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Radiative corrections in the Zeeman effect of 2P states of helium
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Radiative corrections using third-order perturbation theory are considered in a theoretical calculation of the
Zeeman effect. The corrections have been calculated for the stiesftelium, and found to be of the same
order as other radiative corrections calculated by Anthony and Seb&Bligrs. Rev. A48, 3792 (1993].
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[. INTRODUCTION sumed, with small error for the present calculations, to be 1
and 2, respectively. We consider the total Hamiltonian
In order to resolve the long-standing discrepancy between
theory and experiment for the Zeeman coupling fagioof
thg atomic 23I?J states of .heliun[l],. high-precision calcu- H=Hg+H gt Hy+HatHg, )
lations, including relativistic corrections, have been done re-
cently by several authorg2,3]. Their results forég, =g,
—g, with g,.=1-m,/my are 10.6<10 %, 8.838<10 °, whereH, andH,,4 are the Hamiltonians of the free atom and
and 10.71%107° in Refs.[1], [2], and [3] respectively, free radiation, respectively. The third term is the Zeeman
which should be compared with the best experimental resuflamiltonian (1), andH, and Hg account for the radiative
[4] 59, =4.9(2.9)x 107 6. corrections originating from the interaction of the two elec-
Anthony and Sebastiaf2], extending the work of other trons of the atom with the vacuum field,
authors[5,6], also included radiative corrections, and found
by means of an accurate calculation that these corrections
provide a contribution of 1.7910  to the orbitalg, factor,
this contribution being too small to resolve the discrepancy. Ha=-—

Such corrections come from the term proportionab?éo
Xr-Aye, Which is part of €2A? with A=(1/2)BoXr

é' évaca (3)

N e
p'Avacv HBE_E

3o

where the scalar products are in a six-dimensional space tak-

 Avac, Wh_ereBO is the external magnetic field arkl,. is ing into account the two electrons denoted by the indexes 1,
the potential vector of the vacuum field. and 2. that is

The purpose of this paper is to show that there are other
radiative corrections, not considered in previous work,

coming from terms containingep-A=(1/2)eByXr-p

+ep-Ay in third order of perturbation, but of the same P-Avac=P1-Avad 1) + P2 Avad r2),

order as those mentioned abd@. It is also shown that the

radiative corrections coming from—(e/m)S-B,,. are zero S B. =3 B (FT)+%-B .(f 4

or negl|g|b|e vac 1 vac( l) 2 vac( 2)1 ( )
Il. THEORY whereB,.(r) is the vacuum magnetic field amfl,(r;) is

. . the potential vector of the vacuum field,
We consider the Zeeman effect of the helium atom adopt- P

ing the LS coupling scheme. The Zeeman Hamiltonian is

given by
X (F A —ik-Fin T
Avac(ri)zz (ZwEOV) e(e™ liay e 'alz’g)r 5

k.e

e . -
HZ=—ﬁ(L+28)-BO, 1)

expressed as a plane-wave expansion.

wheree= —|¢g|, I§o is the external magnetic field, and the = We use a perturbative treatment in whieH=H,+H,

values for the orbital and spin gyromagnetic factors are as+ Hg is considered a perturbation ky+H,,4, and we cal-
culate the third order-energy correction. If the unperturbed
state is the atomic statgwith energyE, and radiation state

*Electronic address: igonzalo@eucmax.sim.ucm.es of zero photons|0), the energy correction is
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(¢;0|H’|n;IZ,E>(n;IZ,E|H’|n’;IZ’,E’)(n’;IZ’,E’|H’|¢;O>
(En_E0+ﬁw)(Enr_E0+hw,)

AE® = E 2
nken' k' e
S (;0[H'[n;K, e)(n;K, e[H'[;0)
nke (En—EO-i-ﬁw)2

(4;0[H'[;0), (6)

where|n) and|n’) denote any atomic eigenstatetd§, J2, L2, S, andJ,; |k, €) and|k’,e’) denote single photon states of
wave vectork andk’ and polarizationg and e’ with frequenciesn=ck and »’ =ck’ respectively. Several contributions
appear in Eq(6) of the form

(;0[H;[n;K, e)(n;K,e|H;|n";k’, €' )(n";K' €' |H|#;0)
(En_E0+ﬁw)(Enr_Eo+ﬁw,)

EijIEZ >

nk,e n’ k' e

S (#:0[Hi[n;K,€)(n;K, e[H)|:0)

(E.—Eotfi)? (¢:0[Hj|4,0), (7

nk,e

where eactH;, H;, andH, may beH;, H,, andHg (note that the sum labeldd e, may eventually contain the vacuum
statg.
Retaining in Eq(6) only the terms proportional te* and linear inB,, we obtain

AE®) =Ep 5o+ Egzpt2 REp75+ 2 REpp7+2 REga7+ 2 REpgz+ 2 ReEgp7, (8)

where we use®gzp=Exsg, Ezan=Exazs Ezag=Egaz, Ezea=Eagz, andE gg=Ejg,. The corresponding third-order
corrections of the gyromagnetic factorg® are then obtained fromAE® =(—ehBy/2m)(g¥M +gSMy)
= | ue/Bo(gPM+95Ms), where|ug|=|e|#/(2m).

The stategy) here considered are the following atomic states of helium:

|y =]23P5,M;=2)=|v,L=1S=1M =1Mg=1), (9)

1
|‘//b>5|23P11MJ=1>=|v-|—=1as=1>E(|ML=OaMS=1>_|ML=11MS=0>)1 (10

wherev denotes the electronic configuration. The calculations of the different terr® afre grouped according to their
similarity in different sections.

Ill. CORRECTION FROM THE TERM Eaza
The first term of Eq(8) is given by

B 20 > 2 (4:0[p-AvadniK, e)(niK, €L+ 2S,In ;K €' )(n" (K’ €'|p- Avad :0)
hei (E.—Eot fiw)(Ey —Eqthia’)

(11)

S [(#;01p- Avad K, €)|*(#;0|L+ 28] 4;0)
(Ep—Ep+hw)? '

nk,e
ExpandingA,,c as in Eq.(5), and settindk,e)=|k’,€’) sinceL,+2S, does not connect different radiation states, we obtain

W By e in)(nlLo+2s)n ) (03 pe-ce )

(o, + o)y + o)

EAZA:GJ wdwf dQ E
0 n

n'e

- 2
]w@ p;- e Milny| (YL, +2S,|y)

(@n+ )

-2

n,e

: (12)

whereG=—e°B,/(3273eqm34.c®) = a| ug|Bo / (4m°hm2c?) with a=e?/(4meyhc)~ 17 dQ is the differential of the solid
angle, the indexeg=1 and 2 and=1 and 2 denote the two electrons,=(E,— Ep)/%, andw, =(E,, —Eg)/#.
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A. Low frequencies

Let us first consider the region of frequencies where the dipole approximation hdfﬁé:):él); that is, o<w,
=amdc®/h. To simplify the calculation we decompose the integral as follows. The functieniofthe first term of Eq(12)
can be written

) 1 W 13
(wn-l-w)(wn,—l—w)_wn+w_(wn+w)(wn/+w)’ (13
and similarly, in the second term of E.2),
1) 1 Wp 14
(wn+w)2_wn+w_(wn+w)2' (14)
Expression(12) can then be written as
Eaza= E,IAZA+ ERZA* (15)
where
we 0. eln)(n|(L,+2S,)p- € ) — (| L,+2 - €[n)|?
E'AZAEGJ dwfdaz (wflp eln)(nl(L,+2S,)p- €l ) — (YL, +2S|9)[(¢Ip- €|n)| ) 16
0 ne wat+ o
(the summation oven’ has been performe¢dand
W [ on(¢lp-eln)(nL+2S n")(n'[p-ely) | wn(¢lL 28 ) Kulp- el
Elzs ], d“’f‘m%;( (0nt )@+ 0) * (ont 0)? - 4

Let us now analyzeE'AZA. In order thatL,+2S,=J,+S, acts on the state), we use the commutatc{nJZ+SZ,5~E]
=[L1,,p1- €]+ [Loy, Py €]=ih(pyX €),+iA(PyX €),=ih(pX €),. Then Eq.(16) reads

[ (¢lp- eln)(nlp- €(3,+S)| ) — (Y13, + Sy ylp- P <w|5~2|n><n|(5xé>zl¢>)
E'AZA—GJ'O de dﬂr% ( ot o +if ot o .
(18)

In this expression, it is easy to see that there is no contribu- L. Lo

tion from J, since is an eigenstate af,, so the terms with d0> (J=1M;=1|p-eln)(n|p-€[J' =2M; =1)

J, are equal and cancel. Analogously there is no contribution €

from S, if ¢ is an eigenstate &,, which occurs for the state 8 . .

|y.)=[3P,,M,=2) given by Eq.(9). =3 (I=1M,=1|p[n)-(n|p[J'=2M, =1)
For the state|yy,)=|P,,M;=1), given by Eq.(10),

which is not an eigenstate &, there is also no contribution =0, (20)

from S,, as can be shown inserti@l,vMJJJ’My)(J’MJ,|

in Eq. (18) betweenp- € andS,, such that the first term in

Eq. (18) becomes where the Wigner-Eckart theorem has been applied using

P-P=PoPo+P_1p_1+pip; and the orthogonality of the
Clebsch-Gordan coefficients. Hence there is also no contri-
bution fromS, for |3P;,M;=1) in Eq. (18), which becomes

> (Ylp-eln)(nlp- €3 M) (I My S i), (19

J/,MJI

E,lAZA:iﬁGf def dQE (1,b|p E|n><n|(pr)z|‘r//>,
where we must note the8, connects only states with the 0 ne wnt o
same electronic configuration and the same quantum number

Mj. In our case, withtM;=1, J" can beJ’'=1 and 2. For

J'=1, the inserted state is the sameygsand the first term o @) ) .-
in Eq. (18) cancels the second one. RBr= 2, the product of ~ contributing only togi™, since it results fron{L,,p-€].
the first two matrix elements in E¢l9), summed over po- Taking into account thatpX €),=pXe-By/Bg, and rear-

larizations and integrated over angles, is ranging the vector product, we obtain

(21)
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- > - - We nrd n’ + n “c
[ 00 wip-dminlExann-—@maupln [Ty 2
€ n n’ n n’ n’ 0
X (n|py|¥)—c.c), o w,
=— In—. (26)

Wn— Wnr wWn'
where we recall thap,= p1x+ Pax, Py=P1y+ P2y andy and o "
[n) represent antisymmetrized functions. Due to the indistindt must be noted thafn) and|n’), connected by ,+2S,
guishability of the electrons{y|p.|n)={(y|pa/n), and =J,+S, in the first term of Eq.(17), must have the same
there are then four equal terms, which allows us to write Eqconfiguration, their maximum energetic difference being

(21) as only due to the spin-orbit interaction, which is small. Hence,
if we consider thate=(w,/w, —1) is much smaller than
3. o nn —c.c. unity, we can write Ing,/w,)=In(1+e€)=e+ €42+ . Re-
E'AZA= - T'ﬁef d 2 (1P >j) |f(1:|l/f> . taining only the first term of this expansion, express(i26)
0 n n

results equal to—1. The integral over frequencies in the
second term oE4 , in Eq.(17) can be easily calculated, and

. L it is close to 1(assuming thatv,<w.). These results permit
This expression is similar to that calculated by Anthony and; to sum oven andn’ in Eq. (17), which becomes
Sebastiani2] for the radiative correction in the second order ’

of perturbation. The integral in frequencies ﬁg’cdw/(wn

+ ) =In[(wc+ op)/wy]=IN(wc/wy), Sincew,<w in our case EX,a=G f dQ D [(#]3,+ S ) (l(p- )2 )

[if we havew,=w.=amdc?, then the electron is in the con- €

tinuum and, by conservation of momentun=7k?/(2m) B - =5

<w so thatw>w., contrary to our assumptignEquation (4l(p-*(I+ S|, @7
(22) then becomes

(22)

where we have taken into account that the commutalpr
+S,,p-€]=i%(pX¢€), and that the sum over polarizations

EIAZA:_?’ZTWihG (I o) ({P|paxPayl¥) —c.C) :img the angular integration of the expressign €)(pXx
€-By/By) is zero. Sincey is an eigenstate adf,, it is obvi-
ous that the contribution frord, in Eq. (27) cancels. It can

—> (In wn) (PP n){npyyl ) —c.c) |, be seen that the contribution fro®) in the same expression
" is zero. This is obvious for the state,)=|3P,,M;=2),
(23)  which is an eigenstate @,. For the stateyy,)=|°P;,M,
=1), given by Eq.(10), it can be seen in Eq27) that, once
where the sum over has been made in the first term and its the_polarizations are summed and ;[he angulazr integration
complex conjugate, which now cancel between them sinc@erformed, taking into account thé&p*)m -o=(P*m 1.
(P1xP1y) y=(P1yP1x) 4, l€QMING tO the expression cancels. Therefore the part of Oed#rE ) ,
is zero.
If we consider the second term of the ezxpansion )l
P 219— 2
Ehoa= o 5G| 3 (In wn><<¢|plx|n><n|ply|w>—c.c.>), “etel2 -, i€, e22(on—0n)(2a,). the core-
n sponding contribution td, 4 is negligible since the maxi-
(24 mum value of @,— w,/) corresponds to spin-orbit interac-
tion. We then havee=(w,— w,)/ oy, ~a? (as is known
which is independent of the cutoff frequency and equal tdrom the fine structure theoryand e?~«a*, which would
half of the quantity calculated by Anthony and SebasfiZin  lead to a correction term much lower thﬁLZA, and is
Therefore, the corresponding contributiongfd’, choosing therefore negligible. Terms of orde? and higher will be
M =1, is even smaller.

B. High frequencies

E! 1 o .
AZA 2.30x 10 7. (25) Let us now analyze the contribution from high frequen-

OR2 A= TBoM .~ 2 . ! . .

MBlBolVIL cies (abovew,) to the termE, ;5 without using the dipole
approximation. We write Eq.13) as

The mentioned authors multiply Bythe value they found to

correct the self-energy contributions, obtaining the value o 1

Wn
($2.39x10 '=1.79x10 ' mentioned in Sec. I. (oto)opt®) ® \(onto)e
Concerning the ternEx,, given by Eq.(17), it can be " " "
seen that the integral in frequencies is convergent, which N Wy 29)
suggests small contribution from high frequencies. We can (wpt o) (wy+ o))’

also suppose here that,<w;. The integral in frequencies
in the first term of Eq(17) is then and, similarly, Eq(14) as
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1) 1 wn N o
(gt ®)? o (opto)o (o,+w)?)”

0o (Pre@ (B, ce K11+ 25,) + (B e )

X(Py- 8™ 1) (15,+ 285,) + (11,4 251,) (po- €€™12)
We have now thatw=mc’a/fi and then w,,w, A . A
~mca?h<w. (For very high frequencies ~md?/#, this X(py- €€ K1)+ (1,,+25,,)(py- €€X 1) (p,- ee K 12).
is not true, but in this regime the electron becomes relativis- 31)
tic and could not be treated with our methods. However,
such frequencies are effectively cut off due to the rapid con- R
vergence of the integral in frequencies which will be consid-In the above expression, only the even paik [proportional
ered. It is then easy to see that the terms in parentheses ito cosk-ry,) with ri,=r;—r,] contributes to the angular
Egs. (28) and (29) will give a contribution of order with  integral. Let us calN=[dQS A(p;- €)(P,- €)COSK-T15). Ex-
respect to the previous one. We retain only the first termpression(30) can then be written as
1/w, which is the only one that may make a non-negligible
contribution for our purpose. In this case, the sum ovand » dw
n’ in Eq. (12) can be performed, and we obtain EAZA:ef ?[<¢|N(Lz+ 2S,)| ) + (| (L,+2S,)N| )

@c

= d - e
e[ S [ 00 (3 et rasy (RN L+ 2], @)

which is zero wheny is an eigenstate df ,+2S,=J,+S,,
which occurs for the stats,)=|3P,,M;=2). For the state
i i |,y =|3P1,M;=1) given by Eq.(10), an eigenstate od,
(Y By el by ee T ) but not of S,, the contribution—tag$)—is also zero due to

i t the rotational invariance ol and its independence on the

x> pr-ce K|y
T

spin, which leads taN)y, -1=(N)m -0, and, in conse-
X(PILo+2S,|y) |. (30 guence, the cancellation of E(2). Therefore, we can con-
clude that the contribution from high frequencies to the term
In this expression, the terms coming from a process wher&aza IS zero or, at least, negligible.
the photon is emitted and absorbed by the same eleteon
j=t) make a quadratically divergent contribution, which
means that the nonrelativistic approximation fails. Actually E E E
these terms, in which only one electron is involved, contrib- BzB TAZB TBIA
ute to the anomalous magnetic moment of the electron, and The termEg,g of Eg. (8) is obtained in a way analogous
¥ye tf}linlii_that t?ei/hsr:ould nort] be é:ﬁpsidetrefl ir; our Ca'i“_';‘to Eaza, but substitutingS: By, for p- Ascin Eq. (11). We
ion. Taking only the terms where different electrons contrib- S B —2.V xA L3 V.XA
ute, the integral inw is convergent. Rearranging the terms have, S-Biac=S1-V1XAvd1)+2 V2 AVEC(rE);E_FQn_C?
remembering that ,=,,+1,, andS,=s,,+S,,, for the op- A\,ic’he}s acted on the photon states, ushy ee™ 'i=ik
erator in the first matrix element of E¢30) we obtain x ee’*''i we obtain[compare with Eq(12)]

IV. CORRECTIONS FROM THE TERMS

K zgair C
WS xe s linnlLr2sn) (3 xese ™ y)

(wh+ o)y + o)

G o0
EBZB:EZ JO w3dwf dQ 2

nn’, e

= 2
k .. -
‘w@ X ese i) (ylL+2Sy)
- 33
% (wn+ w)? (33
|
At low frequencies ()”Z'le), w<w.=mcalh, the in- w® w3+ wﬁ,+wnwn,

tegral inw, from 0 tow,, is quadratic inw. and therefore in - (3 (% + ) =o—(optoy)te
«. As a consequence, this contribution is of ordérsmaller
than E,, (that is, of ordera® in g/®) and may be ne- wn@p (0t o)
glected. (ot o)(wy+w)’
In order to calculate the high-frequency pasty w., we
shall use the identity and a similar one fow®/(w,+ »)2. As stated below Eq.

(ot o)(oy+ o)

(39



56

(29, w>mc?alh and w,,w,~mca?/, hence each term
in Eq. (34) makes a contribution of order with respect to
the previous one. The main contribution to E83) can then
be calculated by retaining only the first term of the right-

hand side of expressid34). In this case we can perform the
sum overn andn’, and obtain

G (= K - . -
EBZB:CT jo (Ud(l)J dQ Z <lﬂ|2 EXESJelkrlle

K .. - k
+28|3 pxese -3 (X §
o KL
X -5 "JZ X ese Ty
X(Y|L,+28] llf)) : (35

The contribution from the interaction of one electron with
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extending the lower limit to zerpwhich gives a small error
of ordera?E),,,, as explained below Ed33)]. We obtain

Egze=GI(#|R(L,+2S)|¢) +(4|(L,+2S)R[¢)

—2(Y|RIP) (YL +2S| )], (37)
where
e |Z N ” N N
sz kdkf da >, L XES E><.s-s2)cos(k-r12)
0 €

ENCTERICHED
h2ri, ’

(39

which has rotational invariance.

We shall show that the terrkg,g is zero, but, before
doing that, it is important to realize that it is of the same
order asEy,, (i.e., a contribution of order® to g®). In
fact, r 1, is of the order of the Bohr radius, i.é./(mca), so

itself will be not considered here for the reasons explainedhat R, given by Eq.(38), is proportional toa?. We recall

above Eq.31). The terms in Eq(35) where different elec-

that G is proportional toa. This implies that the error of

trons contribute lead to convergent integrals. Rearranging thgeplacing the left-hand side aR9) by the first termw is

terms in a way analogous to that in E§1), for the operator
in the first matrix element of Eq35) we obtain

(RX & 5,6 1) (R e- 5,6~ K 2)(1 ,+ 25,,)
(K €88 72) (K €87 0) (1,+ 252,)
(11251 (KX € S, ) (kx € 518711
+ (I+ 255,) (KX € 5,8 1) (KX € 5,675 72),

(36

where only the even part ik contributes to the angular
integral. The integral in frequenciéesr k) is straightforward

negligible (it would make a contribution of order* to g(*)).

We see in Eq(37) thatEgg is zero wheny is an eigen-
state ofL,+2S,=J,+S,, which occurs for the statps,)
=3P,,M;=2). For the state|#,)=|3P;,M;=1), an
eigenstate ofl, but not ofS,, the contribution is also zero,
as can be shown Dby inserting the identity
Zym, |LSIMy )My J"SL betweenR ands, in Eq. (37),
applying the Wigner-Eckart theorem, and taking into account
that S, can neither change the configuration hdj and that
R cannot changéd because of its rotational invariance. Then
Egzg=0, or is at least negligible.

We now analyze the terrf,,g together withEg,, be-
cause the sunk,,g+Egza allows an easier rearrangement
of the operators. The terif, 5 iS given by

I R
<¢|; pj‘Ee'k‘”’|“><n|3z+5z|n’><n'|2 —ip Xese KTy )

>

n,n', e

G oo
EAZB:E fo wzdwf dQ

(opto)(oy+ o)

N k .. -
(l//lEj: pj'fe'k'ri|n><n|2 —ipxese (Yl + 28] y)

; (39

-2

andEgy, is given by a similar expression but with the ap-

propriate change of the operators.

The same considerations concerning the t&gpg apply
here, and we discard,, andw,, compared withw, and then
sum inn andn’. We rearrange the operatorsinzg+ Egza
following the same procedure as in EQq$31) and

(wn+w)2

(36), obtaining

Eazet Esza=G(#IT(L,+S)|4) +(¢l(L,+S)T|#)
—2(Y[ Tl YIL+ S]], (40)

where
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" Kk V. CORRECTIONS FROM THE TERMS
TEJ dkf dQZ [(512) Ex2§2) Eaaz Egaz.Enpz.Egsz
° ¢ The terms analyzed here are given by expression
. (K .. .. whereH, is H, (which does not connect different radiation
—(p2-€) EXESl)Sin(k'Flz)} state and H; andH; are H, or (and Hg, which verify
(#:0[Ha|4,0)=0, and(y;0|Hg|;0)=0.
11-8,+055 It is now more convenient to consider the operatqy.
:ﬁz—riz- (41)  expanded in spherical waves instead of plane waves as in Eq.

(5). The radiation states are then characterized by

The operatoiT has rotational invariance, and we proceed in|l,m, ,IZ,E), wherel andm, are the photon angular momen-
the same way as iBg,g to show thatE,,g+Eg,4=0 orat  tum and its projection, respectively. The expressiok of 7,

least negligible. for example, is given by
€ (:0[p-Avadn;l,my K, €)(n;1,m; K, ] p-Ayadn’;0)(n’;013,+ S,/ ¢;0)
Eanz=—2 > , (42
m n,lz,g,l,m| n’ (EH_EO+hw)(En’_EO)

where the stat¢n) can be any atomic eigenstate, including  The operatorS: B, also has rotational invariance, and
4, while [n") must be different fromj. We see in Eq(42)  we can follow exactly the same procedure as before to show
that Epaz is zero if ¢ is an eigenstate af,+S,, since we  thatEga,=0, Eog,=0, andEgg,=0.
obtain(n’|y)=0. This is the case fos,)=|3P,,M;=2).

For|yp)=|3P,,M;=1), sinceS, can neither connect dif- VI. CONCLUSIONS
ferent configurations nor differeril,, there is only one e have analyzed those radiative corrections in the Zee-
state|n’), with the same configuration ag, and havingd  man effect of helium, which have not been considered in
=2 andM;=1. The sum oven’ then consists of only one previous work. The atomic states aréf3 and ZP,.
term. We denote byd,M ;) the angular part of the stafe), These corrections are the third-order perturbative contri-
and note thatJ,M,,| ,m,>=2J,,MJ,C’|J,I J',Mj) (C"isa butions from the Zeeman Hamiltonian and vacuum radiative

Clebsch-Gordan coefficientTaking into account the rota- interaction (—e/m)(§~,5\\,ac+ §-§Vag, retaining the terms

tional invariance ofﬁ.Avac, which cannot connect different linear in the external magnetic field and proportionabfo

J, and applying the Wigner-Eckart theorem, we find that a We have found thﬁat*the grgatfast correction comes from
product of two Clebsch-Gordan coefficients appears to comterms proportional td - By andp- A, contributing to the
from the first and second matrix elements of F4@). For ~ orbital gyromagnetic factor with a correction of the same

eachk and each atomic configuration pf), we must calcu- order (~ a’) as that calculated by Anthony and Sebasln
late the sum ' in the second order of perturbation. Specifically, we have

found that the correction is just one half that calculated by

these authors, i.e3x2.39x 10’ [see Eq(25)]. Therefore,

the result does not resolve the discrepancy between theory
and experiment. We have also shown that the third-order

corrections coming from terms involvirg B, ¢, are zero or
negligible (of order &* or lower).

> (3=1M;=1]3,M,,I,m)
J,MJ,I,m|

X{(J,My,l-m|I=2M,=1), (43
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