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In the context of fðRÞ theories of gravity, we study the evolution of scalar cosmological perturbations in

the metric formalism. Using a completely general procedure, we find the exact fourth-order differential

equation for the matter density perturbations in the longitudinal gauge. In the case of sub-Hubble modes,

the expression reduces to a second-order equation which is compared with the standard (quasistatic)

equation used in the literature. We show that for general fðRÞ functions the quasistatic approximation is

not justified. However, for those functions adequately describing the present phase of accelerated

expansion and satisfying local gravity tests, it provides a correct description for the evolution of

perturbations.
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I. INTRODUCTION

The present phase of accelerated expansion of the
universe [1] poses one of the most important problems
of modern cosmology. It is well-known that ordinary
Einstein’s equations in either a matter or radiation
dominated universe give rise to decelerated periods of
expansion. In order to have acceleration, the total energy-
momentum tensor appearing on the right-hand side of the
equations should be dominated at late times by a hypo-
thetical negative pressure fluid usually called dark energy
(see [2] and references therein).

However, there are other possibilities to generate a
period of acceleration in which no new sources are in-
cluded on the right-hand side of the equations, but instead
Einstein’s gravity itself is modified [3]. In one of such
possibilities, new functions of the curvature scalar [fðRÞ
terms] are included in the gravitational action, which
amounts to modifiying the left-hand side of the equations
of motion. Although such theories are able to describe the
accelerated expansion on cosmological scales correctly,
they typically give rise to strong effects on smaller scales.
In any case viable models can be constructed to be com-
patible with local gravity tests and other cosmological
constraints [4].

The important question that arises is therefore how to
discriminate dark energy models from modified gravities
using present or future observations. It is known that by
choosing particular fðRÞ functions, one can mimic any
background evolution (expansion history), and, in particu-
lar, that of �CDM. Accordingly, the exclusive use of
observations such as high-redshift Hubble diagrams from
supernovae type Ia [1], baryon acoustic oscillations [5] or
CMB shift factor [6], based on different distance measure-

ments which are sensitive only to the expansion history,
cannot settle the question of the nature of dark energy [7].
However, there exist observations of a different type

which are sensitive, not only to the expansion history, but
also to the evolution of matter density perturbations. The
fact that the evolution of perturbations depends on the
specific gravity model, i.e., it differs in general from that
of Einstein’s gravity even though the background evolution
is the same, means that observations of this kind will help
distinguish between different models for acceleration.
In this work we study the problem of determining the

exact equation for the evolution of matter density pertur-
bations for arbitrary fðRÞ theories. Such a problem had
been previously considered in the literature ([8–13]) and
approximated equations have been widely used. They are
typically based on the so-called quasistatic approximation
in which all the time derivative terms for the gravitational
potentials are discarded, and only those including density
perturbations are kept [14]. From our exact result, we will
be able to determine under which conditions such an
approximation can be justified.
The paper is organized as follows: In Sec. II, we briefly

review the perturbations equations for the standard�CDM
model. In Sec. III we obtain the perturbed equations for
general fðRÞ theories. In Sec. IV we describe the procedure
to obtain the general equation for the density perturbation.
In Sec. V we summarize the main viability condition for
fðRÞ theories. Section VI is devoted to the study of the
validity of the quasistatic approximation. In Sec. VII
we apply our results to some particular models, and fi-
nally in Sec. VIII we include the main conclusions. In
Appendixes A and B we have also included complete
expressions for the relevant coefficients of the perturbation
equation.

II. DENSITY PERTURBATIONS IN �CDM

Let us start by considering the simplest model for dark
energy described by a cosmological constant �. The cor-
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responding Einstein’s equations read

G�
� ¼ �8�GT�

� ����
�; (1)

where G�
� is the Einstein’s tensor and T�

� is the energy-
momentum tensor for matter.

In the metric formalism for the �CDM model it is
possible to obtain a second-order differential equation for
the growth of matter density perturbation � � ��=�0. Let
us consider the scalar perturbations of a flat Friedmann-
Robertson-Walker metric in the longitudinal gauge and in
conformal time:

ds2 ¼ a2ð�Þ½ð1þ 2�Þd�2 � ð1� 2�Þðdr2 þ r2d�2
2Þ�;
(2)

where � � �ð�; ~xÞ and � � �ð�; ~xÞ are the scalar
perturbations. From this metric, we obtain the first-order
perturbed Einstein’s equation:

�G�
� ¼ �8�G�T�

�; (3)

where the perturbed energy-momentum tensor reads

�T0
0 ¼ �� ¼ �0�; �Ti

j ¼ ��P�i
j ¼ �c2s�

i
j�0�

�T0
i ¼ ��Ti

0 ¼ �ð1þ c2sÞ�0@iv; (4)

with �0 the unperturbed energy density and v the potential
for velocity perturbations. We assume that the perturbed
and unperturbed matter have the same equation of state,
i.e., �P=�� � c2s � P0=�0, where cs ¼ 0 for matter per-
turbations. The resulting differential equation for � in
Fourier space is written as

�00 þH
k4 � 6~�k2 � 18~�2

k4 � ~�ð3k2 þ 9H 2Þ�
0

� ~�
k4 þ 9~�ð2~�� 3H 2Þ � k2ð9~�� 3H 2Þ

k4 � ~�ð3k2 þ 9H 2Þ � ¼ 0; (5)

where ~� � 4�G�0a
2 ¼ �H 0 þH 2 and H � a0=a

with prime denoting derivative with respect to time �.
We point out that it is not necessary to explicitly calculate
potentials � and � to obtain Eq. (5), but algebraic ma-
nipulations in the field equations are enough to get this
result. In the extreme sub-Hubble limit, i.e., k� � 1 or
equivalently k � H , (5) is reduced to the well-known
expression

�00 þH�0 � 4�G�0a
2� ¼ 0: (6)

In this regime and at early times, the matter energy
density dominates over the cosmological constant, and it
is easy to show that � solutions for (6) grow as að�Þ. At late
times (near today) the cosmological constant contribution
is not negligible and power-law solutions for (6) no longer
exist. It is necessary in this case to assume an ansatz for �.
One which works very well is the one proposed in [7,15]:

�ðaÞ
a

¼ e

R
a

ai
½�mðaÞ��1�d lna

: (7)

This expression fits with high precision the numerical
solution for � with a constant parameter � ¼ 6=11.

III. PERTURBATIONS IN fðRÞ THEORIES

Let us consider the modified gravitational action

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ fðRÞÞ; (8)

where R is the scalar curvature.1 The corresponding equa-
tions of motion read

G�� � 1
2g��fðRÞ þ R��fRðRÞ � g��hfRðRÞ þ fRðRÞ;��

¼ �8�GT��; (9)

where fRðRÞ ¼ dfðRÞ=dR. For the background flat
Robertson-Walker metric they read

3H 0

a2
ð1þ fRÞ � 1

2
ðR0 þ f0Þ � 3H

a2
f0R ¼ �8�G�0

(10)

and

1

a2
ðH 0 þ 2H 2Þð1þ fRÞ � 1

2
ðR0 þ f0Þ

� 1

a2
ðH f0R þ f00RÞ

¼ 8�Gc2s�0; (11)

where R0 denotes the scalar curvature corresponding to the
unperturbed metric, f0 � fðR0Þ, fR � dfðR0Þ=dR0, and
prime means derivative with respect to time �. A very
useful equation to use in the following calculations is the
(11) and (10) combination

2ð1þ fRÞð�H 0 þH 2Þ þ 2H f0R � f00R
¼ 8�G�0ð1þ c2sÞa2: (12)

Finally we have the conservation equation

�0
0 þ 3ð1þ c2sÞH�0 ¼ 0 : (13)

Using the perturbed metric (2) and the perturbed energy-
momentum tensor (4), the first-order perturbed equations,
assuming that the background equations hold, may be
written as

ð1þ fRÞ�G�
� þ ðR0�

� þr�r� � ��
�hÞfRR�R

þ ½ð�g��Þr�r� � ��
� ð�g�	Þr�r	�fR

� ½g��0 ð���
��Þ � ��

� g
�	
0 ð���

	�Þ�@�fR
¼ �8�G�T�

� ; (14)

1The Riemann tensor definition is R�
��	 ¼ @	�

�
���

@��
�
�	 þ �

�

	�



�� � �

�

��


�	, which has an opposite sign to
the one proposed in [16].
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where fRR ¼ d2fðR0Þ=dR2
0,h � r�r�, andr is the usual

covariant derivative with respect to the unperturbed
Friedmann-Robertson-Walker metric (see [16] for per-
turbed metric, connection symbols, and other useful per-
turbed quantities). Notice that unlike the ordinary Einstein-
Hilbert (EH) case, with second-order equations, this is a set
of fourth-order differential equations. By computing the

covariant derivative with respect to the perturbed metric ~r
of the perturbed energy-momentum tensor ~T

�
� , we find the

conservation equations

~r �
~T
�
� ¼ 0 (15)

which do not depend on fðRÞ.
For the linearized Einstein’s equations, the components

(00), ðiiÞ, ð0iÞ � ði0Þ, and (ij), where i, j ¼ 1, 2, 3, i � j,
in Fourier space, read, respectively,

ð1þ fRÞ½�k2ð�þ�Þ � 3H ð�0 þ�0Þ
þ ð3H 0 � 6H 2Þ�� 3H 0�� þ f0Rð�9H�

þ 3H�� 3�0Þ
¼ 2~��; (16)

ð1þ fRÞ½�00 þ�00 þ 3H ð�0 þ�0Þ þ 3H 0�

þ ðH 0 þ 2H 2Þ�� þ f0Rð3H��H�þ 3�0Þ
þ f00Rð3���Þ
¼ 2c2s ~��; (17)

ð1þ fRÞ½�0 þ�0 þH ð�þ�Þ� þ f0Rð2���Þ
¼ �2~�ð1þ c2SÞv; (18)

��� ¼ � fRR
1þ fR

�R; (19)

where �R is given by

�R ¼ � 2

a2
½3�00 þ 6ðH 0 þH 2Þ�þ 3H ð�0 þ 3�0Þ

� k2ð�� 2�Þ�: (20)

Finally, from the energy-momentum tensor conservation
(15), we get to first order:

3�0ð1þ c2sÞ � �0 þ k2ð1þ c2sÞv ¼ 0 (21)

and

�þ c2s
1þ c2s

�þ v0 þHvð1� 3c2sÞ ¼ 0 (22)

for the temporal and spatial components, respectively.
In a dust matter dominated universe, i.e., c2s ¼ 0, (21)

and (22) can be combined to give

�00 þH�0 þ k2�� 3�00 � 3H�0 ¼ 0; (23)

which will be very useful in future calculations.

IV. EVOLUTION OF DENSITY PERTURBATIONS

Our porpose is to derive a fourth-order differential equa-
tion for matter density perturbation � alone. This can be
performed by means of the following process.
Let us consider Eqs. (16) and (18) for a matter domi-

nated universe i.e., c2s ¼ 0, and combine them to express
the potentials� and� in terms of f�0;�0; �; �0g by means
of algebraic manipulations. The resulting expressions are
the following:

� ¼ 1

DðH ; kÞ
�
½3ð1þ fRÞH ð�0 þ�0Þ þ f0R�0 þ 2~���

� ð1þ fRÞðH � f0RÞ þ
�
ð1þ fRÞð�0 þ�0Þ þ 2~�

k2

�ð�0 � 3�0Þ
�
½ð1þ fRÞð�k2 � 3H 0Þ þ 3f0RH �

�

(24)

and

� ¼ 1

DðH ; kÞ
�
½�3ð1þ fRÞH ð�0 þ�0Þ � 3f0R�0

� 2~���½ð1þ fRÞH þ 2f0R� �
�
ð1þ fRÞð�0

þ�0Þ þ 2~�

k2
ð�0 � 3�0Þ

�
½ð1þ fRÞð�k2 þ 3H 0

� 6H 2Þ � 9H f0R�
�
; (25)

where

DðH ; kÞ � �6ð1þ fRÞ2H 3 þ 3H ½f02R
þ 2ð1þ fRÞ2H 0� þ 3ð1þ fRÞf0Rð�2H 2

þ k2 þH 0Þ: (26)

The second step will be to derive Eqs. (24) and (25) with
respect to � and obtain�0 and�0 algebraically in terms of
f�00;�00;�; �0; �00g. These last results can be substituted in
Eqs. (16) and (18) to obtain potentials � and � just in
terms of f�00;�00; �; �0; �00g. So at this stage we are able to
express, but we do not do here explicitly, the following:

� ¼ �ð�00;�00;�; �0; �00Þ;
� ¼ �ð�00;�00;�; �0; �00Þ;
�0 ¼ �0ð�00;�00;�; �0; �00Þ;
�0 ¼ �0ð�00;�00;�; �0; �00Þ;

(27)

where we mean that the functions on the left-hand side are
algebraically dependent on the functions inside the paren-
thesis on the right-hand side.
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The natural reasoning at this point would be to try to
obtain the potentials’ second derivatives f�00;�00g in terms
of f�; �0; �00g by an algebraic process. The chosen equa-
tions to do so will be (19) and (23), the first derivative with
respect to �. In (23) it is necessary to substitute � and �0
by the expressions obtained in (27), whereas in (19) the
first derivative may be sketched as follows:

�0 ��0 ¼ � fRR
1þ fR

�R0 þ
�
fRRf

0
R � f0RRð1þ fRÞ
ð1þ fRÞ2

�
�R:

(28)

Before deriving, we are going to substitute the �00
that appears in (19) by lower derivatives’ potentials
f�;�;�0;�0g, �, and its derivatives. To do so we consider
in (16) and (18) the first derivatives with respect to�where
the quantity v has been previously substituted by its ex-
pression in (21). Following this process we may express
�00 as follows:

�00 ¼ �00ð�;�;�0;�0;�; �0; �00Þ; (29)

and now substituting in (19) we can derive that equation
with respect to �. Solving a two algebraic equations sys-
tem with Eqs. (23) and (28) and introducing (27) we are
able to express f�00;�00g in terms of f�; �0; �00; �000g:

�00 ¼ �00ð�; �0; �00; �000Þ; �00 ¼ �00ð�; �0; �00; �000Þ:
(30)

We substitute the results obtained in (30) straightfor-
wardly in (27) in order to express f�;�;�0;�0g in terms
of f�; �0; �00; �000g. With the two potentials and their first
derivatives as algebraic functions of f�; �0; �00; �000g, we
perform the last step: we consider �ð�; �; �00; �000Þ and
derive it with respect to �. The result should be equal to
�0ð�; �; �00; �000Þ, so we only need to express together these
two results obtaining a fourth-order differential equation
for �. Note that this procedure is completely general to first
order for scalar perturbations in the metric formalism for
fðRÞ gravities.

Once this fourth-order differential equation has been
solved, we may go backward, and by using the results for
� we obtain f�00;�00g from (30) as functions of time.
Analogously from (27) the behavior of the potentials
f�;�g and their first derivatives could be determined.

The resulting equation for � can be written as follows:

	4;f�
iv þ 	3;f�

000 þ ð�2;EH þ 	2;fÞ�00 þ ð�1;EH þ 	1;fÞ�0

þ ð�0;EH þ 	0;fÞ� ¼ 0; (31)

where the coefficients 	i;f (i ¼ 1; . . . ; 4) involve terms

with f0R and f00R, i.e., terms disappearing if we take fR
constant. Equivalently,�i;EH (i ¼ 0, 1, 2) contain terms

coming from the linear part of f0 in R0.

It is very useful to define the parameter � � H =k since
it will allow us to perform a perturbative expansion of
the previous � and 	 coefficients in the sub-Hubble limit.
Other dimensionless parameters which will be used are

the following: �i � H 0ðiÞ=H iþ1 (i ¼ 1, 2, 3) and fi �
f0ðjÞR =ðH jfRÞ (j ¼ 1, 2).
Expressing the � and 	 coefficients with those dimen-

sionless quantities we may write

�i;EH ¼ X3
j¼1

�ðjÞ
i;EH i ¼ 0; 1; 2;

	i;f ¼
X7
j¼1

	ðjÞ
i;f i ¼ 3; 4;

	i;f ¼
X8
j¼1

	ðjÞ
i;f i ¼ 0; 1; 2;

(32)

where two consecutive terms in each series differ in the �2

factor. The expressions for the coefficients are too long to
be written explicitly. Instead, in the following sections we
will show different approximated formulas useful in cer-
tain limits.

V. VIABLE fðRÞ THEORIES

Results obtained so far are valid for any fðRÞ theory.
However, as mentioned in the introduction, this kind of
model is severely constrained in order to provide consistent
theories of gravity. In this section we review the main
conditions [9]:
(1) fRR > 0 for high curvatures [17]. This is the

requirement for a classically stable high-curvature
regime and the existence of a matter dominated
phase in the cosmological evolution.

(2) 1þ fR > 0 for all R0. This condition ensures the
effective Newton’s constant to be positive at all
times and the graviton energy to be positive.

(3) fR < 0 ensures ordinary general relativity behavior
is recovered at early times. Together with the con-
dition fRR > 0, it implies that fR should be a nega-
tive and monotonically growing function of R0 in
the range �1< fR < 0.

(4) jfRj � 1 at recent epochs. This is imposed by local
gravity tests [17], although it is still not clear what is
the actual limit on this parameter. This condition
also implies that the cosmological evolution at late
times resembles that of �CDM. In any case, this
constraint is not required if we are only interested in
building models for cosmic acceleration.

VI. EVOLUTION OF SUB-HUBBLE MODES AND

THE QUASISTATIC APPROXIMATION

We are interested in the possible effects on the growth of

density perturbations once they enter the Hubble radius in
the matter dominated era. In the sub-Hubble limit � � 1, it
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can be seen that the 	4;f and 	3;f coefficients are suppressed by �
2 with respect to 	2;f, 	1;f, and 	0;f, i.e., in this limit the

equation for perturbations reduces to the following second-order expression:

�00 þH�0 þ ð1þ fRÞ5H 2ð�1þ �1Þð2�1 � �2Þ � 16
a8
f4RRð�2 � 2Þk88�G�0a

2

ð1þ fRÞ5ð�1þ �1Þ þ 24
a8
f4RRð1þ fRÞð�2 � 2Þk8 � ¼ 0; (33)

where we have taken only the leading terms in the �
expansion for the � and 	 coefficients.

This expression can be compared with that usually
considered in literature, obtained after performing strong
simplifications in the perturbed equations—(16)–(19),
(21), and (22)—by neglecting time derivatives of � and
� potentials (see [14]). Thus in [10,18] the authors obtain

�00 þH�0 � 1þ 4 k2

a2
fRR
1þfR

1þ 3 k2

a2
fRR
1þfR

~��

1þ fR
¼ 0: (34)

This approximation has been considered as too aggressive
in [11] since neglecting time derivatives can remove im-
portant information about the evolution.

Note also that there exists a difference in a power k8

between those terms coming from the f part and those
coming from the EH part in (33). This result differs from
that in the quasistatic approximation where difference is in
a power k2 according to (34).

In order to compare the evolution for both equations, we
have considered a specific function ftestðRÞ ¼ �4R0:63,
whereH2

0 units have been used, which gives rise to a matter

era followed by a late-time accelerated phase with the
correct deceleration parameter today. Initial conditions in
the matter era were given at redshift z ¼ 485 where the EH
part was dominant. Results for k ¼ 600H0 are presented in
Fig. 1. We see that, as expected, both expressions give rise
to the same evolutions at early times (large redshifts)
where they also agree with the standard �CDM evolution.
However, at late times the quasistatic approximation fails
to correctly describe the evolution of perturbations.

Notice that the model example satisfies all the viability
conditions described in the previous section except for the
local gravity tests. As we will show in the following, it is

precisely this last condition jfRj � 1 that will ensure the
validity of the quasistatic approximation.
We will now restrict ourselves to models satisfying all

the viability conditions, including jfRj � 1.
In Appendix Awe have reproduced all the � and the first

four 	 coefficients for each � term in (31). These are the
dominant ones for sub-Hubble modes (i.e., � � 1) once
the condition jfRj � 1 has been imposed. Thus, keeping

only
P

4
j¼1 	

ðjÞ
i¼0;...;4;f and �ð1Þ

i¼0;1;2;EH as the relevant contri-

butions for the general coefficients, the full differential
equation (31) can be simplified as

c4�
iv þ c3�

000 þ c2�
00 þ c1�

0 þ c0� ¼ 0; (35)

where the c coefficients are written in Appendix B.
We see that indeed in the sub-Hubble limit the c4 and c3

coefficients are negligible and the equation can be reduced
to a second-order expression.
As a consistency check, we find that both in a matter

dominated universe and in�CDM all	 coefficients vanish
identically since f1, f2 � 0. For these cases, Eq. (31)
becomes Eq. (6) as expected. For instance, in the pure
matter dominated case, the � coefficients are constant,
and they take the following values: �1 ¼ �1=2, �2 ¼
1=2, �3 ¼ �3=4, and �4 ¼ 3=2.
Another important feature from our results is that, in

general, without imposing jfRj � 1, the quotient ð�1;EH þ
	1;fÞ=ð�2;EH þ 	2;fÞ is not always equal toH . In fact only

the quotients �ð1Þ
1;EH=�

ð1Þ
2;EH and 	ð1Þ

1;f=	
ð1Þ
2;f are identically

equal to H , which is in agreement with the �0 coefficient
in (6). However, for our approximated expressions it is true
that c1=c2 � H .
From expressions in Appendix B, the second-order

equation for � becomes

�00 þH�0 � 4

3

½6fRRk2
a2

þ 9
4 ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9
2�1��2

�2þ�2

q
Þ�½6fRRk2

a2
þ 9

4 ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9
2�1��2

�2þ�2

q
Þ�

½6fRRk2
a2

þ 5
2 ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24

25
�1þ�1

�2þ�2

q
Þ�½6fRRk2

a2
þ 5

2 ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24

25
�1þ�1

�2þ�2

q
Þ�
ð1� �1ÞH 2� ¼ 0; (36)

which can also be written as

�00 þH�0 � 4

3

ð6fRRk2
a2

þ 9
4Þ2 � 81

16 þ 9
2
2�1��2

�2þ�2

ð6fRRk2
a2

þ 5
2Þ2 � 25

4 þ 6�1þ�1

�2þ�2

ð1� �1ÞH 2� ¼ 0: (37)

EVOLUTION OF DENSITY PERTURBATIONS IN fðRÞ . . . PHYSICAL REVIEW D 77, 123515 (2008)

123515-5



Note that the quasistatic expression (34) is only recovered
in the matter era (i.e., forH ¼ 2=�) or for a pure �CDM
evolution for the background dynamics. Nevertheless in
the considered limit j fR j� 1 it can be proven using the
background equations of motion that

1þ �1 � �2 � 0 (38)

and therefore 2�1 � �2 � �2þ �2 � �1þ �1, which al-
lows simplifying expression (37) to approximately become
(34). This is nothing but the fact that for viable models the
background evolution resembles that of �CDM [9].

In other words, although for general fðRÞ functions the
quasistatic approximation is not justified, for those viable
functions describing the present phase of accelerated ex-
pansion and satisfying local gravity tests, it gives a correct
description for the evolution of perturbations.

VII. SOME PROPOSED MODELS

In order to check the results obtained in the previous
section, we propose two particular fðRÞ theories which
allow us to determine—at least numerically—all the quan-
tities involved in the calculations and therefore to obtain
solutions for (31). As commented before, for viable models
the background evolution resembles that of �CDM at low
redshifts and that of a matter dominated universe at high
redshifts, i.e., the quantity ðRþ fðRÞÞ=R tends to one in the
high-curvature regime. Nevertheless the fðRÞ contribution
gives the dominant contribution to the gravitational action
for small curvatures, and therefore it may explain the
cosmological acceleration. For the sake of concreteness
we will fix the model parameters imposing a deceleration
parameter today q0 � �0:6.

Thus, our first model (A) will be fðRÞ ¼ c1R
p.

According to the results presented in [12,19] viable models
of this type include both a matter dominated and late-time

accelerated universe provided the parameters satisfy c1 <
0 and 0< p< 1. We have chosen c1 ¼ �4:3 and p ¼
0:01 in H2

0 units. This choice does verify all the viability

conditions, including jfRj � 1 today. For the second
model (B), fðRÞ ¼ 1

c1R
e1þc2

, we have chosen c1 ¼ 2:5�
10�4, e1 ¼ 0:3, and c2 ¼ �0:22 also in the same units.
For each model, we compare our result (36) with the

standard �CDM and the quasistatic approximation (34)
(see Figs. 2 and 3). In both cases, the initial conditions are
given at redshift z ¼ 1000where � is assumed to behave as
in a matter dominated universe, i.e., �kð�Þ / að�Þ with no
k dependence. We see that for both models the quasistatic
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FIG. 3. �k with k ¼ 1:67 hMpc�1 for fðRÞ model B evolv-
ing according to (36), �CDM and quasistatic evolution given by
Eq. (34) in the redshift range from 1000 to 0. The quasistatic
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approximation gives a correct description for the evolution
which clearly deviates from the �CDM case.

In Fig. 4 the density contrast evaluated today was plotted
as a function of k for both models. The growing depen-
dence of � with respect to k is verified. This modified k
dependence with respect to the standard matter dominated
universe could give rise to observable consequences in the
matter power spectrum, as shown in [13], and could be
used to constrain or even discard fðRÞ theories for cosmic
acceleration.

VIII. CONCLUSIONS

In this work we have studied the evolution of matter
density perturbations in fðRÞ theories of gravity. We have
presented a completely general procedure to obtain the
exact fourth-order differential equation for the evolution
of perturbations. We have shown that for sub-Hubble
modes the expression reduces to a second-order equation.

We have compared this result with that obtained within the
quasistatic approximation used in the literature and found
that for arbitrary fðRÞ functions such an approximation is
not justified.
However, if we limit ourselves to theories for which

jfRj � 1 today, then the perturbative calculation for sub-
Hubble modes requires taking into account, not only the
first terms, but also higher-order terms in � ¼ H =k. In
that case, the resummation of such terms modifies the
equation which can be seen to be equivalent to the quasi-
static case but only if the universe expands as in a matter
dominated phase or in a �CDM model. Finally, the fact
that for models with jfRj � 1 the background behaves
today precisely as that of �CDM makes the quasistatic
approximation correct in those cases.
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APPENDIX A: � AND � COEFFICIENTS

Coefficients for the �iv term:

	ð1Þ
4;f ’ 8f4Rð1þ fRÞ6f41�2;

	ð2Þ
4;f ’ 72f3Rf

3
1�

4ð�2þ �2Þ;
	ð3Þ

4;f ’ 216f2Rf
2
1�

6ð�2þ �2Þ2;
	ð4Þ

4;f ’ 216fRf1�
8ð�2þ �2Þ3:

(A1)

Coefficients for the �000 term:

	ð1Þ
3;f ’ 8f4Rð1þ fRÞ5f41H �2½3þ fRð3þ f1Þ�; 	ð2Þ

3;f ’ 6f3Rf
2
1H �4f8f2ð�2þ �2Þ þ 4f1½12�1 þ 9�2 � 2ð9þ �3Þ�g;

	ð3Þ
3;f ’ �72f2Rf1H �6ð�2þ �2Þ½�4f2ð�2þ �2Þ þ f1ð19� 23�1 � 10�2 þ 4�3Þ�;

	ð4Þ
3;f ’ �216fRH �8ð�2þ �2Þ2½�2f2ð�2þ �2Þ þ f1ð7� 11�1 � 4�2 þ 2�3Þ�: (A2)

Coefficients for the �00 term:

�ð1Þ
2;EH ¼ 432ð1þ fRÞ10H 2�8ð�1þ �1Þð�2þ �2Þ3; �ð2Þ

2;EH ¼ 1296ð1þ fRÞ10H 2�10ð�1þ �1Þ2ð�2þ �2Þ3;
�ð3Þ
2;EH ¼ 3888ð1þ fRÞ10H 2�12ð�1þ �1Þ2ð�2þ �2Þ3; 	ð1Þ

2;f ’ 8f4Rð1þ fRÞ6f41H 2;

	ð2Þ
2;f ’ 88f3Rf

3
1H

2�2ð�2þ �2Þ; 	ð3Þ
2;f ’ 24f2Rf

2
1H

2�4ð�2þ �2Þð�28þ 2�1 þ 13�2Þ;
	ð4Þ

2;f ’ 72fRf1H 2�6ð�2þ �2Þ2ð�14þ 4�1 þ 5�2Þ:

(A3)

Coefficients for the �0 term:
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�ð1Þ
1;EH ¼ 432ð1þ fRÞ10H 3�8ð�1þ �1Þð�2þ �2Þ3; �ð2Þ

1;EH ¼ 2592ð1þ fRÞ10H 3�10ð�1þ �1Þ2ð�2þ �2Þ3;
�ð3Þ
1;EH ¼ �7776ð1þ fRÞ10H 3�12ð�1þ �1Þ3ð�2þ �2Þ3; 	ð1Þ

1;f ’ 8f4Rð1þ fRÞ6f41H 3;

	ð2Þ
1;f ’ 88f3Rf

3
1H

3�2ð�2þ �2Þ; 	ð3Þ
1;f ’ 24f2Rf

2
1H

3�4ð�2þ �2Þð�28þ 2�1 þ 13�2Þ;
	ð4Þ

1;f ’ 72fRf1H 3�6ð�2þ �2Þ2ð�14þ 4�1 þ 5�2Þ:

(A4)

Coefficients for the � term:

�ð1Þ
0;EH ¼ 432ð1þ fRÞ10H 4�8ð�1þ �1Þð2�1 � �2Þð�2þ �2Þ3;

�ð2Þ
0;EH ¼ 1296ð1þ fRÞ10H 4�10ð�1þ �1Þ2ð�1þ 4�1 � �2Þð�2þ �2Þ3;

�ð3Þ
0;EH ¼ 3888ð1þ fRÞ10H 4�12ð�1þ �1Þ2ð2�2

1 � �2Þð�2þ �2Þ3;
	ð1Þ

0;f ’ � 16

3
f4Rð1þ fRÞ5f41H 4½2þ fRð2þ 2f1 � f2 � 2�1Þ � 2�1�;

	ð2Þ
0;f ’ 112f3Rf

3
1H

4�2ð�1þ �1Þð�2þ �2Þ;
	ð3Þ

0;f ’ 48f2Rf
2
1H

4�4ð�1þ �1Þð�2þ �2Þð�16þ 2�1 þ 7�2Þ;
	ð4Þ

0;f ’ 144fRf1H 4�6ð�1þ �1Þð�2þ �2Þ2ð�6þ 4�1 þ �2Þ:

(A5)

APPENDIX B: c COEFFICIENTS

c4 ¼ �fRf1½�fRf1k
2 � 3H 2ð�2þ �2Þ�3;

c3 ¼ �3fRH ½�fRf1k
2 � 3H 2ð�2þ �2Þ�ff2Rf31k4 þ 6f2H 4ð�2þ �2Þ2 þ f1H 2ð�2þ �2Þ½2fRf2k2

þ 3H 2ð�7þ 11�1 þ 4�2 � 2�3Þ� þ 2fRf1H 2k2ð�6þ 6�1 þ 3�2 � �3Þg;
c2 ¼ ½�fRf1k

2 � 3H 2ð�2þ �2Þ�2½f2Rf21k4 þ 5fRf1H 2k2ð�2þ �2Þ þ 6H 4ð�1þ �1Þð�2þ �2Þ�; c1 ¼ H c2;

c0 ¼ 2
3H

2ð�1þ �1Þ½�fRf1k
2 � 3H 2ð�2þ �2Þ�2½2f2Rf21k4 þ 9fRf1H 2k2ð�2þ �2Þ þ 9H 4ð2�1 � �2Þð�2þ �2Þ�:

(B1)
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