
For Peer Review

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–14
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Interoperating Grid Infrastructures with the GridWay
Metascheduler

Ismael Marı́n Carrión∗, Eduardo Huedo, Ignacio M. Llorente

{i.marin, ehuedo}@fdi.ucm.es, llorente@dacya.ucm.es
Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de

Madrid, Spain

SUMMARY

This paper describes the GridWay Metascheduler and exposes its latest and future developments, mainly
related to interoperability and interoperation. GridWay enables large-scale, reliable and efficient sharing of
computing resources over grid middleware. To favor interoperability, it shows a modular architecture based
on drivers, which access middleware services for resource discovery and monitoring, job execution and
management, and file transfer. This paper presents two new execution drivers for BES and CREAM services,
and introduces a remote BES interface for GridWay. This interface allows users to access GridWay’s job
metascheduling capabilities, using the BES implementation of GridSAM. Thus, GridWay now provides to
end-users more possibilities of interoperability and interoperation. Copyright c⃝ 2010 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: GridWay; Metascheduling; Interoperation; Grid

1. INTRODUCTION

The GridWay metascheduler [1] enables large-scale, reliable and efficient sharing of computing
resources over different grid middlewares, such as Globus Toolkit [2, 3] or gLite [4]. Computing
resources can be managed by different Local Resource Management Systems (LRMS) within a
single organization or scattered across several administrative domains. GridWay provides a single
point of access to the computing resources, from in-house systems to partner grid infrastructures and
public Cloud providers. GridWay has been adopted by several research project and computational
infrastructures, and has been successfully applied on different applications from science and
engineering, such as life-sciences [5], aerospace [6], fusion physics [7] or computational chemistry
[8].
There are a number of grid infrastructures and middlewares that have been developed over the

last years. The interaction between these technologies is still a challenging problem, because they
are not interoperable. Therefore, interoperation techniques are needed to allowVirtual Organizations
(VO) to access the resources provided by different grids. By grid interoperability we refer the ability
of grid technologies to interact directly via common open standards, while grid interoperation is a
short term achievement to get grids to work together fast [9]. Interoperation techniques include the
use of adapters, translators and gateways.

∗Correspondence to: Departamento de Arquitectura de Computadores y Automática, Facultad de Informática,
Universidad Complutense de Madrid, Spain

Copyright c⃝ 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

Page 7 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2 I. MARÍN CARRIÓN ET AL.

GridWay provides support for some of the few established standards for interoperability,
like Distributed Resource Management Application API (DRMAA) [10] [11], Job Submission
Description Language (JSDL) [12] or Web Services Resource Framework (WSRF) [13], but in the
meanwhile, it also provides components to allow the interoperation of different grid technologies
[14], like drivers, acting as adapters for different grid services, and the GridGateWay, which is
a WSRF Globus Resource Allocation Manager (GRAM) service encapsulating an instance of
GridWay, thus providing a gateway to resource management services [15].
Moreover, the driver-based architecture of GridWay can provide access even to heterogeneous

non-grid resources. In fact, systems with high capacity computing power like HPC are
not commonly accessible through any grid middleware. A prototype based on the GridWay
metascheduler was proposed to access grid and non-grid computing resources in a seamless manner
[16].
The purpose of this paper is to present the latest developments in GridWay concerned to

achieve more interoperability and interoperation at the metascheduler level. This way, GridWay
now provides support for the Basic Execution Service (BES) standard [17] both as a client and as
a server, by means of a new execution driver and a new interface respectively. It also provides a
new execution driver to interoperate with the Computing Resource Execution And Management
(CREAM) service.
The use of adapters (like the BES and CREAM drivers) and, in particular, gateways (like the

BES interface) to achieve interoperation could negatively affect performance, but the benefits of
increasing the number of available resources could also overcome these drawbacks [14, 15].
Regarding related work, there are many efforts to interoperate different grid middlewares (for

example, Globus and UNICORE [18]) and approaches based on portals [19] or meta-brokers [20]
providing access to resources outside one grid domain, as well as interoperable metaschedulers
[21]. It is also interesting to see efforts like InterGrid [22], which proposes the creation of InterGrid
Gateways (IGGs) to interconnect the existing different grid islands, or GridX1 [23], which is a
whole grid that could be accessed as another resource of the LHC Computing Grid (LCG). Finally,
a remarkable work is being done by the Grid Interoperation Now (GIN) community group of the
OpenGrid Forum (OGF), which coordinates interoperation efforts in support of applications that use
resources in different grids [9]. In fact, the BES interface presented in this paper was demonstrated
in the last meeting of this group [24].
This paper is structured as follows. Section 2 presents the European grid scenario that explains

the need for interoperability and interoperation on European Grid infrastructures, and how this
work contributes to enhance these capabilities of grid infrastructures. Section 3 introduces the
GridWay technology that underlies this work. Sections 4 and 5 present the two new execution
drivers, CREAM and BES respectively, which provide more interoperation and interoperability
to end-users. Section 6 presents a GridWay DRMAA Connector for GridSAM that enables the
interoperable submission and control of jobs by means of its BES interface. Section 7 exposes the
experiments performed with the new drivers. Finally, Section 8 presents the forthcoming work and
sums up the main conclusions.

2. THE EUROPEAN GRID SCENARIO

The European Grid Infrastructure (EGI)† mission is to enable access to computing resources for
European researchers from all fields of science. EGI hosts the Unified Middleware Distribution
(UMD), which is a integrated set of software components offered for deployment on the EGI
production infrastructure. Services included in a UMD release should be fully interoperable,
where applicable through the adoption of established standards. To this end, EGI defines a
set of capabilities that should be met by UMD services, including the existing standards to
provide them. For example, the BES specification is recommended for the job submission

†http://www.egi.eu/

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 8 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.egi.eu/

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 3

(Compute.JobExecution) and metascheduling (Compute.JobScheduling) capabilities. Currently,
different gLite, UNICORE, Advanced Resource Connector (ARC) and Globus services are part
of UMD, providing different sets of capabilities.
EGI provides an infrastructure which is accessible by means of different VO’s and it is based

on the federation of individual National Grid Infrastructures (NGI). For example, the Ibergrid
collaboration allows the interoperation between the Spanish NGI (ES-NGI) and Portuguese
NGI (PT-NGI) thanks to an agreement between Spain and Portugal. This initiative manages
the deployment of distributed services on both NGIs in the framework of EGI. The Ibergrid
infrastructure will be used later in the experiments of Section 7.1 Among other grid services, the
EGI infrastructure provides information services, such as the Berkeley Database Information Index
(BDII), execution services (CREAM and GRAM) and data transfer services (GridFTP).
The Initiative for Globus in Europe (IGE)‡ project collaborates actively with EGI, for example,

providing new technology components to EGI’s UMD. IGE is a project funded by the European
Union’s 7th Framework Programme to coordinate European Globus activities, and it is currently
supporting the development of the GridWay metascheduler. This component is scheduled for
inclusion in the next UMD releases. IGE also provides a testbed composed of Globus services
distributed across multiple organizations. The IGE testbed has a GridWay instance acting as a
single point of access to the IGE computing resources. This testbed will be also used later in the
experiments of Section 7.2.
This work is motivated by the need of interoperation and interoperability on grid environments

like those presented above. In particular, this paper presents novel developments that enable the
interoperation at the metascheduler layer. These innovative proposals improve the interoperation
capabilities of GridWay by means of the provision of CREAM and BES execution drivers, and
a BES interface. The CREAM execution driver enables the submission of jobs to infrastructures
managed by the gLite middleware, while the BES one allows GridWay to submit jobs to BES
endpoints. Finally, the BES interface enables the remote access to GridWay’s metascheduling
capabilities through a standard interface.

3. THE GRIDWAY METASCHEDULER

GridWay consists of a modular structure formed by User Interface (UI), GridWay core,
scheduler module, and Middleware Access Drivers (MAD). This modular architecture favors the
interoperation with new grid services, by the aggregation of new MADs that serve as adapters to
these services. Fig. 1 shows the main components of the GridWay architecture.
The UI consists of LRMS-like commands that enable the end user to submit, kill, reschedule,

monitor and synchronize jobs. GridWay manages the execution of single, array and workflow jobs,
and tasks can be parallel. Jobs are described according to the job templates, where job requirements
are specified (executable, arguments, resource requirements, etc.). The UI also provides a DRMAA
implementation to develop distributed applications [25]. This includes C, Java, Perl, Python and
Ruby bindings.
The GridWay core is responsible for job execution management and resource brokering,

providing advanced scheduling, and job failure and recovery capabilities. GridWay core implements
a Request Manager (RM) which manages all end user requests. The Dispatch Manager (DM)
manages all submission stages and watches over the efficient execution of the job. GridWay core
has other three modules that, through their own MADs, interface with the available services in
the grid infrastructure. They are the Information Manager (IM) that performs the host discovery
and monitoring, the Execution Manager (EM) that is responsible for job execution management
and monitoring, and the Transfer Manager (TM) that is competent for file staging, remote working
directory set-up and remote host clean-up.

‡http://www.ige-project.eu/

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 9 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.ige-project.eu/

For Peer Review

4 I. MARÍN CARRIÓN ET AL.

Figure 1. The GridWay architecture.

The information MADs interface with the monitoring and discovery services. GridWay supports
dynamic host information data services, such as the Globus Monitoring and Discovery System
(MDS) and the gLite BDII, as well as static mechanisms based on host description files. The
execution MADs interface with the job management services. GridWay provides execution MADs
that interface with Globus GRAM, gLite CREAM and OGF BES. Also, there is a Secure Shell
(SSH) driver for non-grid resources. Finally, the transfer MADs are used to interface with the
available data transfer services, such as Globus GridFTP and Global Access to Secondary Storage
(GASS), as well as Secure Copy (SCP) for non-grid resources. Once there is a set of drivers
implementing basic operations for a given middleware, the users benefit for the whole set of features
implemented in the core, like array jobs (e.g. for parametric studies), jobs with dependencies (e.g.
to create workflows), parallel jobs, advanced scheduling policies, etc.
The scheduling process is totally decoupled from the GridWay core. This process is implemented

by a scheduler module that performs all scheduling decisions for jobs considering the available grid
resources. This way it is possible to implement scheduling policies adapted to specific deployments
without modifying the core [26]. In order to perform the scheduling decisions, the scheduler
considers information coming from the list of pending jobs, the resource match-making results,
the current resource behavior and the past grid usage. The information gathered from the previous
sources is combined with a given scheduling policy to prioritize jobs and resources. GridWay
combines job and resource prioritization policies to implement a wide range of scheduling schemes.

4. EXECUTION DRIVER FOR CREAM

The gLite CREAM service is a simple, lightweight service for job management operation at the
Computing Element (CE) level, which is the gLite service representing a computing resource [27].
CREAM accepts job submission requests, described using the Job Description Language (JDL), as
well as other job management and monitoring requests.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 10 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 5

The new CREAM driver for GridWay provides an abstraction with the resource management
layer of the gLite middleware that enables to submit, control and monitor the execution of jobs.
Thus, it implements basic operations to interface with CREAM. They are:

• INIT: Initializes the driver.
• SUBMIT: Submits a job to a CREAM resource. This operation expects as arguments, a job
identifier chosen by GridWay, the CREAM resource contact and the job manager to submit
the job, and the path to the JDL file that describes the job.

• POLL: Queries the status of a job. This operation expects as argument the job identifier.
• RECOVER: Recovers a job, taking as input the identifier returned by the CREAM resource
after the job has been successfully submitted.

• CANCEL: Cancels the job identified by the given identifier.
• FINALIZE: Finalizes the driver.

Each operation returns SUCCESS or FAILURE and other complementary information, such as
the job state after a POLL operation or the CREAM job identifier after a SUBMIT operation.
The GridWay core calls these driver operations by means of the EM module, hiding the CREAM

implementation details to the end user and the core. GridWay core schedules synchronous polling
operations in order to track the job status and control when the job execution is finished. However,
CREAM does not currently support asynchronous notifications about job state changes, so it
depends on synchronous job state polling. Notifications were previously provided by the CEMonitor
[28], but now it has been replaced by a new queryEvent operation in CREAM that returns
a selected range of particular events, like job state changes. Submission operations integrate the
delegation of credentials to each CE. Credential renewal is automatically carried out by the driver.
MADs are configured and selected via the GridWay configuration interface. CREAM uses JDL

to describe the jobs, so GridWay job templates must be translated to JDL. This is carried out by the
GridWay core, and it is absolutely transparent for the end-users.
The CREAM driver along with the BDII MAD enables the interoperation with the job

management services and the monitoring and discovering services provided by the gLite
middleware. The Dummy transfer MAD is used to achieve full interoperation with gLite. This driver
can be configured to use a GridFTP or GASS server on the client, so that job transfers are initiated
from the worker node.

5. EXECUTION DRIVER FOR OGSA-BES

The Open Grid Services Architecture (OGSA) BES specification [17] defines Web Services
interfaces for creating, monitoring, and controlling computational entities such as UNIX or
Windows processes, Web Services or parallel programs, called activities, within a defined
environment. Clients define activities using JSDL [12]. A BES implementation executes each
activity that it accepts on an appropriate computational resource, which may be a single computer, a
cluster managed through a resource manager, a Web Service hosting environment, or even another
BES implementation [29].
Given the importance of interoperating with BES-enabled endpoints, a BES driver for GridWay

has been developed, which has been tested against the BES implementation provided by GridSAM.
The new BES driver provides an abstraction layer that enables users to submit jobs to BES
interfaces, and control and monitor the execution of jobs. Thus, this driver implements the same
basic operations discussed in the previous section that hide the BES implementation details to the
end user and the core.
As all of the other MADs, GridWay core is responsible for calling the driver functions by

asynchronous requests of end users (e.g. job submitting or canceling operations), or by requests
managed by the EM module (e.g. job polling). The EM is also responsible for generating a valid
JSDL file given a GridWay job template describing the job requirements.
The BES driver can be used with the Dummy transfer MAD and any information MADs for

performing all stages during the job life-cycle in GridWay.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 11 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6 I. MARÍN CARRIÓN ET AL.

6. BES INTERFACE FOR GRIDWAY: A GRIDWAY DRMAA CONNECTOR FOR GRIDSAM

This section describes the remote BES interface for GridWay. This approach follows the same
model as GridGateWay [15], which represents a WSRF GRAM interface for GridWay. The
BES implementation of GridSAM§ [30] is used for this purpose. GridSAM provides a job
submission interface for submitting computational jobs to many commonly used distributed
resource management systems, but does not provide metascheduling capabilities. Thus, a GridWay
connector for GridSAM has been developed which allows the interoperation of both systems. Fig.
2 shows the architecture of the developed gateway that enables the submission and control of jobs
to GridWay by means of a BES interface.

Figure 2. Architecture of the BES remote interface for GridWay.

This component enables the remote access to GridWay’s metascheduling capabilities through
a BES interface, allowing users to access services provided by different grid middlewares.
Communication between the connector and a GridWay instance is based on the DRMAA API.
The DRMAA API is an specification [10] for the submission and control of jobs to one or more
LRMS. This way, the provided functionality is the same as provided by the Java DRMAA binding
of GridWay, which acts as the local GridWay interface. The GridWay DRMAA Connector is
responsible for handling the input JSDL document to extract all job requirements and then set up
the DRMAA job attributes.
Under the end-user’s point of view, jobs are submitted to a BES endpoint and are managed,

monitored and executed as usual. Job attributes and requirements must be described in JSDL,
according to the BES specification, which is already supported in many submission portals and
tools.
The main advantage of this remote interface is that it provides a standards-based gateway to

otherwise non-interoperable grid infrastructures and it lets the federation of grid resources under a
single point of access.

7. EXPERIMENTS

This section presents a set of experiments for evaluating the newGridWayMADs. A first experiment
is concerned with the evaluation of GRAM2 and CREAM drivers using the EGI infrastructure. Other
experiments will evaluate the GRAM5 and BES drivers using the IGE testbed.
A parametric application that computes the first 10million prime numbers is used for performing

the experiments. Each experiment consists of submitting one array of 100 jobs, where each one
computes a different range of 100, 000 points. Thus, the job template for each job in the array is:

EXECUTABLE = primes.exe
ARGUMENTS = ${PARAM} ‘expr ${PARAM} + 100000‘
STDOUT_FILE = stdout_file.${TASK_ID}
STDERR_FILE = stderr_file.${TASK_ID}
RANK = CPU_MHZ

§http://www.omii.ac.uk/wiki/GridSAM

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 12 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.omii.ac.uk/wiki/GridSAM

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 7

The range of points is calculated using the GridWay variable PARAM, which is calculated
as start + increment * TASK_ID, where the values for start and increment are
specified by the user when submitting the array job (in this case, 1 for start and 100, 000

for increment), while TASK_ID is the task identifier within the job array. Both variables are
substituted at run time with its corresponding value. Each job in the array will provide a partial
output showing the prime numbers between the two given integers. Finally, the job template uses the
rank expression to prioritize resources with higher CPU speed. Those candidates with higher rank
are used first to execute the jobs. The rank is a numerical expression evaluated for each candidate
host, and so those candidates with higher ranks are used first to execute the jobs.

7.1. Using GRAM and CREAM resources in Ibergrid

For the first test, a GridWay instance has been configured to access to the computing resources
provided by the Information and Communication Technology (ICT) VO of Ibergrid, which is part
of the EGI infrastructure, as explained before. Next, the specific configuration of the MADs for the
Ibergrid ICT VO is explained.

IM_MAD = bdii_cream:gw_im_mad_bdii:-s bdii-egee.bifi.unizar.es
-q (GlueCEAccessControlBaseRule=VO\:ict.vo.ibergrid.eu)

(GlueCEImplementationName=CREAM):dummy:cream
IM_MAD = bdii_gram2:gw_im_mad_bdii:-s bdii-egee.bifi.unizar.es

-q (GlueCEAccessControlBaseRule=VO\:ict.vo.ibergrid.eu)
(GlueCEImplementationName=LCG-CE):dummy:gram2

EM_MAD = gram2:gw_em_mad_gram2::rsl_nsh
EM_MAD = cream:gw_em_mad_cream::jdl
TM_MAD = dummy:gw_tm_mad_dummy:-g

Two BDII MADs (identified by bdii_cream and bdii_gram2) that interfaces with a BDII
server provided by the EGI infrastructure have been configured. They filter the computing resources
by VO and implementation of the job management interface (CREAM and GRAM). Thus, the
GridWay instance only use those resources registered in the VO. Each information MAD associates
an execution MAD and a transfer MAD to access every discovered host. In particular, the first
information MAD associates a Dummy transfer MAD and a CREAM MAD (identified by dummy
and cream), while the second associates the same transfer MAD and a GRAM2 MAD (identified
by dummy and gram2).
The CREAM MAD enables the interoperation with the CREAM services provided by the

grid, using the jdl generation function to describe the jobs. The GRAM2 MAD enables the
interoperation with the pre-WS GRAM services available in the infrastructure. This driver uses
the rsl_nsh generation function to describe job requests according to the Resource Specification
Language (RSL) specification, and it is used for resources with non-shared home directories.
Finally, the Dummy MAD, configured to use GASS, is employed to perform the data staging

between local and remote hosts. A GASS server is started on the client and the transfer is initiated
on the remote system using a Globus transfer client. Therefore, data transfers are performed through
a reverse server model. This driver is intended to be used with those resources which do not have a
shared home.
Table I shows the CREAM resources available for this test, and Table II shows the GRAM2

resources available.

The experiment has been carried out under some limitations in order to avoid stressing the
resources and to spread the submission of jobs among resources. The job policies let only 30

simultaneously submitted jobs per user, and 10 submitted jobs per resource. Jobs are preferentially
submitted to resources providing faster CPUs, as expressed in the GridWay job template.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 13 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8 I. MARÍN CARRIÓN ET AL.

Table I. CREAM resources available in the ICT VO of Ibergrid.

HOSTNAME ORGANIZATION LOCATION MHZ Nodes LRMS
grid001 UPORTO Porto 2400 22 SGE
ce03 IFIC Valencia 3000 848 PBS
ce IAA Granada 3200 512 PBS

gridce01 IFCA Santander 2000 2320 SGE
ce02 IFIC Valencia 3000 368 PBS

nuredduna UIB Palma de Mallorca 2700 480 SGE
cream01 BIFI Zaragoza 2667 420 PBS

grid-glite-ce-00 SGAI-CSIC Madrid 2000 1655 PBS
creamc BIFI Zaragoza 2667 420 PBS

ngiescream I3M-UPV Valencia 2400 102 PBS

Table II. GRAM2 resources available in the ICT VO of Ibergrid.

HOSTNAME ORGANIZATION LOCATION MHZ Nodes LRMS
ce-sge-ngi CETA-CIEMAT Trujillo 2000 112 SGE
ce01 UPORTO Porto 2400 34 SGE
grid001 UPORTO Porto 2400 22 SGE
egeece03 IFCA Santander 2334 2320 SGE
ce01 UNICAN Santander 2400 530 PBS
ce01 ESAC-ESA Madrid 3200 28 SGE
ce01 CIEMAT Madrid 3200 284 PBS
ce04 INGRID Lisbon 2300 16 SGE
ce2 CESGA Santiago de Compostela 2200 500 SGE

Figures 3 and 4 show the results obtained. Fig. 3 shows the total number of jobs submitted to
each host, presenting how many jobs were successfully completed or had to be rescheduled due to
different causes. Fig. 4 shows the evolution of the completed jobs over time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

ce03−IFIC ce02−IFIC nuredduna−UIB cream01−BIFI creamc−BIFI ce01−UNICAN ce01−CIEMAT

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs

Resources

Successful
Failed

Pending for too long

Figure 3. Successful and rescheduled jobs for each resource.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 14 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 9

GridWay has been configured to reschedule failed jobs until they are successfully completed.
Failure reasons include nodes temporarily down for maintenance or transient network problems
[31]. Fig. 3 shows that 16 jobs failed, giving a failure rate of 13.68%. In fact, some resources (such as
nuredduna at UIB or creamc at BIFI) presented configuration problems at the moment of performing
the experiments, causing all the submitted jobs to fail and to be rescheduled to other sites. Moreover,
GridWay implements an exponential linear back-off strategy, temporarily discarding for submission
resources with failures. Submitted jobs that remain pending on the remote resource, without starting
execution, longer than the threshold specified by the user (10 minutes) are also rescheduled to other
resources. This is usually caused by a wrong number of free slots calculated by GridWay due to
unpublished internal policies of LRMS, or due to outdated monitoring information.

Su
cc

es
sf

ul
ly

 c
om

pl
et

ed
 jo

bs

Time (s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

Figure 4. Jobs completed over time.

As shown in Fig. 4, the whole experiment took about 47 minutes, and all the jobs consumed
around 9 hours and 27minutes of aggregated CPU time. Execution time of the sequential application
is approximately 3 hours and 36 minutes, when it runs on one of the fastest machines (ce03 at
IFIC), thus resulting in a speedup of 4.6. However, this speedup is affected by overheads, such as
service communications or unavoidable resource failures, that are always present in a grid [31].
The limitations introduced in order to avoid stressing the resources influence this result as well.
Therefore, this speedup would of course be greater if more jobs were submitted, if jobs needed
more time to complete, and if more resources had been used.
Table III shows the average time per job spent on overheads and execution. Overhead time

represents the sum of the time waiting for the LRMS to run the job (queue waiting time), the
time spent on transferring input/output files (transfer time) and other overheads produced by the
middleware services or by GridWay. The execution time corresponds to the time spent while the job
is being executed by the LRMS. Rescheduling times and other overheads due to failed jobs are not
considered in the next table.

Jobs usually spent considerable time waiting for a resource to run. This means a low
resource availability at the moment of performing the experiment, and causes a degradation of
the performance. Also, since CREAM does not provide asynchronous notifications about the

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 15 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10 I. MARÍN CARRIÓN ET AL.

Table III. Average time (s) per job spent for each computing resource.

HOSTNAME-ORG. OVERHEAD EXECUTION TOTAL
ce03-IFIC 303.47 118.03 421.5

cream01-BIFI 460.92 100.46 561.38
ce01-UNICAN 182.93 365.79 548.71
ce01-CIEMAT 108.64 695.71 804.36

termination of job execution, the driver has to periodically query the execution service about the
job status. This introduces a significant overhead, especially when jobs do not require much time to
complete. Finally, average transfer time is approximately 30 seconds per job, which is very similar
for all resources because sites are connected by research and education networks.

7.2. Using BES and GRAM resources in IGE

For the second experiment, a GridWay instance has been configured to access to the computing
resources provided by IGE testbed. Next, the specific configuration of the MADs for this case is
explained.

IM_MAD = static_gram:gw_im_mad_static:-l etc/ige.static:gridftp:gram5
IM_MAD = static_bes:gw_im_mad_static:-l etc/bes.static:dummy:bes
EM_MAD = gram5:gw_em_mad_gram5::rsl
EM_MAD = bes:GW_em_mad_bes::jsdl
TM_MAD = gridftp:gw_tm_mad_ftp:
TM_MAD = dummy:gw_tm_mad_dummy:-u gsiftp\://gridway.fdi.ucm.es

Two static information MADs (identified by static_gram and static_bes), based on files
including host lists and descriptions, have been configured. The first information MAD provides
information about the GRAM5 resources, and associates a GridFTP MAD and a GRAM5 MAD
(identified by gridftp and gram5). The second information MAD provides information about a
BES instance providing access to a single machine (bes at UCM), and associates a Dummy transfer
MAD and a BES MAD (identified by dummy and bes).
The GRAM5MAD gives access to the execution services provided by the IGE testbed. It uses the

rsl generation function in order to describe the job requests according to the RSL specification.
The BES MAD gives access to the BES instance. It uses jsdl as generation function to describe
the job request according to the JSDL standard.
Finally, the GridFTP and Dummy MADs have been configured. On the one hand, the GridFTP

driver is used to perform the data staging of jobs submitted to the GRAM resources at the IGE
testbed. This MAD interfaces with the GridFTP servers on the remote hosts. On the other hand, the
Dummy driver, using GridFTP in the client host, has been configured for managing the data staging
of the BES endpoint.
Table IV shows the GRAM5 resources provided by the IGE testbed, while Table V shows the

BES resource available for this experiment.

Table IV. GRAM5 resources provided by the IGE testbed.

HOSTNAME ORGANIZATION LOCATION MHZ Nodes LRMS
gt5-ige LRZ Munich 2533 2 SGE
udo-gt01 TUDO Dortmund 1995 44 PBS
ve NIKHEF Amsterdam 2993 8 Fork
gt1 EPCC Edinburgh 1600 1 Fork
gt01 PSNC Poznan 2328 1 PBS
gt-ige UTCN Cluj-Napoca 2000 4 Fork

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 16 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 11

Table V. BES resource.

HOSTNAME ORGANIZATION LOCATION MHZ Nodes LRMS
bes UCM Madrid 1995 2 Fork

This experiment has been carried out under the same limitations than the previous experiment.
As in the previous case, figures 5 and 6 show the results obtained. Fig. 5 shows the total number of
jobs submitted to each host, presenting how many jobs were successfully completed or had to be
rescheduled due to different causes. Fig. 6 shows the evolution of the completed jobs over time.

 0

 10

 20

 30

 40

 50

bes−UCM gt−UTCN gt5−LRZ gt01−TUDO ve−NIKHEF

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs

Resources

Successful
Failed

Pending for too long

Figure 5. Successful and rescheduled jobs for each resource.

Fig. 5 presents a better failure rate (1.92%) than in the previous experiment, with only two failed
jobs. This is mainly because the nodes provided by the IGE testbed are not very busy, reducing job
failures due to performance degradations and so it favors less job reschedulings due to performance
degradations. Most of the jobs were dispatched to GRAM resources, which have a higher rank than
the BES endpoint.
The whole experiment took about 32 minutes, as Fig. 6 shows, and all the jobs consumed around

7 hours and 56 minutes of aggregated CPU time. Execution time of the sequential application is
approximately 4 hours and 15 minutes, when it runs on one of the testbed fastest machines (gt5 at
LRZ), thus resulting in a speedup of 7.97. This experiment required less time to complete since the
IGE testbed is not overloaded. Then, jobs spend less time in the remote queue, and the computing
nodes provide better performance conditions for running the jobs. The other reason to explain
the better performance is that the GRAM driver is able of receiving notifications about the job
state changes. This causes that the GridWay jobs are terminated as soon as the driver receives the
notification that they are done. In the previous case, jobs managed by the CREAM driver have to
wait to query the grid services about the job state returns a done state. This overhead is especially
significant when jobs do not require much time to complete.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 17 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12 I. MARÍN CARRIÓN ET AL.

Su
cc

es
sf

ul
ly

 c
om

pl
et

ed
 jo

bs

Time (s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6. Jobs completed over time.

Table VI shows the average time due to overheads (queue and transfer times) and the average
execution time. Rescheduling times and other overheads due to failed jobs are not considered on the
next table.

Table VI. Average time (s) per job spent for each computing resource.

HOSTNAME-ORG. OVERHEAD EXECUTION TOTAL
bes-UCM 97.25 268.75 366
gt-UTCN 41.34 494.08 535.42
gt5-LRZ 43.59 128 171.58
gt01-TUDO 41.75 223.57 265.32
ve-NIKHEF 44.78 364.75 409.54

The average computing time per job is considerably less than the previous case, which is basically
due to jobs spent less time waiting for the LRMS to execute it, and that the GRAM driver is able
of receiving notifications about the termination of job execution, as previously said. However, the
BES specification does not support notifications, and so it introduces an important overhead for jobs
submitted to the BES endpoint at UCM. Average transfer time is 34 seconds which is again quite
similar for all resources as sites are also connected by research and academic networks.

8. CONCLUSIONS AND FORTHCOMINGWORK

This paper has introduced the GridWay metascheduler and presented the new execution drivers that
provide an unprecedented level of interoperation with grid infrastructures. These include a new
driver that enables the submission and control of jobs through CREAM, which is the computing
resource execution service of gLite, and another one that enables the submission and control of
BES activities. The use of these drivers is completely transparent to the end-users. Moreover, the
paper has shown how to configure GridWay to access to different grid infrastructures.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 18 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

INTEROPERATING GRID INFRASTRUCTURES WITH THE GRIDWAYMETASCHEDULER 13

Also, a new BES interface for GridWay has been described. This enables the remote access to
GridWay’s metascheduling capabilities through a standard interface. The implementation of BES
is provided by GridSAM, where a GridWay DRMAA Connector allows the interoperation of both
systems.
Two experiments have been performed to evaluate the interoperation of GRAM2 and CREAM

resources, using the EGI infrastructure, and the interoperation of the BES and GRAM5 resources
using the IGE testbed. The results indicate a better performance in the second case, because the IGE
testbed presented a lower usage load, and because GRAM provides notifications about job state
changes, while CREAM and BES don’t. Therefore, we are exploring ways to improve job state
polling operations in CREAM and BES.
Other future work is to adapt the current DRMAA implementation provided by GridWay, based

on the first version of the specification, according to the new DRMAA v2 specification. The new
version is adapted to the latest improvements of LRMS and includes new features, such as resource
monitoring, session persistence or a new sub-state concept similar to BES.

ACKNOWLEDGEMENTS

This research was supported by Consejerı́a de Educación of Comunidad de Madrid, Fondo Europeo
de Desarrollo Regional (FEDER) and Fondo Social Europeo (FSE) through MediaNet Research
Program S2009/TIC-1468, by Ministerio de Ciencia e Innovación through research grant TIN2009-
07146, and by European Union through IGE project RI-261560.
Finally, the authors would like to thank to the institutions participating on the IGE testbed and

Ibergrid infrastructure for allowing the use of their computational facilities.

REFERENCES

1. Huedo E, Montero RS, Llorente IM. Grid architecture from a metascheduling perspective. Computer 2010; 43 (7):
51-56.

2. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications 1997; 11 (2): 115-128.

3. Foster I. Globus Toolkit version 4: Software for service-oriented systems. Journal of Computer Science and
Technology 2006; 21 (4): 513-520.

4. Laure E, Fisher SM, Frohner A, et al. Programming the grid with gLite. Computational Methods in Science and
Technology 2006; 12 (1): 33-45.

5. Garzón JI, Huedo E, Montero RS, Llorente IM, Chacon P. Adaptation of a multi-resolution docking bioinformatics
application to the grid. Journal of Software 2007; 2 (2): 1-10.

6. Ibarra A, Tapiador D, Huedo E, Montero RS, Gabriel C, Arviset C, Llorente, IM. On-the-fly XMM-Newton
spacecraft data reduction on the grid. Scientific Programming 2006; 14 (2): 141-150.

7. Rodriguez-Pascual M, Guasp J, Castejon F, Rubio-Montero AJ, Llorente IM, Mayo R. Improvements on the fusion
code FAFNER2. IEEE Transactions on Plasma Science 2010; 38 (9): 2102-2110.

8. Badia RM, Du D, Huedo E, Kokossis A, Llorente IM, Montero RS, de Palol M, Sirvent R, Vazquez C. Integration
of GRID superscalar and GridWay metascheduler with the DRMAA OGF standard. Proceedings of the 14th
International Conference on Parallel Processing (Euro-Par 2008) (Lecture Notes in Computer Science, vol. 5168),
Luque E, Margalef T, Benı́tez D (eds.). Springer: Berlin, 2008; 445-455.

9. Riedel M, Laure E, Soddemann T, et al. Interoperation of world-wide production e-Science infrastructures.
Concurrency and Computation: Practice and Experience 2009; 21 (8): 961-990.

10. Rajic H, Brobst R, Chan W, et al. Distributed Resource Management Application API Specification. Technical
Report GFD-R.022, Open Grid Forum, 2004.

11. Tröger P, Rajic H, Haas A, Domagalski P. Standardization of an API for distributed resource management systems.
Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007), May
2007. IEEE Computer Society: Washington, DC, 2007; 619-626.

12. Anjomshoaa A, Brisard F, Drescher M, Fellows D, Ly A, McGough S, Pulsipher D, Savva A. Job Submission
Description Language (JSDL) Specification. Technical Report GFD-R.056, Open Grid Forum, 2005.

13. Foster I, Czajkowski K, Ferguson DF, Frey J, Graham S, Maguire T, Snelling D, Tuecke S. Modeling and managing
state in distributed systems: The role of OGSI and WSRF. Proceedings of the IEEE 2005; 93 (3): 604-612.

14. Huedo E, Montero RS, Llorente IM. A modular meta-scheduling architecture for interfacing with pre-WS and WS
grid resource management services. Future Generation Computer Systems 2007; 23 (2): 252-261.

15. Huedo E, Montero RS, Llorente IM. A recursive architecture for hierarchical grid resource management. Future
Generation Computer Systems 2009; 25 (4): 401-405.

16. Cofiño AS, Blanco C, Fernández-Quiruelas V. Aggregation of grid and HPC resources for running huge experiments
in climate and weather prediction. 8th European Geosciences Union General Assembly (Geophysical Research
Abstracts , vol. 13), April 2011.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 19 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14 I. MARÍN CARRIÓN ET AL.

17. Foster I, Grimshaw A, Lane P, et al. OGSA Basic Execution Service. Technical Report GFD-R.108, Open Grid
Forum, 2008.

18. Snelling D, van den Berghe S, von Laszewski G, Wieder P, Breuer D, MacLaren J, Nicole D, Hoppe HC. A
UNICORE-Globus interoperability layer. Computing and Informatics 2002; 21 (4): 399-411.

19. Kacsuk P. P-GRADE portal family for grid infrastructures. Concurrency and Computation: Practice and Experience
2011; 23 (3): 235-245.

20. Kertész A, Kacsuk P. Grid meta-broker architecture: Towards an interoperable grid resource brokering service.
Proceedings of the 12th International Conference on Parallel Processing (Euro-Par 2006) (Lecture Notes in
Computer Science, vol. 4375), Lehner W, Meyer N, Streit A, Stewart C. (eds.). Springer: Berlin, 2007; 112-115.

21. Bobroff N, Fong L, Kalayci S, Liu Y, Martı́nez JC, Rodero I, Sadjadi SM, Villegas D. Enabling interoperability
among meta-schedulers. Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2008), May 2008. IEEE Computer Society: Washington, DC, 2008; 306-315.

22. Assunçāo MD, Buyya R, Venugopal S. Intergrid: A case for internetworking islands of grids. Concurrency and
Computation: Practice and Experience 2008; 20 (8): 997-1024.

23. Agarwal A, Ahmed M, Berman A, et al. GridX1: A Canadian computational grid.Future Generation Computing
Systems 2007; 23 (5): 680-687.

24. Crouch S. Interoperability with GridWay. Grid Interoperation Now (GIN) Community, 34th Open Grid Forum,
March 2012.

25. Herrera J, Huedo E, Montero RS, Llorente IM. Developing grid-aware applications with DRMAA on Globus-based
grids. Proceedings of the 10th International Conference on Parallel Processing (Euro-Par 2004) (Lecture Notes in
Computer Science, vol. 3149), Danelutto M, Vanneschi M, Laforenza D. (eds.). Springer: Berlin, 2004; 429-435.

26. Leal K, Huedo E, Llorente IM. Performance-based scheduling strategies for HTC applications in complex federated
grids. Concurrency and Computation: Practice and Experience 2010; 22 (11): 1416-1432.

27. Aiftimiei C, Andreetto P, Bertocco S, et al. Design and implementation of the gLite CREAM job management
service. Future Generation Computer Systems 2010; 26 (4): 654-667.

28. Aiftimiei C, Andreetto P, Bertocco S, et al. Using CREAM and CEMonitor for job submission and management in
the gLite middleware. Journal of Physics: Conference Series 2010; 219 (6): 062001.

29. Smith C, Kielmann T, Newhouse S, Humphrey M. The HPC basic profile and SAGA: standardizing compute grid
access in the Open Grid Forum. Concurrency and Computation: Practice and Experience 2009; 21 (8): 1053-1068.

30. McGough AS, Leeb W, Dasc S. A standards based approach to enabling legacy applications on the grid. Future
Generation Computer Systems 2008; 24 (7): 731-743.

31. Huedo E, Montero RS, Llorente IM. Evaluating the reliability of computational grids from the end user’s point of
view. Journal of Systems Architecture 2006; 52 (12): 727-736.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 20 of 20

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

