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Eigenvalue analysis of the density matrix of four-dimensional spin glasses supports
replica symmetry breaking

L. Correale, E. Marinari, and V. Martı´n-Mayor
Dipartimento di Fisica, SMC and UdR1 of INFM and INFN, Universita` di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, It

~Received 30 July 2002; published 4 November 2002!

We present a general and powerful numerical method useful to study the density matrix of spin models. We
apply the method to finite-dimensional spin glasses, and analyze in detail the four-dimensional Edwards-
Anderson model with Gaussian quenched random couplings. Our results clearly support the existence of
replica symmetry breaking in the thermodynamical limit.
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I. INTRODUCTION

Replica symmetry breaking1 ~RSB! was introduced more
than 20 years ago2 as a crucial tool to describe the low
temperature phase of spin glasses.3 One can see replicas a
an extension of statistical mechanics that can be very us
when studying complex systems, such as structural glas4

or spin glasses,3 where the ergodicity breaking in the low
temperature phase cannot be described with the help o
infinitesimal external constant magnetic field.

If on one hand there is little doubt5 left about the correct-
ness of the RSB description of the low-temperature phas
the mean-field models, on the other hand the controvers6–9

regarding its applicability to finite-dimensional systems su
as realistic, physical spin glasses, is alive and in good he

Unfortunately, we are only starting to guess how to a
dress the question of the existence of RSB in real s
glasses from a truly experimental point of view:10 because of
that, and because of the inherent very high complexity of
relevant analytic computations, most of the recent progre
are coming from numerical simulations.

The output data of numerical simulations are never
reliable as analytic~and, even better, rigorous! results. So if
on one hand the results of numerical simulations of fo
dimensional spin glasses8,11 support the RSB scenario~as
indeed happens for the three-dimensional model8!, on the
other hand one can argue that these indications could turn
to be fallacious on larger lattices, on longer time scales
lower temperatures, etc.~see, for example, Ref. 12 for a typ
cal criticism to typical numerical simulations!.

It is clear that new approaches to this important issue
precious: Sinova, Canright, Castillo and MacDonald13 have
recently proposed such a new tool that can allow a be
study of spin glasses. They have noticed that the spin-
correlation matrix^s is j& ~that we will discuss in detail in
the following section! shares the main properties of
quantum-mechanical density matrix:14 it enjoys positivity,
hermiticity, and has unit trace~notice that our normalization
differs from theirs, see the following section!. In the low-
temperature phase, the time-reversal symmetry is bro
and thus one should expect at least one nonvanishing ei
value of the density matrix in the thermodynamical limit, d
to the extended character of the eigenvector related with
symmetry breaking.14 What is new is the claim13 that the
0163-1829/2002/66~17!/174406~8!/$20.00 66 1744
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presence of RSB is equivalent to the existence of more t
one nonvanishing eigenvalues in the thermodynamic lim
Armed with these ideas the authors of Ref. 13 undertook
study of the Edwards-Anderson model with Gaussian c
plings in four dimensions, where they found results that th
judged inconsistent with the detection of RSB on lattices
linear size up to 6~i.e., of volume up to 64).

The efforts of the authors of Ref. 13 were limited to su
small lattice sizes, because the memory and the nume
effort required in their approach grows asL2D ~in the follow-
ing, L will be the lattice linear dimension, andD the space
dimensionality!. It is clear that their simulation strategy an
data analysis can sometimes go wrong, as is evidenced b
failure15 in the analysis of the random field Ising model.
that case, only turning to the standard numerical strate8

which focuses on the Parisi order-parameter functionP(q)
they could establish15 the ~plausible! absence of RSB in this
model.

Here we present a numerical strategy for the study of
density matrix of spin glass with a cost of the orderLD. We
propose a more convenient data analysis, given the expe
behavior of the density of eigenvalues of the density ma
in the thermodynamic limit~see the following section and
Ref. 16!. In this way we have been able to study th
Edwards-Anderson model with Gaussian couplings on
tices of volume up to 84, at the same temperatures as in R
13. We obtain results that support an RSB scenario.8 Very
interesting information about the density matrix in a RS
scenario can also be obtained through mean-fi
calculations.16 Moreover the numerical approach that w
have developed here can be applied to any spin model.

After completing this manuscript, a note reporting anoth
efficient approach to the density-matrix spectral problem
appeared.17 In this work, Hukushima and Iba deal with th
four-dimensional spin-glass model with binary~rather than
Gaussian-like in our case! couplings. They have been able
study lattices of volume 104, reaching the same conclusio
that we present here, i.e., arguing for the presence of RS
the infinite-volume limit ~they also discuss an interestin
method for studying temperature chaos!.

The layout of the rest of this paper is as follows. In Sec
we define the model and the associated density matrix,
cussing its basic properties and the numerical approac
Ref. 13. Our own strategy is presented in Sec. II A, and
©2002 The American Physical Society06-1
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working example is analyzed in Sec. II B, where the~replica
symmetric! ferromagnetic Ising model in four dimensions
analyzed. Our numerical simulations of the Edward
Anderson model in four dimensions are described in sec
III. Our results are presented and discussed in Sec. IV.
nally, we present our conclusions in Sec. V.

II. THE MODEL AND ITS DENSITY MATRIX

We consider the four-dimensional Edwards-Anders
spin glass in a periodic box of sideL. The N elementary
spins can take binary values,s i561, and they are defined
on the vertices of a single hypercubic lattice of sizeV
5LD. We consider a first neighbor interaction:

H52(
^ i , j &

s iJi , js j . ~1!

The quenched couplings,Ji , j5Jj ,i , are drawn from a sym-
metric probability distribution function of zero average a
varianceJ2. It is customary to takeJ as unit of temperature
and then to setJ51: this is what we do. Two popula
choices are the one of a binary probability distributionJi , j
561 or to takeJ Gaussian distributed. Here, we draw t
quenched random couplings from a Gaussian distribu
~also in order to allow a direct comparison with Ref. 13!. For
all the relevant observables one first computes the ther
average on a single realization of the couplings~sample!,
hereafter denoted bŷ•••&, and later the average with re
spect to the couplings is performed~we denote this disorde
average by an overbar!. The model~1! undergoes a spin
glass transition18 at Tc51.8060.01.

The average over the couplingsJi , j induces a~trivial!
gauge invariance19 in the model. If one chooses a gener
binary value for each lattice site,h i561, disorder averaged
quantities are invariant under the transformation

Ji , j→h iJi , jh j , ~2!

s i→h is i . ~3!

Now let h i be a random number that takes with probability1
2

the values61. If one considers the spin-spin correlatio
function, the symmetry~3! yields the disappointing resu
that

^s is j&5h ih j^s is j&5d i , j , ~4!

~that is true since this relation is valid for every value ofh)
explaining why nobody before Ref. 13 paid much attent
to this quantity. Reference 13 wisely suggested to look at
correlation function of a single sample as amatrix, ci , j . We
define hereci , j as

ci , j[
1

LD
^s is j& ~5!

~notice the difference in the factorL2D with the definition of
Refs. 13 and 15!. The gauge transformation~3! acts on the
matrix ci , j as a unitary transformation. Therefore, contrary
the individual elements ofci , j itself, the spectrum ofci , j does
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not become trivial after the disorder average. It is easy
check13 thatci , j is symmetric, positive definite, and has tra
equal to 1, just like a quantum-mechanical density mat
Thus the corresponding eigenvalues 1>l1>l2>•••lN>0
verify

15 (
k51

N

lk . ~6!

Following Ref. 14 the authors of Ref. 13 have argued tha
the paramagnetic phase all thelk are of order 1/N, and thus
vanish in the thermodynamical limit. On the other hand,
the spin-glass phase, the time-reversal symmetry is bro
which implies some nonlocal ordering pattern for the sp
~unfortunately only known by the spins themselves!, and
hence at least one eigenvaluel1 should remain of order one
whenN→`. They also claimed that the presence of RSB
equivalent to more than one eigenvalue beingO(N0) when
N→`. Furthermore, they stated that each nonvanishing
genvalue corresponds to a pair of pure states: the corres
dence to apair of pure states is because of the globals→
2s symmetry of the Hamiltonian~1! and of the matrixci , j .
Notice that this might be a clue for the solution of the fo
midable problem of defining pure states in a finite-volum
system.7,8 The fact that the presence of more than one ext
sive eigenvalue@O(N0)# whenN→` is equivalent to RSB
is true in the mean-field picture, as can be verified in a me
field analytic computation at the first step of RSB.16

Combining perturbation theory and droplets ideas, it w
also possible to conclude13 that in a non-RSB scenario th
second eigenvalue should not decay slower than

l2;L2u, ~7!

where the droplet exponent in four dimensions is20 u
50.6–0.8. Actually when the lattice size is larger than t
correlation length~which might not be the case in the achie
able numerical simulations12!, the droplet picture predicts a
much faster decay.

Using the parallel tempering optimized Monte Carlo
scheme,21 the authors of Ref. 13 calculated the matrixci , j , ~a
computational task of the orderL2D, since the lack of trans-
lational invariance prevents the use of the fast Fourier tra
form!. They eventually diagonalized the matrix. When co
paring results for different disorder realizations, they fou
very broad distributions of eachlk , which they tried to char-
acterize by their mean and typical value. They found that
mean and the typical value of the second eigenvalue w
decreasing as a function of lattice size in a double logar
mic plot for lattices up to 64 ~see Fig. 7 of the second part o
Ref. 13!. Because of this they argued about the absence
RSB in the model.

A. An effective approach to the study of the density matrix

Studying the spin-spin correlation functionci , j by analyz-
ing theusualdensity of statesgu

gu~l!5
1

N(
k51

N

d~l2lk! ~8!
6-2
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would not work: because of the constraint~6! in the N→`
limit gu(l) is a normalized distribution function with sup
port in the@0,1# interval with mean value 0. In other word
this definition implies that in the presence of a generic fin
number of extensive eigenvalues for large volumesgu(l)
5d(l), which does not contain much information.

In our case, we cannot weight all the eigenvalues with
same weight: to consider a sensible indicator, we can de
to use as weightlk itself, and to define the modified densi
of states of the matrixci , j :

g~l!5 (
k51

N

lkd~l2lk!. ~9!

It is natural to expectg(l) to converge in theN→` limit to
a function containing a continuous part, plus ad function at
l50 @because a numberO(N) of eigenvalues will be
O(N21)]. A calculation at one step of RSB~Ref. 16! tells us
that this is indeed the case. Moreover, in the one-step ca
lation, the continuous part does not show any gap, an
covers all the interval betweenl50 and l5qEA , the
Edwards-Anderson order parameter~see also Fig. 1 of the
second of Ref. 13!. Therefore, from the point of view o
checking replica symmetry breaking, to concentrate on
behavior of individual eigenvalues does not look the b
strategy. Instead, as it is customary when analyzing den
of states,22 one can start by considering the moments fo
single disorder realization,gJ(l):

E
0

1

dll rgJ~l!5 (
k51

N

lk
r 115Tr cr 11. ~10!

Our main observation is that we can compute the trace of
r th power of the matrixc, usingr real replicas~independent
systems, with the same realizations of quenched random
plingsJi , j ). Let us define the overlap between replicasal and
aj :

qal ,aj[
1

N (
i 51

N

s i
(al )s i

(al ) . ~11!

Then it is easy to show that

Tr cr5^qa1 ,a2qa2 ,a3 . . . qar ,a1&. ~12!

Thus, for instance, the~disconnected! spin-glass susceptibil
ity is xSG5N Tr c2. In this language the relationship be
tween nonvanishing eigenvalues and the phase trans
from the paramagnetic to the spin-glass phase is very dir

It is now very easy to suggest a numerical strategy
orderLD: Perform the Monte Carlo simulation in parallel fo
a discrete number of replicas, and use them to calculate
appropriate number of moments ofgJ(l). Then use this in-
formation to extract the largest eigenvalues of the matrixc.
Unfortunately standard methods for extracting the proba
ity density from its moments22 use orthogonal polynomials
Clearly, given the limited numerical accuracy that we c
expect to obtain for the Trcr , the use of orthogonality meth
ods is out of the question. We have instead used a cru
method. We define a cost function
17440
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F~j1 , . . . ,j r !5(
l 51

r S 12

(
k51

r

jk
l

Tr cl
D 2

, ~13!

and minimize it, using the values of thejk at the minimum as
an approximation to the eigenvalues. This method can
checked on small lattices, using the direct computation oc
and its eigenvalues. It turns out~see Sec. II B and IV! that it
is extremely precise for the first eigenvalue,l1, but that
already for the second eigenvalue,l2 the systematic error is
at the 10% level using 12 replicas. Fortunately we can
better than settingl2'j2. Let us define a~further! modified
density of states in which we donot include the first eigen-
value,

g̃~l!5 (
k52

N

lkd~l2lk!. ~14!

Its moments are

E
0

1

dll r g̃~l!5@Tr cr 112l1
r 11#[D r 11, ~15!

where we have denoted byD r the subtracted traces. Th
right-hand side of Eq.~15! can be accurately calculated usin
the cost function, and contains all the information that
need.

One could still worry about the bias induced by our use
the cost function to obtainl1. This can be easily controlled
because, since the eigenvalues of the matrix decrease
with k it turns out that we are always in a situation where
can expect thatD r is clearly and substantially larger tha
D r 11. On the other hand, if the bias onl1 is d, it will affect
D r of a quantity of the order of (drl1

r 21). Therefore, a bias
dominated subtracted trace will be characterized by suc
sive moments ofg̃(l) being very similar~see Sec. II B!.

FIG. 1. Cost function~13! estimate of the largest eigenvalue
the density matrix, as a function of the number of calculated m
ments @see Eq.~15!#, for the four-dimensional Ising model atT
50.5Tc , in a L54 lattice. The horizontal lines correspond to^M2&
plus or minus one standard deviation.
6-3
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Let us conclude this section by discussing the differ
scenarios that could describe the scaling of the subtra
traces, in theL→` limit. For a standard replica symmetri
model, such as the usual ferromagnetic Ising model, we
pectD r 115O(L2rD). In a RSB scenario, we expect that f
L→` D r 11 tends to a finite value@and that finite-volume
corrections due to the eigenvalues that create thed(l) in
g(l) are of the formO(L2rD), while other finite-size cor-
rections due to critical fluctuations may not decay so fa#.
Finally, in a droplet scenario, if one assumes that the s
tracted traces are controlled byl2, then Eq.~7! implies that

D r5O~L2ru!, ~16!

with u50.6–0.8 in four dimensions~recall that this is an
upper bound in the decay ofl2). The only way out from this
scaling behavior in a droplet picture would be to assume
a number of the orderLj (j.0) of eigenvalues is of orde
L2u: we are not aware of any argument13 that would imply
the existence of a divergent number of critical eigenvalue
a droplet picture.

FIG. 2. As in Fig. 1 but for aL58 lattice.

FIG. 3. The subtracted trace,D2, as a function of the lattice size
for the four-dimensional ferromagnetic Ising model.
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B. A simple example: The ferromagnetic Ising model

As a first check, we have studied the ferromagnetic Is
model in four dimensions. Here the Hamiltonian has t
same form as in Eq.~1!, but with Ji , j51. We have studied
the system atT50.5Tc to prove the deep broken phase wi
small correlation length@the critical temperature is here23

Tc56.680 2560.000 04)]. We have simulated in parallel~in
this case without parallel tempering, but with an usual he
bath updating scheme! 12 replicas of lattices of linear siz
L53,4,6 and 8, for 33105 Monte Carlo steps, starting from
a fully ordered state.

In this simple case the density matrixci , j can be very
easily diagonalized. The correlation function^s is j& depends
only on the distance between the two spins,xW i2xW j , and thus
the eigenvectors are proportional to exp@ikW•xW i #, where the
wave vectorskW verify the usual quantization rules on a pe
odic box. It is straightforward to show that the correspond
eigenvalues are

lkW5K U(
i 51

N
eikW•xW is i

LD U2 L , ~17!

FIG. 4. As in Fig. 3 but forD3.

TABLE I. Relevant parameters of the Monte Carlo simulationL
is the lattice size.Nsamplesdenotes the number of realizations of th
Gaussian couplings. The number of Monte Carlo steps~heat-bath
sweep plus temperature swap attempt! discarded for thermalization
was Nthermal. Nb is the number of temperatures simulated in t
parallel tempering. Finally, measures were taken duringNmeasures

Monte Carlo steps.

L Nsamples Nmeasures Nthermal Nb

3 2800 50000 50000 20
4 2800 50000 50000 20
6 1208 150000 150000 40
8 362 100000 200000 40
6-4
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and, given the ferromagnetic character of the interaction,
largest eigenvalue corresponds tokW50 ~the magnetization,
M ):

l15^M2&. ~18!

In Figs. 1 and 2 we compare our estimate ofl1 for the
L54 andL58 lattices, as obtained from the magnetizati
~the horizontal band corresponds to^M2& plus or minus one
standard deviation!, and from the cost function~13!. As both
figures show, 12 replicas are surely enough to obtain ag
ment within errors, which in this case are particularly sm

Having gained confidence in our procedure we can n
check evolution of the subtracted traces with increasing
tice size ~Figs. 3 and 4!. The two values are very smal
decreasing with the lattice size and almost~but not com-
pletely! compatible with zero. One should notice thatD3 and
D2 are compatible within errors for all lattice sizes~we will
see in Sec. IV that in the spin-glass case the situation is v
different!: in the ferromagnetic case the realD3 andD2 are
so small that they are completely dominated by the bias
cussed in the preceding section. One might ask how we w

FIG. 5. The Binder cumulant as a function of temperature,
the 4D Edwards-Anderson model on lattices of linear sizeL53, 4,
6, and 8.

FIG. 6. As in Fig. 5, but for theB3 cumulant.
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able to resolve such a small bias, given the comparativ
large errors reported in Figs. 1 and 2: this is due to the str
statistical correlations between Tr(cr) and our estimate for
l1

r .

III. THE MONTE CARLO SIMULATION

We have studied by numerical simulations the fou
dimensional Edwards-Anderson spin glass with quenc
random Gaussian couplings~1!. We have simulated 12 rea
replicas in parallel using a heath-bath algorithm and para
tempering,21 on lattices of volume 34, 44, 64, and 84. The
ratio between full lattice heat bath sweeps and the para
tempering temperature swap attempt was one to one. Fo
lattice sizes, the largest temperature wasTmax52.7 and the
lowest temperatureTmin50.8 ~see Table I for details of the

r FIG. 7. Disorder averaged cost function~13! estimate of the
largest eigenvalue of the density matrix, as a function of the num
of calculated moments@see Eq.~15!#, for the four-dimensional
Edwards-Anderson spin glass atT51.0, on aL54 lattice. The
horizontal lines correspond to a numerical diagonalization of
matrix ci , j with standard deviation.

FIG. 8. Disorder averagedD2 for the four-dimensional
Edwards-Anderson spin glass atT51.0 as a function of the numbe
of computed moments, on different lattice sizes.
6-5
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numerical simulation!. The probability of accepting a tem
perature swap was kept at the 60% level. For each rep
we have measured the permanence histogram at each
perature, and we checked its flatness. We controlled ther
ization by checking that there was no residual temporal e
lution in the Trc12 and in the Binder cumulant.

The main scope of the simulation has been to obtain Tcr ,
for r 52, . . .,12, using Eq.~11!. There is an awfully large
number of equivalent ways of forming the trac
qa1 ,a2qa2 ,a3 . . . qar ,a1 when one may choose the replica l
bels ai out of twelve possible values. One needs to find
compromise between loosing statistics and wasting too m
time in a given disorder realization~the disorder average i
the critical factor controlling statistical error!. Our compro-
mise has been the following: given the special importance
this observable,8 we have calculated the 12(1221)/2 pos-
sible overlapsqa1 ,a2, and we have computed Tr(c2) using all

FIG. 9. Probability distribution of the largest eigenvalue as c
culated in the four-dimensional Edwards-Anderson spin glassT
51.0, for lattices of linear sizeL54, 6, and 8. The number of bin
in the L58 lattice was reduced by a factor of 2 due to the sma
number of samples.

FIG. 10. Disorder averaged subtracted traceD2 for the four-
dimensional Edwards-Anderson spin glass at temperatureT51.0 as
a function of the lattice size.
17440
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the 66 quantities. For traces of higher order, we have con
ered only 12 contributions of the formqi ,i 11qi 11,i 12

••

•qi 1r ,i , for i 51,2, . . . ,12~the sums are understood modu
12!. In addition to the Tr(cr) we have measured the Binde
cumulant~see Fig. 5!. We have also measured a second a
mensional operator

B35
Tr c3

~Tr c2! 3/2
, ~19!

which we show in Fig. 6.
The theory of finite-size scaling24 predicts that adimen-

sional quantities close to criticality are functions ofL1/n(T
2Tc), wheren is the thermal critical exponent@in D54,
one finds11 n51.060.01)]. The crossing points signals th
spin-glass transition atTc51.8 with similar accuracy for
both the cumulants that we have considered. At the low
temperature that we have reached theL56 andL58 lattices
seem to be far enough from the critical region.

-

r

FIG. 11. As in Fig. 10 but forD3.

FIG. 12. Disorder averagedD2 as a function ofL2D for the
four-dimensional Edwards-Anderson spin glass atT51.0. The
dashed line is for a linear best fit, excluding theL53 data.
6-6
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IV. NUMERICAL RESULTS

To compare our results with the results of Ref. 13 we w
specialize here toT51.0. We start by checking@see in Fig. 7
the L54 data# the cost function procedure on small lattic
sizes. In this case the estimate ofl1 that one can obtain by
using the cost function can be compared directly with
result obtained by diagonalization ofc: we find a fair agree-
ment. For larger lattices we can only check the converge
of D r as a function of the number of moments~see Fig. 8!.
Again, the convergence looks fast enough for our purpo
We show in Fig. 9 the probability distribution ofl1. The low
eigenvalues tail is basically lattice size independent.

We show our results forD2 and D3 in Figs. 10 and 11,
respectively.D2 is a factor of 10 larger thanD3: our data are
not bias dominated~see Secs. II A and II B!. The fact that the
data point forD3 in the L58 lattice is above theL56 one
and at two standard fluctuations from compatibility may
due either to a strong fluctuation, or to a first glimpse of b
effects. If one sticks to the bias hypothesis, the effect onD2
can be~very conservatively! estimated as the difference o
the L56 and L58 data points corresponding toD3. This
difference is well covered by the error in theL58 data point
for D2.

After the above considerations, we can now proceed
the infinite-volume extrapolation. In Fig. 12 we plot the da
for D2 as a function ofL2D. It is evident that, letting aside
theL53 data, a linear fit is appropriate. The extrapolation
infinite L is definitely different from zero:

L>3,D250.011960.0003, x2/dof517.8, ~20!

L>4,D250.010260.0004, x2/dof51.73. ~21!

Where dof represents degrees of freedom. In Fig. 13 we
the data as they should scale according to the droplet mo
A fit to behavior implied by Eq.~16! yields a very high value

FIG. 13. Disorder averagedD2 as a function ofL22u for the
four-dimensional Edwards-Anderson spin glass atT51.0. The
droplet u exponent is chosen at its lower bound,u50.6. The
dashed~dotted! line is for a linear best fit, excluding~including! the
L53 data point.
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of x2/dof either when we include theL53 data or when we
exclude them~we useu50.6, the lowest possible value20!:

L>3, x2/dof517, ~22!

L>4, x2/dof514. ~23!

V. CONCLUSIONS

We have proposed and used a numerical approach
study the density matrix in spin glasses. The original idea
Ref. 13, namely, that of introducing the density matrix in t
spin-glasses context, allows one to make interest
calculations,16 and might even prove useful to the definitio
of pure states in finite volume.7,8

Our method is a further step beyond the useful appro
of Ref. 13. The technology we have developed can be sa
applied to the study of different spin models. The main lim
tation of our approach is not related to the use of the den
matrix, but to the extreme difficulty in thermalizing larg
lattices deep in the spin-glass phase. Should an effic
Monte Carlo algorithm be discovered, our method would
immediately available, because the computational bur
grows only asLD. Very recently, another optimized metho
has been proposed by Hukushima and Iba.17 Using their
method they were able to study 104 lattices, using binary
rather than Gaussian couplings~which considerably speed
up the simulation!.

Using our approach, we have been able to show that
density-matrix approach for the four-dimensional Edwar
Anderson model with Gaussian couplings in lattices up
L58, and temperatures down toT51.0 (;0.56Tc), is fully
consistent with a RSB picture, and that there are seri
difficulties with the scaling laws predicted by the alternati
droplet model. In this respect, the results are in full agr
ment with the availables studies8 of the Parisi order param
eter, and with the recent results of Ref. 17. A word of caut
is in order: the~postulated! impossibility of getting thermo-
dynamic data in the reachable lattices sizes,12 affects equally
the P(q) approach and the density-matrix approach. Ho
ever our data for adimensional quantities, such as the Bin
or B3 cumulant, seem very hard to reconcile with the pos
bility of a purely finite-volume effect.
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