A is a simplicial cat-
egory if there is a functor

S( , ) : Aop ×A→ sSets

such that for any two objects A and B of A we have:
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• S(A,B)0 = HomA(A,B).

• The functor S(A, ) : A→ sSets has a left adjoint

A⊗ : sSets→ A

which is associative. In other words, for any two simplicial sets X and
Y there is an isomorphism

A⊗ (X × Y ) ' (A⊗X)⊗ Y

which is functorial on each term.

• The functor S( , B) : Aop → sSets has a left adjoint

hom( , B) : sSets→ Cop.

We call the functor S( , ) the simplicial mapping space.

Definition 2.3.24 Let C be a model category which is simplicial. We say
that C is a simplicial model category if for any cofibration j : X → X ′ and
any fibration q : Y ′ → Y we have that

S(X ′, Y ′)
(j∗,q∗)// S(X, Y ′)×S(X,Y ) S(X ′, Y )

is a fibration of simplicial sets, which is trivial if either j or q is trivial.

Notation 2.3.25 Every model category we consider will be a simplicial model
category. Note in addition that on a simplicial model category there is a natural
construction of cylinder objects: For any X the object X ⊗ ∆1 is a cylinder
object.

Now, for the review of pullbacks and pushouts in model categories let us
introduce the following concept.

Definition 2.3.26 We say that a model category C is proper if every pushout
of a weak equivalence along a cofibration is a weak equivalence and every pull-
back of a weak equivalence along a fibration is a weak equivalence.

Let C be a proper model category. We say that a commutative square

X

��

// Y

��
Z // T
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is a homotopy pullback square if the factorizations Y → QY → T and
Z → QZ → T into trivial cofibrations and fibrations induce a map

X −→ QY ×T QZ.

which is a weak equivalence. We also say that X is the homotopy pullback of
Y → Z and Z → T . Let f : X → Y be a map, we define the homotopy fiber
of f to be the homotopy pullback of f and ∗ → Y . We denote it hofib(f).

We say that it is a homotopy pushout square if the factorizations into
cofibrations and trivial fibrations X → RY → Y and X → RZ → Z induce a
map

RY tX RZ −→ T

which is a weak equivalence. We also say that T is the homotopy pushout of
X → Y and X → Z. Let f : X → Y be a map, we define the homotopy
cofiber to be the pushout of f and X → ∗. We denote it hocofib(f).

Notation 2.3.27 Every model category considered will be proper.

We recall a standard property that we will need. We state it just for
pushouts. Find a proof in [Hir03, 13.3.8].

Proposition 2.3.28 Let C be a model category and

Z
i //

��

T

��
X // Y

be a homotopy pushout square. Then it is enough to replace one morphism
to obtain the homotopy pushout. In other words, let Z → RT → T be a
factorization of i into a cofibration and a trivial fibration. Then the map
RT tZ X → Y is a weak equivalence. In particular, if i is a cofibration then
map

T tZ X → Y

is a weak equivalence.

�
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2.3.1 Functoriality: total derived functors

Let C be a model category and F : C→ A be functor into a general category
A. Recall that, by definition, F factors as

C
γ //

F

��

Ho(C)

{{
A.

if and only if F maps weak equivalences into isomorphisms.
As in the case of the functor ”taking global sections” on complexes of

sheaves of abelian groups, if F does not map weak equivalences into isomor-
phism but satisfies certain properties we can construct a functor which best
approximates this diagram. Let us make more precise this statement. We say
that a functor G : Ho(C) → A approximates F if there is a natural trans-
formation εG : G ◦ γ → F . If the class of functors approximating F is good
enough there might exist a final object lim−→G◦γ→F G.

Consider functors J : Ho(C)→ A with a natural transformation τJ : F →
J ◦ γ. As in the previous case, the class of pairs (J, τJ) may have a initial
object lim←−F→J◦γ J .

Definition 2.3.29 Let γ : C → Ho(C) be a model category and F : C → A
be a functor into a general category. We say that a functor LγF : Ho(C)→ A
and a natural transformation ε : LF ◦ γ → F is the left derived functor of
F (with respect to γ) if for any other pair (G : Ho(C) → A, εG : G ◦ γ → F )
there is a functor Φ: G→ LγF such that

LγF ◦ γ ε // F

G ◦ γ

Φ◦γ

OO

εG

;;

commutes.
Analogously, we say that a functor RγF : Ho(C)→ A and a natural trans-

formation τ : F → RF ◦γ is the right derived functor of F (with respect to
γ) if for any other pair (G, τG) there is a natural transformation Ψ: RγF → G
such that

F τ //

τG ##

RγF ◦ γ
Ψ◦γ
��

G ◦ γ
commutes.
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Definition 2.3.30 Let F : C → C′ be a functor between model categories.
We call the total left derived functor of F to the functor LF = Lγ(F ◦
γ′) : Ho(C)→ Ho(C′). We call the total right derived functor of F to the
functor RF = Rγ(F ◦ γ′) : Ho(C)→ Ho(C′).

Remark 2.3.31 Let F : C→ C′ be a functor between model categories which
preserves weak equivalences between cofibrant objects. For this case one can
take the following description as the definition of total derived functors:

• For any object X we have LF ◦ γ(X) = γ′ ◦ F (QX), where QX is the
cofibrant replacement of X.

• Recall that the cofibrant replacement is functorial. For any map f : X →
Y there exists a lifting g : QX → QY such that the diagram

QX
g //

��

QY

��
X // Y

commutes. Then LF ◦ γ(f) = γ′ ◦ F (g).

The assignation is well defined on objects. We left for the following proposition
the case of morphisms and that it has the right universal property.

Let G : C→ C′ be a functor which maps weak equivalences between fibrant
objects to weak equivalences. The total right derived functor of G has the
following description: Any object X maps to RG ◦ γ(X) = γ′ ◦G(RX), where
RX is the fibrant replacement of X, and a morphism f : X → Y maps into
G(g) for g the induced map between RX and RY . It is easy to check that
these functors are the total derived functors of Definition 2.3.30.

Proposition 2.3.32 Let F,G : C → C′ be functors as in Remark 2.3.31.
Then the total left and right derived functors exist and are the ones described
there.

�

Example 2.3.33 • Let F : C → A be a functor from a model category
into a general category which maps weak equivalences between cofibrant
objects into isomorphisms. Consider on A the trivial model structure
with isomorphisms as weak equivalences. Then there is a total left de-
rived functor LF : Ho(C)→ A. An analogous statement holds for right
derived functors.
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• Consider the functor

HomA-mod(M, ) : A-mod −→ A-mod.

It induces a functor Ch+(A) → Ch+(A) denoted Hom(M, ). Note
that this functor preserves (chain) homotopies. Recall from Example
2.3.21 that the category of bounded cochain complexes of A-modules
Ch+(A) has a model structure with quasi-isomorphism as weak equiva-
lences. Recall that the derived category D+(A) is the homotopy category.
Since every complex is cofibrant, quasi-isomorphism between fibrant ob-
jects are homotopy equivalences. Therefore Hom(M, ) preserves quasi-
isomorphisms between fibrant objects. Let K• be a complex, recall that
the injective resolution I•(K•) is its fibrant replacement. We have proved
that there is a total right derived functor

RHom(M, ) : D+(A) −→ D+(A)
K• 7→ Hom(M, I•(K•)).

The classic Extn-functor is precisely

A-mod
i0 //D+(A)

RHom(M, )//D+(A) Hn
// A-mod,

where i0(M) is the complex which has M in degree zero and in is zero
elsewhere. The Tor-functors have an analogue description considering
the projective model structure on Ch−(A) (cf. 2.3.3).

• Let X be a topological space and denote Shv(X,A) the category of
sheaves ofA-modules. The global sections functor Shv(X,A)→ A-mod,
F 7→ F (X) induces a functor

Γ: Ch+(Shv(X,A))→ Ch+(A)

which preserves homotopies. Therefore its total right derived functor

RΓ: D+(Shv(X,A))→ D+(A)

exists. We can describe sheaf cohomology as

Shv(X,A)
i0 //D+(Shv(X,A)) RΓ //D+(A) Hn

// A-mod .

Definition 2.3.34 Let F : C � C′ : G be a pair of adjoint functors between
model categories:

• We say that F is a left Quillen functor if it preserves cofibrations and
trivial cofibrations.
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• We say that G is a right Quillen functor if it preserves fibrations and
trivial fibrations.

• We say that the pair (F,G) is a Quillen adjunction if F is a left Quillen
functor.

The following result is direct by taking adjunction.

Proposition 2.3.35 Let F : C � C′ :G be a pair of adjoint functors between
model categories. Then (F,G) is a Quillen adjunction if and only if G is right
Quillen functor.

�

The following statement is a consequence of Ken Brown’s lemma. Find a
proof in [GJ99, II.8.9].

Lemma 2.3.36 Every left Quillen functor preserves weak equivalences be-
tween cofibrant objects and every right Quillen functor preserves weak equiva-
lences between fibrant objects.

�

Quillen’s total derived functor quickly follows from it.

Theorem 2.3.37 Let C and C′ be two model categories and F : C � C′ :G
be a pair of adjoint functors where F is right Quillen or G is left Quillen.
Then the total derived functors

LF : Ho(C) � Ho(C′) : RG

exist and form a pair of adjoint functors.

�

2.3.2 Triangulated categories

2.3.38 Let C be a pointed model category. Let X be an object and X̃ be a
cylinder object for X. As in the topological case we define the suspension of
X to be the cofiber of X tX → X̃ and denote it ΣX.

Recall that we are considering simplicial model categories. Therefore for
any object X and any simplicial set K we have X ⊗ K ∈ C (cf. Definition
2.3.23). Let p→ K be a pointed simplicial set, we define

X ∧K = X ⊗K/X ⊗ p.
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In this case a cylinder object is X̃ = X⊗∆1 so we always assume the suspension
to be

ΣX = X ∧ S1.

Therefore the suspension defines a functor which has a left adjoint

Ω: C→ C

defined as Ω(X) = Hom(S1, X). We call it the loop space functor. The
following result is now direct.

Proposition 2.3.39 Let C be a pointed model category. The suspension and
loop space functor define a Quillen adjunction. In particular, we have a pair
of adjoint functors

Σ: Ho(C) � Ho(C) : Ω.

�

Notation 2.3.40 As in topology, we denote the suspension of an object X as

X[1] = ΣX = S1 ∧X.

We also write X[n] = (Σ)nX = Sn ∧X.

Remark 2.3.41 As we saw, in a general pointed model category (not nec-
essarily simplicial) the suspension of a space is defined but depends on the
choice of a cylinder object. One may prove that all possible cylinder objects
are homotopic so the suspension and loop space of an object are well defined
in Ho(C) (cf. [Qui67, I.2.2]).

Definition 2.3.42 Let C be a pointed model category and f : X → Y be a
map between cofibrant objects. We define the cone of f to be the coproduct
of f t ∗ and i0 t i1 : X tX → X ⊗∆1. We denote it cone(f). In other words,
the cone fits into a cocartesian diagram

X tX ft∗ //

��

Y t ∗

��
X ⊗∆1 // cone(f).

Remark 2.3.43 Note that the cone can also be expressed as the coproduct
of f and i1 : X → X ∧ (∆1, 0). When needed, we also use this description in
order to avoid the use of the symbol ⊗.
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Example 2.3.44 Let X be fibrant and X → ∗ be the null morphism. Then
the cone of the null morphism is X ∧ S1. Let f : X → Y be a map between
cofibrant objects. The null morphism Y → ∗ and the canonical projection
X ∧∆1 → X ∧ S1 define a morphism cone(f)→ X ∧ S1. Therefore, we have
a sequence of morphisms

X
f // Y // cone(f) // X[1].

We remark a sufficient condition for the homotopy category of a model
category to be a triangulated category (cf. [Nee01, 1.3.13]). Find a proof
for simplicial model categories in [Rio10, 3.2]. The general case follows from
analogous arguments and the properties of [Qui67, I.3.5].

Theorem 2.3.45 Let C be a pointed model category. If the suspension func-
tor [1] : Ho(C) → Ho(C) is an equivalence of categories then Ho(C) is a
triangulated category with distinguished triangles sequences

U // V //W // U [1]

isomorphic, in Ho(C), to a sequence

X
f // Y // cone(f) // X[1]

for f : X → Y a map in C between cofibrant objects.

�
We recall a useful property.

Lemma 2.3.46 Let i : X → Y be a cofibration and X be cofibrant. Then the
natural map

cone(i)→ cofib(i) ' hocofib(i)

is a weak equivalence.

Proof: Note that we have a commutative diagram

X

i

��

// X ∧ (∆1, 0)

��

// *

��
Y // cone(i) // cofib(i)

made of cocartesian diagrams. From Corollary 2.3.19 we have that X ∧
(∆1, 0) → cone(i) is a cofibration. Note that X ∧ (∆1, 0) → ∗ is a weak
equivalence. Since weak equivalences are stable under pushouts of cofibrations
(cf. Definition 2.3.26) we conclude.

�
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Proposition 2.3.47 Consider the homotopy pushout square

Z

p
��

i // T

p′

��
X i′ // Y

where i is a cofibration and every object is cofibrant. Then there is a distin-
guished triangle

Z
i⊕p // T ⊕X p′⊕i′ // Y // Z[1] .

�

Recall a general fact from category theory. Let F : A � A′ :G be a pair
of adjoint functors. If F is an equivalence of categories then G = F−1.

Notation 2.3.48 Let C be a pointed model category and such that the sus-
pension functor [1] : Ho(C) → Ho(C) is an equivalence of categories. We
denote the loop space of an object X as

X[−1] = ΩX = Hom(S1, X).

We also write X[−n] = ΩnX.

Recall that a triangulated category is, by definition, additive (cf. [Mac71,
p.196]). In particular, Hom-sets are (additive) abelian groups. The following
result is standard.

Proposition 2.3.49 Let A be an additive category, then finite products equal
finite coproducts. In other words, X×Y = X tY . We also note them X⊕Y .

�

Proposition 2.3.50 Let A be a triangulated category and E be an object of
A. Every distinguished triangle

X
f−→ Y

g−→ Z
∂−→ X[1]

induces a cohomological long exact sequence

· · · → HomA(X[1], E)
∂∗−→ HomA(Z,E)

g∗−→ HomA(Y,E)
f∗−→ HomA(X,E)→ · · · .
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Proof: By the definition of distinguished triangle any two composite is zero.
Let u ∈ Hom(Y,E) such that u ◦ f = 0. Consider the commutative diagram

* // E
1E // E // Σ*

X

OO

f // Y

u

OO

g // Z
∂ // ΣX

where the upper and lower rows are distinguished triangles. By the axioms of
triangulated category there exists a morphism v : Z → E making the diagram
commutative. In other words, u = v ◦ g and therefore Ker f ∗ = Im g∗.

�

2.3.3 Bousfield localization

Let C be a model category and denote Weak its class of weak equivalences.
Recall that in general it may not be easy to describe a localized category, but
for a model category we have C[Weak−1] = Ho(C). Let A be a set of mor-
phisms of C and denote Ā the induced set on Ho(C). Under mild hypothesis
on C, there is a general method to describe C[Weak−1][A−1] = Ho(C)[Ā−1] for
any A in terms of the model structure of C. This technique is called Bousfield
localization. In order to avoid tedious notation we will not completely review
the details. All categories we will consider satisfy the hypothesis required for
the existence of such localizations (left proper cofibrantly generated cellular
model category, cf. [Hir03, 4.1.1]).

Definition 2.3.51 Let C be a model category and A be a set of morphisms
of C. We say that an object U is A-local if U is fibrant and for every object
X and every map g : V → W of A the induced map

g∗ : HomHo(C)(X ×W,U)→ HomHo(C)(X × V, U)

is a bijection. Denote Holoc(C) the full subcategory of Ho(C) made of A-local
objects.

Let f : X → Y be a morphism in C:

• We say that f is an A-local equivalence if for every A-local object U
the induced map

f ∗ : HomHo(C)(Y, U)→ HomHo(C)(X,U)

is a bijection. Denote WA the class of A-local equivalences.
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• We say that f is an A-local fibration if it has the right lifting property
with respect to (original) cofibrations which also are A-local equivalences.

In addition, we say that an object X is A-fibrant if X → ∗ is an A-local
fibration.

Remark 2.3.52 I do not know of any geometrical reason for the use of the
term local. To my knowledge, the reason is historical due to the original work
of Bousfield.

Note that usual weak equivalences are A-local equivalences. We summarize
in the following results the main properties of Bousfield localizations that we
will use. Find a scattered proof in [Hir03, 4.1.1, 3.3.19, 3.3.14+3.3.16].

Theorem 2.3.53 Let C be a model category satisfying the hypothesis of [Hir03,
4.1.1] and A be a set of morphisms in C:

1. The class of A-local equivalences, (original) cofibrations and A-local fi-
brations define a model structure on C. Denote HoA(C) its homotopy
category.

2. We have HoA(C) ' Ho(C)[Ā−1].

3. An object X is A-fibrant if and only if it is A-local.

�
We call HoA(C) the Bousfield localization of C in A. For coherence with

the literature (cf. [MV99, 2.2.19]) denote

LA : Ho(C)→ Holoc(C)

the A-local fibrant replacement induced in Ho(C). Note that it is left adjoint
to the inclusion. Find a proof of the following result in [Hir03, 3.2.13].

Theorem 2.3.54 Let C be a model category satisfying the hypothesis of [Hir03,
4.1.1] and A be a class of morphisms in C. Assume all objects are cofibrant.
Then the localization functor is LA. In other words, we have a pair of adjoint
functors

LA : Ho(C) � Holoc(C) ' HoA(C) : i.

�

Remark 2.3.55 For the sake of completeness, let us remark that we have
reviewed the notion of left Bousfield localization. There is analogous notion of
right Bousfield localization (cf. [Hir03, §3]).
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Example 2.3.56 We recall two examples from [MV99, p. 86]:

• Consider the category of simplicial sets sSets with the trivial model
structure. Set A to be the class of morphisms X × ∆1 → X for all
simplicial sets X. Then the Bousfield localization is the usual homotopy
category of simplicial sets.

• Consider the category of locally contractible topological spaces with the
trivial model structure. Let I be the unit interval. Set A to be the
class of morphisms X × I → X for all spaces X. Then the Bousfield
localization is the usual homotopy category.
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Chapter 3

Motivic homotopy theory

3.1 The homotopy category H(S)

Let S be a finite dimensional Noetherian scheme. Recall that SmS denotes
the category of smooth schemes over S. We will always consider SmS endowed
with the Nisnevich topology of Example 2.2.3 so we omit the reference to the
topology. Denote ∆opShv(S) the category of Nisnevich sheaves of simplicial
sets on SmS with morphism of sheaves. Note that the Yoneda embedding
defines a fully faithful functor

SmS −→ ∆opShv(S)

which maps any smooth scheme X to the sheaf o simplicial sets defined by the
sheaf of sets HomSmS

( , X). We still denote X to this sheaf.

Definition 3.1.1 Let f : F → G be a morphism of simplicial sheaves:

1. We say that f is a local weak equivalence if for every smooth scheme
X and every point x in X the morphism of simplicial sets fx : Fx → Gx

is a weak equivalence of simplicial sets.

2. We say that f is a local injective fibration if it has the right lifting
property with respect to local weak equivalences which are monomor-
phisms.

The following theorem comes from [Jar87, 2.7].

Theorem 3.1.2 The classes of local weak equivalences, monomorphisms and
local injective fibrations define a model structure on ∆opShv(S) which we call
the local injective model structure.

�

59
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Remark 3.1.3 In motivic homotopy theory we consider different model struc-
tures on the category ∆opShv(S), three in this text and up to five that I know.
We will have the same circumstance in section § 3.2 for spectra. Apart from
the term -local for Bousfield localizations (cf. Definition 2.3.51) there are no
standard notations in the literature with most papers using their own termi-
nology. For example, the previous model structure is the most well known
and it is referred as simplicial in [MV99], motivic in [Jar00], local injective in
[Bla01] and top-locale in [Ayo07]. We have chosen to follow Blander’s notation
since it is the most self explanatory and the only one that allows to denote
other model structures coherently.

Notation 3.1.4 Recall that the homotopy category of a model category is a
localization (cf. Definition 2.3.1). Therefore, up to a natural transformation,
it only depends on weak equivalences and not on cofibrations and fibrations.
When needed, we denote homotopy categories referring their weak equiva-
lences.

Remark 3.1.5 Recall that the model structure on simplicial sets have monomor-
phisms as cofibrations and Kan fibrations as fibrations (cf. Example 2.3.21).

Let f : F → G be a morphisms of simplicial sheaves. We say that f is a
local projective fibration if for every smooth scheme X and every point x
in X the morphism of simplicial sets fx : Fx → Gx is a Kan fibration. Note
that local projective fibrations in general have not the right lifting property
with respect to monomorphisms which are local weak equivalences. Therefore
they are not the fibrations of the local injective model structure. This is a
general fact on simplicial sheaves and it would also happen for sectionwise
weak equivalences.

However, the class of local weak equivalences, local projective fibrations and
the class of morphisms having the left lifting property with respect to trivial
local projective fibrations define a model structure on ∆opShv(S) ([Jar87,
1.13]). We denote it the local projective model structure.

Many authors refer as injective the model structure with natural cofibra-
tions and projective the one with natural fibrations (cf. [Bla01]). Note that
this notation is coherent with the one on chain complexes of Example 2.3.21.
Since both the injective and the projective model structures have the same
weak equivalences they define the same homotopy category.

Notation 3.1.6 On the following, we will refer to model structures mention-
ing their weak equivalences and, if needed, injective or projective wether cofi-
brations or fibrations are the natural ones in the context.

The following definition comes from [MV99].
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Definition 3.1.7 Denote by Ws the class of local weak equivalences. We
define the simplicial (or local) homotopy category of S-schemes Hs(S)
to be

Hs(S) = Ho(∆opShv(S)) = ∆opShv(S)[W−1
s ],

the homotopy category of ∆opShv(S) with respect to the local injective model
structure.

Example 3.1.8 Consider the sheaf defined by the base scheme S. For every
smooth scheme X we have S(X) = ∗, the simplicial set of a point. Consider
now the sheaf defined by the affine line A1

S. Recall that A1
S(X) = OX(X),

where OX(X) denotes the simplicial set defined by the set OX(X). Therefore
A1
S is not isomorphic to S in Hs(S).

Recall that in any model category there is a notion of homotopy between
maps (Definition 2.3.10) and it defines an equivalence relation if the source
space is cofibrant. Set π(F,G) for the quotient of Hom∆opShv(S)(F,G) under
this equivalence relation.

Find in [Jar87, p.55] the following remark:

Proposition 3.1.9 Let G be a local projective fibrant simplicial sheaf. For
any simplicial sheaf F the canonical map

lim−→
p : F ′→F

Hom∆opShv(S)(F
′, G)/ ∼→ HomHs(S)(F,G),

where the colimit is taken along trivial local projective fibrations and ∼ denotes
the homotopy relation of Proposition 2.3.14, is a bijection.

�

As we saw in Example 3.1.8, in order to obtain the adequate homotopy
category of schemes further morphisms have to be inverted. We invert the
minimum required class of morphisms.

Definition 3.1.10 A sheaf of simplicial sets F is called A1-local if for any
sheaf of simplicial sets G the map

HomHs(S)(G,F )→ HomHs(S)(G× A1, F )

induced by the projection G×A1 → G is a bijection. Denote Hloc(S) the full
subcategory of Hs(S) of A1-local objects.

Let f : F → G be a morphism of simplicial sheaves:
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• We say that f is an A1-weak equivalence if for any A1-local sheaf H
the induced map of simplicial sets

HomHs(S)(G,H)→ HomHs(S)(F,H)

is a bijection.

• We say that f is an A1-fibration if it has the right lifting property with
respect to monomorphisms which are A1-weak equivalences.

The following result is originally proved in [MV99, §2.3], but it is nowadays
a particular case of the Bousfield localization (cf. Theorem 2.3.53).

Theorem 3.1.11 The classes of A1-weak equivalences as weak equivalences,
monomorphisms as cofibrations and A1-fibrations as fibrations define a simpli-
cial model structure on ∆opShv(S). We call it the A1-model structure.

�

Definition 3.1.12 Denote WA1 the class of A1-weak equivalences. We define
the homotopy category of S-schemes H(S) to be

H(S) = ∆opShv(S)[W−1
A1 ],

the homotopy category of ∆opShv(S) with respect to the A1-model structure.
We denote morphisms in this category as [ , ].

Denote LA1 : Hs(S)→ Hloc(S) the A1-local fibrant replacement induced in
Hs(S). The general theory of Bousfield localizations allows to conclude the
following result (cf. Theorem 2.3.53).

Corollary 3.1.13 The localization functor of the A1-model structure is LA1.
In other words, we have a pair of adjoint functors

LA1 : Hs(S) � Hloc(S) ' H(S) : i.

�

3.1.14 Let ∆opShv•(SmS) be the category of pointed Nisnevich sheaves of
simplicial sets. Consider the pointed version of the previous model structures,
which we call the pointed local model structure and the pointed A1-model struc-
ture on ∆opShv•(SmS). We define the pointed simplicial (or local) homotopy
category and the pointed homotopy category of schemes to be the respective
homotopy categories. We denote them

Hs
•(S) , H•(S).
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Let F be a sheaf of pointed sets. Recall that the functor F ∧ is left
adjoint to the functor Hom(F, ). We can apply the same construction for
simplicial sets instead of sets.

Proposition 3.1.15 Let F be a sheaf of pointed simplicial sets. The pair of
adjoint functors

F ∧ : ∆opShv•(SmS) � ∆opShv•(SmS) : Hom(F, )

form a Quillen adjunction both for the local and the A1-model structure. We
abuse notation and still denote Hom(F, ) the internal Hom object in Hs

•(S)
and H•(S).

Proof: It is direct to check that F ∧ preserves monomorphisms and local
weak equivalences so that the derived functors exist in Hs

•(S).
Let us see that F ∧ preserves A1-weak equivalences. Note that we

have HomHs
•(S)(F ∧G,H) = HomHs

•(S)(G,Hom(F,H)) so that if H is A1-local
then Hom(F,H) is A1-local for all F . Therefore if f : G → G′ is an A1-weak
equivalence note that

HomHs
•(S)(F ∧G,H)

= HomHs
•(S)(G,Hom(F,H)) ' HomHs

•(S)(G
′,Hom(F,H))

= HomHs
•(S)(F ∧G′, H).

�

We recall an important result due to Morel and Voevodsky. Note that in
motivic homotopy theory there are different notions of spheres. On one hand
we have noted S1 the sheaf given by the simplicial set of circle. Following
[MV99], we denote

Gm − the sheaf represented by A1 − {0} pointed by 1,

T − the quotient sheaf A1/A1 − {0}

and we call the multiplicative group Gm the Tate circle. Find a proof of the
next result in [MV99, 3.2.15].

Theorem 3.1.16 With the above notations, we have in H•(S) a canonical
isomorphism

Gm ∧ S1 ' T ' P1.

�
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3.1.1 Functoriality, localization, blow-up and homotopy
purity

In [MV99, §2.3.3] Morel and Voevodsky proved that the homotopy category
of schemes satisfies good functorial properties for a general continuous map
of sites satisfying certain hypothesis. We recall them here in the case of mor-
phisms of schemes.

The same constructions from Proposition 2.2.19 and the following results
apply for sheaves of simplicial sets instead of sheaves of sets. It follows that
any continuous map of sites f : SmS → SmT (cf. Definition 2.2.18) induces a
pair of adjoint functors

f ∗ : ∆opShv(T ) � ∆opShv(S) : f∗.

The pair (f ∗, f∗) does not form in general a Quillen adjunction. Nevertheless,
under certain reasonable conditions (cf. [MV99, 2.1.55 and 2.3.16]) they still
induce total derived functors for the simplicial homotopy category and the
homotopy category ([MV99, 2.1.57 and 2.3.17]). In particular, the morphisms
of sites of Example 2.2.20 given by a morphism of schemes are reasonable
([MV99, 3.1.20, 3.2.8 and 3.2.9]).

We quickly review the construction. Denote Ri the fibrant replacement for
the local injective model structure. Let f : T → S be a morphism of schemes.
Then f∗ induces a functor Hs(T )→ Hs(S) defined as F 7→ f∗(RiF ) on objects
and ϕ 7→ f∗(Riϕ) on morphisms in ∆opShv(S). This functor is the total right
derived functor of f∗ (cf. [MV99, p. 62]). We abuse notation and denote it

f∗ : Hs(T )→ Hs(S).

Denote Φf : ∆opShv(S) → ∆opShv(S) the functor defined in [MV99, p.
65], which is a concrete local projective replacement. In other words, this
functor has a natural transformation Φ→ Id such that Φ(F )→ F is a trivial
local projective fibration for all F . The reference then proves that the functor
f ∗ ◦Φf : ∆opShv(S)→ ∆opShv(T ) preserves local weak equivalences and that
it is the total left derived functor of the inverse image of simplicial sheaves (cf.
[MV99, 2.1.57]). We abuse notation and denote

f ∗ : Hs(S)→ Hs(T )

the functor it induces. Find a proof of the following statement in [MV99,
3.1.20].

Theorem 3.1.17 Let f : T → S be a morphism of schemes. Then the pair of
functors

f ∗ : Hs(S) � Hs(T ) : f∗



3.1. THE HOMOTOPY CATEGORY H(S) 65

defined above are adjoint. Let g : U → T be a morphism of schemes, we have
canonical natural transformations

(f ◦ g)∗ ' f∗ ◦ g∗,

(f ◦ g)∗ ' g∗ ◦ f ∗.

�

Let p : X → S be a smooth morphism. Recall from Example 2.2.20 that p
induces another morphism of sites Φp : SmS,Nis → SmX,Nis. In [MV99, p. 105]
Morel and Voevodsky observe that applying an analogue construction there is
an induced functor

p] : Hs(U)→ Hs(S).

Similar arguments also deduce the following result.

Corollary 3.1.18 Let p : X → S be a smooth morphism. The functors

p] : Hs(X) � Hs(S) : p∗

are adjoint. Let q : Y → X be a smooth morphism we have a canonical natural
transformation

(p ◦ q)] ' p] ◦ q].

�

Deriving for the A1-model structure is now easy. Let f : T → S be a
morphism of schemes. Note that for any sheaf F we have f ∗(F × A1

S) =
f ∗(F ) × A1

T (cf. Proposition 2.2.23). Therefore it follows that f ∗ preserves
A1-weak equivalences and induces a functor

f ∗ : H(S) −→ H(T ).

It follows directly that the functor f∗ preserves A1-local objects. Indeed,

HomHs(S)(G×A1
S, f∗F ) = HomHs(T )(f

∗(G)×A1
T , F ) = HomHs(S)(f

∗(G)×A1
T , F )

' HomHs(T )(f
∗G,F ) = HomHs(S)(G, f∗F ).

Therefore, the direct image induces a functor

f∗ : H(T ) −→ H(S).

We have proved the following result.



66 3. MOTIVIC HOMOTOPY THEORY

Proposition 3.1.19 Let f : T → S be a morphism of schemes. The pair of
functors

f ∗ : H(S) −→ H(T ) : f∗

are adjoint. Let g : U → T be a morphism of schemes, we have canonical
natural transformations

(f ◦ g)∗ ' f∗ ◦ g∗,

(f ◦ g)∗ ' g∗ ◦ f ∗.

�

Let p : X → S be a smooth morphism. Recall that p] satisfies a projection
formula (cf. Proposition 2.2.24) so that in particular p](F ×A1

X) = p](F )×A1
S

and p] preserves A1-weak equivalences. Therefore it induces a functor which
we denote as well

p] : H(X) −→ H(S).

We deduce the following result.

Proposition 3.1.20 Let p : X → S be a smooth morphism. Then the pair of
functors

p] : H(X) � H(S) : p∗

are adjoint. Let q : Y → X be a smooth morphism, we have a canonical natural
transformation

(p ◦ q)] ' p] ◦ q].

�

The following is one of the main results of [MV99], which is not true in
Hs(S) nor if we consider the Zariski topology nor the category all schemes
SchS. Note that this theorem is stated in the big Nisnevich site, and it would
be trivial for the small site. Although deriving functors in H(S) is simple, the
proof of the following result relies on some resolution lemmas which we have
not reviewed. Find the original proof in [MV99, 3.2.21].

Theorem 3.1.21 (Localization) Let j : U → S be an open embedding with
complement the closed embedding i : Z → S. Then for any simplicial sheaf F
the square

j]j
∗F //

��

F

��
U // i∗i

∗F

is homotopy cocartesian in H(S).
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�

Remark 3.1.22 Let j : U → S be an open embedding. Note that the simpli-
cial sheaf U on SmS has one element on smooth schemes over U and is empty
elsewhere. Therefore there are maps j]F

′ → U (cf. Proposition 2.2.24) and
U → i∗F

′′ (cf. Proposition 2.2.21) for any simplicial sheaves F ′, F ′′. These
are the maps from the statement.

Also note that this result is the homotopy analogue to saying that for a
sheaf F of abelian groups the sequence

0→ j!j
∗F → F → i∗i

∗F → 0

is exact.

Example 3.1.23 Let j : U → S be an open embedding with complement the
closed embedding i : Z → S:

• Consider the simplicial sheaf defined by the base scheme S. Note that
for any smooth S-scheme X we have S(X) = ∗. Observe that j]j

∗S =
j]S|U = U . Therefore j]j

∗S = U → U is the identity and the localization
square is cocartesian and not just homotopy cocartesian. In particular
i∗i
∗S ' S.

• Consider X a smooth S-scheme and the simplicial sheaf it defines. Recall
from Example 2.2.25 that (j]j

∗X)(Y ) equals X(Y ) if Y is a smooth U -
scheme, and equals ∅ otherwise. We denoted this sheaf X−XZ . Since the
upper arrow of the localization theorem is a cofibration by Proposition
2.3.28 there is no need to take cofibrant replacements. We conclude
that (i∗i

∗X)(Y ) equals a point if Y is a smooth U -scheme and X(Y ) if
otherwise.

Recall from Remark 2.2.26 that the classical condition of ”being zero” for
sheaves of abelian groups translate into being ∗ or ∅ into sheaves of simplicial
sets. We remark the pointed version of the localization theorem.

Corollary 3.1.24 Let j : U → S be an open embedding with complement the
closed embedding i : Z → S. Then for any pointed simplicial sheaf F the square

j]j
∗F //

��

F

��
* // i∗i

∗F

is homotopy cocartesian in H•(S).
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�

Example 3.1.25 Let j : U → S and i : Z → S as before. Consider the pointed
simplicial sheaf S+. In this case it sections are always two points S+(Y ) = ∗t∗.
We obtain that

S+/U+ ' i∗i
∗S+

is an isomorphism in H•(S). In general, for X a smooth S-scheme we have
that X+/XU+ ' i∗i

∗X+.

We recall from [MV99, §3] a classic result stated in this context. Find the
proof in [MV99, 3.2.29].

Theorem 3.1.26 (Blow-up) Let i : Z → X be a closed embedding of smooth
schemes over S, π : BZX → X be the blowing-up of Z in X and U = X−Z =
BZX − π−1(Z). Then the square

π−1(Z) //

��

XZ/U

��
Z // X/U

is homotopy cocartesian in H(S).

�
Let us remark the pointed version of this theorem.

Corollary 3.1.27 Let i : Z → X be a closed embedding of smooth schemes
over S, π : BZX → X be the blowing-up of Z in X and U = X − Z =
BZ − π−1(Z). Then the square

π−1(Z)+
//

��

XZ+

��
Z+

// X+

is homotopy cocartesian in H•(S).

�

Definition 3.1.28 Let V → X be a vector bundle. We define the Thom
space of V as

Th(V ) = V/V − 0.

The following result comes from [MV99, 3.2.23].
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Theorem 3.1.29 (Homotopy purity) Let i : Z → X be a closed embedding
of smooth schemes and denote NZ/X → Z the normal bundle. Then there is a
canonical isomorphism in H•(S)

pXZ : X/X − Z ∼−→ Th(NZ/X).

�

Remark 3.1.30 The reason why the previous result is referred as homotopy
purity is the following. Loosely speaking let H denote a cohomology and
i : Z → X be a closed immersion between schemes satisfying strong hypotheses
(at least smooth). Then it is expected to have an isomorphism

pXZ : H(Z)
∼−→ HZ(X)

called the purity isomorphism. Let V → X be a vector bundle, by construction
of the Thom space there should be an isomorphism called the Thom isomor-
phism

H(X)
∼−→ H(Th(V ))

given by the Thom class (cf. Example 4.2.19).
Depending on the context there are different methods to prove the purity

isomorphism. One method is by means of the Thom isomorphism and a re-
sult as Theorem 3.1.29. Very loosely speaking, assume there is a category
D analogue to the derived category of complexes satisfying the properties of
Grothendieck’s six operations and where H is represented. More concretely,
there is an object H in D such that H(X) = HomD(X,H). Then the above
result Theorem 3.1.29 implies purity since

pXZ : HZ(X) = HomD(X/X-Z,H) ∼
3.1.29

// HomD(Th(NZ/X),H)

= H(Th(NZ/X)) ∼
Thom iso

// H(Z).

In motivic homotopy theory the stable homotopy category we construct in
Section 3.2 satisfies the properties required for D.

3.1.2 Classification of torsors

As in classic topology the simplicial homotopy category Hs(S) is an adequate
framework to classify torsors. The proof follows from the case of simplicial
sets with similar arguments. However, one has to take into account that if
one considers monomorphisms as cofibrations then fibrations in ∆opShv(S)
are not the analogue to Kan fibrations in sSets (cf. Remark 3.1.5). The
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original proof of Morel and Voevodsky in [MV99, §4.1.3] is only sketched and
one of the results we need is not explicitly stated there (cf. Proposition 3.1.43).
Therefore, we include complete proofs up to the result we need.

We recall the definitions of section § 2.1.1 in the context ∆opShv(S).

Definition 3.1.31 Let G be a sheaf of groups and F be a sheaf of simplicial
sets. An action of G on F is morphism a : G × F → F satisfying analogue
diagrams to that of Definition 2.1.19. We say that the action is free if the
map G × F → F × F , which maps any pair of sections (g, x) to (a(g, x), x), is
a monomorphism.

A G-torsor over F is a morphism T → F of sheaves of simplicial sets with
a free action of G on T over F such that the canonical morphism T /G → F
is an isomorphism. We denote by P (F,G) the set of isomorphism classes of
G-torsors.

Remark 3.1.32 The example we are interested is when F = S, the sheaf of
simplicial sets defined by the base scheme, and G = Gm the functor of points of
the multiplicative group. Allowing general torsors over and arbitrary sheaf F
is only needed for the case of pseudodivisors in Proposition 3.1.43. The reader
interested in the classification of line bundles may assume that every torsor is
over S.

The following result is direct.

Proposition 3.1.33 Let G be a sheaf of groups and T a sheaf of simplicial
sets with an action of G. A map T → F is a G-torsor if and only if Tx → Fx
is a Gx-torsor (of simplicial sets) for every point x of a smooth S-scheme X.

�

Example 3.1.34 • The second projection π : G×F → F defines the triv-
ial G-torsor over F so that the set P (F,G) is not empty and we chose
the trivial G-torsor as a base point.

• Let f : H → F be a morphism of simplicial sheaves and T → F be a
G-torsor. Then f ∗T = T ×F H is a G-torsor over H.

• Let X be a scheme and L → X be a line bundle. The complement of
the zero section defines a Gm-torsor (in the classical sense). Therefore
the complement of the zero section defines a Gm-torsor of sheaves of
simplicial sets.

The fact that the definition of G-torsor does not require to be ”locally
trivial” may surprise. Let us remark the following property.
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Proposition 3.1.35 Let G be a sheaf of groups and T → S be a G-torsor
over S, the sheaf defined by the base scheme. Then there exists a Nisnevich
covering {Uα} of S such that

T ×S Uα = G × Uα

for all α.

Proof: The result follows since every torsor T over S is trivial on stalks.
Indeed, note that S is the final object of SmS so that S(U) = {pU}, where
pU denotes the structural morphism. Therefore Sx = ∗ for every point x of
S. Then Tx = Gx is trivial and there exists a Nisnevich neighborhood Uα of x
such that T ×S Uα = G × Uα and a sections sα : Uα → T . Therefore we have
a section

T ×S Uα

��
Uα

sα

OO

so that T ×S Uα = G × Uα.
�

Let G be a sheaf of groups. Denote by EG the sheaf of simplicial sets with n-

th term G× n+1· · · ×G. Note that EG is naturally a sheaf of simplicial groups and
has an action of G. Denote BG = EG/G. The sheaf EG is naturally a G-torsor
over BG and we call EG the universal G-torsor and BG the classifying
space. Let T be a G-torsor over F . Consider the quotient presheaf which maps
a smooth S-scheme U to the quotient of (T × EG)(U) under the relationship
(fg, e) ∼ (f, ge) for (f, e) ∈ (T × EG)(U), g ∈ G(U) and U an S-smooth
scheme. We denote T ×G EG the associated sheaf.

Lemma 3.1.36 Let G be a sheaf of groups and T a G-torsor over F . Denote
p1 : T ×G EG → T /G = F and p2 : T ×G EG → EG/G = BG. Then p1 is a
trivial local projective fibration and p∗1T ' p∗2EG.

Proof: Consider a point x of a scheme X. The first projection induces a map
of simplicial sets p1∗ : (T ×G EG)x → Fx. Moreover, we have (T ×G EG)x =
Tx ×Gx EGx. Since Tx is a Gx-torsor over Fx of simplicial sets p1∗ is a trivial
Kan fibration so that p1 is a trivial local projective fibration. Finally, by
construction p∗1T ' p∗2EG ' T × EG.

�

Definition 3.1.37 Let f : F → H be a morphism of sheaves of simplicial sets.
We define the relative π0 to be the sheaf of simplicial sets π0(f) defined by
the presheaf of simplicial sets U → π0(fU) (cf. Definition 2.1.33).
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Lemma 3.1.38 Let G be a sheaf of groups. If f : F → H is a trivial local
projective fibration then the map

P (H,G) → P (F,G)
T 7→ f ∗T

is a bijection.

Proof: It is enough to construct the inverse. Note that there is a map
π0(f) → H. For every point x we have that π0(f)x → Hx is a Gx-torsor
due to Proposition 2.1.34. Therefore π0(f) is a G-torsor over H.

�

Theorem 3.1.39 Let G be a sheaf of commutative groups. The natural map

P (F,G) −→ HomHs(S)(F,BG)
T 7→ p2 ◦ p−1

1 ,

where p1 and p2 are the maps of Lema 3.1.36, is a bijection.

Proof: The map is well defined due to Lemmas 3.1.36 and 3.1.38. It is a
bijection due to Proposition 3.1.9.

�

Note that both EG and BG are naturally pointed. Therefore there is a
pointed version of the preceding result considering pointed torsors over sheaves
of pointed simplicial sets. We denote P•(F,G) the set of isomorphism classes
of pointed torsors.

Corollary 3.1.40 For any sheaf of groups G, and F be a sheaf of pointed
simplicial sets. The natural map

P•(F,G) −→ HomHs
•(S)(F,BG)

is a bijection.

�

Let X be a scheme. We denote by Pic(X) the group of classes of isomor-
phisms of (Zariski) line bundles over X. Recall that the complement of the
zero section naturally defines a Gm-torsor (of sheaves of simplicial sets) over
X.

Corollary 3.1.41 Let X be a scheme, the natural map

Pic(X) −→ HomHs(X)(X,BGm) = HomHs
•(X)(X+, BGm)

is a bijection.
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Proof: It is enough to prove that every Gm-torsor, as sheaf of simplicial sets,
is a classical torsor. Let T be a Gm-torsor over X. Since both Gm and X have
simplicial dimension zero (Definition 2.1.4) then T has simplicial dimension
zero. Moreover, by Proposition 3.1.35 there exists a Nisnevich covering {Uα}
of X where T is trivial. In other words

T ×X (
∐
α

Uα) =
∐
α

G× Uα.

Therefore T is locally representable by a classical Gm-torsor, so we conclude
it is represented by a classical torsor.

�

Definition 3.1.42 Let X be a scheme and U = (X − Z) → X be an open
subscheme. We call a pseudo divisor (trivialized on U) a pair (L, u) consist-
ing of an invertible sheaf L over X (in the Zariski topology) and a trivialization
u : O|U

∼−→ L|U . We denote PicZ(X) the group of isomorphism classes of pseudo
divisors.

Let X be a scheme and i : U → X be an open immersion. Recall that we
denoted by X/U the quotient Nisnevich sheaf of simplicial sets and π : X+ →
X+/U+ = X/U the natural projection. Note that we have a natural morphism
p : ∗ → X/U so that X/U is naturally pointed. Let T be a pointed Gm-torsor
over X/U , then π∗T → X+ is a Gm-torsor over X+ trivialized over U+ in the
sense that π∗T has a fixed isomorphism p′ : π∗T ×X+ U+

∼→ Gm × U+ coming
from the pullback of the trivialization of T over p.

Proposition 3.1.43 Let Z → X be a regular immersion of codimension 1
and denote U its open complement. Then the map

P•(X/U,Gm) −→ PicZ(X)
T 7→ π∗T

is a bijection.

Proof: It is enough to construct the inverse map. Let T be a torsor over X
with a trivialization on U . We have a cartesian diagram

T+ ×X+ U+ ' Gm × U+
//

��

T+

��
U+

i // X+.

The quotient T+/Gm × U+ defines a Gm-torsor over X/U .
�
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Definition 3.1.44 We define the infinite projective space to be the sheaf
of simplicial sets

P∞ = lim−→Pn

where immersions are taken through the infinite zone. Note that P∞ is natu-
rally pointed.

We recall a result from Morel and Voevodsky (cf. [MV99, 4.3.7]).

Theorem 3.1.45 There is a canonical isomorphism in H(S)

BGm ' P∞.

�

3.2 The stable homotopy category SH(S)

In this section we recall the construction of the stable homotopy category
of schemes of Voevodsky ([Voe98]). Recall that ∆opShv•(SmS) denotes the
category of Nisnevich sheaves of pointed simplicial sets on SmS. Note that
the same construction holds if one considers presheaves instead of sheaves and
yields the same stable homotopy category (cf. [Jar00, 1.2]). For coherence
with the previous section we write for sheaves.

As we saw in Theorem 2.3.45, in simplicial model categories it is enough
that the suspension functor S1 ∧ is an equivalence of categories to have
a triangulated category. Formally inverting S1 ∧ on H•(S) one obtains
the Spanier-Whitehead category (cf. [Voe98]). However Voevodsky remarked
that, as in the topological case, the Spanier-Whitehead category is not the
adequate category since it lacks arbitrary coproducts (direct sums). This fact
is addressed with spectra.

In addition, inverting S1 ∧ is not sufficient to treat cohomologies with
Tate twists. Voevodsky noted that inverting the smash product by two ele-
ments, S1∧ and Gm∧ in our case, is equivalente to invert their product.
Recall that S1 ∧Gm ' P1 by Theorem 3.1.16.

Definition 3.2.1 Denote P1 the sheaf of pointed simplicial sets defined by
the projective line pointed by the infinity. We call a P1-spectrum E, or
simply spectrum, to a sequence (En)n∈N of objects of ∆opShv•(SmS) and
morphisms of sheaves of pointed simplicial sets σn : P1 ∧En → En+1 for every
n. We call a morphism of spectra ϕ : E → F to a sequence of morphisms
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(ϕn : En → Fn)n∈N such that for all n the diagram

P1 ∧ En
1P1∧ϕn

��

σn // En+1

ϕn+1

��
P1 ∧ Fn

σ̄n // Fn+1

commutes. We denote by Spt(S) the category of spectra with morphisms of
spectra.

Let F be a pointed Nisnevich sheaf of simplicial sets. We call the infinite
suspension of F to the spectrum Σ∞F = ((P1)∧n ∧ F )n∈N with structural
morphisms σn = 1P1∧n ∧ 1X . Note that the infinite suspension defines functors

∆opShv•(SmS) −→ Spt(S) , Sms −→ Spt(S).

We omit the reference to the infinite suspension when it is clear by the context.

As in the case of H(S) the stable homotopy category is obtained after a
two step localization of Spt(S). Firs we invert the following morphisms that
should naturally be isomorphism.

Definition 3.2.2 Let ϕ : E → F be a morphism of spectra:

• We say that ϕ is a level A1-weak equivalence of spectra if for every
n the morphism ϕn : En → Fn is an A1-weak equivalence of sheaves.

• We say that ϕ is a level A1-injective fibration if it has the right lifting
property with respect to trivial A1-injective cofibrations.

Find a proof of the following result in [Jar00, 2.1].

Theorem 3.2.3 The classes of level A1-weak equivalences, monomorphisms
and level A1-injective fibrations define a model structure on Spt(S) which we
call the level injective model structure.

�

Definition 3.2.4 Denote Wlv the class of level A1-weak equivalences of spec-
tra. We define the level stable homotopy category of S-schemes to be

SHlv(S) = Spt(S)[W−1
lv ],

the homotopy category of Spt(S) with respect to the level injective model
structure.
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Remark 3.2.5 As in the case of H(S) there is another possible model struc-
ture. We review it for the sake of completeness. Let ϕ : E → F be a morphism
of spectra:

• We say that ϕ is an level A1-projective fibration if for every n the map
ϕn : En → Fn is an A1-fibration.

• We say that ϕ is an level A1-projective cofibration if it has the left lifting
property with respect to trivial level A1-projective fibrations.

The classes of level A1-weak equivalences, level A1-projective fibrations and
level A1-projective cofibrations define a model structure on Spt(S) which we
call the level projective model structure (cf. [Jar00, 2.1]).

We denote the P1-suspension functor Σ: Spt(S)→ Spt(S), where (ΣE)n =
P1 ∧ En. This functor has right adjoint Ω: Spt(S) → Spt(S), called the P1-
loop functor, where (ΩE)n = Hom(P1, En). Recall from Proposition 3.1.15
that the smash product preserves A1-equivalences of sheaves. Therefore it is
direct that it preserves level A1-equivalence of spectra. The following result is
a direct consequence

Proposition 3.2.6 The P1-suspension functor and P1-loop functor induce a
pair of adjoint functors

Σ: SHlv(S) � SHlv(S) : Ω.

�

The following example shows that P1-suspension is not an equivalence of
category in SHlv(S).

Example 3.2.7 Let (F, x) be a pointed simplicial sheaf of sets. There are
different definitions of sheaves of homotopy groups. We call the sheaf of naive
homotopy group πnai

0 (F, x) to be the sheaf associated to the presheaf defined as
U 7→ π0(F (U), x), where U is a smooth S-scheme. We call the A1-homotopy
group πA1

0 (F, x) the sheaf associated to the presheaf U 7→ π0(LA1F (U), x),
where LA1 denoted the A1-local replacement of F (cf. Corollary 3.1.13). We
say that a simplicial sheaf F is naive connected (resp. A1-connected) if it has
the πnai

0 (F, x) (resp. πA1

0 (F, x)) of a point.
Note that for any simplicial sheaf F we have that P1∧F has a trivial naive

homotopy group. By a theorem of Morel it also has a trivial A1-homotopy
group (cf. [Mor12, 1.18]). Consider the spectrum defined by two points F =
S t S. We conclude that ΣΩF is not level A1-equivalent to F .
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Definition 3.2.8 We say that an spectrum E is an Ω-spectrum if for every
integer n the map En → Hom(P1, En+1), adjoint to σn : P1 ∧En → En+1, is an
isomorphism in H•(S). We denote by SHΩ(S) the full subcategory of SHlv(S)
made of Ω-spectra.

It is clear that the suspension and loop functors Σ and Ω induce equivalence
of categories on SHΩ(S) (see Proposition 3.2.14 below). We could define the
stable homotopy category to be the category of Ω-spectra. We review a result
from Riou that shows that we can obtain the stable homotopy category as
Bousfield localization.

Definition 3.2.9 Let ϕ : E → F be a morphism of spectra:

• We say that ϕ is an A1-stable equivalence if for every Ω-spectrum G
the induced map

HomSHlv(S)(F,G)→ HomSHlv(S)(E,G)

is a bijection.

• We say that ϕ is an A1-stable fibration if it has the right lifting property
with respect monomorphisms which are A1-stable equivalences.

Find a proof of the following result in [Rio10, 1.22].

Proposition 3.2.10 Let X be a smooth S-scheme and denote inΣ∞F the
spectrum defined as (inΣ∞X)k = ∗ if k < n and (inΣ∞X)n+1 = (P1)i ∧ X.
Denote B the class of morphisms given by

inΣ∞(P1 ∧X+)→ inΣ∞X+

Let E be an A1-fibrant spectrum. Then E is an Ω-spectrum if and only if E is
B-local.

�
The next result follows from Bousfield localization (cf. Theorem 2.3.53).

Theorem 3.2.11 The classes of A1-stable equivalences, A1-stable fibrations
and monomorphisms define a model category structure on Spt(S) which we
call A1-stable model structure.

�
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Definition 3.2.12 Denote WA1s the class of A1-stable equivalence. We define
the stable homotopy category of S-schemes SH(S) to be

SH(S) = Spt(S)[W−1
sA1 ],

the homotopy category of Spt(S) with respect to the A1-model structure.

Let E and F be spectra. Let us remark that we define the function complex
as usual: the simplicial set which has in degree n the set HomSpt(S)(E×∆n, F )
with the natural face and degeneracy maps. we abuse notation and still denote
it S(E,F ).

Recall that in paragraph 2.3.38 we defined the suspension functor for a
pointed model category. Note that in the stable homotopy category there are
two natural suspensions and loops: the one coming from a simplicial model
category defined by S1 and the natural ones from P1-spectra given by P1. We
review the simplicial suspension to fix the notation.

Definition 3.2.13 We define the suspension functor to be

[1] : Spt(S) −→ Spt(S)
E 7→ (E[1])n = S1 ∧ En.

The suspension admits a right adjoint [−1] : Spt(S) → Spt(S), (E[−1])n =
Hom(S1, En) which we call the loop functor.

We already reviewed for general pointed model categories the following
result (cf. Proposition 2.3.39).

Proposition 3.2.14 The loop and suspension functor form Quillen adjunc-
tion for the level injective and A1-stable model structures and induce a pair of
adjoint functors

[1] : SH(S) � SH(S) : [−1].

�

Let us recall the P1-suspension and P1-loop functor in SH.

Proposition 3.2.15 The P1-suspension functor Σ preserves A1-stable weak
equivalences. We denote the induced functors

Σ: SH(S) � SH(S) : Ω.

Proof: Recall from Definition 3.2.9 that Σ preserves a A1-stable equivalence
f : E → F if for every Ω-spectrum G the map

HomSHlv(S)(ΣF,G)→ HomSHlv(S)(ΣE,G)
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is a bijection. By adjunction of the P1-loop and suspension functors on SHlv it
is enough to prove that the map HomSHlv(S)(F,ΩG)→ HomSHlv(S)(E,ΩG) is a
bijection. Note that (ΩG)n = Hom(P1, Gn) = Gn−1 since G is an Ω-spectrum.
Therefore ΩG is once again an Ω-spectrum and the result follows.

�

Voevodsky remarked that inverting the smash product by P1 ' S1 ∧ Gm

implies inverting the smash product by S1 and Gm. The proof I know requires
the notion of bispectra. Find complete proofs of this fact in [Rio10, §3]. In
particular, find the following result in [Rio10, 3.10]:

Theorem 3.2.16 The functors [1], [−1], Σ and Ω are equivalences of cate-
gories.

�

From here Theorem 2.3.45 allows to conclude the following result:

Corollary 3.2.17 The stable homotopy category SH(S) is a triangulated cat-
egory with distinguished triangles sequences

U // V //W // U [1]

isomorphic to a sequence

E
f // F // cone(f) // E[1].

�

3.2.1 Symmetric spectra

As in the topological case, proving that there is an adequate smash product
in the stable homotopy category requires an elaborate proof. We review just
the main definitions and results of [Jar00, §4].

Definition 3.2.18 Let Σn denote the n-th symmetric group. A symmetric
spectrum is a spectrum E together with symmetric group actions Σn×Xn →
Xn for all n such that the structural maps

(P1)∧p ∧ En → Ep+n

are Σp × Σn-equivariant. A morphism of symmetric spectra ϕ : E → F is
a morphism of spectra such that for all n the morphism ϕn : En → Fn is
Σn-equivariant. We denote SptΣ(S) the category of symmetric spectra with
morphism of symmetric spectra and F : SptΣ(S)→ Spt(S) the forgetful func-
tor.
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Example 3.2.19 The S0 defines a symmetric spectrum which has on level
zero S0 and (P1)n on level n. We still denote it S0.

As in the non symmetric case, the stable homotopy category of symmetric
spectra is constructed in two steps.

Definition 3.2.20 Let ϕ : E → F be a morphism of symmetric spectra:

• We say that ϕ is a symmetric level equivalence if for every n the
map fn : En → Fn is an A1-weak equivalence.

• We say that ϕ is a symmetric level (injective) cofibration if for
every n the map fn : En → Fn is a monomorphism.

• We say that ϕ is a symmetric level (injective) fibration if it has the
right lifting property with respect to level cofibrations which are level
equivalences.

Find a proof of the following result in [Jar00, 4.2].

Theorem 3.2.21 The classes of symmetric level equivalences, symmetric level
cofibrations and symmetric level fibrations define a model category structure on
SptΣ(S) which we call the symmetric level model structure.

�

Definition 3.2.22 Let ϕ : E → F be a morphism of symmetric spectra:

• We say that ϕ is a symmetric (projective) A1-stable fibration if the
underlying map of spectra F (ϕ) : F (E)→ F (F ) is an A1-stable fibration
of spectra.

• We say that ϕ is a symmetric A1-stable equivalence if for every level
and stable fibrant object W the induced map

S(F (Y ), F (X))→ S(F (X), F (W ))

is a weak equivalence of simplicial sets. (Note that S( , ) denotes
the simplicial mapping space of Definition 2.3.23).

• We say that ϕ is a symmetric (projective) A1-stable cofibration if
ϕ has the left lifting property with respect to stable fibrations which are
stable equivalences.

Find a proof of the following result in [Jar00, 4.15].
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Theorem 3.2.23 The classes of stable equivalences, stable cofibrations and
stable fibrations define a model category structure on SptΣ(S) which we call
the symmetric A1-stable model structure.

�

Definition 3.2.24 Denote WΣ the class of symmetric equivalences. We de-
fine the stable homotopy category of symmetric spectra SHΣ(S) to be

SHΣ(S) = SptΣ(S)[W−1
Σ ],

the homotopy category of SptΣ(S) with respect to the symmetric A1-stable
model structure.

Definition 3.2.25 We define symmetric sequence X to be a sequence
(Xn)n∈N of pointed simplicial sheaves which have a group action Σn×Xn → Xn.
We define a morphism of symmetric sequences f : X → Y to be a sequence
of maps fn : Xn → Yn which are Σn-equivariant. We define the product of two
symmetric sequences X ⊗ Y to be the symmetric sequence defined as

(X ⊗ Y )n =
∨

p+q=n

Σn ⊗Σp×Σq Xp ∧ Yq '
∨

p+q=n
Σn/(Σp×Σq)

Xp ∧ Yq.

Remark 3.2.26 The product of symmetric sequences is commutative. There
is a canonical isomorphism X ⊗ Y ∼−→ Y ⊗X defined by the maps

Xp ∧ Yq // Yq ∧Xp
ine // (Y ⊗X)n

where ine : Yq ∧ Xp →
∨

Σn/(Σq×Σp) Yq ∧ Xp is the inclusion by defined by the
class of the neutral element.

Remark 3.2.27 Note that every symmetric spectrum E defines a symmetric
sequence, still denoted E. Moreover, spectra are identified with symmetric
sequences which are S0-modules, in the sense that there is morphism of sym-
metric sequences

S0 ⊗ E → E.

Definition 3.2.28 Let E and F be symmetric spectra and denote the maps
as S0-module µ : S0⊗E → E and ν : S0⊗F → F respectively. We define the
smash product of spectra E ∧ F as the symmetric sequence coequalizer

S0 ⊗ E ⊗ F ⇒ E ⊗ F → E ∧ F
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of the maps µ⊗ 1F : S0 ⊗ E ⊗ F → F and the map

1E ⊗ ν : S0 ⊗ E ⊗ F = E ⊗ S0 ⊗ F → E ⊗ F.

Note that E∧F is a S0-module with the map induced by µ⊗1F and therefore
it is a symmetric spectrum.

Find a proof of the following theorem in [Jar00, 4.31].

Theorem 3.2.29 The forgetful functor F : SptΣ(S)→ Spt(S) is a left Quillen
functor and induces adjoint equivalence of categories

SHΣ(S) � SH(S).

Moreover, SHΣ(S) is a symmetric monoidal category in the sense of [Mac71,
p.251] and therefore so is SH(S).

�

3.2.2 Functoriality

Recall from section § 2.2.2 that any morphism of schemes f : T → S induce a
pair of adjoint functors

f ∗ : ∆opShv•(S) � ∆opShv•(T ) : f∗.

Recall from Proposition 2.2.23 that we know that for any F in ∆opShv•(S)
we have that f ∗(P1 ∧ F ) ' P1 ∧ f ∗F . We abuse notation and still denote
f ∗ : Spt(S) → Spt(T ) the following functor. Let E be a spectrum, then
(f ∗E)n = f ∗En for n ∈ N and with f ∗σn as structural morphisms. Let ϕ =
{ϕn : En → Fn} be a morphism of spectra, then f ∗ϕ = {f ∗ϕn}.

By adjunction we deduce from Proposition 2.2.23 an isomorphism of sheafs
Hom(P1, f∗H) ' f∗Hom(P1, H). We abuse notation and still denote the func-
tor f∗ : Spt(T ) → Spt(S) which maps any spectrum F in Spt(T ) to the
spectrum defined by (f∗F )n = f∗Fn with structural morphisms the adjoint of
the composite

f∗En → Hom(P1, f∗En+1) ' f∗Hom(P1, En+1).

It is clear that the pair of functors (f ∗, f∗) are adjoint. It is also direct
from the definition that f∗ preserves level epimorphisms and level A1-weak
equivalences. In other words, f∗ is a right Quillen functor for the level A1-
model structure and there are total derived functors

f ∗ : SHlv(S) � SHlv(T ) : f∗.

Therefore we have proved the following result.
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Proposition 3.2.30 Let f : T → S be a morphism of schemes. The pair of
functors

f ∗ : SHlv(S) � SHlv(T ) : f∗

are adjoint. If g : U → S is a morphism of schemes then

(f ◦ g)∗ ' f∗ ◦ g∗,

(f ◦ g)∗ ' g∗ ◦ f ∗.

�

Let p : X → S be a smooth morphism of schemes. Recall from section §
2.2.2 that p also induces a pair of adjoint functors

p] : ∆opShv•(X)→ ∆opShv•(S) : p∗.

It follows from the projection formula that p](H × P1
X) ' p](X) × P1

S (cf.
Proposition 2.2.24). We abuse notation and consider p] : Spt(X) → Spt(S)
the functor which maps any spectrum F in Spt(X) to the spectrum defined
by (p]F )n = p]Fn with structural morphisms {p]σn}. By construction p] is left
adjoint to p∗. It is clear from the definitions that the restriction p∗ is a right
Quillen functor for the level A1-projective model structure. We abuse notation
once again and denote

p] : SHlv(X)→ SHlv(S).

the total left derived functor. We have proven the following result.

Proposition 3.2.31 Let p : X → S be a smooth morphism. Then the pair of
functors

p] : SHlv(X) � SHlv(S) : p∗

are adjoint. Let q : Y → X be a smooth morphism, we have a canonical natural
transformation

(p ◦ q)] ' p] ◦ q].

�

For the case of SH recall from Definition 3.2.9 that E is an Ω-spectrum
if the adjoints of the structural maps En → Hom(P1, En+1) are bijections.
The fact that Hom(P1, f∗F ) ' f∗Hom(P1, F ) readily implies that f∗ preserves
Ω-spectra. Therefore f ∗ preserves A1-stable weak equivalences. Indeed, let
ϕ : E → F be a A1-stable weak equivalence and G an Ω-spectrum, then

HomSH(T )lv(f ∗F,G) ' HomSH(S)lv(F, f∗G) ' HomSH(S)lv(E, f∗G)
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' HomSH(T )lv(f ∗E,G).

We conclude that (f ∗, f∗) induce a pair of adjoint functors on SH. We have
proven the following result.

Proposition 3.2.32 Let f : T → S be a morphism of schemes. The pair of
functors

f ∗ : SH(S) � SH(T ) : f∗

are adjoint. If g : U → S is a morphism of schemes then

(f ◦ g)∗ ' f∗ ◦ g∗,

(f ◦ g)∗ ' g∗ ◦ f ∗.

Let p : X → S be a smooth morphism. Then pair of functors

p] : SH(U) � SH(S) : p∗

are adjoint. Let q : Y → X be a smooth morphism, we have a canonical natural
transformation

(p ◦ q)] ' p] ◦ q].

�

3.2.3 Localization, Mayer-Vietoris, blow-up and homo-
topy purity

We are ready to deduce cohomological type properties: the local, Mayer-
Vietoris and blow-up distinguished triangles. I learnt these results from [CD12,
§2 and 3] where a much more complete and general treatment on the subject
can be found. We only cover few of their results. Find another complete
treatment in [Ayo07].

The following result is a consequence of Proposition 2.3.47 and Corollary
3.1.24.

Theorem 3.2.33 (Localization) Let j : U → S be an open embedding with
complement the closed embedding i : Z → S. Then for any spectrum E we
have a distinguished triangle

j]j
∗E → E → i∗i

∗E → j]j
∗E[1].

�

The next result follows from Theorem 2.2.9.
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Theorem 3.2.34 (Mayer-Vietoris) Let X be a smooth S-scheme, j : U →
X be an open immersion and p : V → X be an étale morphism inducing and
isomorphism p−1(X − U)→ X − U . Then we have a distinguished triangle

p−1(U)+
p⊕j // U+ ⊕ V+

j⊕(−p)// X+
// p−1(U)+[1].

�

We deduce from Proposition 2.3.47 and Corollary 3.1.27 the following the-
orem.

Theorem 3.2.35 (Blow-up) Let i : Z → X be a closed embedding of smooth
schemes over S, π : BZX → X be the blowing-up of Z in X and U = X−Z =
BZX − π−1(Z). Then there is a distinguished triangle

π−1(Z)+
π⊕i′// Z+ ⊕BZX+

i⊕(−π)// X+
// π−1(Z)+[1].

�

We restate Theorem 3.1.29 in SH as follows.

Theorem 3.2.36 (Homotopy purity) Let i : Z → X be a closed embedding
of smooth schemes and denote NZ/X → Z the normal bundle. Then there is a
canonical isomorphism in SH(X)

pXZ : X/X − Z ∼−→ Th(NZ/X).

�
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3.2.4 Exceptional functors

We recall the properties of the exceptional functors on SH. With the exception
of the purity property for a morphism this result completes Grothendieck’s six
operations formalism. The original reference is [Ayo07]. We state the slightly
more general result of [CD09, 2.2.14].

Theorem 3.2.37 Let f : Y → X be a separated morphism of finite type.
There exist a pair of adjoint functors

f! : SH(Y )→ SH(X) : f !

such that:

1. Functoriality: Id! = 1, Id! = 1 and for g : Z → Y another separated
morphism of finite type (f ◦ g)! = f! ◦ g! and (f ◦ g)! = f ! ◦ g!.

2. There is a natural transformation αf : f! → f∗ which is an isomorphism
if f is proper.

3. For any open immersion j we have j! = j] and j! = j∗.

4. For any cartesian square

Y ′
f ′ //

g′

��

X ′

g

��
Y

f // X

where f is separated of finite type we have

g∗f! ' f ′! g
′∗ and g′∗f

′! ' f !g∗.

5. For any E in SH(Y ) and F, F ′ in SH(X) we have

f!E ∧ F ' f!(E ∧ f ∗F ), Hom(f!E,F ) ' f∗Hom(E, f !F ) and

f !Hom(F, F ′) ' Hom(f ∗F, f !F ′).

�



Chapter 4

Riemann-Roch theorems and
Gysin morphisms

4.1 Cohomology and its operations

Definition 4.1.1 A (commutative) ring spectrum is an associative com-
mutative unitary monoid in SH(X). In other words, a ring spectrum is a
triple (E, µ : E ∧ E → E, η : 1X → E) consisting of a spectrum, the product
morphism and the unit morphism satisfying that the diagrams

E
1∧η // E ∧ E

µ

��
E

,

E ∧ E ∧ E 1∧µ //

µ∧1
��

E ∧ E
µ

��
E ∧ E µ // E

and

E ∧ E µ //

γ

��

E

E ∧ E,
µ

;;

,

where γ is the permutation isomorphism, commute.

Let (E, µ, η) and (F, µ̄, η) be two ring spectra, a morphism of ring spec-
tra ϕ : E → F is a morphism of spectra such that ϕ ◦ η = η̄ and such that the
diagram

E ∧ E ϕ∧ϕ //

µ
��

F ∧ F
µ̄
��

E
ϕ // F

commutes.

An absolute spectrum E is a family stable by pullback of spectra EX ∈
SH(X) for every scheme X. That is to say, for every morphism f : Y → X we
have fixed an isomorphism εf : f ∗EX → EY satisfying the usual cocycle

87
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condition1. A morphism of absolute spectra ϕ : E → F is a collection of
morphism of spectra ϕX : EX → FX for every scheme X such that for every
morphism f : Y → X the diagram

f ∗EX
f∗ϕX //

εf

��

f ∗FX
ε̄f
��

EY
ϕY // FY

commutes. An absolute ring spectrum is an absolute spectrum made of ring
spectra and morphisms of absolute ring spectra are morphisms of absolute
spectra made of morphisms of ring spectra.

Notation 4.1.2 Every absolute spectrum E is naturally isomorphic to the
absolute spectrum obtained by pullback of the spectrum ES ∈ SH(S), where
S is the base scheme. Instead of considering schemes over a fixed base S, one
may work over a general category S without a final object. All definitions
and proofs of this thesis may be carried into this context using the notion of
S-absolute spectra (cf. [Dég14]). However, since we will not make use of this
generality we have chosen otherwise. In addition, we will abuse notation and
call ES also the absolute spectrum.

Let X be an S-scheme. We call a family stable by pullback of spectra EY
for Y an X-scheme an absolute spectra over X.

Notation 4.1.3 The invertible element 1X(1) := coker(Σ∞X → Σ∞P1)[−2]
is called the Tate object. For any spectrum E we denote the Tate twist by
E(1) := E ∧ 1X(1) and denote E(q)[p] for twisting and shifting q, p ∈ Z times
respectively.

Absolute ring spectra is the adequate framework to describe cohomology.

Definition 4.1.4 Let X be a scheme and E be an absolute spectrum over X.
We define the E-cohomology of X to be

Ep,q(X) = HomSH(X)(1X ,EX(q)[p]) for p, q ∈ Z
1The cocycle condition is the following: Let f : Y → X and g : Z → Y be two morphism

of schemes, then the diagram

g∗f∗EX
g∗εf //

o
��

g∗EY
εg

��
(g ◦ f)∗EX

εg◦f // EZ

commutes.
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and E(X) =
⊕

p,q Ep,q(X). Let i : Z → X be a closed immersion, we define
the E-cohomology with support on Z to be

Ep,qZ (X) = HomSH(X)(i∗1Z ,EX(q)[p]) for p, q ∈ Z.

For any f : T → X and a closed immersion i : Z → X we define the inverse
image of f which maps any a : i∗1Z → EX(q)[p] in Ep,qZ (X) to the composition

f ∗(a) : f ∗i∗1Z ' i′∗1Z′ → f ∗(EX(q)[p]) ' ET (q)[p] ∈ Ep,qZ′ (T )

where i′ : Z ′ = Z ×T X → T . We denote it f ∗ : EZ(X)→ EZ′(T ).

Let us recall a generalization of the morphism of forgetting support.

Definition 4.1.5 Let E be an absolute spectrum. Consider Z
j−→ Y

i−→ X
closed immersions, we define a morphism

j[ : EZ(X)→ EY (X)

as follows. The adjunction morphism ad: 1Y → j∗j
∗
1Y gives a morphism

i∗(ad) : i∗(1Y ) → i∗j∗j
∗
1Y = (ij)∗1Z . Let a : (ij)∗1Z → EX be in EZ(X), we

define

j[(a) := i∗(1Y )
i∗(ad)−−−→ (ij)∗1Z

a−→ EX ∈ EY (X).

In order for the E-cohomology groups to have all the usual product prop-
erties of a cohomology the spectrum E has to be a ring spectrum.

Definition 4.1.6 Let E be an absolute ring spectrum and Z
j−→ Y

i−→ X be
closed immersions, we call refined product to the morphism

Ep,qZ (Y )⊗ Er,sY (X)→ Ep+r,q+sZ (X)

constructed as follows. For any element a : j∗(1Z) → EY (q)[p] belonging to
HomSH(Y )(j∗(1Z),EY (q)[p]) = Ep,qZ (Y ) we have a morphism

γ : i∗j∗(1Z)→ i∗i
∗EX(q)[p] ' EX ∧ i∗1Y (q)[p].

We define the product of a with b : i∗1Y → EX(s)[r] in Er,sY (X) to be

a ·b : i∗j∗(1Z)
γ−→ EX ∧ i∗1Y (q)[p]

Id∧ρ−−→ EX ∧EX(q+s)[p+r]
µ−→ EX(q+s)[p+r].

The properties one may expect from the refined product and the morphism
of forgetting support are summarized in the following result, which comes from
[Dég14, 1.2.9].
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Proposition 4.1.7 Let E be an absolute spectrum, the following properties
hold:

1. If j : Z → Y and i : Y → X are closed immersion then i[j[ = (ij)[.

2. If i is a closed nil-immersion then i[ is an isomorphism.

3. Consider the following cartesian squares:

Z ′
j′ //

��

Y ′ //

g

��

X ′

f
��

Z
j // Y // X

where the horizontal arrows are closed immersions. Then, for a ∈ EZ(X)
we have f ∗j[(a) = j′[f

∗(a).

Let now E be an absolute ring spectrum:

4. With the preceding notations, for any pair (a, b) ∈ EZ(Y ) × EY (X) we
have f ∗(a · b) = g∗(a) · f ∗(b) and j[(a · b) = j[(a) · b.

5. Consider closed immersions T → Z → Y → X. Then for any triple
(a, b, c) ∈ ET (Z)× EZ(Y )× EY (X) we have a · (b · c) = (a · b) · c.

6. Consider the following commutative diagram

Z ′
j′ //

h
��

Y ′

g

��
Z

j // Y // X

of closed immersions and such the square is cartesian. Then for any
(a, b) ∈ EZ(Y )× EY ′(X) the relation h[(g

∗(a) · b) = a · g[(b) holds.

Proof: Point 1 is direct by definition. Since i∗ is an equivalence of categories
for a nil-immersion point 2 follows. Point 3 follows from the base change for
proper morphisms since f ∗j∗ = j′∗f

∗. Point 4 and 5 follow from the definition
of ring spectra and the fact that the pullback functor is monoidal. Point 6 is
direct.

�
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Example 4.1.8 • We recall some basic examples of absolute spectra. The
simplicial set of the n-sphere defines constant simplicial presheaves on
Sm/X for every X. Their infinite suspension define the spectra SnX
for every X, which form an absolute spectrum. Recall that for every
morphism f : X → Y the pullback functor f ∗ is monoidal, therefore the
unit for the smash product 1X ∈ SH(X) form an absolute spectrum
1. From here one deduces that both the projective spaces PnX and the
multiplicative group Gm,X form absolute spectra.

The following are examples of absolute ring spectra:

• Let k be a perfect field and consider S = Spec(k). In [CD12, 2.1.4] Cisin-
ski and Déglise defined the notion of mixed Weil theories with coefficient
in a field of characteristic zero. In [CD12], every such theory is proved to
define a ring spectrum on SH(S)Q stable by pullback and, therefore, an
absolute ring spectrum. Recall that there is an algebraic de Rham ring
spectrum for k of characteristic zero, an analytic de Rham ring spectrum
for k algebraically closed of characteristic zero, and a Ql geometric étale
ring spectrum for k countable perfect and l a prime different from the
characteristic of k.

• Consider the category of all finite dimensional noetherian schemes with
Spec(Z) as final object. The K-theory absolute ring spectrum KGL is
defined in [Voe98] and [Rio10]. By constructions it is periodic, meaning
that there are isomorphisms

KGL ' KGL(i)[2i] , ∀i.

It represents Weibel’s homotopy invariant K-theory for every scheme
(cf. [Cis13, 2.15]), and therefore represents Quillen’s algebraic K-theory
for regular schemes. We denote the cohomology groups they define as
KHi( ).

Following [Rio10, 5.3], the Q-localization of the K-theory spectrum ad-
mits a decomposition induced by the Adams operations, i.e.,

KGLQ =
⊕
i∈Z

KGL
(n)
Q ,

where KGL
(n)
Q denotes the eigenspaces for the Adams operations. The

Beilinson’s absolute motivic cohomology spectrum is defined as HB =
KGL

(0)
Q and it is also an absolute ring spectrum.

Finally, Voevodsky’s absolute algebraic cobordism ring spectrum MGL
is constructed out of the Thom spaces of the canonical bundle of Grass-
mannians ([Voe98]) and its cohomology is called algebraic cobordism.
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• In [Spi12] Spitzweck defines the absolute motivic cohomology ring spec-
trum HΛ with coefficients in Λ for schemes over a Dedekind domain S.
Over a field, this spectrum coincides with the motivic Eilenberg-MacLane
spectrum, so it represents motivic cohomology. Rationally Spitzweck’s
spectrum coincides with the Beilinson’s motivic cohomology spectrum
HB. For coherence with notations in [BMS87] we denote the motivic
cohomology groups as H∗M( ,Λ(∗)) for motivic cohomology with coeffi-
cients in Λ. Let S = Spec(k) for k a perfect field. Recall that Voevodsky
proved that for X a smooth k-scheme we have

H2n
M(X,Z(n)) = CHn(X)

where CHn denotes the Chow group of n-codimensional cycles.

• Let S = Spec(k) for k an arithmetic field (cf. Appendix 5.1.2). In [HS15]
Holmstrom and Scholbach defined the real Deligne-Beilinson ring spec-
trum ERD,X ∈ SH(X)Q for X a smooth S-scheme. The absolute ring
spectrum ERD, S represents the Deligne-Beilinson cohomology with real
coefficients. In his thesis, Brad Drew constructed the absolute ring spec-
trum representing absolute Hodge cohomology with rational coefficients.
His construction also holds for any subfield of the real numbers [Dre13,
2.1.8]. We include in Appendix 5.1 a construction of the real Hodge
absolute spectrum ERAH with the same assumptions of [HS15].

• Let K be a p-adic field, k its residue field and S = Spec(k). The absolute
rigid syntomic ring spectrum Esyn ∈ SH(S)Q, which represents Besser’s
rigid syntomic cohomology, is constructed in [DM14].

Remark 4.1.9 In the reference [HS15] the Deligne-Beilinson absolute spec-
trum is proved to represent the real Deligne-Beilinson cohomology on smooth
schemes asking explicitly for the nonsmooth case. In the Appendix 5.1 we
check that it also represent the real Deligne-Beilinson cohomology for general
schemes.

Another important class of objects in SH is the following.

Definition 4.1.10 Let E in SH(X) be a ring spectrum, an E-module is a
spectrum M in SH(X) together with a morphism of spectra υ : E ∧M → M
in SH(X) satisfying that the diagrams

E ∧ E ∧M 1E∧υ //

µ∧1M
��

E ∧M
υ

��
E ∧M υ //M

,

1X ∧M
η∧1E // E ∧M

υ

��
M
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commute. Let (M, v) be an E-module and (M ′, v′) be an F -module. Let
ϕ : E → F be a morphism of ring spectra. A ϕ-morphism of modules
Φ: M →M ′ is a morphism of spectra in SH(X) such that the diagram

E ∧M ϕ∧Φ //

v

��

F ∧M ′

v′

��
M Φ //M ′

commutes.
Let E be an absolute ring spectrum, an absolute E-module is an absolute

spectrum M such that MX is a EX-module for every X and the isomorphisms
εf are isomorphisms of modules. Let M be an absolute E-module, M′ be an
absolute F-module and ϕ : E → F be a morphism of absolute ring spectra. A
morphism of absolute E-modules Φ: M→M′ is a morphism of absolute spectra
such that ΦX is a ϕX-morphism of modules which are stable by pullback. On
the following, we may omit the adjective absolute when it is clear by the context
and notation.

4.1.11 Let M be an absolute E-module and Z
j−→ Y

i−→ X be closed immer-
sions. Denote µ : E ∧ M → M the structure morphism. We have as well a
refined product

Mp,q
Z (Y )× Er,sY (X) → Mp+r,q+s

Z (X)
(m, a) 7→ m · a

defined as follows: let m : j∗(1Z)→MY (q)[p] and a : i∗1Y → EX(s)[r], then

m · a : i∗j∗1Z −→ i∗MY (q)[p] 'MX ∧ i∗1Y (q)[p]
id∧a−→MX ∧ EX(q + s)[p+ r]

µ−→MX(q + s)[p+ r].

Note that the same construction defines a product

Ep,qZ (Y )×Mr,s
Y (X) −→Mp+r,q+s

Z (X).

The following result follows from the same proofs as in Proposition 4.1.7.

Proposition 4.1.12 Let E be an absolute ring spectrum and M be an absolute
E-module:

1. With the preceding notations, for any pair (a, m) ∈ EZ(Y ) × MY (X)
we have f ∗(a · m) = g∗(a) · f ∗(m) and j[(a · m) = j[(a) · m. Analogue
formulas hold classes in MZ(Y )× EY (X).
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2. Consider closed immersions T → Z → Y → X. Then for any triple
(a, b, m) ∈ ET (Z) × EZ(Y ) ×MY (X) we have a · (b · m) = (a · b) · m.
Analogue formulas hold for classes in ET (Z) × MZ(Y ) × EY (X) and
MT (Z)× EZ(Y )× EY (X).

3. Consider the following commutative diagram

Z ′
j′ //

h
��

Y ′

g

��
Z

j // Y // X

of closed immersions and such that the square is cartesian. Then for any
(a, m) ∈ EZ(Y ) ×MY ′(X) the relation h[(g

∗(a) ·m) = a · g[(m) holds.
Analogue formulas hold for classes in MZ(Y )× EY ′(X).

�

Example 4.1.13 • Every absolute ring spectrum is an absolute module
over itself.

• In [Rio10], Riou lifted the Adams operations as an endomorphism of
KGLQ in SH(S)Q resulting in the isomorphism KGLQ

∼−→
⊕

i∈Z HB(i)[2i]
(see [Rio10, 5.3.17]). It induces a morphism of spectra

ch: KGLQ → HB.

We call this morphism the Chern character since for any regular
scheme X it induces the classical higher Chern characters

chr,n : Kr(X)Q → H2n−r
M (X,Q(n)).

The Chern character is a morphism of absolute ring spectra. In particular
HB is a module over KGLQ.

• Denote E the absolute ring spectrum defined by a mixed Weil theory as
in [CD12] (for example, algebraic and analytic de Rham or Ql geometric
étale). Cisinski and Déglise constructed a morphism of absolute ring
spectra

cl : HB → E.

We call this morphism the cycle class. Therefore any mixed Weil spec-
trum E is a module over HB. Note that there is an analogue construc-
tion of the cycle class for Besser’s rigid syntomic, absolute Hodge and
Deligne-Beilinson spectra (cf. [DM14] and [HS15]).
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4.1.1 Examples of modules

In the classical case the kernel of a morphism of rings is a module. In our
setting the kernel will be replaced by the homotopy fiber. We show that
many constructions of cohomology are particular examples of this: the relative
cohomology and the spectra of arithmetic cohomologies defined in [HS15].

We use the theory of monoids and modules in model categories. This theory
can be found written in the context of motivic homotopy theory in [CD09, §7]
and a more accesible summary for SH in [Dég13, §2.2].

Definition 4.1.14 A strict ring spectrum E is a commutative monoid in
the category SptΣ(X). In other words, a strict ring spectrum is a triple
(E, µ : E∧E → E, η : 1X → E) such that product and the unit morphism are
in SptΣ(X) and satisfy the same diagrams of Definition 4.1.1. A morphism
of strict ring spectra ϕ : E → F is a morphism in SptΣ(X) satisfying the dia-
gram of 4.1.1. We denote by Mon(X) the category of strict ring spectra with
morphism morphisms of strict ring spectra. A strict absolute ring spec-
trum E a strict ring spectrum ES in SptΣ(S) and morphism of absolute ring
spectra ϕ : E→ F is a morphism of strict ring spectra ϕS : ES → FS.

Let E be a strict ring spectrum in SptΣ(X), a strict E-module is a
symmetric spectrum M with a morphism µ : M ∧ E → M in SptΣ(X) sat-
isfying the diagrams of Definition 4.1.10. A morphism of strict E-modules
ϕ : M → M ′ is a morphism in SptΣ(X) satisfying the diagram of 4.1.10. We
denote E-mod the category of strict E-modules with morphisms of E-modules.
Let E be a strict absolute ring spectrum, a strict absolute E-module is a
strict ES-module MS.

Example 4.1.15 Every absolute spectrum of Example 4.1.8 representing a
cohomology is constructed in their respective references as a strict absolute
ring spectrum. Moreover, the Chern character and the cycle class map of
Example 4.1.13 are morphism of strict ring spectra so that HB is a strict
absolute KGLQ-module and any strict ring spectrum E coming from a mixed
Weil theory is a strict absolute HB-module.

Notation 4.1.16 We abuse notation and say that a ring spectrum E in
SH(X) is strict if it can be represented by a strict ring spectrum. Analo-
gously, we say that a module, (absolute module, absolute ring spectrum or
morphism) in SH is strict if it can be represented by a strict module (absolute
module, absolute ring spectrum or strict morphism respectively).

Remark 4.1.17 The categories Mon(X) and E-mod inherit a model struc-
ture from the A1-stable symmetric model structure in SptΣ(X). The categories
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Ho(Mon( )) are well behaved with respect to inverse and direct image as
described in [CD09, 7.1.11]. We will use the following fact: let f : Y → X be
a morphism of schemes, E ∈Mon(Y ) and F ∈Mon(X), then f∗E in SH(X)
and f ∗E in SH(Y ) are given by strict ring spectra.

Let E be a strict absolute ring spectrum. The categories Ho(EX-mod),
where X is an S-scheme, have good functorial properties as Ho(Mon). More-
over, they are triangulated categories and the forgetful functor

Ho(EX-mod)→ SH(X)

is triangulated.

4.1.18 Let ϕ : E → F be a morphism of strict absolute ring spectra and X
be an S-scheme. Denote ϕX : EX → FX the morphism of strict ring spectra in
SptΣ(X) and hofib(ϕX) the homotopy fiber of ϕX . The spectrum hofib(ϕS) in
SptΣ(S) defines by pullback an absolute spectrum, which we denote hofib(ϕ).
Recall that the homotopy fiber fits into a distinguished triangle. In other
words, for X an S-scheme we have that

hofib(ϕX) −→ EX
ϕX−→ FX −→ hofib(ϕX)[1]. (4.1)

Since Ho(EX-mod) is triangulated and ϕ is a morphism of absolute spectra
the following result is direct.

Proposition 4.1.19 Let ϕ : E → F be a morphism of strict absolute ring
spectra. With above notations, hofib(ϕ) is a strict absolute E-module and for
every S-scheme X we have hofib(ϕ)X = hofib(ϕX).

�

Remark 4.1.20 Still in above notations, after a replacement we can assume
ϕS to be a fibration and FS to be fibrant so that hofib(ϕS) fits into a cartesian
square

hofib(ϕS)

��

// ES
ϕS

��
* // FS.

Note that the replacement is functorial so we have a commutative diagram

hofib(ϕS) ∧ hofib(ϕS) //

��

ES ∧ ES
µ

��

ϕS∧ϕS// FS ∧ FS
µ̄

��
hofib(ϕS) // ES

ϕ // FS
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Therefore, the groups HomSH( )(1 , hofibϕ) not only are modules over
E( ) but also have an inner product. Note that they do not have a unit.
As in the classical case with the kernel, hofib(ϕ) is an ideal of E. We do not
introduce this notation since we do not make use of it.

Let X be a scheme, the distinguished triangle (4.1) gives raise to a long
exact sequence

· · · → F∗−1,∗(X)→ HomSH(X)(1X , hofib(ϕ)(∗)[∗])→ E∗,∗(X)→ F∗,∗(X)→ · · ·

where arrows are compatible with products.

We introduce the relative cohomology in the context of motivic homotopy.
Let f : Y → X be a morphism of schemes, then f∗EY represents in SH(X) the
cohomology of Y . Indeed,

E∗,∗(Y ) = HomSH(Y )(f
∗
1X ,EY (∗)[∗]) = HomSH(X)(1X , f∗EX(∗)[∗]).

Since EY ' f ∗EX we have an adjunction morphism EX → f∗f
∗EX .

Proposition 4.1.21 Let E be an absolute ring spectrum and f : Y → X be a
morphism of schemes:

1. The spectrum f∗EY is a ring spectrum. The adjunction EX → f∗EY is a
morphism of ring spectra and it induces the inverse image on cohomology
f ∗ : E(X)→ E(Y ).

2. If in addition E is strict, then f∗EY is also strict and the adjunction map
EX → f∗EX is represented by a morphism of strict ring spectra.

Proof: The unit morphism 1Y ' f ∗1X → EY induce by adjunction a morphism
1X → f∗EY . Recall that the pullback functor is monoidal, therefore we have
a morphism

(f ∗f∗EY ) ∧ (f ∗f∗EY ) // EY ∧ EY
µ // EY .

By adjunction, we deduce a morphism f∗EY ∧ f∗EY → f∗EY . It is a direct
computation to check the diagrams of Definition 4.1.1 and that the adjunction
EX → f∗EY is morphism of ring spectra.

For the second point note that in Remark 4.1.17 we observed that f∗EY is
strict. After a fibrant replacement, we can choose a representative of the ad-
junction morphism REX → Rf∗EY which is a morphism of strict ring spectra.

�
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Definition 4.1.22 Let E be a strict absolute ring spectrum, f : Y → X be
a morphism of schemes. Abuse notation and denote hofibE(fX) (or simply
hofib(fX) if it is clear by the context) the strict EX-module defined as the
homotopy fiber of the morphism of strict ring spectra EX → f∗EY . We define
the relative cohomology of f to be

Ep,q(f) := HomSH(X)(1X , hofib(fX)(q)[p]) for p, q ∈ Z.

We also denote hofibE(f) (or simply hofib(f)) the strict absolute E-module
over X that hofib(fX) defines by pullback.

Remark 4.1.23 Consider above notations. We have constructed a morphism
of strict ring spectra EX → f∗EY in SptΣ(X) and the strict absolute morphism
it defines by pullback. Therefore note that, although E is an absolute spectrum,
the spectrum hofib(f) need not to have good cohomological properties. More
concretely, consider a cartesian square

YT //

fT
��

Y

f
��

T
g // X.

Then the spectrum g∗f∗EY may not be isomorphic to fT∗EYT . In other words,
the family of spectra fT∗EYT for T → X may not define an absolute spectrum.
Therefore hofib(f)T = g∗ hofib(fX) may not be isomorphic to hofib(fT ). Since
he relative cohomology of fT is represented by hofib(fT ) the absolute spectrum
hofib(f) may not represent the relative cohomology of fT for a general base
change T → X.

Proposition 4.1.24 Let E be a strict absolute spectrum, f : Y → X and
g : T → X be two morphism of schemes. If either f is proper or g is smooth
then we have

g∗ hofib(fX) ' hofib(fT ).

Proof: Denote g′ : YT → Y and fT : YT → T . It is enough to prove that
g∗f∗EY ' fT∗g

′∗EY . The result follows from the smooth base change property
of Proposition 2.2.27 and the base change for proper morphism of Theorem
3.2.37.

�

Example 4.1.25 Let E be a strict absolute ring spectrum. The construction
of relative cohomology generalizes many concrete situations:

1. Let S = Spec(k) and p : X → S be the structural morphism. Then

E(p) = Ẽ(X), the reduced cohomology of X.
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2. Let i : Z → X be a closed immersion with open complement j : U → X.
Recall from Theorem 3.2.33 that we also have a distinguished triangle

j]j
∗EX → EX → i∗i

∗EX → j]j
∗EX [1].

In this case hofib(i) ' j]j
∗EX . Recall that j] = j! since j is an open

immersion. Although we have not reviewed it, j!j
∗EX represents, by

definition, the cohomology of U with compact support Ec(U) in SH(X).
There is as well a natural product of elements in Ec(U) with elements of
E(X) which is the same as the one as E-module.

3. Consider above notations. Recall from [CD09, 2.3.3] that by duality we
also have a distinguished triangle

i∗i
!EX → EX → j∗j

∗EX → i∗i
!EX [1].

Therefore hofib(j) ' i∗i
!EX . Note that i∗i

!E represents in SH(X) the
cohomology of X with support on Z. Indeed,

Ep,qZ (X) = HomSH(X)(i∗i
∗
1X ,EX) = HomSH(X)(1X , i∗i

!EX).

The product as E-module of Paragraph 4.1.11 is the refined product of
Definition 4.1.6.

4. Let i : Z → X be a closed immersion and consider the blow-up cartesian
square

P

π′

��

// BZX

π
��

Z
i // X.

It follows from upcoming Corollary 4.2.6 that E(π) = E(P )/E(Z). The
product as E(X)-module is the product through (iπ′)∗ : E(X)→ E(P ).

5. Let R be a Dedekind domain and F be its field fractions. Denote
K(R) = K(Spec(R)), K(F ) = K(Spec(F )) and γ : Spec(F )→ Spec(R)
the localization morphism. Then K2(γ) =

∐
pK2(R/p) where p denote

prime ideals of R, K1(γ) =
∐

p(R/p)× the connecting δ : K2(F )→ K2(γ)
satisfies δ =

∐
δp where δp are the tame symbols (cf. [Wei89, III.6.5]).

Theorem 4.1.26 Let f : Y → X be a morphism of regular schemes and de-
note K(f) the relative algebraic K-theory ( cf. [?, IV.8.5.3]). Then

Ki(f) = HomSH(X)(1X , hofibKGL(fX)[−i]) for i ∈ Z.
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Proof: We use notation from [CD09]. Recall from [CD09, §3.2] that there is
total derived global section functor

RΓ: SH(X)→ Ho(SptS1).

where SptS1 denotes the classic category of S1-spectra of simplicial sets. Recall
from [CD09, 13.4] that Kn(X) = πn(RΓ(X,KGLX)) = HomSH(X)(1X ,KGLX).
Applying the total derived global section functor to the homotopy fiber se-
quence

hofibKGL(fX)→ KGLX → f∗KGLY

we obtain a (classic) homotopy fiber sequence

RΓ(X, hofibKGL(fX))→ RΓ(X,KGLX)→ RΓ(X, f∗KGLY ).

We conclude by recalling that the relative K-theory of f is defined in [?,
IV.8.5.3] as the classic homotopy fiber.

�

We review the construction of the arithmetic counterparts of K-theory and
motivic cohomology of [HS15], which are another example of an homotopy
fiber.

Let A be an arithmetic ring (Appendix 5.1.2) and denote S = Spec(A)
and η its generic point. Recall from Example 4.1.8 that we have the Deligne-
Beilinson cohomology strict ring spectrum ERD,η ∈ SH(η), which defines a
strict absolute ring spectrum η∗ERD,η ∈ SH(S). Recall from Example 4.1.13
that we have the cycle class map cl : HB,η → ERD,η which induces a map

ϕ : HB,S → η∗HB,η
η∗cl−−→ η∗ERD,η

in SH(S)Q. This map is actually strict. Recall that in SH(S)Q we have
KGLS,Q =

⊕
i∈Z HB,S(i)[2i] (cf. [CD09, §14]). We have a map

⊕(chi ◦ ϕi) : KGLS,Q → η∗ERD,η(i)[2i]

where ϕi : HB,S(i)[2i]→ η∗ERD,η(i)[2i]. This map is also strict.

Definition 4.1.27 In above notations, we define the arithmetic motivic
cohomology strict absolute spectrum as ĤB,S = hofib(ϕ). Let X be a smooth
S-scheme, we denote the cohomology it defines as

Ĥp
M(X, q) := HomSH(X)Q(1X , ĤB,X(q)[p]) for p, q ∈ Z.

Analogously, we define the arithmetic homotopy invariant K-theory

strict absolute spectrum as K̂GLS,Q = hofib(⊕(chi◦ϕi)). Note that the period-

icity of the K-theory makes K̂GL also periodic. Let X be a smooth S-scheme,
we denote the cohomology it defines as

K̂H i(X)Q := HomSH(X)Q(1X , K̂GLQ[−i]) for i ∈ Z.
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Remark 4.1.28 Note that our definition is written differently from [HS15],
where they considered the spectra

hofib(HB,S
id∧1D−→ HB,S ∧ η∗ERD,η) and hofib(KGLS

id∧1D−→ KGLS ∧ η∗ERD,η).

Recall that in SH(S)Q we have HB,S ∧ η∗ERD,η ' η∗ERD,η (cf. [CD09, 14.2.8])
so that both definitions agree.

Remark 4.1.29 By construction, both ĤB and K̂GLQ are strict absolute HB

and KGLQ modules respectively, but not rings. In particular note that they do
not have a unit morphism. Therefore both the arithmetic homotopy invariant
K-theory and arithmetic motivic cohomology do not have the unit.

Nevertheless, the Chern character ch: KGLQ → HB induces an arithmetic

Chern character ĉh : K̂GLQ → ĤB. In addition, the square

K̂GLQ //

ĉh
��

KGLQ

ch

��
ĤB

// HB

commutes.

4.1.2 Orientations

We review the theory of orientations (i.e., Chern classes) for spectra. As in the
classical case, they are determined by the first Chern class of the tautological
line bundle of projective spaces.

Recall the definition of the Tate object as 1S(1) = coker(Σ∞S → Σ∞P1)[−2].
For any ring spectrum E with unit η : S → ES there is a canonical class in
E2,1(P1) defined as the morphism

P1 → 1S(1)[2] = S ∧ 1S(1)[2]
η∧Id−−→ ES(1)[2].

By abuse of notation we will still denote it η ∈ E2,1(P1).
The definition of E-cohomology may be extended to general spectra. In

particular, recall that the infinite projective space is defined to be P∞X = lim−→PnX
and we denote

Ep,q(P∞X ) = HomSH(X)(P∞X ,EX(q)[p]).

Definition 4.1.30 We define an orientation on an absolute ring spectrum
E to be a class c1 ∈ E2,1(P∞) such that for i1 : P1 ↪→ P∞ satisfies i∗1(c1) = η.
We also say that E is oriented.
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Let X be a scheme and V be a locally free OX-module. We call the vector
bundle given by V to the scheme V = SpecX(S•V∗)→ X and the projective
bundle given by V to the scheme P(V ) = ProjX(S•V∗)→ X.

Let BGm be the classifying space for Gm-torsors ([MV99, 4.1.16]), due to
Corollary 3.1.41 Theorem 3.1.45 we have a natural map

Pic(X)→ HomH•(X)(X+, BGm) ' HomH•(X)(X+,P∞)→ HomSH(X)(1X ,P∞X )

so that any line bundle L ∈ Pic(X) defines a morphism f : X → P∞X in SH(X).

Let (E, c1) be an oriented spectrum absolute ring spectrum and denote
p : P∞X → P∞. For any line bundle L we have

E2,1(P∞X )
f∗−→ E2,1(X)

p∗c1 7→ c1(L)

and we say that c1(L) := f ∗p∗c1 is the first Chern class of L.

Example 4.1.31 Every example of Example 4.1.8 representing a cohomology
is oriented. We quickly review the references: Mixed Weil theories are ori-
ented in [CD12, 2.2.8], the algebraic K-theory KGL and Beilinson’s motivic
cohomology HB in [CD09, 13.2.2] and [CD09, 14.1.5] respectively, algebraic
cobordism MGL in [PPR08, 1.4]. In particular, the orientation of K-theory
is given by cKGL

1 (L) = 1 − [L∗]. Spitzweck’s motivic cohomology spectrum
HΛ is oriented in [Spi12, 11.1]. In the Appendix 5.1 we give an orientation
for the absolute Hodge spectrum and the Deligne-Beilinson is done in [HS15,
3.6]. Finally, every cohomology considered in [DM14] is represented by an ori-
ented spectrum (cf. [DM14, 1.4.11.(1) and 2.1.2.(1)]). In particular, Besser’s
absolute rigid syntomic spectrum is oriented.

Remark 4.1.32 Let ϕ : E → F be a morphism of absolute ring spectra and
let c1 ∈ E2,1(P∞) be an orientation on E. Since ϕ is a morphism of rings, it
maps the unit 1S → ES onto the unit 1S → FS. We conclude that the element
ϕP∞(c1) ∈ F2,1(P∞) is an orientation on F.

Remark 4.1.33 The immersion Pn−1 → Pn is defined by a sheaf canonically
isomorphic to OPn(−1). Therefore if we denote in : Pn → P∞ we have that
i∗n(c1) = c1(OPn(−1)) and we write c1 = c1(OP∞(−1)).

To fix notations, we recall the theory of Chern classes in the context of
spectra. Proof of the following result in the context of stable homotopy theory
may be found in [Dég14, 2.1.13 and 2.1.22].
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Theorem 4.1.34 (Projective bundle) Let V → X be a vector bundle of
rank (n + 1), E an oriented absolute ring spectrum and x = c1(OP(V )(−1)).
There is a canonical isomorphism⊕n

i=0 E∗−2i,∗−i(X)
∼−→ E∗,∗(P(V ))

(a0, . . . , an) 7→
∑

i π
∗(ai)x

i.

�

Definition 4.1.35 Let V → X be a vector bundle of rank n. We define the
i-th Chern classes ci(V ) ∈ E2i,i(X) for i = 1, . . . , n as the unique ones
satisfying

c1(OP(V )(−1))n +
n∑
i=1

(−1)ici(V )c1(OP(V )(−1))n−i = 0.

4.1.36 Formal groups laws F (x, y) are certain type of series (see for example
[Ada74]). In particular, they satisfy the property that any formal group law
F (x, y) is of the form

F (x, y) = x+ y + f(x, y)

for f(x, y) a symmetric series. A formal group law is called additive if
f(x, y) = 0 and abelian if F (x, y) = F (y, x). The following is a classic result.
See for example [Dég08, 3.7].

Theorem 4.1.37 Let E be an oriented absolute ring spectrum. There exists
a formal abelian group law F (x, y) ∈ E∗∗(S)[[x, y]] such that

c1(L1 ⊗ L2) = F (c1(L1), c1(L2))

for any line bundles L1, L2 over X.

�

Lemma 4.1.38 There is a short exact sequence

0→ lim←−
n

1Ei−1,∗(Pn)→ Ei,∗(P∞)→ lim←−
n

Ei,∗(Pn)→ 0

where lim←−
1 is the first derived functor of lim←−.

Proof: We can assume ES is fibrant. The result follows from [Hov99, 7.3.2]

provided that hocolim Σ∞Pn ' Σ∞P∞. This is true since Pn i−→ Pn+1 is a cofi-
bration therefore it is the homotopy colimit of cofibrations between cofibrant
objects.

�
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Proposition 4.1.39 Let (E, c1) be an oriented absolute ring spectrum, then

E(P∞) = E(S)[[c1]]

Proof: The result follows from Lemma 4.1.38. Note that from Theorem 4.1.34
we have that Ei−1,∗(Pn+1) → Ei−1,∗(Pn) is constant for n ≥ i and therefore
lim←−

1Ei−1,∗(Pn) = 0.
�

Example 4.1.40 Every cohomology from Example 4.1.8 apart from K-theory
and algebraic cobordism have additive formal group laws. That is to say:
motivic cohomology, cohomologies coming from mixed Weil theories, real ab-
solute Hodge and Deligne-Beilinson cohomology and Besser’s rigid syntomic
cohomology have additive formal group laws.

We define the total Chern class of a vector bundle V of rank n to be
c(V ) = 1+c1(V )+ · · ·+cn(V ). Standard arguments yields the following classic
formula:

Theorem 4.1.41 (Whitney sum) The total Chern class is multiplicative.
In other words, let 0→ V ′ → V → V ′′ → 0 be a short exact sequence of vector
bundles, then we have the following equivalent formulas

c(V ) = c(V ′)c(V ′′),

ck(V ) =
∑
i+j=k

ci(V
′)cj(V

′′) i, j, k ∈ N.

�

Proposition 4.1.42 Let (E, c1) be an oriented absolute spectrum and cnew
1 be

another orientation. Then there exist G(t) ∈ E(S)[[t]] with leading coefficient
1 such that for any line bundle L we have

cnew
1 (L) = G(c1(L))c1(L).

Proof: Since P∞ ' BGm, the classifying space for line bundles, it is enough to
check the formula for x = c1(OP∞(−1)). Recall that E(P∞) = E(S)[[x]] and
therefore we have cnew

1 (OP∞(−1)) = ax+ . . . = G(x)x for a ∈ E(S) invertible.
Finally, both classes satisfy i∗1(c1(OP∞)) = i∗1(cnew

1 (OP∞)) = η ∈ E2,1(P1) and
we conclude that a = 1.

�

Let us recall the construction of the Todd class in our context. Denote
as K0 : Sch/S → Ab the functor which maps X to K0(X), the Grothendieck



4.1. COHOMOLOGY AND ITS OPERATIONS 105

group of vector bundles over X. Let E be an absolute ring spectrum, denote
E× the functor which maps X to E×(X), the group of invertible elements of
E(X).

Corollary 4.1.43 Let (E, c1) be an oriented absolute spectrum and cnew
1 be

another orientation on E. With above notations, there exist a unique natural
transformation

TdG : K0 → E×

which is multiplicative (in the sense that TdG(V + W ) = TdG(V ) · TdG(W ))
and such that for any line bundle L we have TdG(L) = G−1(c1(L)).

Proof: Let V → X be a vector bundle. By the splitting principle we may
assume V = L1 + · · · + Ln. We define TdG(V ) = G−1(L1) · · · · · G−1(Ln) ∈
E×(X). It is clear that this class satisfies that for any short exact sequence
0 → V ′ → V → V ′′ → 0 we have TdG(V ) = TdG(V ′) TdG(V ′′). Therefore, it
induces a map K0(X)→ E×(X) with all desired properties.

�

Remark 4.1.44 With the preceding notations, if V = L1 + · · ·+Ln ∈ K0(T )
then Td(V ) = G−1(c1(L1)) · · ·G−1(c1(Ln)). In particular, for any n-rank vec-
tor bundle V we have

cnew
n (V ) = Td(−V )cn(V ).

4.1.3 Chern class with support

Let X be a scheme and U = (X − Z) → X be an open subscheme. Re-
call from Definition 3.1.42 that a pseudo divisor (trivialized on U) is a pair
(L, u) consisting of an invertible sheaf L over X (in the Zariski topology) and
a trivialization u : O|U

∼−→ L|U . Recall that PicZ(X) denoted the group of
isomorphism classes of pseudo divisors.

For convenience of the reader we recall Proposition 3.1.43:

Proposition 4.1.45 Let Z → X be a regular immersion of codimension 1
and U be its open complement. Then

PicZ(X)→ HomHs
•(X)(X/U,P∞X )

is a bijection.

�
It follows from above identification that there is a map
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PicZ(X)→ HomH•(X)(X/U,P∞X )→ HomSH(X)(Σ
∞X/U,P∞X )→

(c1)∗→ HomSH(X)(Σ
∞X/U,EX(1)[2]) = E2,1

Y (X).

Note that in the last equality we have used that Σ∞X/U = i∗1Z for i : Z → X.
Finally, for an oriented absolute spectrum E and any line bundle L we have

PicZ(X)
ϕ∗L,u−−→ E2,1

Z (X)
(L, u) 7→ cZ1 (L, u)

and we say that cZ1 (L, u) := ϕ∗L,u(L, u) is the first Chern class of L with support
on Z. We omit the reference to the trivialization when no confusion is possible.
The next statement follows from the definition:

Proposition 4.1.46 Let f : X ′ → X be a morphism of schemes and (L, u) be
a pseudo divisor over the open X − Z, then

f ∗cZ1 (L) = cf
−1Z

1 (f ∗L).

�

Proposition 4.1.47 Let L1 and L2 be two invertible sheaves over X and
ui : O|U → Li|U , i = 1, 2, trivializations. Denote L = L1⊗L2 and u = u1⊗u2.
Let F (x, y) ∈ E(S)[[x, y]] be the formal group law of c1 given by Theorem
4.1.37. Then

cZ1 (L) = F (cZ1 (L1), cZ1 (L2)).

Proof: The pseudo divisors (L1, u1), (L2, u2) and (L, u) correspond to mor-
phism f1, f2, f : X/U → P∞X respectively. Denote the Segre embedding
σ : P∞X × P∞X → P∞X . By construction, the diagram

X/U
f1×f2 //

f %%

P∞X × P∞X
σ

��
P∞X

commutes and, after applying the functors HomSH(X)( ,EX(∗)[∗]), we have
the commutative diagram

E(P∞X ) σ∗ //

f∗ &&

E(P∞X × P∞X )

(f1×f2)∗

��
EY (X).
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Recall that E(P∞) = E(S)[[t]] and E(P∞ × P∞) = E(S)[[u, v]] where t =
c1(OP∞(−1)), u = c1(p∗1OP∞(−1)), v = c1(p∗2OP∞(−1)) and p1, p2 are the
canonical projections. With this notations, the Segre morphism maps t 7→
F (u, v) where F is the formal group law of the orientation of E. We conclude
by the commutativity last diagram.

�

4.2 Gysin morphism

4.2.1 Regular immersions

We construct the Gysin morphism for a regular immersion following Gabber’s
ideas for étale cohomology (see [Fuj02] and [Rio07a]). Gabber’s method re-
duces the case of general codimension to that of codimension one by means
of describing the cohomology of the blow-up (cf. Corollary 4.2.6). In order
to prove the needed functoriality properties the versatile context of modified
blow-up is used.

Definition 4.2.1 Let i : Z → X be a regular immersion of codimension 1.
The sheaf IZ = L−Z is locally principal and it has a natural trivialization on
X − Y , and so does its dual. We define the refined fundamental class (of
Z in X) to be

η̄XZ := cZ1 (I∗Z) = cZ1 (LZ) ∈ E2,1
Z (X)

and the fundamental class to be ηXZ := c1(LZ) = i[(c
Z
1 (LZ)) ∈ E2,1(X). We

define the refined Gysin morphism as

pi : E∗,∗(Z) −→ E∗+2,∗+1
Z (X)

a 7→ a · η̄XZ

and the Gysin morphism as i∗ : E∗,∗(Z) −→ E∗+2,∗+1(X), a 7→ i[(a · η̄XZ ).
More generally, let (L, u : O|U

∼−→ L|U) be a pseudo divisor where U =
X − Z. We define the refined Gysin morphism (given by (L, u)) as

pL : E∗,∗(Z) −→ E∗+2,∗+1
Z (X)

a 7→ a · cZ1 (L).

Remark 4.2.2 Let Z
i−→ X be a regular immersion of codimension 1. Due to

Proposition 4.1.7 it is easy to check that

cZ1 (LZ) · c1(NZ/X) = cZ1 (LZ)2

where cZ1 (LZ) ∈ E2,1
Z (X), NZ/X = Spec(S•(IZ/I2

Z)∗) and c1(NZ/X) ∈ E2,1(Z).
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We now define a refined fundamental class for any closed subscheme Z → X
and any epimorphism F∗ → IZ/I2

Z where F is a locally free OZ-module. This
more general context, due to Gabber, is the suitable one to prove the basic
properties of the Gysin morphism.

Definition 4.2.3 Let Z → X be a closed immersion defined by a sheaf of
ideals IZ . Let F∗ → IZ/I2

Z be an epimorphism of OZ-modules where F is
locally free and consider the OX-graded algebra A =

⊕
An defined on each

degree as the fibre product

An −→ InZ
↓ ↓

SnF∗ −→ InZ/In+1
Z .

We define the modified blow-up as the projective schemeBZ,FX := ProjX(A).

See [Rio07a, 2.2.1.3; 2.2.1.4 and 2.1.5] for a proof of the following properties
of the modified blow-up:

Proposition 4.2.4 Let π : BZ,FX → X be a modified blowing-up:

1. The epimorphism A →
⊕
InZ/In+1

Z defines a closed embedding into the
classic blow-up BZ,FX ↪→ BZX.

2. If F∗ = IZ/I2
Z then BZ,FX = BZX is the classic blow-up BZX.

3. Denote U = X − Z, then BZ,FX|π−1(U) ' U .

4. π−1(Z) = P(F ) = ProjZ(S•F).

5. For any morphism p : X ′ −→ X there is a canonical morphism

BZ′,p∗FX
′ −→ BZ,FX ×X X ′

which is a nil-immersion.

�

Proposition 4.2.5 Let i : Z → X be a closed immersion and let F∗ → IZ/I2
Z

be an epimorphism of OZ-modules where F is locally free. Let B = BZ,FX be
the modified blowing up, π : B → X the canonical morphism and P = P(F )
the exceptional divisor. Then for any q ∈ Z there is a long exact sequence

· · · → Ep,qZ (X)→ Ep,qP (B)⊕ Ep,q(Z)→ Ep,q(P )→ Ep+1,q
Z (X)→ · · ·
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Proof: First recall that we call a cdh-distinguished square any cartesian square

Z ′ i′ //

π′

��

X ′

π
��

Z
i // X

such that i is a closed immersion, π is proper and defines an isomorphism
π−1(X − Z) ' X − Z. Following [CD09, 3.3.8] any cdh-distinguished square
gives homotopy bicartesian squares in SH(X). In particular, for any absolute
spectrum E the diagram in SH(X)

EX //

��

π∗EX′

��
i∗EZ // i′∗π∗EZ′

is homotopy bicartesian. As a result, we obtain that there is a distinguished
triangle

EX → π∗EX′ ⊕ i∗EZ → i∗π
′
∗EZ′ → EX [1].

Applying the functor HomSH(X)(i∗1Z(−q), ) to this triangle in the case
X ′ = B = BZ,FX and Z ′ = P = P(F ) we deduce a long exact sequence where
we can compute each term:

HomSH(X)(i∗1Z(−q),E) = E0,q
Z (X)

HomSH(X)(i∗1Z(−q), π∗EB) = HomSH(B)(π
∗i∗1Z ,EB(q)) =

= HomSH(B)(i
′
∗π
′∗
1Z ,EB(q)) = E0,q

P (B)

HomSH(X)(i∗1Z(−q), i∗EZ) = HomSH(Z)(1Z ,EZ(q)) = E0,q(Z)

HomSH(X)(i∗1Z(−q), i∗π′∗EP ) = HomSH(Z)(i
∗i∗1Z , π

′
∗EP (q)) =

= HomSH(P )(π
′∗
1Z ,EP (q)) = E0,q(P ).

The first equality is the definition of cohomology with coefficients in E, the
second is deduced by adjunction followed by base change for proper morphisms
and the third one follows from the fact that the functor i∗ is fully faithful.

�

Corollary 4.2.6 With the preceding notations let p, q ∈ Z, we have a split
short exact sequence

0 −→ Ep,qZ (X) −→ Ep,qP (B)
s

� E2n,q(P )/Ep,q(Z) −→ 0.
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Proof: The preceding long exact sequence may be rewritten as

· · · → Ep,qZ (X)
π∗−→ Ep,qP (B)

i∗−→ Ep,q(P )/Ep,q(Z)→ · · · .

Denote x = c1(OP (−1)), by the projective bundle theorem we have

Ep,q(P )/Ep,q(Z) = Ep−2,q−1(Z)x⊕ · · · ⊕ Ep−2(n−1),q−n+1(Z)xn−1.

Since i∗(cP1 (OB(−1))) = c1(OP (−1)) = x we define the section s by giving its
value at the generators s(xi) = (cP1 (OB(−1)))i and linearity.

�

4.2.7 Consider once again the notations of Proposition 4.2.5. Recall that Z
a is closed subscheme of X, B → X is a modified blowing-up of X over Z and
P = π−1(Z). We now construct a distinguished class in EZ(X) to define the
Gysin morphism.

Although P is not in general of codimension 1, the invertible sheaf LP =
OB(−1) has a canonical trivialization on B − P . Therefore we consider the
refined Gysin morphism pOB(−1) and the diagram

0 // E2n,n
Z (X) π∗ // E2n,n

P (B) i∗ // E2n,n(P )/E2n,∗(Z) // 0

E2n−2,n−1(P )

pOB(−1)

OO

where n = rankF . Since Σn−1
0 (−1)n+1+ici(F )xn−i = cn(F ) = 0 in E(P )/E(Z),

we define

ClXZ,F := Σn−1
0 (−1)n+1+ici(F )xn−i−1 ∈ E2n−2,n−1(P ).

Note that

i∗pOB(−1)(ClXZ,F) = i∗(cP1 (OB(−1))(Σn−1
0 (−1)n+1+ici(F )xn−i−1))

= Σn−1
0 (−1)n+1+ici(F )xn−i = 0.

Therefore, there exist a unique class η̄XZ,F ∈ E2n,n
Z (X) such that π∗η̄XZ,F =

pOB(−1)(ClXZ,F).

Definition 4.2.8 Let Z → X be a closed subscheme and let F∗ → IZ/I2
Z

be an epimorphism of OZ-modules where F is locally free of rank n. With
the preceding notations, we define the refined fundamental class of Z
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in X modified by F to be the unique class η̄XZ,F ∈ E2n,n
Z (X) such that

pOB(−1)(ClXZ,F) = π∗(η̄XZ,F).

In the case i : Z → X is a regular immersion of codimension n and F∗ =
IZ/I2

Z we call this class the refined fundamental class of Z in X and we
denote it η̄XZ ∈ E2n,n

Z (X). We define the refined Gysin morphism to be

pi : E∗,∗(Z) → E∗+2n,∗+n
Z (X)

a 7→ a · η̄XZ

and the Gysin morphism to be i∗ : E∗,∗(Z) −→ E∗+2n,∗+n(X), a 7→ i[(a · η̄XZ ).

Corollary 4.2.9 Let i : Z → X be a regular immersion of codimension n,
then

i∗ηXZ = cn(NZ/X) ∈ E2n,n(Z)

where NZ/X = Spec(S•IZ/I2
Z). In particular, let V → X be a rank n vector

bundle and s0 : X → V be the zero section, then s∗0η
V
X = cn(V ) ∈ E2n,n(X).

Proof: Consider the commutative square

P
i′ //

π′

��

BZX

π
��

Z
i // X.

Note that π′∗ : E(Z)→ E(P ) is injective. By construction we have

(i′ ◦ π)∗ηXZ = i′
∗
ClXZ,IZ/I2Z

= π′
∗
cn(NZ/X)

�

Corollary 4.2.10 (Projection formula) With the preceding notations, the
Gysin morphism i∗ is a morphism of E(X)-modules. In other words,

a · i∗(b) = i∗(i
∗(a) · b) ∀ a ∈ E(X) , b ∈ E(Z).

Proof: We have

i∗(i
∗(a) · b) = i[(i

∗(a) · b · η̄XZ ) = a · i[(b · η̄XZ ) = a · i∗(b)

where we have used point 6 of Proposition 4.1.7.

�
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Corollary 4.2.11 With the preceding notations, let r : X → Z be a retraction
of i. Then i∗ is a morphism of E(Z)-modules with respect to r∗. In other
words,

i∗(a · b) = r∗(a) · i∗(b) ∀ a ∈ E(Z).

In particular, i∗(a) = r∗(a) · ηXZ .

Proof: We have

r∗(a) · i∗(b) = r∗(a) · i[(b · η̄XZ ) = i[(r
∗(a) · b · η̄XZ )

= i[(a · b · η̄XZ ) = i∗(a · b)

where we have used point 4 and 6 of Proposition 4.1.7. �

Proposition 4.2.12 The refined fundamental class is stable under base change.
In other words, let p : X ′ −→ X be a morphism of schemes, Z → X a closed
subscheme and F∗ → IZ/I2

Z an epimorphism of OZ-modules where F is locally
free, then

p∗(η̄XZ,F) = η̄X
′

p−1(Z),p∗(F).

Proof: It is enough to check

p∗(ClXZ,F) = ClX
′

p−1(Z),p∗F ∈ E2r−2,r−1(P(p∗F))

where r = rankF . This follows from the fact that Chern classes are functorial
and the induced morphism p̄ : Bp−1Z,p∗FX

′ → BZ,FX satisfies

p∗OBp−1Z,p∗FX
′(−1) = OBZ,FX(−1).

�

Proposition 4.2.13 With the preceding notations, let F ′∗ −→ F∗ be an epi-
morphism of locally free OZ-modules of constant rank r′, r respectively. Denote
K∗ be the kernel and F , F ′, and K the vector bundles they define. We have
the relation

η̄XZ,F ′ = cr′−r(K)η̄XZ,F .

Proof: Due to the splitting principle we are reduced to prove the case where
r′ = r + 1. In order to do so it is enough to check that

j∗ClXZ,F ′ = c1(K)ClXZ,F .
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By construction there is short exact sequence 0 → F → F ′ → K → 0 of
vector bundles. Recall from Theorem 4.1.41 that ci(F

′) = ci(F )+c1(K)ci−1(F )
and therefore

j∗ClXZ,F ′ = j∗((−1)r
′+1Σr′−1

0 (−1)ici(F
′)xr

′−1−i)

= (−1)rΣr
0(−1)i(ci(F ) + c1(K)ci−1(F ))xr−i

= (−1)rΣr
0(−1)ici(F )xr−i + (−1)r+1c1(K)Σr−1

0 (−1)jcj(F )xr−1−j

= c1(K)ClXZ,F .

�

In Gabber’s versatile context of modified blow-up the so called key formula
(cf. [Ful98, 6.7]) and the more general excess intersection formula are a direct
consequence of the definition by Propositions 4.2.12 and 4.2.13.

Corollary 4.2.14 (Excess intersection formula) Consider the cartesian square

P
j //

π′

��

X ′

π
��

Z i // X

where both i and j are regular immersions of codimension n and m respectively.
If K = π′∗NZ/X/NP/X′ is the excess vector bundle then

π∗i∗(a) = j∗(cn−m(K)π′∗(a)).

Moreover, we have the refined version

π∗pi(a) = pj(cn−m(K)π′∗(a)).

�

Remark 4.2.15 The preceding properties characterize the Gysin morphism
and the refined Gysin morphism for regular immersions due to Corollary 4.2.6.
More concretely, if (E, c1) is an oriented absolute ring spectrum there exist
a unique family of group morphisms pi : E∗,∗(Z) → E∗+2d,∗+d

Z (X) indexed by
regular closed immersions i : Z → X of codimension d such that:

1. If d = 1 then pi(a) = acZ1 (LZ).

2. For any blow-up they satisfy the key formula, in Corollary 4.2.14 nota-
tions

π∗pi(a) = pj(c
Z
n−1(K)π′∗(a)).

The general Gysin morphism is characterized by analogous conditions (see
Theorem 4.2.39 for the complete statement).
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4.2.2 Functoriality

In order for the definition of the Gysin morphism to be of any use it has to be

functorial. In other words, if Z
j−→ Y

i−→ X are regular immersions then the
morphism (ij)∗ should be equal to i∗j∗. It is clear that if the classes η̄XZ and
η̄XY η̄

Y
Z ∈ EZ(X) coincide this readily implies the functoriality.

Theorem 4.2.16 If Z
j−→ Y

i−→ X are two regular immersions then

η̄XZ = η̄YZ · η̄XY ∈ EZ(X). (4.2)

Proof: Let n be the codimension of j and m that of i, that we may assume
constant. We split the proof into two parts:

Lemma 4.2.17 With the preceding notations, if equation (4.2) holds for m =
1 then it holds for any m.

Proof: Consider B = BYX the blow-up of Y in X and denote P = P(NY/X),
P ′ = P(NY/X |Z). We have the diagram

P ′
j′ //

p′

��

P //

p

��

B

π
��

Z // Y // X

where both squares are cartesian, P → B is a regular closed immersion of
codimension 1 and j′ is of codimension n. Since the morphism

E2(n+m),n+m
Y (X)

π∗−→ E2(n+m),n+m
P ′ (B)

is injective (cf. Corollary 4.2.6) it is enough to check on E2(n+m),n+m
P ′ (B) the

relation. Denote K∗ the kernel of the epimorphism p
′∗IZ/I2

Z → IP ′/I2
P ′ and

K its associated vector bundle. Using that the refined fundamental class are
stable under base change (Proposition 4.2.12), the formula from Proposition
4.2.13 and the equation (4.2) for m = 1 we get

π∗η̄XZ = η̄BP ′,π∗NZ/X = cn−1(K)η̄BP ′ = cn−1(K)η̄PP ′ η̄
B
P .
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Now, consider the commutative diagram of vector bundles on P ′

0 0
↑ ↑

0 −→ K −→ j′∗K ′ −→ 0
↑ ↑ ↑

0 −→ p′∗NY/X −→ p′∗NZ/X −→ j′∗p∗NY/X −→ 0
↑ ↑ ↑

0 −→ NP ′/P −→ NP ′/B −→ j′∗NP/B −→ 0
↑ ↑ ↑
0 0 0

where K ′∗ is the vector bundle associated to the kernel of p∗IY /I2
Y → IP/I2

P .
Taking into account that j′∗K ′

∼→ K and using Proposition 4.2.12 and Propo-
sition 4.2.13 once again we conclude

π∗η̄XZ = cn−1(K ′)η̄PP ′ η̄
B
P = (cn−1(K)η̄BP )η̄PP ′ = η̄XY

P,p∗IY /I2Y
η̄PP ′

= π∗(η̄XY )η̄PP ′ = π∗η̄XY π
∗η̄YZ .

�

Lemma 4.2.18 With the preceding notations, the equation (4.2) is true for
m = 1.

Proof: Denote P = P(NZ/X), P ′ = P(NZ/Y ), n = codimY Z and YZ , XZ for
the blow-up of Z in Y and X respectively. Consider the commutative diagram

P ′
h //

v

��

YZ

w

��
P

g //

��

π−1(Y ) //

��

XZ

π

��
Z

j // Y // X

where every square is cartesian. Since π∗ : E2n+2,n+1
Z (X) → E2n+2,n+1

P (XZ) is
injective (cf. Corollary 4.2.6) it is enough to prove

π∗η̄XZ = π∗η̄YZπ
∗η̄XY (4.3)

where π∗η̄XZ ∈ E2n+2,n+1
P (XZ), π∗η̄YZ ∈ E2n,n

P (π−1(Y )) and π∗η̄XY ∈ E2,1
π−1(Y )(XZ).
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We make the explicit computations of these two terms. Let IXY be the sheaf
of ideals of Y in X and LY its associated line bundle. To begin with,

π∗η̄XY = cπ
−1Y

1 (π∗LY ) = cπ
−1Y

1 (LP ⊗ LYZ ) = cπ
−1Y

1 (OXZ (−1)⊗ LYZ )

= cπ
−1Y

1 (OXZ (−1)) + cπ
−1Y

1 (LYZ ) + cπ
−1Y

1 (OXZ (−1))cπ
−1Y

1 (LYZ )f

where f ∈ E∗∗(S)[[x, y]] is the series given by the formal group law (cf. 4.1.36).
Therefore, the right hand side of equation (4.3) is the sum of the preceding
three terms multiplied by π∗η̄YZ .

We compute each one of those three terms. From now on, we use the
notation u = cP1 (OXZ (−1)) ∈ E2,1

P (XZ). For the first term

π∗η̄YZ · cπ
−1Y

1 (OXZ (−1)) = g∗π∗η̄YZ · u = cn(π∗NZ/Y )u = I1

where the first equality is due to 6 of Proposition 4.1.7 applied to the map
g[ : EP (XZ) → Eπ−1Y (XZ) and the second one to g∗π∗ = π∗j∗ together with
Corollary 4.2.9. For the second term

π∗η̄YZ · cπ
−1Y

1 (LYZ ) = π∗η̄YZ · w[c
YZ
1 (LYZ ) = v[(w

∗π∗η̄YZ · c
YZ
1 (LYZ ))

= v[
(
(−1)n+1[

n−1∑
i=0

(−1)ici(NZ/Y )c1(OP ′(−1))n−1−i]cP
′

1 (OYZ (−1))cYZ1 (LYZ )
)

= v[
(
(−1)n+1[

n−1∑
i=0

(−1)ici(NZ/Y )cP
′

1 (OYZ (−1)
)n−i

]cYZ1 (LYZ ))

= (−1)n+1[
n−1∑
i=0

(−1)ici(NZ/Y )un−ic1(LYZ )] = I2

is due to Proposition 4.1.7 for w[ : EYZ (XZ)→ Eπ−1Y (XZ), Proposition 4.1.46
and Corollary 4.2.2. For the third and last term

π∗η̄YZ c
π−1Y
1 (LYZ )cπ

−1Y
1 (OXZ (−1))f

= (−1)n+1[
n−1∑
i=0

(−1)ici(NZ/Y )un−i]c1(LYZ )cπ
−1Y

1 (OXZ (−1))f

= (−1)n+1[
n−1∑
i=0

(−1)ici(NZ/Y )un−i+1c1(LYZ )f ] = I3

where we use the preceding computation.
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Consider the short exact sequence

0→ K∗ → IXZ /IX2
Z → IYZ /IY 2

Z → 0

With it, we compute the other side of the equation (4.3):

π∗η̄XZ = (−1)n[
n∑
j=0

(−1)jcj(NZ/X)c1(OP (−1))n−j)]u

= (−1)n[
n∑
j=0

(−1)j(cj(NZ/Y ) + cj−1(NZ/Y )c1(K))un+1−j]

Note that IPP ′ = K⊗OP (−1) and therefore K = IXZYZ ⊗OP (1) so that c1(K) =
c1(LYZ ⊗OP (−1)).

=
n∑
j=0

(−1)n+j[cj(NZ/Y ) + cj−1(NZ/Y )(c1(LYZ ) + c1(OP (−1)) + c1(LYZ )c1(OP (−1))f)]un+1−j

Therefore, π∗η̄XZ is the sum of three terms:

n∑
j=0

(−1)n+j[cj(NZ/Y ) + cj−1(NZ/Y )c1(OP (−1))]un+1−j =

=
n∑
j=0

(−1)n+jcj(NZ/Y )un+1−j +
n−1∑
i=0

(−1)n+i+1ci(NZ/Y )un+1−i =

=cn(NZ/Y )u = I1

which is given by Corollary 4.2.9 and the definition of the Chern class,

n∑
j=0

(−1)n+jcj−1(NZ/Y )(c1(LYZ )))un+1−j =

=(−1)n+1[
n−1∑
i=0

(−1)ici(NZ/Y )un−ic1(LYZ )] = I2

and finally

n∑
j=0

(−1)n+j[cj−1(NZ/Y )c1(LYZ )c1(OXZ (−1))f ]un+1−j =

=(−1)n+1[
n−1∑
i=0

(−1)ici(NZ/Y )un+1−ic1(LYZ )f ] = I3.

�
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Example 4.2.19 Let V → X be a vector bundle of rank n and (E, c1) be an
oriented absolute ring spectrum. The Thom class of V is defined to be

t(V ) :=
n∑
i=0

(−1)ici(V )xi ∈ E2n,n(V̄ )

where x = c1(OV̄ (−1)) and V̄ = P(V ⊕ 1). It has being standard in motivic
homotopy theory since its beginning to define fundamental classes out of Thom
classes. More concretely, denote s0 : X → V̄ the zero section. Its fundamental
class was, by definition, t(V ). Therefore, the unicity of Gysin morphisms in
the context of regular schemes (cf. [Dég14]) proves that for a regular scheme
X then

ηV̄X = t(V ).

4.2.20 Let us check that t(V ) coincides with ηV̄X for arbitrary schemes. In
order to do so we recall some facts of the theory of Thom classes.

For convenience of the reader we recall the definitions. We define the Thom
space of V as

Th(V ) = V/V − 0 ' V̄ /P(V ).

Its cohomology fits into a long exact sequence

. . .→ E∗∗(Th(V ))
π∗−→ E∗∗(V̄ )→ E∗∗(V )→ . . .

where, from Theorem 4.1.34, the third arrow is always a split epimorphism.
Since t(V ) is zero in E(P(V )), we call the refined Thom class to the unique
element

t̄(V ) ∈ E(Th(V )) ' EX(V̄ ) = EX(V )

such that π∗(t̄(V )) = t(V ). Clearly, proving that t̄(V ) coincides with η̄V̄X is
equivalent to proving that t̄(V ) coincides with η̄V̄X .

One last technical recall (cf. [Dég14] for example): if 0 → V ′ → V →
V ′′ → 0 is exact, the refined Thom classes satisfy

t̄(V ) = t̄(V ′)t̄(VV ′) ∈ EX(V ).

Here t(VV ′) denotes V considered as a bundle over V ′ 2 and the product is
that of Definition 4.1.6.

Proposition 4.2.21 Let V → X be a vector bundle and denote V̄ its projec-
tive completion. Then

ηV̄X = t(V ).

2The scheme which parametrises the sections of V → V ′′ is a torsor (of group
Hom(V ′′, V ′))and the pullback of the short exact sequence is naturally split there.
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Proof: It is clear that this formula is equivalent to its refined counterpart,
η̄V̄X = t̄(V ). Due to Theorem 4.2.16 and the previous remark on refined Thom
classes it is enough to prove it for the case of a line bundle V = L.

In this case t(V ) = c1(L) − c1(OL̄(−1)) and ηL̄X = c1(I∗), where I stands
for the sheaf of ideals of the zero section in L̄. This sheaf may be computed
explicitly: the composition OL̄(−1)→ L⊕O → L of the canonical morphism
and the projection is an isomorphism out of the zero section, which induces
L∗ ⊗OL̄(−1) ' I → O.

We consider the canonical short exact sequence 0→ OL̄(−1)→ L⊕O →
Q → 0, where Q is the canonical quotient bundle. Taking second exterior
product it induces L =

∧2(L⊕O) = Q⊗OL̄(−1) so that Q = L⊗OL̄(1) = I∗.
Therefore we conclude

ηL̄X = c1(Q) = c1(L)− c1(OL̄(−1)) = t(L).

�
Let E be an absolute ring spectrum and M be an absolute E-module. Note

that M does not have a unit and therefore there are no orientations. As a conse-
quence there are no fundamental nor Chern classes in the M-cohomology. How-
ever, M(X) is an E(X)-module and therefore we can still multiply classes in the
M-cohomology by fundamental classes and Chern classes of the E-cohomology.
This suffices to define the Gysin morphism.

Definition 4.2.22 Let i : Z → X be a regular immersion. We define in the
M-cohomology the Gysin morphism i∗ and the refined Gysin morphism
pi to be

i∗ : Mp,q(Z) −→ Mp+2n,q+n(X)
m 7→ m · ηXZ

,
pi : Mp,q(Z) −→ Mp+2n,q+n

Z (X)
m 7→ m · η̄XZ .

Note that the product is that of paragraph 4.1.11.

Corollaries 4.2.9, 4.2.10, 4.2.14 and 4.2.11 readily allow to conclude the
following properties for modules:

Theorem 4.2.23 Let E be an oriented absolute ring spectrum, M be an abso-
lute E-module and i : Z → X be a regular immersion.

• Functoriality: Let j : Y → Z be a regular immersion, then (ij)∗ = i∗j∗.

• Projection formula: The Gysin morphism is E(X)-linear. In other words,

a · i∗(m) = i∗(i
∗(a) ·m) ∀ a ∈ E(X) , m ∈M(Z).

Note that an analogue formula also holds for n ∈M(X) and b ∈ E(Z).
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• Denote n = codimX Z, we have

i∗i∗(m) = cn(NZ/X) ·m ∀ m ∈M2n,n(Z).

• Let r : X → Z be a retraction of i, then the Gysin morphism i∗ is M(Z)-
linear (with r∗). In other words,

i∗(m) = r∗(m) · ηXZ ∀ m ∈M(Z).

• Excess intersection formula: Consider a cartesian square

P
j //

π′

��

X ′

π
��

Z i // X

where both i and j are regular immersions of codimension n and m re-
spectively. Denote K = π′∗NZ/X/NP/X′ the excess vector bundle, then

π∗i∗(m) = j∗(cn−m(K) · π′∗(m)) and

π∗pi(m) = pj(cn−m(K) · π′∗(m)) ∀ m ∈M(Z).

�

4.2.3 The projective lci case

We construct the Gysin morphism for the projection pX : PnX → X of a pro-
jective space onto its base. We prove afterwards that the Gysin morphism
for projective lci morphism, without smoothness assumptions, have all usual
properties.

The main reference we have used is [Dég08, §5] where Déglise thoroughly
studied the Gysin morphism for projective lci morphisms. However, the ref-
erence works on the smooth case and on a general category of premotives
satisfying certain axioms, which do not hold for SH. Nevertheless, we will see
the arguments still hold mutatis mutandis in our context.

4.2.24 Denote E(PnX)∨ = HomE(X)−mod (E(PnX),E(X)) the dual of E(PnX) in
the category of E(X)-modules. Recall that from the projective bundle theorem
we have

E(PnX ×X PnX) ' E(PnX)⊗E(X) E(PnX).

Consider the diagonal embedding ∆n : PnX → PnX×PnX . The fundamental class

of the diagonal η∆n = η
PnX×P

n
X

∆n
∈ E(PnX)⊗E(PnX) defines a E(X)-bilinear pairing

g∨ on E(PnX)∨, and therefore a polarity

Φ: E(PnX)∨ → E(PnX) , ω 7→ (ω ⊗ 1)(η∆n).
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Proposition 4.2.25 The polarity Φ defined above is an isomorphism.

Proof: We proceed by induction on n, the dimension of the projective space.
We prove that

η∆n =
n∑

r,s=0

ar,sx
r
n ⊗ xsn where (ar,s) =


0 0 1

•
0

1 • •

 (4.4)

where xn = c1(OPnX (−1)). That is to say, ars = 0 if r + s < n and ars = 1 if
r + s = n.

Denote i : Pn−1
X → PnX , we have

i∗x
r
n−1 = i∗i

∗xrn = xrn · i∗(1) = xr+1
n .

Consider the cartesian diagram

Pn−1
X

i

��

// Pn−1
X × PnX

i×1

��
PnX

∆n // PnX × PnX .

Since i× 1 is transversal to ∆n the excess intersection formula for the regular
immersion gives that the class (i∗ ⊗ 1)(η∆n) is the fundamental class of the
diagonal of Pn−1

X seen in Pn−1
X × PnX . Since

(i∗ ⊗ 1)(η∆n) =
n−1∑
r=0

n∑
s=0

arsx
r
n−1 ⊗ xsn

(1⊗ i∗)(η∆n−1) =
n−1∑
r=0

n−1∑
s=0

a′rsx
r
n−1 ⊗ xs+1

n

we conclude ars = a′r(s−1) for r = 0, . . . , n− 1 and s = 0, . . . , n− 1 and ar0 = 0
for r = 0, . . . n − 1. Therefore, provided that r < n, we conclude by the
induction hypothesis that ars = 0 if r + s < n and ars = 1 if r + s = n. By
symmetry we have the same result if s < n which concludes the proof.

�

Definition 4.2.26 Let E be an oriented absolute ring spectrum and denote
pX : PnX → X the natural projection, we define the direct image of pX to be

pX∗ : E(PnX)
Φ−1

' E(PnX)∨
(p∗)∨−−−→ E(X)∨ = E(X).
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Remark 4.2.27 Denote p : Pn → S, since the square

PnX

��

// PnX × PnX
π

��
Pn // Pn × Pn

is transversal, the excess intersection formula gives η∆nX
= π∗η∆n and we have

pX∗ = p∗ ⊗ 1X .

Remark 4.2.28 Denote Mn the matrix from (4.4), the matrix of the bilinear
pairing g∨ in the dual of the standard basis {1, x = c1(OnP(−1)), . . . , xn}.
Through the polarity Φ, it defines as well a bilinear pairing g on E(Pn) which,
in the standard basis, has the matrix

M−1
n =


• • 1

0

•
1 0 0

 .

Recall that the identification E(S)∨ → E(S) is given by ω 7→ ω(1). Therefore
we conclude that for all a ∈ E(Pn) we have that

p∗(a) =< a, 1 >g

where < , >g denotes the product with g. If we have π : X → S, then
pX∗(b) = (b, 1)π∗g.

Lemma 4.2.29 Let ∆n : Pn → Pn × Pn = PnPn be the diagonal embedding.
Then pPn∗∆∗ = 1Pn.

Proof: Denote P = Pn and π : P → S the structural morphism. Recall from
the previous remark that

pPn∗(a) =< a, 1 >π∗g

for a ∈ E(PnP ). In particular, if we denote η∆ the fundamental class of the
diagonal PnP → PnP × PnP we directly obtain

pPn∗(∆∗(1)) =< η∆, 1 >π∗M−1
n

=< π∗η∆n , 1 >π∗g= 1

since π∗g is represented by π∗Mn. Denote x = c1(OnP(−1)). We conclude by
observing that

pPn∗(∆∗(x
j)) = pPn∗(∆∗(∆

∗(1⊗ xj)) = pPn∗(1⊗ xj) · pPn∗(∆∗(1)) = 1⊗ xj

since pPn∗ = p∗ ⊗ 1Pn .
�
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Corollary 4.2.30 Let s : X → PnX be a section of pX : PnX → X. Then
pX∗s∗ = 1X .

Proof: Note that preceding lemma also holds for a projective space over a
general base PnX . Consider the cartesian squares

X s //

s

��

Pn ×X pX //

1Pn×s
��

X

s

��
PnX

∆ // Pn × Pn ×X
pPn
X // PnX .

We may apply Corollary 4.2.14 to the left square so that s∗s∗ = ∆∗(1PnX × s)
∗.

From Definition 4.2.26 we also have that pX∗(1PnX × s)
∗ = pPnX∗. Together with

the previous lemma we deduce s∗ = p∗s∗s
∗. Since s∗ is surjective we conclude

that p∗s∗ = 1X .
�

Remark 4.2.31 We have proved the commutativity of the following triangle:

E(Pn)
∆∗ //

1Pn ''

E(Pn)⊗ E(Pn)

pPn∗=p∗⊗1S
��

E(Pn).

Note that p∗ ∈ E(Pn)∨. Since the polarity Φ of 4.2.24 is an isomorphism, p∗ is
totally determined by the fact that its image through Φ is

Φ(p∗) = (p∗ ⊗ 1Pn)(η∆) = 1.

Lemma 4.2.32 Let i : Z → X be a regular immersion and consider the carte-
sian diagram

PnZ
k //

pZ
��

PnX
pX
��

Z i // X

Then k∗ = (1Pn × i)∗ = 1Pn ⊗ i∗ and pX∗k∗ = i∗pZ∗.

Proof: For the first claim, applying the excess intersection formula and the
projective bundle theorem (Corollary 4.2.14, Theorem 4.1.34) we get that the
diagram

E(Pn)⊗E(S) E(Z)
k∗ // E(Pn)⊗E(S) E(X)

E(Z)
i∗ //

p∗Z

OO

E(X)

p∗X

OO
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commutes so that k∗(1⊗ a) = 1⊗ i∗(a) for a ∈ E(Z). Applying the projection
formula from Corollary 4.2.10 we get that k∗(b⊗1) = (b⊗1) ·k∗(1⊗1) = b⊗ηXZ
for b ∈ E(Pn) so we conclude k∗ = (1Pn × i)∗ = 1Pn ⊗ i∗. From here and the
previous definition the formula pX∗k∗ = i∗pZ∗ follows.

�

Theorem 4.2.33 Consider a commutative diagram

Y k //

i
��

PnX
p

��
PmX

q // X

where i and k are regular immersions of codimension r and s respectively and
p and q are the natural projections. Then, p∗k∗ = q∗i∗.

Proof: Consider the following commutative diagram:

PnX p

%%
Y

k
00

i ..

v // PnX ×X PmX
q′

55

p′

))

X.

PmX
q

99

Since it is clear that p∗q
′
∗ = q∗p

′
∗ it is enough to prove that p′∗v∗ = i∗. For that

case, denote T = PmX , v = ρ× i where ρ : Y → Pn and consider

Y
s
&&

v

&&
PnY l

//

π
��

PnT
p′��

Y i // T

where i, s = ρ × 1Y , l and v are regular immersions. By the functoriality of
Theorem 4.2.16 we have v∗ = l∗s∗ and by the previous Lemma 4.2.32 we also
have π∗s∗ = 1Y and p′∗l∗ = i∗π∗. Considering all together we conclude

p′∗v∗ = p′∗l∗s∗ = i∗π∗s∗ = i∗.

�

Definition 4.2.34 We define an X-scheme Y → X to be a local complete
intersection (lci) if it locally admits a factorization by a regular immersion
into An

X ([SGA6, VIII 1.1]). In [SGA6, VIII 1.2] it is proved that a projective
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lci morphism f : Y → X admits a factorization of the form Y
i−→ PnX

p−→ X
where i is a regular closed immersion and p is the canonical projection.

Let f : Y → X be a projective lci morphism and Y
i−→ PnX

p−→ Y be a
factorization, we define the direct image of f as f∗ := p∗i∗ (by Theorem
4.2.33 it does not depend on the choice of factorization).

Finally, let us prove the main properties of the Gysin morphism (Theorem
4.2.16, Corollaries 4.2.10 and 4.2.14) once again in this context. They are a
direct consequence of the definition and the case of regular immersions.

Theorem 4.2.35 (Functoriality) Let f : Y → X and g : Z → Y be two
projective lci morphism, then

(f ◦ g)∗ = f∗ ◦ g∗.

Proof: Consider factorizations Z
j−→ PmX

q−→ X of f ◦ g and Y
i−→ PnX

p−→ X of f .
We can compute explicitly the base change

Y ′ i′ //

π′

��

PmX × PnX
π

��
Y

i // PnX

as Y ′ = (PmX ×X PnX) ×PnX Y = PmY . If we denote j = v × (fg) : Z → Pn × X
and consider k = v × g : Z → Pn × Y it fits into a commutative diagram

PmX
q

��

PmX × PnX
π
((

p′
OO

PmY π′

((

i′ 66

PnX
p %%

Z g //
k
99

j

22

Y f //

i 66

X.

The preceding lemmas allow to conclude

f∗g∗ = p∗i∗π
′
∗k∗ = p∗π∗i

′
∗k∗ = q∗p

′
∗i
′
∗k∗ = q∗j∗ = (fg)∗.

�

Proposition 4.2.36 (Excess intersection formula) Consider a cartesian
square

Y ′
g //

q

��

X ′

p

��
Y

f // X
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where f and g are projective lci morphisms of codimension n and m respec-

tively. Choose a factorization Y
i−→ PnX

p−→ X of f and let K = q∗NY/PnX/NY ′/Pn
X′

.
Then

p∗f∗(a) = g∗(cn−m(K) · q∗(a)) ∀ a ∈ E(Y ).

Proof: Recall the factorization Y
i−→ PnX

p−→ X. Changing base on the regular
immersion we get a cartesian diagram

Y ′
j //

q

��

PnX′
p′

��
Y

i // PnX

which has the same excess bundle K and where j and i are regular immersions.
Therefore we can apply Corollary 4.2.14 to obtain that for any a ∈ E(Y ) the
relation

π∗i∗(a) = j∗(cn−m(K) · q∗(a))

holds. We conclude by remarking that if we consider the diagram

PnX′
π′ //

p′

��

X ′

p

��
PnX

π // X

then p∗π∗ = π′∗p
′∗.

�

Remark 4.2.37 Recall that the definition of K in the previous proposition
does not depend on the choice of factorization (cf. [Ful98, 6.6]).

Proposition 4.2.38 (Projection formula) Let f : Y → X be a projective
lci morphism, then f∗ is a morphism of E(Y )-modules. In other words,

f∗(f
∗(a) · b) = a · f∗(b) ∀ a ∈ E(X) , b ∈ E(Y ).

Proof: Consider the commutative diagram

Y
f //

γf
��

X

∆
��

Y ×X f×1X // X ×X
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where γf denotes the graphic of f and ∆ denotes the diagonal. Since ∆ is
transversal to f × 1X we may apply the excess intersection formula: for any
a ∈ E(X) and b ∈ E(Y ) we have that

∆∗(f × 1X)∗(b× a) = ∆∗((f∗b)× a) = f∗(b) · a

equals

f∗γ
∗
f (b× a) = f∗(b · f ∗(a)).

�

As a result of the construction we can characterize direct images. The
result is a reword of [Pan09, 4.1.4] in the context of stable homotopy theory,
following [Dég14, 3.3.1].

Theorem 4.2.39 Let (E, c1) be an oriented absolute spectrum, there exist a
unique way of assign for any projective lci morphisms f : Y → X a group
morphism f∗ : E(Y )→ E(X) satisfying the following properties:

1. Functoriality: (fg)∗ = f∗g∗.

2. Normalization: For regular immersions i : Y → X of codimension one
they satisfy i∗(a) = i[(a · cY1 (LY )).

3. Key formula: If i : Y → X is a regular immersion of codimension n,
π∗ : BYX → X is the blowing-up of Y in X with exceptional divisor
j : P(NY/X)→ BYX, we have π∗i∗(a) = j∗(cn−1(K) · π′∗(a)).

4. Projection formula: They are E(X)-linear, i.e., f∗(f
∗(a) · b) = a · f∗(b)

for a ∈ E(X) and b ∈ E(Y ).

When considering regular immersions, properties 2 and 3 characterize them.

Proof: The functoriality property reduces the proof to the case of regular
immersions and the projection of a projective space onto its base. The case
of closed immersions follows directly from properties 2, 3 and the long exact
sequence of the blow-up (cf. Corollary 4.2.6).

For the projection of a projective space we apply the excess formula to the
commutative square

PnX
pX //

π1
��

X

��
Pn p // S.
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Together with the projective bundle theorem 4.1.34 and the projection for-
mula we obtain that pX∗ = p∗ ⊗ 1X . The functoriality property implies the
commutativity of the triangle

E(Pn)
∆∗ //

1Pn
X ''

E(Pn)⊗ E(Pn)

p∗
��

E(Pn).

The argument from Remark 4.2.31 shows that p∗ ∈ E(Pn)∨ is uniquely deter-
mined by its image through the polarity, which is Φ(p∗) = (p∗ ⊗ 1)(η∆) = 1.

�

As in the case of regular immersion, the direct image for absolute ring
spectra induces a natural direct image for absolute modules.

Definition 4.2.40 Let M be an absolute E-module and pX : PnX → X be the
natural projection. We define the direct image pX∗ in the M-cohomology as
the morphism

M(PnX)
pX∗ //M(X)

E(Pn)⊗E(S) M(X)
p∗⊗1 // E(S)⊗E(S) M(X).

Let f : Y → X be a projective lci morphism and f = pi be a factorization

Y
i−→ PnX

p−→ X where i is a regular immersion and p is the natural projection.
We define the direct image of f as f∗ := p∗i∗.

We summarize the main properties of the direct image for the case of
modules which follow directly from Theorem 4.2.35 and Propositions 4.2.36
and 4.2.38.

Theorem 4.2.41 Let f : Y → X be a projective lci morphism, E be an abso-
lute oriented ring spectrum and M be an absolute E-module:

• Functoriality: If g : Z → Y is another projective lci morphism then

(fg)∗ = f∗g∗ : M(Z) −→M(X).

• Projection formula: f∗ is a morphism of E(X)-modules. That is to say,

f∗(f
∗(a) ·m) = a · f∗(m) ∀ a ∈ E(X) , m ∈M(Y ).
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• Excess intersection formula: Consider a cartesian square

Y ′
g //

q

��

X ′

p

��
Y

f // X

where f and g are projective lci morphisms of codimension r and s

respectively. Choose a factorization Y
i−→ PnX

p−→ X of f and denote
K = q∗NY/PnX/NY ′/Pn

X′
. Then

p∗f∗(m) = g∗(cr−s(K) · q∗(m)) ∀ m ∈ M(Y ).

�

4.3 Motivic Riemann-Roch

We devote this section to prove the motivic Riemann-Roch theorem in the
context of the algebraic stable homotopy category as in [Dég14]. We follow the
same ideas of Chapter 1. The morphism of cohomology theories is replaced in
the general setting by a morphism of oriented ring spectra ϕ : (E, c1)→ (F, c̄1).
For clarity in the exposition, overlined morphisms and elements will refer to
the F-cohomology. For example, we denote the orientation c̄1 ∈ F2,1(P∞).

The following result is the analogue of Panin’s lemma.

Theorem 4.3.1 Let ϕ : (E, c1) → (F, c̄1) be a morphism of oriented absolute
spectra such that ϕP∞(c1) = c̄1 and let f : Y → X be a projective lci, then the
diagram

E(Y )
f∗ //

ϕY
��

E(X)

ϕX
��

F(Y )
f̄∗ // F(X)

commutes. In other words, for a ∈ E(Y )

ϕX(f∗(a)) = f̄∗(ϕY (a)).

Proof: Following the standard approach, it is enough to check the theorem for
a regular immersion i : X → PnY and the projection p : PnY → Y .

Lemma 4.3.2 (Regular immersions) Theorem 4.3.1 holds for a regular im-
mersion i : Z → X.
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Proof: We split the proof in two parts:

Lemma 4.3.3 Let i : Z → X be a regular immersion, if Theorem 4.3.1 holds
for the zero section s0 : Z → P(1⊕NZ/X) = N of the projective closure of the
normal bundle then it also holds for i.

Proof: Consider the deformation to the projective closure of the normal bundle.
That is to say, consider the commutative diagram

N
i0 // X ′ X

i1oo

Z //

s0

OO

A1
Z

ι

OO

Zoo

i

OO

(4.5)

where X ′ = BY×{0}A1
X . For U = X ′ − A1

Z , taking E-cohomology gives

E(U)

E(N)

p∗

��

E(X ′)
i∗0oo

j∗

OO

E(Z)

s∗

OO

E(A1
Z)∼oo

OO

where the middle column is exact and s0 is injective (since p is a retract).
Chasing the diagram we have that if a ∈ E(X ′) has j∗(a) = 0 and i∗0(a) = 0
then a = 0. Now consider the commutative diagram

F(U)

F(N) F(X ′)oo

j∗

OO

// F(X)

E(Z)

Ψ1

OO

E(A1
Z)∼oo

Ψ2

OO

∼ // E(Z)

Ψ3

OO

where the vertical arrows are the difference of the morphism that Theorem
4.3.1 states that coincide: Ψ1 = f̄∗ϕZ − ϕN̄f∗ , Ψ2 = f̄∗ϕA1

Z
− ϕX′f∗ and

Ψ3 = f̄∗ϕZ − ϕXf∗. The morphism Ψ1 is zero by hypothesis. Taking into
account that Ker j∗ ∩ Ker i∗0 = 0 we have that Ψ2 is also zero since j̄∗Ψ2 = 0.
We conclude that Ψ3 is also zero.

�
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Lemma 4.3.4 Theorem 4.3.1 holds for zero section of the projective closure
s : X → P(1⊕ E) = E of any vector bundle E.

Proof: Let E = L be a line bundle. Note that s∗ : E(L) → E(X) is surjective
and that ϕL(s∗(1)) = ϕL(c1(L)) = c̄1(L). Let a ∈ E(X) where for a = s∗(b),
then

ϕL(s∗(a)) = ϕL(s∗(s
∗(b))) = ϕL(b · s∗(1)) = ϕL(b) · s̄∗(1) = s̄∗(ϕL(a))

so the lemma holds for line bundles.

In the general case, due to the splitting principle, we may assume that there
exist a flag E1 ⊂ E2 ⊂ · · · ⊂ En = E of vector bundles such that Ei/Ei−1 are
line bundles for all i. Therefore the theorem holds for X → Ē1 and Ēi → Ēi+1

for all i. Then it also holds for s : X → Ē.

�

Lemma 4.3.5 (Projection) Theorem 4.3.1 holds for the canonical projec-
tion p : PnX → X.

Proof: Applying Theorem 4.3.1 to the diagonal embedding ∆n : PnX → PnX×PnX
we obtain that ϕPnX×P

n
X

preserves the fundamental class of the diagonal. Recall

from Definition 4.2.26 that p∗ = Φ−1(p∗)∨ where Φ: E(PnX)
∼−→ E(PnX)∨ is

the polarity defined by the fundamental class of the diagonal (cf. Paragraph
4.2.24). Since ϕ commute with inverse images the diagram

E(PnX) Φ−1
//

ϕPn
X

��

E(PnX)∨

ϕ∨Pn
X

��

(p∗)∨ // E(X)∨ ' E(X)

ϕX
��

F(PnX) Φ̄−1
// F(PnX)∨

(p̄∗)∨ // F(X)∨ ' F(X)

is made of commutative squares.

�

Lemma 4.3.6 (Change of direct image) Let (E, c1) be an oriented abso-
lute ring spectrum. Let cnew

1 = G(c1) · c1 be a new orientation (cf. Proposition
4.1.42) and denote Tdϕ the multiplicative extension of G−1 ∈ E(S)[[t]] (cf.
Corollary 4.1.43). Let f : Y → X be a projective lci morphism and denote
Tf = i∗TPnY −Ni ∈ K0(Y ) the virtual tangent bundle of f = p ◦ i, then

fnew
∗ (a) = f∗

(
Tdϕ(Tf ) · a

)
∀ a ∈ E(Y ).
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Proof: Since the case of the canonical projection p : PnX → X is immediate,
it is enough to prove the formula for a regular immersion i : Y → X. The
we have to check that the family of morphism inew

∗ : E∗,∗(Y ) → E2d+∗,d+∗(X),
a 7→ i∗

(
Td(−NY/X) · a

)
satisfy the properties 2 and 3 of Theorem 4.2.39. The

first one follows from directly from the definition of Todd class. For the key
formula consider Corollary ?? notations and recall that we denote the canonical
quotient bundle by K = π′∗NY/X/OP (−1). We then have

π′inew
∗ (a) = π∗i∗

(
Td(−NY/X) · a

)
= j∗

(
cd−1(K) · Td(−K −OP (.− 1)) · π∗(a)

)
= jnew

∗
(
cnew
d−1(K) · π∗(a)

)
where the last equality comes from Remark 4.1.44.

�

Theorem 4.3.7 (Motivic Riemann-Roch) Let ϕ : (E, c1) → (F, c̄1) be a
morphism of oriented absolute spectra. Denote G ∈ F[S][[t]] the series such that
ϕ(c1) = G(c̄1) · c̄1 ∈ F(P∞S ) and Tdϕ be the multiplicative extension of G−1. Let
f : Y → X be a projective lci where f = p◦i and denote Tf = i∗Tp−Ni ∈ K0(Y )
the virtual tangent bundle. Then the diagram

E(Y )
f∗ //

Tdϕ(Tf )ϕY
��

E(X)

ϕX
��

F(Y )
f̄∗ // F(X)

commutes. In other words, for a ∈ E(Y ) we have

ϕX(f∗(a)) = f̄∗
(
Tdϕ(Tf ) · ϕY (a)

)
.

Proof: We define c̄new
1 = ϕP∞(c1) = G(c̄1) · c̄1 that gives a direct image f̄new

∗
satisfying ϕX(f∗(c1)) = f̄new

∗ (ϕY (c̄1)) due to Theorem 4.3.1. We conclude
recalling Lemma 4.3.6.

�

Example 4.3.8 Consider the identity Id: (E, c1) → (E, c̄1) between a ring
spectrum with two different orientations c1 and c̄1. The explicit computations
of Tdϕ is a classic subject on formal group laws (cf. [Dég14, §5.2] for a review
in the context of the Riemann-Roch theorem).

The simplest example of a change of orientations is

c̄1(L) = −c1(L∗).

Recall from the proof of Proposition 4.2.21 that the canonical short exact
sequence 0 → OP1(−1) → OP1 ⊕ OP1 → Q → 0 satisfies that Q = OP1(1)
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so we have c1(OP1(1)) = −c1(OP1(−1)) for any orientation. Therefore the
class c̄1(OP∞(−1)) as defined above is always an orientation. If F is the formal
group law of c1 then the series G of Proposition 4.1.42 in this case is the formal
inverse µ of F , i.e., the series satisfying F (x, µ(x)) = 0. However, it is much
easier to compute Chern classes explicitly by the splitting principle and the
projective bundle theorem obtaining

c̄i(E) = (−1)ici(E
∗) and

n∑
i=0

(−1)ici(E
∗)yn−i = 0 ∈ E(P(E))

where y = c1(OP(E)(1)).

The Riemann-Roch theorem for modules is a direct consequence of the case
of rings. We state the results in two steps as before.

Theorem 4.3.9 Let ϕ : (E, c1) → (F, c̄1) be a morphism of oriented absolute
spectra such that ϕP∞(c1) = c̄1. Let Φ: M→ M′ be a ϕ-morphism of absolute
modules and f : Y → X be a projective lci, then the diagram

M(Y )
f∗ //

ΦY
��

M(X)

ΦX
��

M′(Y )
f̄∗ //M′(X)

commutes. In other words, for m ∈M(Y )

ΦX(f∗(m)) = f̄∗(ΦY (m)).

Proof: Consider the case of a regular immersion i : Z → X and the case of a
projection pX : PnX → X of a projective space onto its base. Both cases follow
from Theorem 4.3.1.

Let i : Z → X be a regular immersion. Since ϕX(i∗(1)) = ī∗(1) then ϕ
preserves the fundamental class of Z in X. Therefore ī∗ΦY = ΦXi∗. Denote
p : Pn → S the natural projection and recall that pX∗ = p∗⊗1M(X) : M(Pn(X))→
M(X) where p∗ : E(Pn) → E(S). Since ϕSp∗ = p̄∗ϕPn we have that ΦXpX∗ =
p̄X∗ΦPnX .

�

Theorem 4.3.10 Let ϕ : (E, c1)→ (F, c̄1) be a morphism of oriented absolute
spectra. Denote G ∈ F[S][[t]] the series such that ϕ(c1) = G(c̄1) · c̄1 ∈ F(P∞S )
and Tdϕ be the multiplicative extension of G−1. Let Φ: M → M′ be a ϕ-
morphism of absolute modules and f : Y → X be a projective lci where f = p◦i



134 4. RIEMANN-ROCH THEOREM AND GYSIN MORPHISM

and denote Tf = i∗Tp − Ni ∈ K0(Y ) the virtual tangent bundle. Then the
diagram

M(Y )
f∗ //

Tdϕ(Tf )ΦY
��

M(X)

ΦX
��

M′(Y )
f̄∗ //M′(X)

commutes. In other words, for m ∈M(Y ) we have

ΦX(f∗(m)) = f̄∗
(
Tdϕ(Tf ) · ΦY (m)

)
.

Proof: Consider the case of a regular immersion i : Z → X and the projection
pX : PnX → X. From Theorem 4.3.7 we have that ϕX(i∗(1)) = ī∗(Tdϕ(−NZ/X))
from which the formula

ΦXi∗(m) = ī∗
(
Tdϕ(−NZ/X) · ΦZ(m)

)
follows. From Theorem 4.3.7 we have that ϕXpX∗(α) = p̄X∗

(
Tdϕ(Tp) ·ϕPnX (α)

)
from which the formula

ΦXpX∗(m) = p̄X∗(Tdϕ(Tp) · ΦPnX (m))

follows.
�

Example 4.3.11 We review some concrete examples of this formula. Let
ϕ : E→ F a morphism of strict absolute ring spectra:

• Let i : Z → X be a closed immersion and consider the cartesian square

P
i′ //

π′

��

BZX

π
��

Z
i // X

where BZX denotes the blow-up of Z in X. Recall from Example 4.1.25
that E(π) ' E(π′) = E(P )/E(Z). We deduce from the Riemann-Roch
theorem for modules that the square

E(P )/E(Z)
i∗ //

Tdϕ(−NZ/X)ϕ

��

E(P )/E(Z)

ϕ

��
F(P )/F(Z)

ī∗ // F(P )/F(Z)

commutes. Note that i∗(m) = m ·
(
(i ◦ π′)∗ηXZ

)
= m · cn(NZ/X). Recall

from Remark 4.1.44 that cn(NZ/X) = Tdϕ(−NZ/X) · c̄n(NZ/X) so the
formula also follows from the Riemann-Roch theorem for rings.
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• Let S = Spec(k) be a point. Denote f : X → S be k-scheme and g : Y →
S be a smooth projective k-scheme. We have that E(f) = Ẽ(X) =
E(X)/E(S) and that E(fT ) = E(X × Y )/E(Y ). Then the square

E(X × Y )/E(Y )
g∗ //

Tdϕ(Tg)ϕ

��

Ẽ(X)

ϕ
��

F(X × Y )/F(Y )
ḡ∗ // F̃(X)

commutes. Assume both E and F satisfy the Künneth formula. Then
E(X × Y )/E(Y ) = Ẽ(X)⊗ E(Y ) and

g∗ = 1⊗ g∗ : Ẽ(X)⊗ E(Y )→ Ẽ(X)⊗ E(S) = Ẽ(X)

and ḡ∗ = 1 ⊗ ḡ∗. In this case the formula follows directly from the
Riemann-Roch theorem for ring spectra.

• Residual Riemann-Roch: Let i : Z → X be a closed immersion of open
complement j : U → X. Recall that E(j) = EZ(X). Note that the
morphism of modules ϕ : hofibE(j) → hofibF(j) fits into a morphism of
distinguished triangles. We deduce that the square

E(U) δ //

ϕ

��

EZ(X)

ϕ

��
F(U) δ̄ // FZ(X),

where δ denotes the connecting, commutes. If both Z and X are smooth
then we have the purity isomorphism E(Z) ' EZ(X) and we deduce
Déglise’s residual Riemann-Roch theorem (cf. [Dég14, 4.2.3]): The square

E(U) δ //

ϕ

��

E(Z)

Tdϕ(−NZ/X)ϕ

��
F(U) δ̄ // F(Z)

commutes.

• Let i : Z → X be a closed immersion of open complement j : U → X.
We have that E(i) = Ec(U). Let g : T → X be a projective lci morphism,
the square

Ec(U ×X T )
g∗ //

ϕ

��

Ec(U)

ϕ

��
Fc(U ×X T )

ḡ∗ // Fc(U),

commutes.
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4.3.1 Applications

The main application we are interested in is the Grothendieck-Riemann-Roch
theorem for higher K-theory. We afterwards review some other Riemann-Roch
type formulas as well and the arithmetic Riemann-Roch theorem. Recall from
Example 4.1.13 that the Chern character is a morphism of strict absolute ring
spectra ch: KGLQ → HB. Denote Td the multiplicative extension of the Todd
series t

1−e−t (cf. Corollary 4.1.43).

Theorem 4.3.12 (Riemann-Roch) Let f : Y → X be a projective lci where
f = p◦ i and denote Tf := i∗Tp−Ni ∈ K0(Y ) the virtual tangent bundle. Then
the diagram

KH(Y )Q
f∗ //

Td(Tf )ch

��

KH(X)Q

ch
��

HM(Y,Q)
f∗ // HM(X,Q)

commutes. In other words,

ch(f∗(a)) = f∗
(
Td(Tf ) · ch(a)

)
.

Proof: The result follows from Theorem 4.3.7 applied to ch. Recall that

ch(L) = ec
HB
1 (L), that cKGL

1 (L) = 1− L∗ and that cHB
1 is additive so, in partic-

ular, cHB
1 (OPn(1)) = −cHB

1 (OPn(−1)). Denote x = cHB
1 = cHB

1 (OP∞(−1)) and
y = cKGL

1 = cKGL
1 (OP∞(−1)), we have

ch(y) = 1− e−x = x · 1− e−x

x
.

Therefore G = 1−e−t
t

and Tdch = Td the multiplicative extension of t
1−e−t .

�

A general Riemann-Roch statement as in [Gil81] follows from the fact that
Beilinson motivic cohomology spectrum is universal for spectra with additive
orientations (cf. [CD09, 14.2.16] and [Dég14, 5.3.9]).

Proposition 4.3.13 Let (E, c1) be an oriented absolute ring spectrum in SH(S)Q
with c1 additive. Then there exist a unique morphism of absolute spectra

ϕ : HB → E.

Moreover, the morphism satisfies that ϕP∞(cHB
1 ) = c1 ∈ E2,1(P∞).
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Recall that some examples of oriented absolute ring spectra with additive
orientations are those coming from real absolute Hodge and Deligne-Beilinson
cohomology, rigid syntomic cohomology, and mixed Weil theories. Let now
S = Spec(k) for k a perfect field for mixed Weil theories, a field of characteristic
zero for real absolute Hodge and Deligne-Beilinson cohomology, or a residue
field of a p-adic field for rigid syntomic cohomology. The next result follows
from the Riemann-Roch theorem and Proposition 4.3.13:

Corollary 4.3.14 Let H denote either real absolute Hodge cohomology, real
Deligne-Beilinson cohomology, rigid syntomic cohomology or any cohomology
coming from a mixed Weil theory. Let S be as above so that H is defined and
let f : Y → X be a projective lci morphism of S-schemes. Then, with previous
notations, the diagram

KH(Y )Q
f∗ //

Td(Tf )ch

��

KH(X)Q

ch
��

H(Y )
f∗ // H(X)

commutes. In other words, for a ∈ KH(Y )Q we have

ch(f∗(a)) = f∗
(
Td(Tf ) · ch(a)

)
.

�

Another general type of morphism of oriented absolute ring spectra to
which the motivic Riemann-Roch theorem applies are those coming from al-
gebraic cobordism MGL. Recall that MGL is the universal oriented absolute
ring spectrum (see [Vez01]).

Proposition 4.3.15 Let (E, c1) be an oriented absolute ring spectrum. Then
there exist a unique morphism of absolute ring spectra

ϕ : MGL→ E

such that ϕ(cMGL
1 ) = (c1) ∈ E2,1(P∞).

�

Since this morphism preserves the orientation then Theorem 4.3.1 applies
to them.

Corollary 4.3.16 Let (E, c1) be an oriented absolute ring spectrum and f : Y →
X be a projective lci morphism. Then, with previous notations, for a ∈
MGL(Y ) we have

ϕX(f∗(a)) = f∗(ϕY (a)).
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�

We apply the Riemann Roch theorem for modules 4.3.10 to the examples
we described in Section 4.1.1.

Theorem 4.3.17 Let f : Y → X be a morphism of schemes, g : T → X be
a projective lci morphism and denote fT : Y ×X T → T and Tg ∈ K0(Y ) the
virtual tangent bundle of g. Assume in addition either f is proper or g is
smooth, then the diagram

KH(fT )Q
g∗ //

Td(Tg)ch

��

KH(f)Q

ch
��

HM(fT ,Q)
g∗ // HM(f,Q)

commutes. In other words, for m ∈ KH(fT )Q we have

ch(g∗(m)) = g∗
(
Td(Tg) · ch(m)

)
.

�

We also obtain an arithmetic Riemann-Roch theorem as a consequence of
the Riemann-Roch theorem for modules.

Theorem 4.3.18 (Arithmetic Riemann-Roch) Let f : Y → X be a pro-
jective morphism between smooth schemes over an arithmetic ring and Tf ∈
K0(Y ) the virtual tangent bundle. Then the diagram

K̂H(Y )Q
f∗ //

Td(Tf )ĉh
��

K̂H(X)Q

ĉh
��

ĤM(Y,Q)
f∗ // ĤM(f,Q)

commutes. In other words, for m ∈ K̂H(Y )Q we have

ĉh(f∗(m)) = f∗
(
Td(Tf ) · ĉh(m)

)
.

�

4.4 Riemann-Roch without denominators

In this section we prove the Riemann-Roch theorem without denominators. To
this date, every proof of this result relies at some point on already standard
arguments and computations for universal polynomials involving higher Chern
classes. Let us briefly recall these notions.
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4.4.1 There is an obvious natural transformation

ci : K0( )→ E2i,i( )

of presheaves of sets on Sm/S which maps every locally free module to its i-th
Chern class. After Riou’s results, one has an isomorphism (cf. [Rio10, 1.1.6])

Hom(K0( ),E2i,i( )) ' HomH•(S)(Z×Gr ,Ω∞E(i)[2i])

where Gr denotes the infinite Grassmannian. This allows to define higher
Chern classes with support in a closed subscheme. Let Z → X be a closed
immersion and denote T = Sr ∧X/X − Z, then

cZi,r : KHZ,r(X) ' [T,Z×Gr ]→ [T,Ω∞E(i)[2i]] ' E2i−r,i
Z (X).

The following property is a direct consequence of the definition.

Proposition 4.4.2 Higher Chern classes with support are functorial. In other
words, let Z → X be a closed subscheme and let f : X ′ → X be a morphism of
schemes. Then for any a ∈ KHr(X) and any i we have

f ∗(cZi,r(a)) = c
f−1(Z)
i,r (f ∗a).

�

Recall that from the construction of KGL in [Cis13] it follows that for every
X the map

K(X)→ KH(X)

from Thomason-Trobaugh’sK-theory to Weibel’s homotopy invariantK-theory
is a morphism of rings.

Denote P d
q (ξ, c1, . . . cq−d; c

′
1, . . . , c

′
q−d) the universal polynomial with integer

coefficients defined in [Jou70, §1].

Theorem 4.4.3 (Riemann-Roch without denominators) Let i : Z → X
be a regular immersion of codimension d and denote qi : KH(Z) → KHZ(X)
and pi : HM(Z,Z) → HM,Z(X,Z) the respective refined Gysin morphisms.
Then for any q > 0 and any a ∈ KHr(Z) we have

cZq,r(qi(a)) = pi(P
d
q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(NZ/X), . . . , cq−d(NZ/X))).

(4.6)

Proof: Denote P d
q (a,E) = P d

q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(E), . . . , cq−d(E))
for any vector bundle E on Z. We consider once again the deformation to the
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projective completion of the normal bundle of Lemma 4.3.3 and its notations.
Taking motivic cohomology in diagram (4.5) we get

HM(U,Z)

HM,Z(N̄ ,Z)

��

HM,A1
Z
(X ′,Z)

i∗0oo

h

OO

i∗1 // HM,Z(X,Z)

HM(Z,Z)

ps

OO

HM(A1
Z ,Z)∼oo

pι

OO

v∗ // HM(Z,Z)

pi

OO

where h = j∗ι[ and ps is injective.
We now prove that if formula (4.6) holds for ι : A1

Z → X ′ then it also holds
for i : Z → X. Since v∗NA1

Z/X
′ = NZ/X the refined versions of the excess

intersection formula applied to the right square and the functoriality of higher
Chern classes gives

cZq,rqi(v
∗(a)) = cZq,ri

∗
1(qi(a)) = i∗1c

A1
Z

q,r qι(a)

and

i∗1(pι(P
d
q (a,NA1

Z/X
′))) = pi1((P

d
q (v∗a,NZ/X))).

The last and the first term respectively are elements that theorem state that
coincide.

We deduce from the same arguments of Lemma 3.3 that if a ∈ HM,Z(X ′,Z)

satisfies h(a) and i∗0(a) = 0 then a = 0. Since h(c
A1
Z

q,r qι(a)) = cq,rj
∗qι(a) = 0

and hpι = j∗ι∗ = 0 the last case left to prove is formula (4.6) for the zero
section s : Z → N̄ of the projective completion of the normal bundle. This is
the case treated in the literature when Z is smooth.

First recall that in 4.2.20 we observed thatHM(Th(N),Z) ' HM,Z(N̄ ,Z)→
HM(N̄ ,Z) is injective, so it is enough to prove formula (4.6) in HM(N̄ ,Z).

We summarize in two lemmas computations which only involve standard
arguments in K0(N̄) that do not need the smoothness assumption (cf. [KY14,
4.3 and 4.4]).

Lemma 4.4.4 With the previous notations, denote Q the canonical quotient
bundle of N̄ and tKH(N) and t(N) the Thom class in KH and HM respec-
tively. Then for any b ∈ KHr(N̄) we have

cq,r(b · tKH(N)) = P d
q (b,Q) · t(N).

�
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Lemma 4.4.5 Let p : N̄ → Z be the projection. For any a ∈ KHr(Z) we have

p∗(P d
q (a,N)) · t(N) = P d

q (p∗a,Q) · t(N).

�

To conclude the proof of the theorem recall that the fundamental class of
the zero section coincide with the Thom class (cf. Proposition 4.2.21). From
here, the projection formula gives s∗(a) = p∗(a) · tKH(N) and the analogous
formula for motivic cohomology. With them, we conclude

cq,r(i∗(a)) = cq,r(p
∗(a) · t(N)) = i∗(P

d
q (a,N)).

�

The original Riemann-Roch theorem without denominators, as conjectured
by Grothendieck and proved by Jouanolou, was stated without supports. Let
us make this precise statement for the sake of completeness.

Corollary 4.4.6 Let i : Z → X be a regular immersion of codimension d,
then for any q > 0 and any a ∈ KHr(Z) we have in HM(X,Z) that

cq,r(i∗(a)) = i∗(P
d
q (rk(a), c1,r(a), . . . , cq−d,r(a); c1(NZ/X), . . . , cq−d(NZ/X))).
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Chapter 5

Appendix

5.1 Absolute Hodge cohomology

In this Appendix we apply a theorem of Déglise and Mazzari to give direct con-
struction of the (real) absolute Hodge spectrum representing absolute Hodge
cohomology with real coefficients with no smoothness assumption. Since in
[HS15] the authors asked explicitly if the Deligne-Beilinson spectrum repre-
sented the Deligne-Beilinson cohomology on singular schemes we also prove it
for the Deligne-Beilinson spectrum.

We refer to Brad Drew’s thesis [Dre13] for the original construction of the
(rational) absolute Hodge spectrum and a more complete treatment on the
subject. We refer to [Bei83], [Jan88], [Bur98] and [Bei85], [EV88], [Bur94] for
more details of the following constructions for absolute Hodge and Deligne-
Beilinson cohomology respectively.

5.1.1 Let X be a smooth complex variety. We can find a proper complex
variety X̄ and an open embedding j : X → X̄ such that D = X̄ − X is
a normal crossing divisor. We denote by A∗

X̄
(logD) the complex of smooth

differential forms with logarithmic singularities along D (cf. [Bur97]). Taking
limit over all suitable compactifications we define

A∗log(X) = limA∗X̄(logD)

the complex of smooth differential forms with logarithmic singularities along
infinity. The complex A∗log(X) has a natural filtration W which assigns weight
zero to the sections of A∗(X) and weight one to the sections dzi/zi and dz̄i/zi.
The complex A∗log(X) also has a natural Hodge filtration F , as well as a sub-
complex A∗log,R(X) of differential forms invariant under complex conjugation.
Therefore it defines an R-Hodge complex. The absolute Hodge cohomology of
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X with real coefficients is defined as

Hp
AH(X,R(q)) = Hp(Γ̃(Alog(X), q))

where

Γ̃(Alog(X), q) = cone((2πi)qŴ2qAlog,R(X)⊕Ŵ2q∩F qAlog(X)→ Ŵ2qAlog(X))[−1]

and Ŵ denotes the decalé filtration of W (cf. [Del71, 1.1.2]).
The real Deligne-Beilinson cohomology is obtained by ignoring the weight

filtration. That is to say, we define it as

Hp
D(X,R(q)) = Hp(Γ(Alog(X), q))

where

Γ(Alog(X), q) = cone((2πi)qAlog,R(X)⊕ F qAlog(X)→ Alog(X))[−1].

Both the real absolute Hodge and the Deligne-Beilinson cohomology can
also be computed by means of the Thom-Whitney simple introduced in [Nav87].
Following [Bur98], the Thom-Whitney simple has a concrete description in
these cases. Denote L∗1 the differential graded commutative R-algebra of alge-
braic forms over A1

R, then the Thom-Whitney simple Γ̃TW(Alog(X), q) for the
real absolute Hodge cohomology is the subcomplex of

(2πi)qŴ2qAlog,R(X)⊕ Ŵ2q ∩ F qAlog(X)⊕ (L∗1 ⊗ Ŵ2qAlog(X))

made by elements (a, b, ω) such that ω(0) = a and ω(1) = b. The differential
is the natural one on each summand. These complex satisfy that

Hp
AH(X,R(q)) = Hp(Γ̃TW(Alog(X), q)).

Definition 5.1.2 An arithmetic field is a triple (k, Σ, Fr) where k is a
field, Σ = {σ1, . . . , σn} is a set of embeddings k → C and Fr: CΣ → CΣ is
a C-antilinear involution such that the image of k in CΣ by σ1 × · · · × σn is
invariant under Fr. We call Frobenius to the map Fr. If X is a k-scheme we
write XΣ =

∐(
X ×σi Spec k

)
, which is naturally a complex variety.

Let X be a smooth scheme over an arithmetic field. The Frobenius Fr
induces a C-linear action on Alog(XΣ) by taking the action it induces on a
compactification X̄Σ together with the complex conjugation. That is to say,
Frf(x) = f̄(Fr(x)). This action is compatible with the weight and Hodge
filtration. Therefore we consider

Γ̃(Alog(XR), q) = Γ̃(Alog(XΣ), q)Fr,
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Γ(Alog(XR), q) = Γ(Alog(XΣ), q)Fr.

We denote the cohomology they define as

Hp
D(XR,R(q)) = Hp(Γ̃(Alog(XR), q)),

Hp
AH(XR,R(q)) = Hp(Γ(Alog(XR), q)).

As before, their respective Thom-Whitney simple also compute the cohomol-
ogy. In the case of the complex for absolute Hodge cohomology we denote it
Γ̃TW(Alog(XR), q).

In [HS15] Holmstrom and Scholbach proved that there exist an absolute
spectrum ED ∈ SH(S)Q that represents the Deligne-Beilinson cohomology for
smooth schemes. In other words, there exist an absolute spectrum ED such
that for every X smooth and every integers p, q we have

Ep,qD (X) = Hp
D(X,R(q)).

This argument has been vastly generalized by Déglise and Mazzari in [DM14,
1.4.10] by giving sufficient conditions for a family of presheaves X 7→ Fi(X)
for i ∈ N so that the cohomology they define is represented by an absolute
ring spectrum. That is to say, they give sufficient conditions on (Fi)i∈N so that
there exist an absolute ring spectrum EF satisfying

Hp(Fq(X)) = Ep,qF (X).

5.1.3 In order to check that the family X 7→ Γ̃TW (A∗log(XR), i) satisfy the
hypothesis of loc. cit. let us introduce some notation. Consider C as an
arithmetic field with Σ = {Id, σ} where σ denotes the complex conjugation.
Denote c : R→ Γ̃TW (A∗log(GmR), 1)[1] the section given by

(dz

z
+

dz̄

z̄
, (

dz

z
− dz̄

z̄
)i, (1− x)(

dz

z
+

dz̄

z̄
) + x(

dz

z
− dz̄

z̄
)i+ (ln zz̄ + i ln

z

z̄
)dx
)

where the first term is in (2πi)Ŵ2Alog 0,∞,R((P1)R), the second belongs to

Ŵ2 ∩ F 1Alog 0,∞((P1)R) and the third belongs to L∗1 ⊗ Ŵ2Alog 0,∞((P1)R). For
a general arithmetic field we still denote c the section defined by taking c on
each component of GmΣ.

Also recall that a distinguished square is a commutative cartesian diagram

Y ′ //

��

X ′

��
Y // X
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in Sm/S such that Y → X is an open immersion and X ′ → X is étale and
induces an isomorphism (X ′ \ Y ′)red → (X \ Y )red. We say that a complex
of presheaves of R-modules F on Sm/S has the Brown-Gersten property with
respect to the Nisnevich topology if for every distinguished square the diagram

F(X) //

��

F(X ′)

��
F(Y ) // F(Y ′)

is a homotopy pullback square in the category of complexes of R-modules.

Proposition 5.1.4 Let k be an arithmetic field and denote S = Spec(k).
Consider the family of presheaves X 7→ Γ̃TW (A∗log(XR), i) on Sm/S together

with the section c : R→ Γ̃TW (A∗log(GmR), 1)[1] defined above:

1. They form an N-commutative graded monoid ( cf. [DM14, 1.4.9]) in the
category of complexes of R-linear presheaves on the category of affine and
smooth S-schemes.

2. They have the Brown-Gersten property with respect to the Nisnevich
topology.

3. They are homotopy invariant, i.e., Hp
AH(A1

X ,R(q)) = Hp
AH(X,R(q)).

4. If c̄ ∈ H1
AH(GmR,R(1)) denotes the class of c, then for any smooth

scheme X and any integers p, q the map

Hp
AH(XR,R(q)) −→ Hp+1

AH ((X ×Gm)R,R(q + 1))/Hp
AH(XR,R(q))

x 7→ [x× c̄]

where [ ] denotes the class defined in the quotient, is an isomorphism.

5. If u : Gm → Gm is the inverse map of the group scheme Gm and c̄′ is the
image of c in H1

AH(GmR,R(1)) then u∗(c̄′) = −c̄′.

Proof: Although these properties are well known for experts let us review them
for the sake of completeness. The Thom-Whitney simple has a well defined
associative and commutative product (cf. [Bur97, §6]), from which point 1
follows.

For point 2, first notice that the Brown-Gersten property is stable by direct
sums and cones of maps. Therefore it is enough to prove it for ŴqAlog,R,

Ŵ2q ∩ F qAlog and ŴqAlog. The étale descent for Alog,R, F qAlog and Alog may
be found in [HS15, 2.9], from which the Brown-Gersten property follows. For
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the weight filtration, consider a distinguished square as in 5.1.3. We have a
short exact sequence

0→ Alog(X)→ Alog(X ′)
⊕

Alog(Y )→ Alog(Y ′)→ 0

as well as for Alog,R and F qAlog. These morphisms are strict both for the Hodge
and the decalé Weight filtration, so the Brown-Gersten property readily follows
for ŴqAlog,R, Ŵ2q ∩ F qAlog and ŴqAlog. We conclude by taking invariants on
the action induced by the Frobenius.

For point 4 note that the absolute Hodge cohomology of Gm is null apart
from the groups H0(Gm,R(0)) = R and H1(Gm,R(1)) = R. It is easy to
see from the definition of absolute Hodge cohomology that group Hp+1

AH ((X ×
Gm)R,R(q + 1)) equals(
Hp

AH(XR,R(q))⊗H1
AH(GmR,R(1))

)
⊕
(
Hp+1

AH (XR,R(q+1))⊗H0
AH(GmR,R(0))

)
from which point 4 follows. Finally, a direct computation concludes point 5.

�

Corollary 5.1.5 Denote EAH the oriented absolute ring spectrum constructed
in [DM14, 1.4.10] out of the presheaves (Γ̃TW (A∗log( R), i))i∈N, which we call
the absolute Hodge spectrum. Then EAH represents real absolute Hodge coho-
mology on smooth schemes. In other words, for any smooth S-scheme X and
any p, q ≥ 0

Ep,qAH = Hp
AH(XR,R(q)).

�
Let us now prove that the absolute Hodge spectrum represents absolute

Hodge cohomology for general schemes. The same method will apply also for
the Deligne-Beilinson cohomology.

5.1.6 Let Z be complex variety, following [Del74, 8.3] we can find a diagram

X̄• ←↩ X•
p→ Z so that X• and X̄• are simplicial complex varieties, p satisfies

cohomological descent (in particular, it is a hypercovering for the h-topology),
X̄• is proper smooth and X̄•−X• is a normal crossing divisor. If X̄ ′• ←↩ X ′• → Z
is a second diagram we have the isomorphisms HAH(X•,R) ' HAH(X ′•,R) and
HD(X•,R) ' HD(X ′•,R) for both the absolute Hodge and Deligne-Beilinson
cohomology of those simplicial varieties. Therefore, we call the absolute Hodge
and the Deligne-Beilinson cohomology of Z to

HAH(Z,R) := HAH(X•,R) HD(Z,R) := HD(X•,R)

This construction is compatible with the Frobenius action so we define the
groups HAH(ZR,R) := HAH(X•R,R) and HD(ZR,R) := HD(X•R,R).
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Recall that any rational oriented absolute ring spectrum is also a Beilinson
motive (cf. [CD09, 14.2.16] ). The category of Beilinson motives DMB(S)
satisfies the h-descent (cf. [CD09, 3.1]). This implies that if X is a scheme
and X• → X is a h-hypercover then for any oriented absolute ring spectrum
we have

E(X•) = E(X),

where E(X•) denotes the cohomology of the simplicial scheme (cf. [CD09,
§3.1] or [DM14, §2.2.1] for DMB).

Corollary 5.1.7 Let EAH and ED be the real absolute Hodge and Deligne-
Beilinson spectra, then for any scheme Z over an arithmetic field and every p,
q ≥ 0 we have

Ep,qAH(Z) = Hp
AH(ZR,R(q)) and Ep,qD (Z) = Hp

D(ZR,R(q)).
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intersections et théorème de Riemann-Roch. Lect. Notes in Math, vol.
225 (1971)

[Spi12] M. Spitzweck: A commutative P1-spectrum representing motivic coho-
mology over Dedekind domains. arXiv:1207.4078 (2012)

[SV96] A. Suslin and V. Voevodsky: Singular homology of abstract algebraic
varieties. Invent. Math. 123, n 1, 61-94 (1996)

[Vez01] G. Vezzosi: Brown-Peterson spectra in the stable A1-homotopy theory.
Rend. Sem. Mat. Univ. Padova 106, 47-64 (2001)

[Voe98] V. Voevodsky: A1-homotopy theory. Doc. Math. ICM 1998, vol. I,
579-604 (1998)

[Wei89] C. Weibel: Homotopy invariant K-theory. Contemporary Mathemat-
ics, vol. 83, 461-488 (1989)



A.M.D.G.


	Tesis Alberto Navarro Garmendia
	Portada
	Contents
	Introduction (English)
	Introduction (Français)
	Introducción
	Grothendieck-Riemann-Roch
	Universal property of K-theory
	Grothendieck-Riemann-Roch theorem

	Preliminaries
	Simplicial sets
	Classification of torsors

	Big Nisnevich site
	Sheaves and presheaves
	Functoriality: Inverse, direct image and p

	Model categories
	Functoriality: total derived functors
	Triangulated categories
	Bousfield localization


	Motivic homotopy theory
	The homotopy category H(S)
	Functoriality, localization, blow-up and homotopy purity
	Classification of torsors

	The stable homotopy category SH(S)
	Symmetric spectra
	Functoriality
	Localization, Mayer-Vietoris, blow-up and homotopy purity
	Exceptional functors


	Riemann-Roch theorems and Gysin morphisms
	Cohomology and its operations
	Examples of modules
	Orientations
	Chern class with support

	Gysin morphism
	Regular immersions
	Functoriality
	The projective lci case

	Motivic Riemann-Roch
	Applications

	Riemann-Roch without denominators

	Appendix
	Absolute Hodge cohomology



