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Topology of holomorphic germs has been intensively studied after the celebrated book
of J. Milnor [6]. The main topological object related with a germ f : (Cn, 0) → (C, 0) of a
holomorphic function is the Milnor fibration f−1(S1

δ )∩B2n
ε → S1

δ , (0 < δ << ε). Its fibre
f−1(z) ∩B2n

ε is called the Milnor fibre of the germ f .
Some ideas have been applied to study the topology of the fibration defined by poly-

nomial functions on complex affine spaces. A polynomial P of n variables defines a map
P : Cn → C which is a locally trivial fibration over the complement to a finite set in the
target C. At a point a ∈ Cn the polynomial P defines a holomorphic germ which can
be studied with the use of the Milnor fibration. In particular, P is not a locally trivial
fibration over its critical values.

However the global topology of the fibration defined by a polynomial function is not
determined only by its local behaviour at points in Cn. For example the polynomial
function P (x, y) = x(xy − 1) on C2 has no critical points, however it does not determine
a locally trivial fibration over C: the level set P−1(0) is topologically different from other
level sets P−1(c), (c 6= 0). One can say that the global topology of a polynomial function
depends on its behaviour at infinite points.

To give sense to this statement one can consider the projective closure CPn of the
complex affine space Cn. A polynomial P defines a meromorphic function of CPn. At
points of the infinite hyperplane CPn−1

∞ ⊂ CPn this function defines not a holomorphic but
a meromorphic germ. Thus to study the behaviour of the polynomial P near an infinite
point one has to understand topological properties of meromorphic germs.

The goal of the paper is to give a sketch of some notions and constructions related to
the topology of meromorphic germs and to formulate criteriums for a value to be typical
for a germ of meromorphic function of two variables.

Definition: A germ of a meromorphic function on (Cn, 0) is a fraction f = P
Q

, where P

and Q are germs of holomorphic functions on (Cn, 0).

It appears that in the framework of the described study the following equivalence
relation is adequate: germs of meromorphic functions f = P

Q
and f ′ = P ′

Q′ are equal if and
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only if P ′ = U · P and Q′ = U · Q for a holomorphic germ U : (Cn, 0) → C such that
U(0) 6= 0.

A meromorphic germ f = P
Q

defines a map from the complement B2n
ε \ {P = Q = 0}

to the indeterminacy set {P = Q = 0} in a small ball B2n
ε to the complex projective

line CP1. To a regret this map is not a locally trivial fibration over the complement of a
finite set in CP1. Roughly speaking f fails to be a locally trivial fibration over values c for
which the level set f−1(c) is not transversal to the sphere S2n−1

ε = ∂B2n
ε . This is a “real

condition” and thus it can appear at points of CP1 from a set of real codimension 1. It
means that in this way one cannot define a generic fibre of a meromorphic germ.

Example 1. Let f = x2−y3

y2 . One can see that f : B4
ε \ {0} → CP1 is not a locally trivial

fibration over neighbourhoods of 0, ∞, and points c(= (c : 1)) such that ‖c‖ = 3
2
ε.

However if one fixes a value c in CP1, one cannot meet this effect in a neighbourhood
of the value c if the radius ε is small enough.

THEOREM 1 [3] For any value c ∈ CP1, there exists ε0 > 0 (ε0 = ε0(c)) such that for
any positive ε ≤ ε0 the map f : B2n

ε \ {P = Q = 0} → CP1 is a locally trivial fibration
over a punctured neighbourhood of c.

Definition: The described fibration is called c-Milnor fibration of the meromorphic germ
f .

Definition: The fibre of the c-Milnor fibration, i.e.

Mc
f = {z ∈ B2n

ε : f(z) =
P (z)

Q(z)
= c′ }

for ε small enough and for c′ close to c enough (in CP1) is called the c-Milnor fibre of the
meromorphic germ f .

Example 2. For f from the Example 1, one has: M0
f is the (2-dimensional) disk minus

two points; for c 6= 0, Mc
f is the disjoint union of two punctured disks.

For a fibration over a punctured neighbourhood of a point in CP1, there is defined
a monodromy transformation which is a diffeomorphism of the fibre (well defined up to
isotopy).

Definition: The monodromy transformation hc
f : Mc

f →Mc
f of the c-Milnor fibration is

called the c-monodromy transformation of the meromorphic germ f .

Example 3. For f from the Example 1, hc
f is trivial (i.e. isotopic to the identity) for

all c 6= 0,∞. the 0-monodromy transformation is a natural transformation of the disk
without two points which interchanges these points. The ∞-monodromy transformation
interchanges two punctured disks.

One can show that for almost all values c (i.e. for all but a finite number) the c-
monodromy transformation hc

f is trivial, i.e. isotopic to the identity. Moreover the fol-
lowing takes place.
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Definition: A value c ∈ CP1 is called a typical value of the meromorphic germ f if the
map f : B2n

ε \ {P = Q = 0} → CP1 is a locally trivial (and thus a trivial) fibration over a
neighbourhood (not punctured) of the point c. Otherwise the value c is called atypical.

If a value c is typical, then the corresponding monodromy transformation hc
f is isotopic

to identity.

THEOREM 2 [4] A meromorphic germ has a finite number of atypical values.

Example 4. The meromorphic germ f from the Example 1 has two atypical values: 0
and ∞.

Definition: For a transformation h : X → X of a topological space X its zeta function
ζh(t) is the rational function defined by

ζh(t) =
∏
q≥0

{det [ id− t h∗|Hq(X;C)]}(−1)q

.

This definition coincides with that in [2] and differs by minus sign in the exponent
from that in [1].

Let ζc
f (t) be the zeta-function of the c-monodromy transformation hc

f of the meromor-
phic germ f . The degree of the rational function ζc

f (t) (i.e., the degree of the numerator
minus the degree of the denominator) is equal to the Euler characteristic of the c-Milnor
fibre Mc

f . One has the following statement.

THEOREM 3 [4] If a value c is typical then the Euler characteristic of the c-Milnor fibre
is equal to 0 and its zeta-function ζc

f (t) is equal to 1.

Example 5. For f from the first example ζ0
f (t) = 1

1+t
and ζc

f (t) = 1 for c 6= 0.

Remark. This example shows that the inverse of Theorem 3 is not true: the ∞-zeta
function ζ∞f (t) = 1, but ∞ is not typical and the ∞-monodromy transformation is not
isotopic to identity. One can show that the inverse of Theorem 3 is true if the holomorphic
germ P + cQ has an isolated critical point at the origin ([4]).

One method to study the topology of a holomorphic germ is through its resolution. A
version of it is suitable for meromophic germs as well.

Definition: A resolution of a meromorphic germ f = P
Q

is a modification of (Cn, 0), i.e.
a proper analytic map π : X → U of a smooth analytic manifold X onto a neighbourhood
U of the origin in Cn, which is an isomorphism outside of the hypersurface H = {P =
0} ∪ {Q = 0}, such that the total transform π−1(H) of the hypersurface H is a normal
crossing divisor at each point of X .

In terms of a resolution it is possible to express the zeta-functions of the 0 and ∞-
monodromy transformations of the meromorphic germ f . The fact that the preimage
π−1(H) is a divisor with normal crossings means that at any point of it, there exists a
local system of coordinates y1, . . . , yn such that the liftings P̃ = P ◦ π and Q̃ = Q ◦ π of
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Figure 1:

the functions P and Q to the space X of the modification are equal to u · yk1
1 · yk2

2 · . . . · ykn
n

and v · y`1
1 · y`2

2 · . . . · y`n
n respectively, where u(0) 6= 0 and v(0) 6= 0.

Let D = π−1(0) be the preimage of the origin, and let Sk,l be the set of points of D in
a neighbourhood of which the functions P ◦ π and Q ◦ π in some local coordinates have
the form u · yk

1 and v · y`
1 respectively (u(0) 6= 0, v(0) 6= 0).

THEOREM 4 [3]

ζ0
f (t) =

∏
k>`

(1− tk−`)χ(Sk,`),

ζ∞f (t) =
∏
k<`

(1− t`−k)χ(Sk,`).

For a meromorphic germ of two variables a resolution can be obtained by a sequence
of blow-ups at points.

Example 6. The minimal resolution of the germ f from example 1 can be described by
the picture on Fig. 1. Here lines correspond to components of the exceptional divisor D.
Each of them is isomorphic to the complex projective line CP1. Pairs of numbers near
them are the multiplicities of the liftings of the numerator P and of the denominator Q
along these components. The arrow (respectively the double arrow) corresponds to the
strict transform of the curve {P = 0} (respectively of the curve {Q = 0}). Then S2,2

(respectively S3,2 and S6,4 is the complex projective line minus two points (minus one and
three points respectively). Thus

ζ0
f (t) = (1− t)(1− t2)−1 =

1

1 + t
,

ζ∞f (t) = 1.
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Now let f = P
Q

be a meromorphic germ of two variables (i.e. P and Q are germs of

holomorphic functions on (C2, 0)). Suppose that the curve {P = 0} is reduced (i.e. has
no multiple components) and has no common component with the curve {Q = 0}. In [4]
we showed that 0 is a typical value of f if and only if the Euler characteristic χ(M0

f ) of
the 0-Milnor fibre is zero. This condition is equivalent to the fact that the family P + cQ
(c small enough) is a µ-constant family. In particular this shows that the notion of typical
(respectively atypical) value is the same as the notion of generic (respectively special)
value described by Lê and Weber. In [5], Lê and Weber gave a criterium for a value to
be typical in terms of the minimal resolution of the pencil described by the meromorphic
germ f = P

Q
. Here we formulate a criterium for 0 be typical in terms of the minimal

resolution of the curve {P = 0} defined by the numerator.
Let π : (X ,D) → (C2, 0) be the minimal (embedded) resolution of the curve {P = 0}.

Each component of the exceptional divisor D is isomorphic to CP1. For a component E,
let k(E) and l(E) be the multiplicities of the liftings P̃ = P ◦ π and Q̃ = Q ◦ π of the
functions P and Q along E.

THEOREM 5 In this case, 0 is a typical value for the meromorphic germ f = P
Q

if

and only if the strict transform of the curve {P = 0} intersects only components of the
exceptional divisor D with k(E) ≤ l(E).

Proof . According to Theorems 2 and 3 from [4] the value 0 is typical if and only if the
family P + cQ is µ-constant (for c from a neighbourhood of 0).

If a family Pc of functions of two variables (c ∈ (C, 0)) is µ-constant then the embedded
resolution of the curves {Pc = 0} are combinatorially equivalent. However these resolu-
tions are obtained by blow-ups of different points and thus the (minimal) resolution of
the curve {P0 = 0} can be not a resolution of the curve {Pc = 0} (see, e.g., the µ-constant
family (x + cy)2 + y3).

Lemma. If a linear family P + cQ of functions of two variables is µ-constant, then the
minimal resolution of {P = 0} is at the same time the minimal resolution of the curve
{P + cQ = 0} for c small enough.

Proof . Let π1 : (X , E1) → (C2, 0) be the blowing-up of the origin in the plane C2, and
let C̃c be the strict transform of the curve Cc = {P + cQ = 0}. We shall prove that the
intersection points of the curve C̃c with the exceptional divisor E1, at which the curve is
not resolved by π1, (i.e., those at which the intersection index (C̃c ◦ E1) is greater than
1) do not depend on c. The reduced singularities of the total transform π−1

1 (Cc) (i.e.,
of C̃c ∪ E1) at these points are µ–constant (since the family {Cc} is µ–constant) and are
determined by linear families of equations (since the family {Cc} is determined by a linear
family). Therefore one proves Lemma using the induction on the length of the resolution.

The intersection points of the strict transform C̃c of the curve Cc with the exceptional
divisor E1 are those which belong to the projectivization of the tangent cone of the curve
Cc. The tangent cone of the curve Cc is determined by the equation P (d) + cQ(d), where
d is the multiplicity of the curve C = C0 at the origin (equal to the multiplicity of the
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curve Cc for c small enough), P (d) and Q(d) are homogeneous parts of degree d of the
germs P and Q. Let p(t) and q(t) be the corresponding polynomials of one variable:
p(t) = P (d)(t, 1), q(t) = Q(d)(t, 1) (for a corresponding choice of coordinates in the plane
C2: so that P (1, 0) 6= 0). The intersection points of the curve C̃c with the exceptional
divisor E1 are roots of the polynomial pc(t) = p(t) + c · q(t). The multiplicity of a root is
just the intersection index of C̃c and E1 at the corresponding point.

Let t0 be a root of the polynomial p(t) of multiplicity s > 1. Then p(t) = a · (t− t0)
s+

terms of higher degree in (t− t0) (a 6= 0). Suppose that t0 is a root of the polynomial q(t)
of multiplicity r < s, i.e., q(t) = b · (t − t0)

r+ terms of higher degree in (t − t0), where
b 6= 0, 0 ≤ r < s. If r > 0, then, for c small enough, the polynomial pc(t) = p(t) + c · q(t)
has s − r + 1 different roots in a neighbourhood of the point t0. If r = 0, then, for c
small enough, the polynomial pc has s different roots in a neighbourhood of the point
t0. Therefore in any case the root t0 of the polynomial p splits into several (more than
1) different roots of the polynomial pc. This contradicts the supposition that the family
P + cQ is µ–constant. 2

To finish the proof of Theorem 5, let us suppose that the strict transform of a branch of
the curve {P = 0} intersects a component E of the exceptional divisor with k(E) > l(E).
In this case in local coordinates at the point of intersection P̃ = u · xk · y and Q̃ = v · xl

(u(0) 6= 0, v(0) 6= 0). The lifting P̃+cQ̃ of the function P+cQ is equal to xl(u·xk−l·y+c·v).
Therefore its multiplicity along the component E is equal to l and it is less than that one
of the function P . Thus π is not the minimal resolution of {P + cQ = 0} for c 6= 0.
Contradiction.

If the strict transform of the curve {P = 0} intersect only components of the ex-
ceptional divisor with k(E) ≤ l(E), then the family P̃ + cQ̃ in a neighbourhood of the
intersection has the form xk(u · y + cv̇ · xl−k) with l − k ≥ 0. Thus the strict transform
of the corresponding branch of the curve {P + cQ = 0} ({u · y + c · v · xl−k = 0}) is
smooth and transversal to the exceptional divisor. Therefore {P + cQ = 0} has the same
resolution as {P = 0} and the family is µ-constant. 2

The example f = P
Q

= xy
x

shows that in general the condition χ(M0
f ) = 0 is not

equivalent to the fact that the family {P+cQ = 0} is µ constant at the origin. Nevertheless
one has.

THEOREM 6 Let f = P
Q

be a germ of meromorphic function of two variables. Then

(i) If the germ of the curve {P = 0} at 0 has a non-isolated singularity but {P +cQ = 0}
has an isolated singularity (for c small enough) then the value 0 is atypical.

(ii) If P = R ·P1 and Q = R ·Q1 where R = g.c.d.(P, Q) and the curve {P1 = 0} has an
isolated singularity at the origin then 0 is a typical value for the meromorphic germ
f if and only if χ(M0

f ) = 0.

Proof . The first part follows from the definition of typical value.
The if part of (ii) follows from Theorem 3. For the ”only if” part, let us assume that

{P = 0} has an isolated singularity at the origin.
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If Q1(0) 6= 0 then

χ(M0
f ) = χ ({(x, y) ∈ Bε : P1 = c } \ {R = 0}) = 1− µ(P1, 0)− (P1, R)0,

where (P1, R)0 is the intersection multiplicity of both curves at the origin. Therefore the
Euler characteristic χ(M0

f ) is equal to zero if and only if P1 has no critical point at the

origin and (P1, R)0 = 1. It means that we are in the case f = P
Q

= xy
x

.

If Q1(0) = 0 then it follows from the proof of Theorem 2 in [4] that the Euler charac-
teristic χ(M0

f ) is equal to

−µ(P, 0) +
∑

A∈{P+cQ=0}∩Bε

µ(P + cQ, A).

Let k (respectively s) be the intersection multiplicity at the origin of the curve {R = 0}
with the curve {P1 = 0} (respectively with the curve {P1 + cQ1 = 0}). At any other
intersection point A ∈ {P1 + cQ1 = 0} ∩ {R = 0} ∩ Bε} \ {0} the curve {P + cQ = 0}
has a nondegenerate critical point with Milnor number equals to 1. Let l be the number
of such points. The conservation law of the intersection multiplicity gives k = (R,P1)0 =
(R,P1 + cQ1)0 + l = s + l.

Using the following formula for the Milnor number

µ(RP1, 0) = µ(R, 0) + µ(P1, 0) + 2(R,P1)0 − 1

and the vanishing of the Euler characteristic χ(M0
f ) one has

0 = χ(M0
f ) = (µ(P1 + cQ1, 0)− µ(P1, 0)) + (R,P1 + cQ1)0 − (R,P1)0.

Since the Milnor number and the intersection multiplicity are semicontinuous, the family
P1 + cQ1 has to be µ-constant and (R,P1 + cQ1)0 = (R,P1)0. Notice that these two last
conditions are equivalents to the fact that the family P +cQ is µ-constant. Now the proof
that 0 is typical follows from the theorem of Parusinski ([7]) as in [4].

The proof of the ”only if” part in the general case follows from the fact that if R =
g.c.d(P, Q) = Rn−1

1 · · ·Rns
s and P = R · P1 and Q = R ·Q1 then the meromorphic germ f

defines the same fibration as the meromorphic germ f = R1···Rs·P1

R1···Rs·Q1
for which the Theorem

has been proved. 2
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