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Eigenvalue analysis of the density matrix of four-dimensional spin glasses supports
replica symmetry breaking

L. Correale, E. Marinari, and V. MarttMayor
Dipartimento di Fisica, SMC and UdR1 of INFM and INFN, UniversiiaRoma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy

(Received 30 July 2002; published 4 November 2002

We present a general and powerful numerical method useful to study the density matrix of spin models. We
apply the method to finite-dimensional spin glasses, and analyze in detail the four-dimensional Edwards-
Anderson model with Gaussian quenched random couplings. Our results clearly support the existence of
replica symmetry breaking in the thermodynamical limit.
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[. INTRODUCTION presence of RSB is equivalent to the existence of more than
one nonvanishing eigenvalues in the thermodynamic limit.

Replica symmetry breakingRSB) was introduced more Armed with these ideas the authors of Ref. 13 undertook the
than 20 years adoas a crucial tool to describe the low- study of the Edwards-Anderson model with Gaussian cou-
temperature phase of spin glasdé@ne can see replicas as plings in four dimensions, where they found results that they
an extension of statistical mechanics that can be very usefilidged inconsistent with the detection of RSB on lattices of
when studying complex systems, such as structural gfhsseknear size up to §i.e., of volume up to ).
or spin glasse$where the ergodicity breaking in the low-  The efforts of the authors of Ref. 13 were limited to such
temperature phase cannot be described with the help of esmall lattice sizes, because the memory and the numerical
infinitesimal external constant magnetic field. effort required in their approach grows a€° (in the follow-

If on one hand there is little doubleft about the correct- ing, L will be the lattice linear dimension, arid the space
ness of the RSB description of the low-temperature phase afimensionality. It is clear that their simulation strategy and
the mean-field models, on the other hand the controfietsy data analysis can sometimes go wrong, as is evidenced by its
regarding its applicability to finite-dimensional systems suchfailure'® in the analysis of the random field Ising model. In
as realistic, physical spin glasses, is alive and in good healthhat case, only turning to the standard numerical strategy,

Unfortunately, we are only starting to guess how to ad-which focuses on the Parisi order-parameter functgn)
dress the question of the existence of RSB in real spinhey could establisfi the (plausiblé absence of RSB in this
glasses from a truly experimental point of viéhbecause of model.
that, and because of the inherent very high complexity of the Here we present a numerical strategy for the study of the
relevant analytic computations, most of the recent progressetensity matrix of spin glass with a cost of the ordiét. We
are coming from numerical simulations. propose a more convenient data analysis, given the expected

The output data of numerical simulations are never askehavior of the density of eigenvalues of the density matrix
reliable as analyti¢and, even better, rigorousesults. So if  in the thermodynamic limi{see the following section and
on one hand the results of numerical simulations of fourRef. 16. In this way we have been able to study the
dimensional spin glasseY support the RSB scenari@s Edwards-Anderson model with Gaussian couplings on lat-
indeed happens for the three-dimensional mdein the tices of volume up to 8 at the same temperatures as in Ref.
other hand one can argue that these indications could turn 0dB. We obtain results that support an RSB scerfakiery
to be fallacious on larger lattices, on longer time scales, aihteresting information about the density matrix in a RSB
lower temperatures, ettsee, for example, Ref. 12 for a typi- scenario can also be obtained through mean-field

cal criticism to typical numerical simulations calculations:® Moreover the numerical approach that we
It is clear that new approaches to this important issue arbave developed here can be applied to any spin model.
precious: Sinova, Canright, Castillo and MacDoraldave After completing this manuscript, a note reporting another

recently proposed such a new tool that can allow a betteefficient approach to the density-matrix spectral problem has
study of spin glasses. They have noticed that the spin-spiappeared’ In this work, Hukushima and Iba deal with the
correlation matrix(ojo;) (that we will discuss in detail in four-dimensional spin-glass model with binamather than

the following sectioh shares the main properties of a Gaussian-like in our caseouplings. They have been able to
quantum-mechanical density matfikit enjoys positivity,  study lattices of volume 10 reaching the same conclusion
hermiticity, and has unit tracgotice that our normalization that we present here, i.e., arguing for the presence of RSB in
differs from theirs, see the following sectiprin the low- the infinite-volume limit(they also discuss an interesting
temperature phase, the time-reversal symmetry is brokemethod for studying temperature chaos

and thus one should expect at least one nonvanishing eigen- The layout of the rest of this paper is as follows. In Sec. Il
value of the density matrix in the thermodynamical limit, duewe define the model and the associated density matrix, dis-
to the extended character of the eigenvector related with theussing its basic properties and the numerical approach of
symmetry breaking® What is new is the claiff that the Ref. 13. Our own strategy is presented in Sec. Il A, and a
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working example is analyzed in Sec. Il B, where fheplica  not become trivial after the disorder average. It is easy to
symmetrig ferromagnetic Ising model in four dimensions is check® thatc;  is symmetric, positive definite, and has trace
analyzed. Our numerical simulations of the Edwards-equal to 1, just like a quantum-mechanical density matrix.
Anderson model in four dimensions are described in sectiohus the corresponding eigenvalues X;=\,=---\=0

[ll. Our results are presented and discussed in Sec. IV. Fiverify

nally, we present our conclusions in Sec. V.

N
II. THE MODEL AND ITS DENSITY MATRIX 1221 M- ©)

We consider the four-dimensional Edwards-AndersonFollowing Ref. 14 the authors of Ref. 13 have argued that in
spin glass in a periodic box of side The N elementary the paramagnetic phase all the are of order I, and thus
spins can take binary values;=*1, and they are defined vanish in the thermodynamical limit. On the other hand, in
on the vertices of a single hypercubic lattice of si¥e the spin-glass phase, the time-reversal symmetry is broken,

=LP. We consider a first neighbor interaction: which implies some nonlocal ordering pattern for the spins
(unfortunately only known by the spins themselveand
H=— 2 od o (1) hence at least one eigenvalng should remain of order one
o whenN—co. They also claimed that the presence of RSB is

equivalent to more than one eigenvalue be®@\°) when
N—oo, Furthermore, they stated that each nonvanishing ei-
genvalue corresponds to a pair of pure states: the correspon-
dence to goair of pure states is because of the globah
— o symmetry of the Hamiltoniail) and of the matrixc; ; .
Notice that this might be a clue for the solution of the for-
midable problem of defining pure states in a finite-volume
r;l.ystem7.'8 The fact that the presence of more than one exten-
&%ive eigenvalu¢ O(N°% ] whenN—x is equivalent to RSB
is true in the mean-field picture, as can be verified in a mean-
field analytic computation at the first step of RB.
Combining perturbation theory and droplets ideas, it was
also possible to concludfethat in a non-RSB scenario the
second eigenvalue should not decay slower than

The quenched couplings; ;=J;;, are drawn from a sym-
metric probability distribution function of zero average and
varianceJ?. It is customary to takéd as unit of temperature,
and then to setl=1: this is what we do. Two popular
choices are the one of a binary probability distributiin
==1 or to takeJ Gaussian distributed. Here, we draw the
guenched random couplings from a Gaussian distributio
(also in order to allow a direct comparison with Ref).1Bor
all the relevant observables one first computes the therm
average on a single realization of the couplifgample,
hereafter denoted by- - -), and later the average with re-
spect to the couplings is performéde denote this disorder
average by an overbarThe model(1) undergoes a spin-
glass transitiotf at T,=1.80+0.01.

The average over the couplings; induces a(trivial) Ao~L7¢ (7)
gauge invariancd in the model. If one chooses a generic . . Ty
binary value for each lattice sitey = + 1, disorder averaged Where the droplet exponent in four dimensions® i

quantities are invariant under the transformation =0.6-0.8. Actually when the lattice size is larger than the
correlation lengtiiwhich might not be the case in the achiev-
Jii—=mdijn, (2 able numerical simulatiof$, the droplet picture predicts a
much faster decay.
oi— N0 . 3 Using the parallel tempering optimized Monte Carlo

schemé' the authors of Ref. 13 calculated the matix, (a
computational task of the ordé&rP, since the lack of trans-
lational invariance prevents the use of the fast Fourier trans-
form). They eventually diagonalized the matrix. When com-
paring results for different disorder realizations, they found
N 7 o very broad distributions of eacty,, which they tried to char-

{oioy)=mmi{oioj)= 4, @ acterize by their mean and typical value. They found that the
(that is true since this relation is valid for every valuezgf  mean and the typical value of the second eigenvalue were
explaining why nobody before Ref. 13 paid much attentiondecreasing as a function of lattice size in a double logarith-
to this quantity. Reference 13 wisely suggested to look at thenic plot for lattices up to 6 (see Fig. 7 of the second part of
correlation function of a single sample asnatrix, ¢; ;. We  Ref. 13. Because of this they argued about the absence of
define herec; ; as RSB in the model.

Now let ; be a random number that takes with probabijity

the values*=1. If one considers the spin-spin correlation
function, the symmetry(3) yields the disappointing result
that

- 1 A. An effective approach to the study of the density matrix
¢ij=—p(oioy) (5) . o . .
udying the spin-spin correlation functiop; by analyz-
L Studying th lation functiop; b [

(notice the difference in the facttr P with the definition of ing theusual density of stateg,

Refs. 13 and 16 The gauge transformatiof3) acts on the 1 N
matrix ¢; ; as a unitary transformation. Therefore, contrary to 9N == SA—\p) ®)
the individual elements df;  itself, the spectrum of; ; does ! Ni=1
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would not work: because of the constrai{@) in the N— o r 2

limit gy,(\) is a normalized distribution function with sup- r E gL

port in the[ 0,1] interval with mean value 0. In other words, FEy, . )= D 1_k:1 (13)
this definition implies that in the presence of a generic finite B = | Trc /]

number of extensive eigenvalues for large volunggé\) . . .
= 5(\), which does not contain much information. and minimize it, using the values of tl§g at the minimum as

In our case, we cannot weight all the eigenvalues with thén approximation to the eigenvalues. This method can be
same weight: to consider a sensible indicator, we can decideecked on small lattices, using the direct computation of

to use as weighk, itself, and to define the modified density nd its eigenvalues. It turns olgee Sec. Il B and Iythat it
of states of the matrix; ; is extremely precise for the first eigenvalue,, but that

already for the second eigenvalue, the systematic error is
N at the 10% level using 12 replicas. Fortunately we can do
gN)= D MSN—Ny). (9)  better than setting ,~¢,. Let us define dfurthern modified

k=1 density of states in which we duot include the first eigen-
It is natural to expecg(\) to converge in thé—co limitto ~ value,
a function containing a continuous part, plug éunction at
A=0 [because a numbe®(N) of eigenvalues will be ~
O(N™1)]. A calculation at one step of RS@Ref. 16 tells us g(k)—kzz MM =) (14
that this is indeed the case. Moreover, in the one-step calcu-
lation, the continuous part does not show any gap, and its moments are
covers all the interval between=0 and A=qga, the L
Edwards-Anderson order parameteee also Fig. 1 of the f NI =[Tre T I— N =7 15
second of Ref. 18 Therefore, from the point of view of 0 9= 1= A 19

checking replica symmetry breaking, to concentrate on the

behavior of individual eigenvalues does not look the bestvhere we have denoted hY, the subtracted traces. The
strategy. Instead, as it is customary when analyzing densitjjght-hand side of Eq(15) can be accurately calculated using

of state€?? one can start by considering the moments for sthe gost function, and contains all the information that we

N

single disorder realizatiory;(\): need. _ o
One could still worry about the bias induced by our use of
1 N . the cost function to obtaik,. This can be easily controlled,
fo d)\)\rgJ()\)=k21 AN P=Tre L (100 because, since the eigenvalues of the matrix decrease fast

with K it turns out that we are always in a situation where we
Our main observation is that we can compute the trace of thean expect that\, is clearly and substantially larger than
rth power of the matrixc, usingr real replicag(independent A, ;. On the other hand, if the bias an is 8, it will affect
systems, with the same realizations of quenched random cour, of a quantity of the order of §r\}~ 1. Therefore, a bias
plingsJ; ;). Let us define the overlap between replieaand  dominated subtracted trace will be characterized by succes-

a;. sive moments ofj(\) being very similarsee Sec. Il B
N
1
qa| ,ajE N 2 O.i(al)o_i(al) . (11) 0.96134 T T T T T T ,i_ -} .i_
i=1 1
096132
Then it is easy to show that I ]l I I I
0.96130 F 1
Trc'=(g%%q%2-3 g 21), (12 0.96128 - {

Thus, for instance, thélisconnectedspin-glass susceptibil- 0.96126
. . 2 . . . < .
ity is xsg=NTrc*. In this language the relationship be-

tween nonvanishing eigenvalues and the phase transitiol 096124 |
from the paramagnetic to the spin-glass phase is very direct o | ISING FM
It is now very easy to suggest a numerical strategy of )
orderLP: Perform the Monte Carlo simulation in parallel for 0.96120 | { L=4 1

a discrete number of replicas, and use them to calculate th
appropriate number of moments @f(\). Then use this in-
formation to extract the largest eigenvalues of the matrix
Unfortunately standard methods for extracting the probabil-
ity density from its moment$ use orthogonal polynomials.  FiG. 1. Cost function(13) estimate of the largest eigenvalue of
Clearly, given the limited numerical accuracy that we canthe density matrix, as a function of the number of calculated mo-
expect to obtain for the W', the use of orthogonality meth- ments[see Eq.(15)], for the four-dimensional Ising model at
ods is out of the question. We have instead used a crudef0.5T, in aL =4 lattice. The horizontal lines correspond(td?)
method. We define a cost function plus or minus one standard deviation.

2 =T
0.96118 — - - . . m'=0.961313 -
3 4 5 6 7 8 9 10 11
# of moments
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0.96114 — T T T T T T T T 2.5¢-05 T T T T T T
s S S S
0.96112 { i
2e-05
0.96110 ]-.L
0.96108 - _ 1.5¢-05 ISING FM
< 3
0.96106 | 1e-05 |
0.96104 ISING FM
5¢-06 | { :
0.96102 { , L=8 . {
096100 L — . m=0961I33 T 0 L— - . . . .
3 4 5 6 7 8 9 10 11 3 4 5 6 7 8
# of moments L
FIG. 2. As in Fig. 1 but for & =8 lattice. FIG. 4. As in Fig. 3 but forAs.

Let us conclude this section by discussing the different  B. A simple example: The ferromagnetic Ising model
scenarios that could describe the scaling of the subtracted
traces, in thel—oo limit. For a standard replica symmetric
model, such as the usual ferromagnetic Ising model, we e
pectA,£O(L‘rD). In a RSB scenario, we expect that for
L—o A, ; tends to a finite valu¢and that finite-volume

corrections due to the eigenvalues that create &pe) in = . . :
g(\) are of the formO(L "), while other finite-size cor- T;=6.68025-0.00004)]. We have simulated in parallél

rections due to critical fluctuations may not decay so]fast this case W'thOUt parallel tem'perlng, bUt, with an usual heat-
Finally, in a droplet scenario, if one assumes that the sub2@th updating scheme2 replicas of lattices of linear size

tracted traces are controlled by, then Eq.(7) implies that L=3,4,6 and 8, for X 10° Monte Carlo steps, starting from
a fully ordered state.

In this simple case the density matrex; can be very
easily diagonalized. The correlation functiom;o;) depends

with =0.6-0.8 in four dimensiongrecall that this is an only on the distance between the two spis; x;, and thus

upper bound in the decay af). The only way out from this "€ €igenvectors are proportional to fikpx;], where the
scaling behavior in a droplet picture would be to assume thatave vectors verify the usual quantization rules on a peri-
a number of the ordeic? (¢>0) of eigenvalues is of order ogw box. It is straightforward to show that the corresponding
L~? we are not aware of any argumé&hthat would imply ~ €igenvalues are

the existence of a divergent number of critical eigenvalues in

a droplet picture.

As a first check, we have studied the ferromagnetic Ising
)J_nodel in four dimensions. Here the Hamiltonian has the
same form as in Eq.1), but with J; j=1. We have studied
the system aT =0.5T to prove the deep broken phase with
small correlation lengtlthe critical temperature is hére

A=0(L™"), (16)

elk-Xi o | ?
o I
35e-05 — . . ; . . Ne= ;1 /D ) (17)
3e-05
TABLE I. Relevant parameters of the Monte Carlo simulation.
2.5¢-05 | ] is the lattice sizeNgampesdenotes the number of realizations of the
Gaussian couplings. The number of Monte Carlo stégat-bath
N 2e-05 | ] sweep plus temperature swap attengiscarded for thermalization
< was Niperma: Ng is the number of temperatures simulated in the
1.5e-05 | ISING FM i parallel tempering. Finally, measures were taken dufig.sures
Monte Carlo steps.
1e-05 | I {
5e-06 | i L Nsamples Nmeasures Nthermal Nﬁ
0 1 1 1 1 1 1
3 4 5 6 7 8 3 2800 50000 50000 20
L 4 2800 50000 50000 20
6 1208 150000 150000 40
FIG. 3. The subtracted trac&,, as a function of the lattice size, 8 362 100000 200000 40

for the four-dimensional ferromagnetic Ising model.
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1 : . : : . . : : 0.610 — . . : : . : : .
0.9 L=3 ———
0‘8 FE R8s . L=g 0.605 | SO, SO NS SO S S I
' poto b T
0.7 0.600 | i ]
= 0.6 0.595 | ]
S 05 <
0.4 0.590 T=10 .
0.3 0.585 | -
0.2
0.1 0.580 | I
true
0 1 1 1 1 1 0.575 1 1 1 1 1 1 1 1 1
0.8 1 12 14 16 18 2 22 24 3 4 5 6 7 8 9 10 11
T # of moments
FIG. 5. The Binder cumulant as a function of temperature, for FIG. 7. Disorder averaged cost functigh3) estimate of the
the 4D Edwards-Anderson model on lattices of linear &ize3, 4,  largest eigenvalue of the density matrix, as a function of the number
6, and 8. of calculated momentgsee Eq.(15)], for the four-dimensional

Edwards-Anderson spin glass @t=1.0, on aL=4 lattice. The
and, given the ferromagnetic character of the interaction, thiorizontal lines correspond to a numerical diagonalization of the

largest eigenvalue correspondske 0 (the magnetization, Matrixc; ; with standard deviation.

M):
able to resolve such a small bias, given the comparatively
Ny =(M2). (18) large errors reported in Figs. 1 and 2: this is due to the strong
: . statistical correlations between THj and our estimate for
In Figs. 1 and 2 we compare our estimatengffor the p

L=4 andL =8 lattices, as obtained from the magnetization™"

(the horizontal band corresponds(fd?) plus or minus one

standard deviation and from the cost functio(i3). As both IIl. THE MONTE CARLO SIMULATION

figures show, 12 replicas are surely enough to obtain agree- ) ) ) )

ment within errors, which in this case are particularly small. . e have studied by numerical simulations the four-
Having gained confidence in our procedure we can novfimensional Edwards-Anderson spin glass with quenched

check evolution of the subtracted traces with increasing latf@ndom Gaussian coupling$). We have simulated 12 real

tice size (Figs. 3 and % The two values are very small replicas |nlparallel using a heath-bath4algi)r|thm and parallel

decreasing with the lattice size and almdstt not com- tempering’” on lattices of volume § 4 6, and &. The

pletely) compatible with zero. One should notice tidaf and ratio between full lattice heat bath sweeps and the parallel

A, are compatible within errors for all lattice sizése will temperlng temperature swap attempt was o_ne to one. For all

see in Sec. IV that in the spin-glass case the situation is ver{}tiC€ Sizes, the largest temperature Wiag,=2.7 and the

differend: in the ferromagnetic case the rei4 and A, are owest temperaturd ,,;,=0.8 (see Table | for details of the

so small that they are completely dominated by the bias dis-

cussed in the preceding section. One might ask how we wer: 0.04000 I ' ' ' ' T o4 ——
2 L=6 +x-
1.1 i i i i i i i i 0.03500 | - L=8 +—e- 1
L=8
1 o L=¢6: |
TR e L=4 - 0.03000 .
0.9 L=3 J
0.8 , & 0.02500 EA .
~ 07 1
) 0.02000 | : ]
o L Y 4
Q' 06 o i R £ z R
05 N 0.01500 .
“m B " . . - I b
04 ] CfF 8§ @ % 3§
0.01000 1 1 1 1 1 i i 1 1
03 1 3 4 5 6 7 8 9 10 1
0.2 . . . . . . . . # of moments
08 1 12 14 16 18 2 22 24 26
T FIG. 8. Disorder averagedA, for the four-dimensional
Edwards-Anderson spin glass®t 1.0 as a function of the number
FIG. 6. As in Fig. 5, but for thé; cumulant. of computed moments, on different lattice sizes.
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H i 0.0035 T T T T T
5 _— ] I
L o
L 0.003
4 -— o —
3:_ o B 0.0025 1 { EA
£ : L
- I 0.002 |
2 — —
E B 0.0015 | I
o : ) < 0.001 1 1 1 1 1 1
0.0 1.0 3 4 5 6 7 8
L
FIG. 9. Probability distribution of the largest eigenvalue as cal- FIG. 11. As in Fig. 10 but forA_3_

culated in the four-dimensional Edwards-Anderson spin glags at

=1.0, for lattices of linear size=4, 6, and 8. The number of bins i . .
in the L=8 lattice was reduced by a factor of 2 due to the smallerthe 66 quantities. Fo_r traces of higher ord(iari,+vi/ei ff‘.‘iez consid
number of samples ered only 12 contributions of the formy"'™"q'"*'"<..
' -q'*t" fori=1,2,...,12(the sums are understood modulo
12). In addition to the Tr¢") we have measured the Binder

numerical simulation The probability of accepting a tem- cumulant(see Fig. 5. We have also measured a second adi-
perature swap was kept at the 60% level. For each reDl'C%ensional operator

we have measured the permanence histogram at each tem-
perature, and we checked its flathess. We controlled thermal-
ization by checking that there was no residual temporal evo- Trcs
lution in the Trc!? and in the Binder cumulant. 3= == 3
The main scope of the simulation has been to obtaah, Tr (Tres)
for r=2,...,12, using Eq(11). There is an awfully large
number of equivalent ways of forming the trace which we show in Fig. 6.
g?122q?23 . g% @ when one may choose the replica la-  The theory of finite-size scalif§ predicts that adimen-
bels a; out of twelve possible values. One needs to find asional quantities close to criticality are functions lo¥"(T
compromise between loosing statistics and wasting too much T¢), where v is the thermal critical exponeriin D=4,
time in a given disorder realizatiofthe disorder average is one find$! »=1.0+0.01)]. The crossing points signals the
the critical factor controlling statistical ernorOur compro-  spin-glass transition alT,=1.8 with similar accuracy for
mise has been the following: given the special importance oboth the cumulants that we have considered. At the lowest
this observablé we have calculated the 12(22)/2 pos- temperature that we have reachedthe6 andL =8 lattices
sible overlapsj®1-32, and we have computed B{) using all seem to be far enough from the critical region.

(19

0.024 . . . . . . IIIf
0022 | 1 . 0.020— d ]
0.02 ¢ 1 i I
0.015— - —
0.018 EA r
[
3 I S i
0.016 ] o'oml ]
0.014 | C
0012 | 00081~ R
! i
0.01 — ' : ' : : S N B R N B
3 4 5 6 7 8 70.0000 0.0025 0.0050 0.0075 0.0100 0.0125
L L
FIG. 10. Disorder averaged subtracted tra?pfor the four- FIG. 12. Disorder averaged_2 as a function ofL~P for the
dimensional Edwards-Anderson spin glass at temperdtarg.0 as  four-dimensional Edwards-Anderson spin glassTat1.0. The
a function of the lattice size. dashed line is for a linear best fit, excluding the 3 data.
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FIG. 13. Disorder averagedl, as a function ofL2? for the
four-dimensional Edwards-Anderson spin glassTat1.0. The
droplet & exponent is chosen at its lower bounés=0.6. The
dasheddotted line is for a linear best fit, excludin@ncluding the
L=3 data point.

IV. NUMERICAL RESULTS
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of x?/dof either when we include the=3 data or when we
exclude themwe used=0.6, the lowest possible valthe

L=3, yx?/dof=17, (22)

L=4, y?/dof=14. (23

V. CONCLUSIONS

We have proposed and used a numerical approach to
study the density matrix in spin glasses. The original idea of
Ref. 13, namely, that of introducing the density matrix in the
spin-glasses context, allows one to make interesting
calculations® and might even prove useful to the definition
of pure states in finite volum@e®

Our method is a further step beyond the useful approach
of Ref. 13. The technology we have developed can be safely
applied to the study of different spin models. The main limi-
tation of our approach is not related to the use of the density
matrix, but to the extreme difficulty in thermalizing large

To compare our results with the results of Ref. 13 we willlattices deep in the spin-glass phase. Should an efficient

specialize here t&=1.0. We start by checkingee in Fig. 7

Monte Carlo algorithm be discovered, our method would be

the L=4 datd the cost function procedure on small lattice imnmediately available, because the computational burden
sizes. In this case the estimate)of that one can obtain by grows only asL.P. Very recently, another optimized method
using the cost function can be compared directly with thehas been proposed by Hukushima and ibalsing their

result obtained by diagonalization of we find a fair agree-

method they were able to study “(ttices, using binary

ment. For larger lattices we can only check the convergenceather than Gaussian couplingshich considerably speeds

of A, as a function of the number of momerisee Fig. 8

up the simulatioh

Again, the convergence looks fast enough for our purposes. Using our approach, we have been able to show that the

We show in Fig. 9 the probability distribution af;. The low
eigenvalues tail is basically lattice size independent.

We show our results foh, and A5 in Figs. 10 and 11,
respectiverA_2 is a factor of 10 larger thaﬁ_3: our data are
not bias dominate¢see Secs. Il A and Il B The fact that the
data point forA in the L=28 lattice is above thé =6 one

and at two standard fluctuations from compatibility may be
due either to a strong fluctuation, or to a first glimpse of bia:

effects. If one sticks to the bias hypothesis, the effectAgn

can be(very conservatively estimated as the difference of

the L=6 andL=8 data points corresponding t,. This
difference is well covered by the error in the=8 data point
for A,.

S

density-matrix approach for the four-dimensional Edwards-
Anderson model with Gaussian couplings in lattices up to
L=8, and temperatures down 16=1.0 (~0.56T.), is fully
consistent with a RSB picture, and that there are serious
difficulties with the scaling laws predicted by the alternative
droplet model. In this respect, the results are in full agree-
ment with the availables studfesf the Parisi order param-
eter, and with the recent results of Ref. 17. A word of caution
Is in order: the(postulatedl impossibility of getting thermo-
dynamic data in the reachable lattices siZesffects equally

the P(q) approach and the density-matrix approach. How-
ever our data for adimensional quantities, such as the Binder
or B; cumulant, seem very hard to reconcile with the possi-
bility of a purely finite-volume effect.

After the above considerations, we can now proceed to
the infinite-volume extrapolation. In Fig. 12 we plot the data
for A, as a function ol ~P. It is evident that, letting aside
theL=3 data, a linear fit is appropriate. The extrapolation to
infinite L is definitely different from zero:
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