
UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA

Departamento de Sistemas Informáticos y Computación

TESIS DOCTORAL

Verificación de extensiones de Redes de Petri con precios, tiempo y

múltiples instancias

Verification of priced and timed extensions of Petri Nets with multile

instances

MEMORIA PARA OPTAR AL GRADO DE DOCTORA

PRESENTADA POR

María Rosa Martos Salgado

Director

Fernando Rosa Velardo

Madrid, 2016

© María Rosa Martos Salgado, 2015

Verificación de Extensiones de

Redes de Petri con Precios, Tiempo y

Múltiples Instancias

Verification of Priced and Timed Extensions

of Petri Nets with Multiple Instances

Tesis Doctoral

Maŕıa Rosa Martos Salgado

Departamento de Sistemas Informáticos y Computación

Facultad de Informática

Universidad Complutense de Madrid

Noviembre de 2015

Trabajo dirigido por el Doctor Fernando Rosa Velardo

Verificación de Extensiones de Redes

de Petri con Precios, Tiempo y

Múltiples Instancias

Verification of Priced and Timed

Extensions of Petri Nets with Multiple

Instances

Memoria que presenta para optar al t́ıtulo de Doctor en Informática

Maŕıa Rosa Martos Salgado

Dirigida por el doctor

Fernando Rosa Velardo

Departamento de Sistemas Informáticos y Computación

Facultad de Informática

Universidad Complutense de Madrid

Noviembre de 2015

Verificación de Extensiones de Redes de Petri con Precios,

Tiempo y Múltiples Instancias

Memoria presentada por Maŕıa Rosa Martos Salgado para optar al grado de

Doctor por la Universidad Complutense de Madrid, realizada bajo la dirección de

D. Fernando Rosa Velardo (Departamento de Sistemas Informáticos y

Computación, Universidad Complutense de Madrid).

Verification of Priced and Timed Extensions of Petri Nets with

Multiple Instances

Report presented by Maŕıa Rosa Martos Salgado to the Universidad Complutense

de Madrid in order to apply for the Doctor’s degree. This work has been

supervised by Fernando Rosa Velardo (Departamento de Sistemas Informáticos y

Computación, Universidad Complutense de Madrid).

Madrid, Noviembre de 2015

Agradecimientos

En primer lugar, quiero dar las gracias a mi director, Fernando Rosa, por haber

guiado mis primeros pasos en el mundo de la investigación. Gracias por su pacien-

cia y su disponibilidad. A menudo el entusiasmo con que una persona se emplea

en una tarea depende mucho del entusiasmo que le insuflan sus maestros, y en

este caso creo haber tenido un gran ejemplo.

Quiero agradecer a los informantes Ismael Rodŕıguez Laguna, Natalia Sidorova

y Giorgio Delzanno el haber contribuido a la mejora de la tesis con sus construc-

tivos comentarios y correcciones. Gracias también a la comisión de posgrado.

Gracias al DSIC, por ponerlo todo tan fácil y acogerme desde un primer mo-

mento. En particular, a David de Frutos y Narciso Mart́ı, que me han brindado

su ayuda siempre que la he necesitado. Gracias a los compañeros con los que he

compartido pasillo en el aula 15, y en especial a Gabi, por animarnos el uno al

otro.

Una de las experiencias más enriquecedoras que me ha dado la tesis son mis es-

tancias en Islandia. Muchas gracias a las personas que me acogieron e hicieron que

el tiempo que pasé alĺı fuera muy agradable, especialmente a Luca Aceto, Anna

Ingólfsdóttir e Ignacio Fábregas. Gracias también a Guillermo y a los Reykjavik

Raiders, por ayudarme a conocer lo maravillosa que es la gente islandesa.

Gracias a mis segundas familias, en las que siempre he encontrado el ánimo y

apoyo que me haćıa falta. A No Es Culpa Nuestra (galácticos, pinkis...), a mis

dos equipos (mates y CRC) y a mis Jonsuis.

Por último, gracias a mi familia, y sobre todo a mi padre, que desde pequeña

me enseñó a tener la confianza en mı́ necesaria para enfrentarme a cualquier reto.

Esta tesis ha sido financiada por la beca y contrato predoctoral de personal investi-

gador en formación UCM: BE43/11 y por los proyectos DESAFIOS10 TIN2009-14599-

C03-01, PROMETIDOS S2009/TIC-1465 y STRONGSOFT TIN2012-39391-C04-04.

vii

viii AGRADECIMIENTOS

Abstract

The model of Petri nets is a formal modeling language which is very suitable for the

analysis and verification of infinite-state concurrent systems. In particular, due to

its good decidability properties, it is very appropriate to study safety properties

over such systems. However, Petri nets frequently lack the expressiveness to

represent several essential characteristics of nowadays systems such as real time,

real costs, or the managing of several parallel processes, each with an unbounded

number of states. Several extensions of Petri nets have been defined and studied

in the literature to fix these shortcomings. For example, Timed Petri nets [83, 10]

deal with real time and ν-Petri nets [78] are able to represent an unbounded

number of different infinite-state processes running concurrently. In this thesis we

define new extensions which encompass these two characteristics, and study their

decidability properties.

First, we define Timed ν-Petri nets by joining together Timed Petri nets and

ν-Petri nets. The new model represents systems in which each process (also called

instance) is represented by a different pure name, and it is endowed with an un-

bounded number of clocks. Then, a clock of an instance must satisfy certain given

conditions (belonging to a given interval) in order to take part in the firing of a

transition. Unfortunately, we prove that the verification of safety properties is

undecidable for this model. In fact, it is undecidable even if we only consider two

clocks per process. We restrict this model and define Locally-Synchronous ν-Petri

nets by considering only one clock per instance, and successfully prove the decid-

ability of safety properties for this model. Moreover, we study the expressiveness

of Locally-Synchronous ν-Petri nets and prove that it is the most expressive non

Turing-complete extension of Petri nets with respect to the languages they accept.

Next, we tackle the definition of a Timed-Priced model, by extending Locally-

Synchronous ν-Petri nets with costs. We add the prices in the way of [2], by

considering firing costs, produced by the executions of actions, and storage costs,

produced by the storage and maintenance of resources while time elapses. Then,

ix

x ABSTRACT

we define the safety problem we would like to study: given a budget b, we say

that a system is safe if we cannot reach a certain (upward-closed) set of states by

spending more than b. Intuitively, b-safety ensures that we are not spending too

much in order to reach certain states. Again, we obtain a positive decidability

result for safety.

Finally, we apply the previous positive results for the verification of safety and

soundness properties for priced and timed workflow nets in which several instances

run concurrently in the same net, sharing some global resources. Before defining

these new models of workflows, we extend the decidability results about soundness

of the so-called resource-constrained workflow nets, by considering a more general

definition of soundness. Then, we define two models of Timed-Priced Resource-

Constrained Workflow nets: in the first model, we suppose that time elapses

while executing actions, and therefore we relate costs to these executions, and to

the storage while these actions are executed. In the second model time elapses

in between the execution of actions, and therefore storage costs are produced

then. In that way, we are able to compute the price of an instance in a run

as the sum of the storage and the fired costs produced in the run. As we have

multiple instances, each with its price, we can obtain the global price of a run

in several ways depending on how we compute it. We consider several ways to

compute a global price: the sum, the maximum, the average and the discounted

sum of the prices of the instances. We study the decidability of safety in this

setting, and prove its decidability for the sum, the maximum, the average and

the finite discounted sum for the first model, and the maximum and the finite

discounted sum for the second one. Regarding soundness, we prove that it is

decidable for Timed-Priced Resource-Constrained Workflow nets with decidable

safety and some additional hypothesis, as the soundness of its underlying workflow

net without considering the restriction of the behavior caused by the sharing of

resources.

Resumen

Las redes de Petri son un lenguaje formal muy adecuado para la modelización,

análisis y verificación de sistemas concurrentes con infinitos estados. En partic-

ular, son muy apropiadas para estudiar las propiedades de seguridad de dichos

sistemas, dadas sus buenas propiedades de decidibilidad. Sin embargo, en muchas

ocasiones las redes de Petri carecen de la expresividad necesaria para representar

algunas caracteŕısticas fundamentales de los sistemas que se manejan hoy en d́ıa,

como el manejo de tiempo real, costes reales, o la presencia de varios procesos

con un número no acotado de estados ejecutándose en paralelo. En la literatura

se han definido y estudiado algunas extensiones de las redes de Petri para la rep-

resentación de las caracteŕısticas anteriores. Por ejemplo, las “Redes de Petri

Temporizadas” [83, 10](TPN) incluyen el manejo de tiempo real y las ν-redes de

Petri [78](ν-PN) son capaces de representar un número no acotado de procesos con

infinitos estados ejecutándose concurrentemente. En esta tesis definimos varias

extensiones que reúnen estas dos caracteŕısticas y estudiamos sus propiedades de

decidibilidad.

En primer lugar definimos las “ν-Redes de Petri Temporizadas”, que reúnen

las caracteŕısticas expresivas de las TPN y las ν-PN. Este nuevo modelo es ca-

paz de representar sistemas con un número no acotado de procesos o instancias,

donde cada proceso es representado por un nombre diferente, y tiene un número

no acotado de relojes reales. En este modelo un reloj de una instancia debe satis-

facer ciertas condiciones (pertenecer a un intervalo dado) para formar parte en el

disparo de una transición. Desafortunadamente, demostramos que la verificación

de propiedades de seguridad es indecidible para este modelo. De hecho, es inde-

cidible incluso en el caso con solo dos relojes por instancia. Aśı pues, restringimos

el modelo y definimos las “ν-PN Localmente Śıncronas”(ν-lsPN), que manejan

un solo reloj por instancia, para las que podemos probar que la verificación de

propiedades de seguridad es decidible. Además, estudiamos la expresividad de

las ν-lsPN , demostrando que son la extensión de las redes de Petri no Turing-

xi

xii RESUMEN

completa más expresiva con respecto a los lenguajes que es capaz de aceptar.

Una vez encontrado un formalismo apropiado para la modelización de sis-

temas con tiempo, nos disponemos a definir un nuevo modelo con tiempo y costes

extendiendo las ν-lsPN , añadiendo los costes de la misma manera que se hace

en [2]. De esta forma, consideramos dos tipos de coste: los costes de disparo, pro-

ducidos por la ejecución de acciones, y los costes de almacenamiento, producidos

por el almacenamiento y mantenimiento de recursos durante el paso del tiempo.

Aśı, definimos el problema de seguridad que más tarde estudiamos: dado un pre-

supuesto b, decimos que un sistema es seguro si no podemos alcanzar un conjunto

(cerrado hacia arriba) de estados dado gastando más de b. Intuitivamente, esta

propiedad asegura que no estamos gastando demasiado en alcanzar determinados

estados. De nuevo, obtenemos un resultado positivo para la decidibilidad de esta

propiedad.

Por último, aplicamos los resultados anteriores en la verificación de propiedades

de seguridad y corrección para workflows (flujos de trabajo) con tiempo y costes en

las que varias instancias son ejecutadas concurrentemente en la misma red, com-

partiendo ciertos recursos globales. Antes de definir los nuevos modelos con tiempo

y costes, ampliamos los resultados ya existentes sobre “resource-constrained work-

flow nets” (rcwf, flujos de trabajo restringidos por los recursos), considerando una

definición de corrección algo más general que la ya existente. Entonces, definimos

dos modelos de rcwf con tiempo y precios: en el primer modelo suponemos que

el tiempo pasa durante las ejecuciones de acciones, y por lo tanto los costes de

almacenamiento se producen en el momento en el que se ejecutan acciones. En

el segundo modelo, el tiempo pasa entre las diferentes ejecuciones de acciones,

y por lo tanto los costes de almacenamiento se producen entre estas. De esta

forma, podemos calcular el coste de una instancia en una ejecución sumando los

costes de disparo y almacenamiento producidos por esta instancia durante la eje-

cución. Dado que en cada ejecución participan múltiples instancias con su coste

asociado, podemos calcular el coste global de la ejecución de diferentes maneras.

Aśı, consideramos diferentes formas de calcular este precio global. En particular,

estudiamos la suma, el máximo, la media, y la suma ponderada de los precios de

las instancias. De este modo, decimos que una red es segura si el precio global

de ninguna ejecución válida supera el presupuesto dado. Finalmente, estudiamos

la decidibilidad de la seguridad para los dos modelos anteriormente definidos y

los diferentes predicados. Concretamente, probamos que la seguridad es decidible

para la suma, el máximo, la media y la suma ponderada finita en el primer mo-

xiii

delo, y el máximo y la suma ponderada finita en el segundo modelo. Respecto a

la corrección, demostramos que esta es decidible para rcwf con tiempo y precios

cuya seguridad es decidible bajo algunas hipótesis adicionales, como que la red sin

tiempo ni costes obtenida al eliminar las restricciones producidas por los recursos

sea correcta.

xiv RESUMEN

Contents

Agradecimientos vii

Abstract ix

Resumen xi

1 Introduction 1

1.1 State of the art . 1

1.1.1 Petri nets and extensions 3

1.1.2 Workflows . 7

1.2 Motivation and objectives . 12

1.3 Our contribution . 14

1.4 Contents . 18

1.5 Publications . 18

2 Preliminaries 21

2.1 Multisets, words and quasiorders 21

2.2 Transition systems . 22

2.2.1 Well-structured transition systems 23

2.3 Petri nets and extensions . 25

2.3.1 ν-Petri nets . 27

2.3.2 Timed Petri nets . 28

3 Timed Nets 29

3.1 Timed ν-Petri nets . 29

3.1.1 Undecidability of safety properties for ν-TPN 34

3.2 Locally synchronous ν-Petri nets 41

3.2.1 Decidability of control-state reachability for ν-lsPN 45

3.3 Expressiveness . 67

xv

xvi CONTENTS

3.3.1 Bounded ν-lsPN . 68

3.3.2 Expressiveness of general ν-lsPN 71

4 Priced-Timed Nets 81

4.1 Priced-timed ν-Petri nets . 81

4.2 Abstract ν-PTdPN . 87

4.2.1 Correctness of the simulation 92

4.2.2 Coverability for ν-aPTdPN is decidable 100

5 Resource Constrained Workflow Nets 107

5.1 Asynchronous ν-Petri nets . 109

5.2 Resource-constrained workflow nets 111

5.3 Undecidability result . 112

5.3.1 Step 1: getting ready . 113

5.3.2 Step 2: setting the initial marking 114

5.3.3 Step 3: simulating N . 114

5.3.4 Step 4: reducing reachability to dynamic soundness 115

5.3.5 Undecidability . 116

5.4 Decidability of dynamic soundness 117

6 Rcwf-nets with Time and Prices 123

6.1 Priced resource-constrained workflow nets 125

6.1.1 Priced workflow-nets . 125

6.1.2 Priced resource-constrained workflow-nets 129

6.1.3 Selected price predicates . 132

6.1.4 Complexity . 146

6.1.5 Relating price predicates . 148

6.2 Priced-timed resource-constrained workflow nets 149

6.3 Priced rcwf-nets in practice . 160

7 Conclusions 165

7.1 Summary and contributions . 165

7.2 Future lines of work . 168

A Effective Pred-basis of ։ 171

B Effective Pred-basis of ֌ 183

Bibliography 193

Chapter 1

Introduction

1.1 State of the art

Nowadays software is everywhere. Transports, surgery, communications, banks

and many other vital services depend on software, so that we need to rely on the

systems we create to manage our lifes. Since non desired behaviors of software

may result in the loss of money, resources, time or even lifes, we want to make

sure that software systems really do what we need them to do. Several techniques,

such as testing or formal verification, have risen for this purpose.

Testing consists on the repeated execution of the system under test, to prove

that each of these executions satisfies the requirements that the system is supposed

to meet, or to find the bugs that the system may contain. (Informal) testing

is performed even before the first versions of the systems under test have been

completed, when the coder tests his code in an informal way, frequently without a

fixed procedure. Then, formal testing is usually performed by a tester team, which

follows some formal procedure in order to select the test cases, run these tests and

log the bugs they find. These formal procedures have been deeply studied in the

literature, generating a wide variety of different techniques [68, 46, 45, 69, 39].

Even for very simple pieces of software, the amount of possible different tests may

be incredibly large. The amount of tests that are performed depend on the time

and resources that the testers are provided with. That is why in most of the cases,

testing techniques use strategies to select the most convenient set of tests that we

are able to perform. Even though, in most of the cases, testing cannot ensure the

correctness of the system under test.

On the other hand, formal verification proves the correctness or incorrectness

of a system with respect to a formal specification by using mathematical (formal)

1

2 CHAPTER 1. INTRODUCTION

techniques. One of the drawbacks of these methods is that a model which correctly

represents the real system is required to apply the formal methods over it. We

need to trust that this theoretical model behaves as the real system, so that we

need formalisms which are expressive enough to deal with the representation of

real systems.

Initially, software was created to be executed in an isolated way, without in-

teracting with any other piece of software. However, in nowadays systems, several

computations are usually executing concurrently, and interacting with each other.

There are plenty of formal models for concurrent systems in the literature. These

models should be appropriate to study the coordination, scheduling, protocols,

orchestration or data exchangings of processes. Moreover, in distributed systems

several components (or processes) run concurrently, communicating and coordi-

nating their actions by using different mechanisms such as messages passing or

resources sharing. Frequently related to this, formalisms should be able to deal

with time too. Companies want to be sure not only that their systems work cor-

rectly, but also that they work in the correct timing, respecting the deadlines.

Furthermore, timing is commonly related with concurrency, and delays take a

fundamental role in protocols and orchestrations. Finally, systems frequently de-

pend on the managing of resources and carry some costs. Hence, models dealing

with quantitative measures are needed too.

Plenty of these formalisms have been defined and studied. For example, deal-

ing with concurrency, we have process algebra [66, 87, 38, 48], which are defined

to represent in a high-level manner the interactions and synchronizations of differ-

ent independent processes, by applying algebraic laws, Petri nets, which provide

a very graphical and intuitive view of distributed systems, MSR [20], which is

a specification language for security protocols based on multiset rewriting, or

MSR(C)[29, 30, 31] for parameterized concurrent systems, which are defined by

combining multiset rewriting and constraints. There is also a great variety of

timed formalisms. Among them, timed automata [12, 15] are an extension of

finite automata in which a certain number of real-time clocks are considered,

and the transitions which may or may not be executed in each state depend on

the value of these clocks. Moreover, Petri nets have been extended to deal with

time [83, 10] and quantitative aspects too [2].

1.1. STATE OF THE ART 3

1.1.1 Petri nets and extensions

Petri nets [72, 76, 71, 34] are a modeling language for the specification and ver-

ification of distributed systems. They were first defined in the thesis of Carl

Adam Petri, in 1962 [72]. Since then, they have been deeply studied and diversely

extended. One of the reasons of the success history of Petri nets may be their

easiness, provided by their intuitive graphical representation. Moreover, they are

expressive enough to model a great variety of systems. In particular, they are able

to represent and easily analyze potentially unbounded systems, that is, systems

with an unbounded number of states. Petri nets consist of places, represented

by circles, and transitions, represented by boxes. In each place there may be a

certain amount of tokens, which are represented by dots. The states of Petri nets

are called markings, and they consist in the number of tokens at each place at

a certain moment. The markings of a net may be changed by transitions. A

transition can happen, or is enabled, if there are enough tokens in certain places,

which are called the preconditions of the transition. Then, it can be fired so that

tokens are removed from preconditions and added to certain places, called the

postconditions of the transition. The preconditions of a transition are specified

by arcs going from these places to the transition. Analogously, the postconditions

of a transition are represented by arcs going from the transition to these places.

As the number of tokens in a certain place could grow unboundedly with the

firings of transitions, Petri nets may represent systems with infinitely many dif-

ferent states, which gives them a greater expressive power than other formalisms,

as finite automata. Despite this fact, many important problems are still decidable

for Petri nets [34]. Among them are reachability, coverability and boundedness.

Reachability [65, 58, 60, 63] is the problem of deciding if a given marking can

be reached from the initial marking. Since the goal of the systems we model is

frequently to reach a final state, this problem is sometimes important in order to

verify that our systems behave as wished. On the other hand, coverability [55, 73],

which is the problem of deciding if we can reach a marking which contains at least

the same number of tokens in each place as a given marking, is more related to

safety problems, that is, to ensure that we do not reach a set of “bad” states that

we need to avoid. Hence, when we check coverability we would often like to obtain

a negative answer. Boundedness [55, 73, 81] is the problem of deciding if there

is a bounded number of reachable markings, and it is often checked to ensure we

work with finite systems, when, for example, we are dealing with the consumption

of resources.

4 CHAPTER 1. INTRODUCTION

Although Petri nets are very expressive compared to finite state formalisms,

there are still some shortcomings that can be found when representing certain

systems with them. For example, transitions cannot copy or transfer the content

of some place to another, empty places or check the places for emptiness, missing

the capability of representing some behaviors of the systems, like their resetting.

Moreover, Petri nets cannot handle more sophisticated characteristics of systems

like the representation of time or time constraints, the simulation of a potentially

unbounded number of different copies of the same net executing concurrently or

the parametric verification of systems in which an unknown number of processes

take part, which may be fundamental to model the behavior of some systems. In

order to fix these shortcomings, many extensions of Petri nets have been defined

and studied in the literature. They provide Petri nets with very heterogeneous

tools, such as different firing rules, more complex tokens, or time.

1.1.1.1 Firing rule extensions and token extensions

The firing rules of Petri nets add/remove a certain fixed amount of tokens to/from

places. In the literature there are extensions of Petri nets that enrich this token

game with more possibilities. For example, in reset nets [14], when a transition

with a reset arc is fired, all the tokens in the place attached to this arc are

removed. In inhibitor nets [42], some transitions may only be enabled when

certain (inhibited) places are empty.

When adding expressiveness to our models, frequently some of the good de-

cidability properties of Petri nets are lost. For example, nets with two or more

inhibited places can simulate Minsky machines with two counters [67], which is

a Turing-complete formalism, and therefore they are Turing complete, so that

every interesting property becomes undecidable. More precisely, not only reach-

ability, but also coverability and boundedness are undecidable for inhibitor nets.

Reset nets are not Turing complete, though reachability and boundedness are not

decidable for them.

Another way in which Petri nets can be extended is by enriching the tokens.

Maybe the most popular extension of Petri nets is coloured Petri nets [49, 50],

in which both the firing rules and the tokens are extended. In this extension,

tokens carry values of a given data type, are distinguishable and may be modified

according to any function annotated in the transitions. Again, coloured Petri nets

are Turing complete. One of the reasons for the success of coloured Petri nets

is the presence of the powerful tool CPN (http://cpntools.org/) [75, 51], which

1.1. STATE OF THE ART 5

provides a verifier for (bounded) coloured Petri nets.

There are simpler extensions that extend tokens, such as Data Nets [62] or

ν-Petri Nets [78]. In Data Nets tokens are ordered and the conditions for firing

a transition may depend on that order. For example, to enable a transitions, it

may be required that the involved tokens are ordered in a concrete way, or that

the tokens are equal. Moreover, data nets can perform whole-place operations like

reseting places, or copying the tokens of some place to another. In ν-Petri nets,

tokens carry unordered distinguishable names, sometimes called pure names in the

literature [79, 101]. When firing a transition, it may be required that the involved

tokens carry the same or a different name. Moreover, new names can be created

fresh. The feature of fresh name creation provides another dimension of infinity:

a ν-Petri net may have a potentially unbounded number of tokens of a potentially

unbounded number of different names. When modeling systems, each name can

represent a different process, which makes this formalism very suitable for the

modeling of systems like bussiness processes and workflows that are composed of

several processes which are in turn concurrent. For both extensions, reachability is

not decidable, but other important properties, such as coverability, are decidable.

1.1.1.2 Timed extensions

As we mentioned before, time has become a crucial factor in system analysis, so

many extensions of Petri nets dealing with time have appeared in the literature.

The semantics of these extensions define not only the conditions and the effects of

firing of transitions, but also how time elapses, and when the firings can happen.

These extensions add time to Petri nets in several different ways [99]:

Discrete or continuous time: For timed models, there are two ways to define

the nature of time elapsings: in terms of continuous delays or discrete delays.

On the one hand, models with discrete delays can be more manageable to work

with [23, 57, 25], but in some sense, they may lose some of the possible real behav-

iors of systems. On the other hand, continuous delays may seem more reasonable

to model real time systems, but they sometimes contemplate behaviors which do

not exist in the real world, such as Zeno behaviors, in which an unbounded number

of events happen in a bounded period of time. There are several techniques for

the verification and analysis of Petri nets with real time, such as region theory [8],

which is based in the same technique for timed automata [11, 13], backward al-

gorithms based in existential zones [10] or extrapolation operators [25], which are

again based on a similar operator for timed automata [15].

6 CHAPTER 1. INTRODUCTION

Time relative to tokens, places or transitions: Several ways of adding time

to Petri nets have been considered in terms of where to set the clocks, time

constraints or restrictions. In some extensions, time is associated to tokens, that

is, each token carries a clock, and the conditions to fire transitions are based on

the age of the tokens that are involved in their firing [83, 10]. Other extensions

associate a firing delay to transitions [74]. Also, there are works in which time is

associated to places [88], so that a token must remain in a place a certain amount

of time in order to be used for a firing.

Instantaneous or prolonged transitions: In most of the works, the firing of the

transitions is instantaneous, that is, the tokens in preconditions are removed at

the same time that the tokens are added to postconditions. However, there are

models with prolonged transitions in which some time elapses between these two

events.

Capacity: When considering prolonged transitions, it may be considered that

a transition is being fired several times at the same moment. For example, if the

firing of a transition takes three units of time, it may fire at some point, and be

fired again less than three units of time after, so that it is being fired two times

at this moment. The presence of a capacity k implies that the number of times a

transition may be being fired at any given time is at most k. More precisely, there

are three kinds of semantics regarding capacities: single server semantics, in which

the capacity is one, multiple server semantics, in which there is a given capacity

k, and infinite server semantics, in which there is no bound for the number of

times a transition may be fired at a time.

Deterministic, non-deterministic or stochastic delays: In most of the first

works on Petri nets with time, the time delays were set deterministically, that

is, a fixed delay was associated to a place, transition or arc [74, 100]. However,

in practical terms it may not make sense to fix these delays, since they usually

represent the time that takes to accomplish some task. Therefore, two other ways

of defining delays were defined consisting in adding some constraints to the delays

(for example, belonging to an interval), or associating probabilistic distributions

to delays.

Urgent or lazy semantics: There are also differences between models regarding

the moment in which a transition may be fired. In models with urgent (or strong)

semantics, a transition must be fired in a concrete period of time after being

enabled (or even instantaneously). If it has not been fired during this period, this

transition becomes urgent, and time cannot elapse anymore until the transition is

1.1. STATE OF THE ART 7

fired or disabled by the firing of other transitions. In models with lazy (or weak)

semantics, transitions do not have to be fired at any concrete moment, even if the

delay of time disables them due to the temporal restrictions.

One of the main models that have been deeply studied in the literature is

Timed Petri nets [83, 10] (also called Timed-Arc Petri nets). It is a model with

instantaneous transitions, non-deterministic delays and weak semantics, in which

each token carries a clock, and the arcs going from places to transitions are la-

beled by time intervals. A transition is enabled if in each precondition there is

a token whose clock fits in the corresponding interval. Then, when an enabled

transition is fired, the clocks of the tokens which are added to postconditions

are set to zero or more generally, to a value in a given interval. The model is

not Turing complete, although reachability is not decidable for them. In fact,

using the techniques in [18] it can be proved that Timed Petri nets is the most

expressive model among the timed extensions of Petri nets without urgent seman-

tics. TAPAAL (http://www.tapaal.net/) [52] is a tool for the analysis of bounded

Timed Petri nets. It offers a graphical editor, a simulator and a model checker

for a fragment of CTL. Moreover, it allows some other features like inhibitor arcs

and invariants for the clocks of the tokens in the places.

Since plenty of systems depend on quantitative aspects, such as costs of human

or material resources, it is important to study quantitative models, which take

time into account. In [9, 2] Abdulla and Mayr defined Priced Timed Petri nets,

which is a model which extends Timed Petri nets with costs. The model associates

storage costs to places and firing costs to transitions. Intuitively, the storage cost

of a place p represents the price of storing a token in place p per unit of time.

The firing cost of a transition is the price of firing it, and it does not depend on

time. Then, the authors study the costs of computations that reach a certain

control state (or equivalently, that cover a certain marking). Although in general

the minimum of the costs of all the executions does not exists, they prove that

the infimum of the costs of computations that reach a certain control state is

computable if all the costs are non-negative. However, when considering negative

costs, the problem turns out to be undecidable.

1.1.2 Workflows

Initially, systems were created to execute individual and independent tasks. How-

ever, nowadays companies need to handle multiple non independent tasks, so

the number and the complexity of their processes has increased. Therefore, they

8 CHAPTER 1. INTRODUCTION

require systems to manage the logistics of these bussiness processes. Workflows

were created to represent the flows of work of companies or organizations, or more

precisely, to model how tasks are accomplished in the correct time or order, us-

ing the right resources. Workflow processes are designed to manage similar cases

(different instances of the same process), and they specify in what order tasks

must be accomplished: each task must be executed after or before some other

task. In this scope, a precondition for a task is a logical expression which may

be evaluated to decide whether this task may be started or not. Analogously, the

postcondition of a task is a logical expression which may be evaluated to decide

whether a task is completed. These preconditions and postconditions often have

to do with the tasks that have been already performed and the tasks than can

start being performed, respectively. Moreover, each task may use some resources,

which are typically, but not only, human resources (workers) or machines, and

these resources may be shared by different instances of the processes.

The Workflow Management Coalition (WfMC) was founded in 1993 to sup-

port the development, education and promotion of workflow and business process

management (BPM). Since then, it has created several process definition lan-

guages and a large glossary defining the main concepts in workflow management.

However, this glossary provides rather non precise definitions, which lack formal-

ization. For example, Fig. 1.1 shows the capture of the definition of workflow from

the web of WfMC (http://www.wfmc.org/). It is clear that a more formal point

of view is needed, not only to define the concepts and methodologies, but also to

analyze and verify the workflows.

Petri nets are a very suitable formalism to represent workflows [93]. On the

one hand, their simplicity and graphical nature make them easy to learn and to

understand. On the other hand, their semantics have been well defined and there is

a large background on verification and analysis for them. The idea of representing

tasks by transitions; preconditions and postconditions by places, and cases or

instances of processes by tokens is pretty intuitive. Moreover, the expressive

power of Petri nets is enough to express how the cases of a workflow are routed

through the tasks that must be accomplished in a concrete order [95]. Since the

nineties, the properties, verification and analysis of workflow Petri nets have been

widely studied in the literature [94, 95, 77].

Roughly speaking, a workflow Petri net is a Petri net with two special places,

in and out. A token in place in represents an instance of the process that has

been scheduled, and a token in out represents a finished instance. Moreover, there

1.1. STATE OF THE ART 9

are some additional conditions about the connectivity of places and transitions,

so that all the conditions and tasks they represent are potentially able to take

part in the management of the process.

In this setting, soundness is maybe the most interesting property to verify over

workflows. Intuitively, we say that a workflow is sound if each possible execution

can be finished correctly. More formally, a workflow net is sound if the following

three conditions hold:

• Option to complete: From any marking which is reachable from the initial

marking min with only one token in in, and empty elsewhere, we can reach

the final marking mout with only one token in out and empty anywhere else.

• Proper completion: If a marking m with some token in out is reached from

min, then m is the final marking mout.

• No dead transitions: For every transition t, there is a marking reachable

from min which enables t.

It is well known that soundness for workflow nets is decidable [94]. To prove

it, Aalst et al. define the extended net of a workflow net N , which is obtained

by adding to N a transition which removes a token from out, and adds a token

to in. They prove that a workflow Petri net is sound if and only if its extended

net is bounded and live (from every reachable marking, every transition is able

to be fired eventually). As checking both boundedness and liveness is decidable,

soundness is decidable. However, soundness is undecidable for workflows endowed

with reset arcs or inhibitor arcs [92].

Although this is the classical notion of soundness, other forms of soundness,

such as the following ones, have been studied.

• A net is k-sound if from any marking reachable from the initial marking

with k tokens in place in and empty elsewhere, the final marking with k

tokens in out and empty elsewhere is reachable.

• 1-soundness is also called weak soundness, and corresponds to the first con-

dition of the classical notion of soundness.

• A workflow net is up-to-k-sound if it is l-sound for all 1 ≤ l ≤ k, and it is

generally sound if it is k-sound for all k ∈ N.

10 CHAPTER 1. INTRODUCTION

• Lazy soundness corresponds to the satisfaction of a weakened version of the

properties “option to complete” and “proper completion” in which tokens

may be left in the net as long as the place out is marked only once.

• A workflow net is relaxed sound if for each transition, there is a marking

which enables t reaching a marking m from which mout is reachable.

Both soundness and general soundness are decidable for workflow nets [94, 98].

However, both properties are undecidable if we consider them for workflow nets

with reset or inhibitor arcs. Moreover, even weak, lazy and relaxed soundness are

undecidable for workflows with reset arcs [92].

In the previous notions of soundness, the sharing of resources by several in-

stances running the same workflow is not contemplated. It is natural to define

a notion of soundness which takes it into account. In [44] van Hee et al. define

and study resource-constrained workflow nets (rcwf nets), which are concurrent

instances of workflow Petri nets, constrained by shared resources. Then, they

define the soundness for them (also called dynamic soundness): intuitively, a rcwf

net is sound if, provided with a sufficient amount of resources and no matter how

many instances of the workflow are running concurrently, every instance is guar-

anteed to be able to finish correctly. Moreover, at the end of the run, the amount

of available resources must be the same as in the beginning. In [53] the soundness

of rcwf nets is proved to be decidable, by transforming the problem of checking

the soundness of infinitely many bounded nets to checking the soundness of only

one (unbounded) net. This is clearly a parameterized verification problem, since

it is defined for workflows with arbitrarily many instances running in them.

1
.1
.

S
T
A
T
E

O
F
T
H
E

A
R
T

11

Figure 1.1: Workflow definition from WfMC glossary

12 CHAPTER 1. INTRODUCTION

1.2 Motivation and objectives

As mentioned before, we need to represent and study systems with several different

characteristics: systems which depend on temporal issues, systems endowed with

resources and costs, or systems in which several instances of a process run at the

same time. In the scope of Petri nets, Priced Timed Petri nets [9] are defined in

order to model systems in which costs depend on time. On the other hand, ν-Petri

nets (ν-PN for short) [78] can be seen as Petri nets in which several instances of

a process, represented by different names, run concurrently. Our goal is to define

a model which encompasses these two capabilities.

When defining such a model, if we start from ν-PN, we have several possibili-

ties regarding the way we add the clocks: we can consider a model in which each

token carries a clock, and therefore there is a potentially unbounded number of

clocks per instance; a model in which each instance carries only one clock, or a

model with a fixed number of clocks per instance. In any case, we will label arcs

by intervals, in the way of [9], so that the clocks of the tokens (or instances) in

the preconditions of a transition must fit in the intervals of the incoming arcs of

this transition in order to be fired. Moreover, when a transition is fired, we will

change the clocks of the tokens/instances involved in the firing according to the

outgoing arcs of the transition.

We would like to explore all of the previous options, and study their decidabil-

ity properties and expressiveness. Although these new models would probably be

more expressive than the two previous ones (Priced-Timed Petri nets and ν-Petri

nets), we still want to retain good decidability properties, in order to be able to

study some safety questions over the systems represented by our new model. In

particular, it would be desirable that control-state reachability or coverability are

still decidable. To perform this study, we need to define abstractions, in order to

work with discrete models instead of continuous ones. In particular, we need to

abstract time, in the way of [6, 5, 9], where an abstract model is defined by clus-

tering the clocks in multisets with the same fractional parts, and ordering these

multisets by the fractional parts they represent. Then, only the integer part of

the clocks needs to be stored. Moreover, clocks which are older than the greater

integer max in the labels of the arcs, are abstracted to max+1, since the concrete

age of these clocks is not significant. In that way, a discrete model which repre-

sents the real time model is obtained, and can be studied by applying standard

techniques, such as the framework of Well Structured Transition Systems.

Finally, if decidability is obtained, we would like to compare the expressiveness

1.2. MOTIVATION AND OBJECTIVES 13

of this new model to the expressiveness of some other existing models, as Timed

Petri nets [83]. In order to compare the expressive power of different models, it

is usual to study the languages generated by the models when associating labels

to transitions, considering different accepting conditions. For example, given a

marking m, the reachability and coverability languages of a model are the sets of

words produced by the runs finishing inm or in a marking coveringm, respectively.

We will study the relative expressiveness of the different models by comparing the

families of coverability languages they accept, as in [4, 40]. The reason why we

choose to study the coverability languages instead of the reachability languages

is because reachability is undecidable even for Timed Petri nets. Since our new

models are expected to be at least as expressive as Timed Petri nets, considering

reachability as our accepting condition is not suitable. In order to perform this

task, we could apply the framework described in [16] and prove that our model

is strictly more expressive than Timed Petri nets by comparing the size of their

state spaces.

If the previous goal is achieved, we can put into practice the new models to

study workflow nets. In particular, we can represent each instance in a resource-

constrained workflow net [53] as a name in the style of ν-Petri nets, and add

temporal constraints representing the time which is needed to complete a task,

as done in [64]. Moreover, we can add costs to the executions of the workflow, as

done in [9] for Timed Petri nets. Then, we want to define and study soundness

properties for this model, that take into account time and costs. More precisely,

our goals in the field of workflow nets are:

• To study the decidability of soundness of resource-constrained workflow nets

in a more general way than done in [53, 44], where increasing the available

resources is not allowed.

• To define a model of priced resource-constrained workflow nets which en-

compasses time and costs as done in [9] for Petri nets, that is, in a way

such that the cost of the execution of an instance is computed as the sum

of firing costs (the cost of performing an action) and storage costs (the cost

of storing items while tasks are accomplished). More precisely, we first need

to define the cost of firing a transition t from a concrete marking m, which

is the sum of its firing costs and its storage costs when fired. Then, the

price of an instance in an execution is the sum of the costs of the firing of

transitions by this instance.

14 CHAPTER 1. INTRODUCTION

• To define a soundness problem in which a net is sound if none of its execu-

tions spends more than a given budget. As each instance is endowed with

a price we can collect every price in a set of prices and extract from it a

global price in several different ways. For example, we could consider the

sum of the price of each instance, the maximum or the average. Our goal

is to define a general frame by defining priced predicates over sets of prices

like “the sum of the prices is under a given budget”, “the maximum of the

prices is under a given budget” or “the average of the prices is under a given

budget”. Then, we will define soundness parametrized by a price predicate:

a workflow net is sound if the price of each of its executions satisfies the

price predicate.

• To study the previous soundness problems, taking advantage of the proper-

ties of the basic model we first defined.

1.3 Our contribution

We firstly define a new model called Timed ν-Petri nets, by enriching ν-Petri nets

with time in the way of [83, 10]. In this new extension, the arcs of the net are

labeled by intervals, and each token is endowed both with a name and a (real

time) clock. Then, in order to fire a transition t, the clocks of the tokens in the

preconditions of t must fit in the intervals of the arcs going to t. Moreover, when

t is fired, the clocks of the tokens which are added to postconditions are set to a

value in the intervals labeling the arcs going from t to these postconditions. We

prove that Timed ν-Petri nets are Turing-complete, so that, unfortunately, the

coverability problem is undecidable. We do it by simulating an extension of Petri

nets called ν-RN [79]. Basically, a ν-RN system is just a collection of ν-PN that

can synchronize with each other, and that can create replicas of themselves (for

more details see [79]). The main idea of this proof is how to encode the different

instances of a ν-RN N by means of a ν-TPNN ′. We do it by forcing all tokens

in N ′ that belong to the same instance of N to have the same age. Then, the

firing of transitions in which a single instance takes part is done by requiring that

all tokens involved in the firing are of age exactly 1. Moreover, new instances

are created by creating tokens with an age different from the age of every other

token. We will see that the construction is lossy, in the sense that tokens that

become older than 1 become useless. However, this does not affect control-state

reachability. We think that the reduction from ν-RN is interesting by itself: this

1.3. OUR CONTRIBUTION 15

technique may be applicable in other cases to perform reductions from models

with time to models with (maybe ordered) instances. In fact, later we prove that

decidability of control-state reachability is undecidable even for ν-TPN with only

two tokens (and clocks) per instance by reducing the same (undecidable) problem

for Timed Petri nets with two clocks per token to it.

As each color in a ν-PN may represent a different process running in the

net, it seems natural and interesting to study a model in which each of these

processes is endowed with a single clock instead of one clock per token. We

define Locally-Synchronous ν-Petri nets (ν-lsPN for short), which is a restriction

of Timed ν-Petri nets in which all the tokens of the same name share a clock.

Moreover, we find a positive decidability result: we prove that coverability is

decidable by making a discrete abstraction of the model and proving that this

abstraction fits in the frame of Well Structured Transition Systems for which,

under some light additional conditions, coverability is decidable. The abstraction

is based in the theory of regions used in [6, 10] to represent the state space of

Timed Petri nets. Basically, in order to represent the markings and the clocks of

Locally-Synchronous ν-Petri nets instances, we order them in multisets according

to the following rules:

• All the instances with an age older than the maximum max of the bounds

in the intervals labeling arcs in the net are represented in a multiset A∞ by

a pair consisting of their markings and the natural number max+ 1.

• The rest of the instances are added to multisets A0, . . . , An of instances with

the same fractional part of their ages. The instances are represented by a

pair consisting in their markings and the natural part of their ages.

• The instances represented in A0 have an age represented by a natural num-

ber. Moreover, if i < j then the fractional part of the age of the instances

in j is greater than the ones in i.

In that way, we are able to represent the markings of our net in a discrete manner,

and we define a model which simulates Locally-Synchronous ν-Petri nets. Finally,

we prove that this model is a Well Structured Transition System, and hence

coverability is decidable for it.

As mentioned in the objectives, we study the expressive power of this new

model. We define classes of Locally-Synchronous ν-Petri nets depending on the

number of unbounded places in the nets. Then, we study the expressiveness of the

different classes by comparing the coverability languages they accept. First, we

16 CHAPTER 1. INTRODUCTION

prove that the class of bounded Locally-Synchronous ν-Petri nets has the same

expressive power as Timed Petri nets, by performing direct reductions. Then, we

apply the framework based on ordinals developed in [16] (which basically proves

that under certain hypotheses, a bigger state space implies having more expres-

siveness) to our classes of Locally-Synchronous ν-Petri nets, proving that the

expressive power of the models strictly increases with the number of unbounded

places.

Once we have defined a suitable timed model with still decidable interesting

properties, the next step according to our planning is to define a timed and priced

model(ν-PTdPN). Naturally, we do it by extending ν-lsPN with the cost model,

which consists in a function Cost which assigns natural intervals to places and

transitions. Intuitively, the storage cost of a place p (Cost(p)) is the price of

storing tokens in p per unit of time. The firing cost of a transition t (Cost(t)) is

the price of firing t. In order to study the decidability of control-state reachability,

once again we need to define an abstraction of the model in order to reduce the

problem to control-state reachability in a discrete (untimed) model. This time, we

define an abstraction in the way the authors do in [2] for Priced Timed Petri nets.

Now, we still classify instances by the fractional parts of their clocks, forgetting

about their concrete values. However, we order the multisets of instances in a

different way: a region is of the form 〈c, A−n ∗ . . .∗A−1, A0, A1 ∗ . . .∗Am〉, where c

is the accumulated cost of the run, and for some δ ≤ 1/2, if i < 0, Ai represents a

set of instances whose clocks have the same fractional part, which is greater than

1 − δ and if i > 0, Ai represents a set of instances whose clocks have the same

fractional part, which is smaller than δ. Then we prove that in order to decide

control-state reachability, we only need to consider regions with infinitesimally

small δ, by applying the techniques in [17, 2], in which the feasible computations

are represented in a polyhedron which can be described by a totally unimodular

matrix, for which the coordinates of its vertices are integers. Finally, we prove

that the abstraction we build is a Well Structured Transition system, and again,

we apply this framework to obtain decidability of the control-state reachability

problem.

Before applying this model to workflow nets, we focus on resource-constrained

workflow nets, without time or costs, in order to complete the previous works

in [44, 53]. For this purpose, we express resource-constrained workflow nets in

terms of ν-Petri nets, representing each process executing the workflow by a dif-

ferent instance in the ν-Petri net. As in previous works, we study decidability

1.3. OUR CONTRIBUTION 17

of dynamic soundness. However, we allow the creation of new resources in the

executions of the net. We prove undecidability of this problem by a non-trivial

reduction to reachability for ν-Petri nets. Then, we study decidability in a re-

stricted but very natural case. Basically, we assume that each instance is sound

when endowed with infinitely many resources. We prove that dynamic soundness

is decidable in this case.

Then, we define (still untimed) Priced Resource-Constrained Workflow nets.

We add costs modeled as tuples of natural numbers to the previous model and

define firing costs as the price of performing tasks (or firing transitions in our

model), and storage costs as the price of storing materials or resources while a

task is performed (keeping tokens in places when transitions are fired). In that

way, although time is not managed explicitly, we consider that in this model time

elapses while performing actions, that is, while firing transitions. Then, the price

of the execution of an instance is the sum of the firing costs and storage costs

involving its firings of transitions and storage of tokens. As required in the objec-

tives, we define a framework in order to define the price of a complete execution.

More precisely, we give a definition of soundness based on price predicates which

depend on a given budget b, such as “the sum of the prices of the instances keeps

under b”, “the more expensive instance does not cost more than b” or “the average

of the costs of the instances does not reach b”. More precisely, we say that a net

is sound considering a price predicate Φ and a budget b if from every reachable

state, the final state can be reached satisfying Φ(b). We prove that this “priced”

soundness is decidable for the three previous predicates by reducing it to cover-

ability. Basically, we represent the costs as tokens which are added to a special

place pb in a lossy manner, since we do not have transfer arcs to add the storage

costs depending on the number of the tokens in places. Then, the net is not sound

for a budget b if a marking with b or more tokens in pb is reachable. Moreover,

we study the relations between the different price predicates, that is, we study if

the soundness of a net for a price predicate implies the soundness of the net for

each of the other price predicates.

Finally, we define a model which encompasses the representation of time and

costs over resource-constrained workflow nets. We do it by restricting the priced-

timed extension of ν-Petri nets we define previously to nets with the form of

a resource-constrained workflow net. In that way we are able to consider the

previous price model, with firing and storage costs, but now storage costs depend

on time. Therefore, now we consider that time elapses between the firing of

18 CHAPTER 1. INTRODUCTION

discrete transitions, unlike in the previous extension. However, instead of defining

the price of a run as for ν-PTdPN , we do it like for Priced Resource-Constrained

workflow nets, in which the price of a run is the set of prices of its instances.

Then, after slightly adapting the parameterized framework we considered before

to define soundness, we tackle the decidability of the different price predicates

for this new extension, by taking advantage of the decidability of control-state

reachability for ν-PTdPN previously proved.

1.4 Contents

The following chapters are organized as follows:

• Chapter 2 introduces the main basic concepts and notations used in the rest

of this thesis.

• Chapter 3 defines the different timed extensions of ν-Petri nets that are

considered in this thesis. Moreover, decidability of coverability and expres-

siveness is studied for these new models.

• Chapter 4 defines an extension of ν-Petri nets with time and costs depending

on time. Then, control-state reachability is proved to be decidable for this

extension.

• Chapter 5 continues the previous works about Resource-Constrained Work-

flow nets, giving a more general definition of the problem of dynamic sound-

ness, and studying its decidability.

• Chapter 6 defines Priced Resource-Constrained Workflow nets and Priced-

Timed Resource-Constrained Workflow nets. Moreover, a new concept of

“priced” soundness, which is parameterized on the way we calculate the cost

of each execution, is defined and studied.

1.5 Publications

We list the publications which are related to this thesis.

• Dynamic soundness in Resource-Constrained Workflow Nets.

Maŕıa Martos-Salgado, Fernando Rosa-Velardo.

In 13th IFIP WG 6.1 International Conference on Formal Methods for Open

1.5. PUBLICATIONS 19

Object-based Distributed Systems, FMOODS’11, and 30th IFIP WG 6.1

International Conference on FORmal TEchniques for Networked and Dis-

tributed Systems, FORTE’11. LNCS 6722, pp. 259-273. Springer, 2011.

• Cost Soundness for Priced Resource-Constrained Workflow nets.

Maŕıa Martos-Salgado, Fernando Rosa-Velardo.

In 33rd International Conference on Applications and Theory of Petri Nets

and Other Models of Concurrency, PETRI NETS 2012. LNCS 7347, pp.

108-127. Springer, 2012.

• Safety and soundness for priced resource-constrained workflow nets.

Maŕıa Martos-Salgado, Fernando Rosa-Velardo.

Fundamenta Informaticae, vol. 131(1), pp. 55-80. IOS Press, 2014.

• Expressiveness of Dynamic Networks of Timed Petri Nets.

Maŕıa Martos-Salgado, Fernando Rosa-Velardo.

In 8th International Conference on Language and Automata Theory and

Applications, LATA 2014. LNCS vol. 8370, pp. 516-527. Springer, 2014.

• Dynamic Networks of Timed Petri Nets.

Maŕıa Martos-Salgado, Fernando Rosa-Velardo.

In 35th International Conference on Applications and Theory of Petri Nets

and Other Models of Concurrency, PETRI NETS 2014. LNCS 8489, pp.

294-313. Springer, 2014.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we present the basic concepts and set the notations we use in this

thesis. All the definitions and results we present here are already well established

in the literature.

2.1 Multisets, words and quasiorders

Let N = {1, 2, 3, . . .} and Nω = N∪{ω} be the naturals completed with their limit

ω. We write v[i] to denote the ith component of v ∈ Nk
ω and 0 = (0, . . . , 0). Given

n ∈ N, we denote n+ = {1, 2, . . . , n}, n∗ = {0, 1, 2, . . . , n} and n∗∞ = n∗∪{∞}. We

denote open, closed and mixed intervals of real numbers as (a, c), [a, b] and [a, c) or

(a, b], respectively, where a, b ∈ N and c ∈ N∪{∞}. The set of intervals is denoted

by I. Let R≥0 = [0,∞) and for each x ∈ R≥0 we denote by ⌊x⌋ and frct(x) the

integer and the fractional part of x, respectively. A multiset m over a (maybe

infinite) set X is a mapping m : X → N. Given a multiset m over X, we say that

the multiplicity of an element x ∈ X is m(x), and we call {x ∈ X | m(x) > 0}

the support of m, denoted by S(m). We say m is a finite multiset if S(m) is

finite, and then, we define |m| =
∑

x∈X m(x). We denote by X⊕ the set of

finite multisets over X. Given m1,m2 ∈ X⊕, we define m1 + m2 ∈ X⊕ by

(m1 +m2)(x) = m1(x) +m2(x) and m1 ⊆ m2 if for each x ∈ X, m1(x) ≤ m2(x).

If m1 ⊆ m2 we can define m2 −m1 ∈ X⊕ by (m2 −m1)(x) = m2(x)−m1(x). We

denote by ∅ the empty multiset, that is, the multiset such that for each x ∈ X,

∅(x) = 0. Sometimes we use set notation for multisets with repetitions, to account

for multiplicities.

A quasi ordering ≤ is a reflexive and transitive relation on a set X. If ≤ is also

antisymmetric, then it is a partial ordering (po for short). Given a quasi ordering

21

22 CHAPTER 2. PRELIMINARIES

≤ over X and x, x′ ∈ X, we may write x ≥ x′ whenever x′ ≤ x. A well quasi

ordering (well partial ordering) is a quasi ordering (partial ordering, respectively)

such that, for any infinite sequence x1, x2, x3, . . . ∈ X, there are i, j ∈ N with i < j

and xi < xj . Given a quasi ordering ≤ on X, and X1 a subset of X (denoted by

X1 ⊆ X), we denote ↑X1 = {x ∈ X | ∃x′ ∈ X1, x
′ ≤ x} the upward-closure of X1

and ↓X1 = {x ∈ X | ∃x′ ∈ X1, x
′ ≥ x} the downward-closure of X1. For x ∈ X

we write ↑x and ↓x instead of ↑{x} and ↓{x}, respectively. An upward-closed

subset U ⊆ X is a subset such that, for each u ∈ U , if there is x ∈ X with u ≤ x

then x ∈ U . Therefore, if U is an upward-closed subset, then ↑U = U and for

every x ∈ X, ↑x is an upward-closed set. A basis of an upward closed set U is

a subset B ⊆ U such that U =
⋃

x∈B ↑x =↑B. Analogously, a downward-closed

subset D ⊆ X is a subset such that, for each d ∈ D, if there is x ∈ X with d ≥ x

then x ∈ D, so if D is a downward-closed subset, then ↓D = D and for every

x ∈ X, ↓x is an downward-closed set. Moreover, a basis of an downward closed

set D is a subset B ⊆ D such that D =
⋃

x∈B ↓x =↓B.

Given a po ≤ over a set X, we define the po ≤⊕ over X⊕ as {x1, . . . , xn} ≤⊕

{y1, . . . , ym} if there is an injection h : n+ → m+ such that xi ≤ yh(i) for each

i ∈ n+. If (X,≤) is a well partial ordering (wpo for short) then so is (X⊕,≤⊕) [47].

Given a set X, any u = x1 · · ·xn with n ≥ 0 and xi ∈ X for all i ∈ n+ is

a (finite) word over X, and for each i ∈ n+ we denote u(i) = xi and |u| = n.

We denote by X⊛ the set of finite words over X. If n = 0 then u is the empty

word, denoted by ǫ. If X is a wpo then so is X⊛ [47] ordered by ≤⊛, defined as

x1 . . . xn ≤⊛ y1 . . . ym if there is a strictly increasing mapping h : n+ → m+ such

that xi ≤ yh(i) for each i ∈ n+.

2.2 Transition systems

Definition 2.2.1 (Labelled transition system) A labelled transition system

(LTS for short) is a tuple 〈S,Σ,→, s0〉 where S is a set of states, Σ is a finite

alphabet, s0 ∈ S is the initial state and →⊆ (S×Σ×S) is the transition relation.

When convenient, we will omit the initial state from the definition of the

considered LTSs. We will write s
a
−→ s′ instead of (s, a, s′) ∈→ and sometimes

we may omit the labels, that is, we may write s → s′ whenever there is a ∈ Σ

such that s
a
−→ s′. If there are s1, . . . , sn ∈ S and a1, . . . , an−1 ∈ Σ such that

s1
a1−→ s2

a2−→ . . .
an−1
−−−→ sn, then we write s1

w
−→ sn, where w = a1a2 . . . an−1. Such

a sequence of firings is called a path. We write s→∗ s′ if there is w ∈ Σ∗ such that

2.2. TRANSITION SYSTEMS 23

s
w
−→ s′. Given a state s ∈ S, we denote by Succ(s) (respectively Pred(s)) the

set {s′ | s → s′} of immediate successors of s ({s′ | s′ → s}, the set of immediate

predecessors of s, respectively). We say that a state s is reachable if s0 →∗ s.

Given an LTS TS = 〈S,Σ,→, s0〉 and SF ⊆ S, we define the language of TS

as L(TS, SF) = {w ∈ Σ∗ | ∃s ∈ SF , s0
w
−→ s}. A finite automaton is a tuple

〈S,Σ,→, s0, sf 〉, where sf is a final state and 〈S,Σ,→, s0〉 is an LTS in which the

sets of states and transitions are finite. Hence, the language of an automaton A

is L(A) = {w ∈ Σ∗ | s0
w
−→ sf}.

Now, we present some problems that have been studied for LTS in literature,

which we will use in this thesis.

Definition 2.2.2 (Coverability, boundedness and termination) Given an

LTS TS = 〈S,Σ,→, s0〉 endowed with an ordering ≤ over S:

The coverability problem is that of deciding if, given state s of TS, there is a

reachable state s′ such that s ≤ s′.

The boundedness problem is that of deciding if there is n ∈ N such that

|{s | s is reachable from s0}| < n, that is, if there is a bounded number of reachable

states of TS.

The termination problem is that of deciding if there is an infinite path s0
a0−→

s1
a1−→ s2

a2−→

An LTS 〈S,Σ,→, s0〉 is monotone with respect to an order ≤ if for every

s1, s2, s
′
1 ∈ S such that s1 → s′1 and s1 ≤ s2, there is an s′2 ∈ S such that s2 → s′2

and s′1 ≤ s′2. Finally, given two states s and s′ we say that s covers s′ if s ≥ s′.

Intuitively, this means that a state s which is greater or equal than another state

s′ can always evolve as s′, getting greater or equal states.

2.2.1 Well-structured transition systems

Many of the decidability results we consider in this thesis, are due to Dickson’s

lemma [33] and the monotonicity of Petri nets and some of its extensions. In [35],

Finkel defined Well Structured Transition Systems, which are essentially systems

which satisfy these two properties.

Definition 2.2.3 (Well-structured transition system) A labelled transition

system TS = 〈S,Σ,→, s0〉 is a well-structured transition system with respect to

an ordering ≤ on S if TS is monotone with respect to ≤ and ≤ is a well-quasi

ordering.

24 CHAPTER 2. PRELIMINARIES

The decidability of coverability, boundedness and termination for WSTS have

been deeply studied in literature. Some (not very strong) additional conditions

are required in order to obtain the decidability of the previous problems. These

conditions are the following ones.

Definition 2.2.4 (Effective Pred-basis, compatibility) Given a WSTS TS:

TS has effective Pred-basis if there is an algorithm which accepts a state s of

TS and returns a finite basis of ↑Pred(↑s).

TS has transitive compatibility if for all s, s′ and t states with s ≤ t and

s→ s′, there is a non-empty path t→ t1 → . . .→ tn with s′ ≤ tn.

TS has strict compatibility if for all s, s′ and t states with s < t and s → s′,

there is a path t→∗ t′, with s′ ≤ t′.

TS has reflexive compatibility if for all s, s′ and t with s ≤ t and s → s′,

either s′ ≤ t or t→ s′′ with s′′ ≥ s′.

In order to prove the decidability of boundedness and termination for WSTS,

Finkel et al. use the so-called tree-saturation methods. These methods consist in

representing all possible computations of the system in a tree structure, called the

finite reachability tree [36]. More precisely, each node of the reachability tree is

labelled by a state of the system, and the root ni is labelled by the initial state.

Then, each node is live or dead. A node n is dead if the state it represents does not

have any successor, or if there is a node n′ in the path from ni to n such that the

state represented by n covers the one represented by n′. Then, the node does not

have any child. Otherwise, the node is live, and it has a child for each successor of

the state it represents. The reachability tree is finite and effectively computable

for WSTSs with computable ≤ and successors, and although compatibility is not

required for building it, when we have compatibility the reachability tree contains

the answer of some of the previous problems. In particular:

• The boundedness problem is decidable for WSTS with computable Succ,

decidable partial ordering and strict transitive compatibility.

• The termination problem is decidable for WSTS with computable Succ,

decidable ordering and transitive compatibility.

• The coverability problem is decidable for WSTS with computable Succ,

decidable ordering and reflexive compatibility.

Abdulla et al. use another approach for the decidability of coverability, called

set-saturation method [3, 7], which was generalized by Finkel et al. later [37]. It

2.3. PETRI NETS AND EXTENSIONS 25

is a backwards reachability algorithm, which consists in, given an upward-closed

set of states I (which is the set of states covering the state that we want to

check for its coverability), computing Pred∗(I), which is the limit of the sequence

I = I0 ⊆ I1 ⊆ I2 ⊆ . . ., where In+1 = In ∪ Pred(In). This limit is computable if

we have effective Pred-basis, and in this case, coverability is decidable [37].

Therefore, the following results are obtained by applying the previous tech-

niques.

Proposition 2.2.1 [35, 36, 37]

Coverability is decidable for WSTS with effective Pred-basis.

Boundedness is decidable for WSTS with strict transitive compatibility, a de-

cidable well partial ordering ≤ and computable Succ.

Termination is decidable for WSTS with transitive compatibility, decidable ≤

and computable Succ.

WSTSs can be seen as acceptors of languages in order to study their relative

expressive power. For this purpose, we need to choose an accepting condition

to define the languages we want to use to compare families of WSTS. Several

conditions, such as reachability, coverability or non condition (trace languages),

have been considered in literature. The class of reachability languages is not

a good criterion for our purpose, since it corresponds to the set of recursively

enumerable languages for most of the extensions of Petri nets we are going to

consider. In our case, we study the relative expressiveness of classes of WSTS

by comparing the coverability languages they accept, that is, we will consider

coverability as accepting condition as in [40, 4]. Therefore, the languages we

consider consist in words formed by computations finishing in states which cover

a given final state.

Given a WSTS TS with initial state s0, provided with a quasi ordering ≤ and

a final state s, the covering language is defined by L(TS, s0, s) = {w ∈ Σ⊛ | s0
w
−→

s′ with s ≤ s′}. Then, given two classes of WSTS S1 and S2, we write S1 � S2 if

for each TS1 ∈ S1, there is TS2 ∈ S2 with L(TS1) = L(TS2). We write S1 ≃ S2

when S1 � S2 and S2 � S1; and S1 ≺ S2 if S1 � S2 and S2 � S1.

2.3 Petri nets and extensions

In this section we formally present the syntax and the semantics of Petri nets and

the extensions we use in this thesis.

26 CHAPTER 2. PRELIMINARIES

••

p

••

q

t1

t2

→
t2 ••

p

••

q

t1

t2

→
t1 ••

p

••

q

t1

t2

Figure 2.1: The firing in a Petri net

Definition 2.3.1 (Petri net) A Petri net (PN for short) is a tuple 〈P, T, F,R, I〉

where P and T are finite disjoint sets of places and transitions, F ⊆ (P × T) ∪

(T × P), R ∈ P × T and I ∈ P × T .

We call the elements of F , R and I arcs. The elements of R are the reset arcs,

and the elements of I are the inhibitor arcs. A PN 〈P, T, F,R, I〉 is a Place/Tran-

sition net (P/T net for short) if R = I = ∅ (and we denote it by 〈P, T, F 〉), a

reset net if I = ∅ and it is an inhibitor net if R = ∅. In figures, we represent

places as circles, transitions as rectangles, arcs as arrows, reset arcs as double

arrows and inhibitor arcs as arcs with a circle as arrowhead. A marking is an

element of P⊕. Intuitively, the number of appearances of a place p in a marking

m, represents the number of tokens in p at the considered marking. Given t ∈ T ,
•t = {p ∈ P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F}.

Given a PN 〈P, T, F,R, I〉, a marking m and a transition t, we say that t is

enabled if •t ⊆ m and m(p) = 0 whenever (p, t) ∈ I, that is, it is enabled if there

are enough tokens in the places corresponding to the incoming arcs of t, and if the

places with an inhibitor arc going to t are empty. Then, t can be fired, reaching

a marking m′ such that, for each p ∈ P :

• m′(p) = t•(p) if (p, t) ∈ R.

• m′(p) = (m(p)−• t(p)) + t•(p) otherwise.

Example 2.3.1 The left-hand side of fig. 2.1 shows a Petri net with two tokens

in place p. Therefore, transition t1 is not enabled at this marking, since it has

an inhibitor arc from p. However, transition t2 can be fired, reaching the marking

depicted in the central part of the figure, in which the place p has been emptied

by the reset arc. Therefore, t1 is now enabled, and can be fired, reaching a new

marking depicted in the right-hand side of the figure, in which a token has been

added to q.

2.3. PETRI NETS AND EXTENSIONS 27

aa

p1

ab

p2

aa
p3

ac
p4

t

x xy

x ν

aa

p1

ab

p2

aa
p3

ca
p4

t

x xy

x ν

→t

Figure 2.2: Firing of a transition in a ν-PN

2.3.1 ν-Petri nets

For the definitions concerning ν-Petri nets we fix an infinite set Id of names, an

infinite set Var of variables and a subset of special variables Υ ⊂ Var for fresh

name creation. Moreover, in the rest of this thesis we denote variables in Υ as

ν, ν1, ν2, . . .

Definition 2.3.2 (ν-Petri net) [78] A ν-Petri net (ν-PN for short) is a tuple

〈P, T, F,H〉 where P and T are finite disjoint sets of places and transitions, and

F,H : T → (P × V ar)⊕ are the input and the output functions, respectively.

We denote Var(t) = {x ∈ Var | ∃p ∈ P, (p, x) ∈ F (t) +H(t)}, Var(p) = {x ∈

Var | ∃t ∈ T, (p, x) ∈ F (t)+H(t)}, and if (p, x) ∈ F (t) we say that there is an arc

from p to t labelled by x. Analogously, if (p, x) ∈ H(t), we say that there is an

arc from t to p labelled by x. A marking of a ν-PN is an element m of (Id×P)⊕,

and if (a, p) ∈ m, we say that there is a token of name a in place p. A mode is

an injection σ : Var → Id. Modes are extended homomorphically to (P × Var)⊕,

that is, given M ∈ (P × Var)⊕, x ∈ Var and a ∈ Id with σ(x) = a, we define

σ(M)(a, p) =M(p, x). We say that a transition t ∈ T is enabled at a marking m

with mode σ if σ(F (t)) ⊆ m and for any ν ∈ Υ, p ∈ P , (ν, p) /∈ m. Then, t can

be fired, reaching a new marking m′ = (m − σ(F (t))) + σ(H(t)) and we denote

this by m
t
−→ m′.

Example 2.3.2 Focus on the ν-PN depicted in the left-hand side of figure 2.2,

with (p1, x), (p2, x), (p2, y) ∈ F (t) and (p3, x), (p4, ν) ∈ H(t). Transition t is en-

abled at the depicted marking, with a mode σ such that σ(x) = a, σ(y) = b and

σ(ν) = c. Then, it can be fired, reaching the marking depicted in the right-hand

side. Note that the name of the token added to p4 (c) is fresh, since ν is in the

set of special variables for name creation.

28 CHAPTER 2. PRELIMINARIES

2.3.2 Timed Petri nets

Now we present the model of Timed Petri nets, in which most of the models

introduced in this thesis are based.

Definition 2.3.3 (Timed Petri net) [83, 10] A timed Petri net (TPN for

short) is a tuple 〈P, T, F,H〉, where P and T are finite disjoint sets of places

and transitions, and F,H : P × T → I⊕.

A marking m of a Timed Petri net is an element of (P × R≥0)
⊕. Intuitively,

(p, r) ∈ m means that there is a token of age r in place p at the marking m.

Abusing notation, we denote m(p) the multiset of ages of tokens in p at the

marking m.

The marking of a TPN may evolve in two ways: by firing discrete transitions

and by firing timed transitions, that is, elapsing time. Given a marking m =

{(p1, c1), . . . , (pn, cn)} and d ≥ 0, we write m
d
−→ m′, where m′ = {(p1, c1 +

d), . . . , (pn, cn + d)}, that is, the marking in which every token is d units of time

older. We say that a transition t is enabled at a marking m if for each p ∈ P with

F (p, t) = {I1, . . . , In}, there is Inp = {c1, . . . , cn} ⊆ m(p) such that ci ∈ Ii for

each i ∈ {1, . . . , n}. Then, t can be fired from m, reaching the new marking m′

such that for each p ∈ P with H(p, t) = {J1, . . . , Jl}, m
′(p) = (m(p)−Inp)+Outp,

where Outp = {j1, . . . , jl} with ji ∈ Ji for each i ∈ {1, . . . , l}. We denote this by

m
t
−→ m′. We write m→ m′ if there is d ≥ 0 with m

d
−→ m′ or there is t ∈ T with

m
t
−→ m′.

As markings of TPNs are multisets over P×R≥0, the corresponding order over

multisets can be considered for them, as well as the coverability problem. In [10]

Abdulla and Nylén prove that the coverability problem is decidable for TPN.

Chapter 3

Timed Nets

3.1 Timed ν-Petri nets

Our main goal in this chapter is to define an extension of Petri nets combining

two orthogonal capabilities: the representation of different instances of the same

net, which can be created fresh and synchronize with other instances, and the

management of time. We start from a model with the first capability, ν-Petri

nets. Then, we need to consider a model of time to extend ν-PN. As exposed in

Chapter 1, there are plenty of ways of extending Petri nets with time. Our first

attempt is to extend ν-PN in the way of Timed Petri Nets [10], which is the most

expressive of these models for which coverability is still decidable. Therefore,

we provide each token (which carries a name) with a real clock, and label the

incoming and outcoming arcs of transitions by intervals (besides the variables).

Definition 3.1.1 (Timed ν-Petri nets) Let Var be a set of variables and Υ ⊂

Var a subset of special variables. A Timed ν-Petri net(ν-TPN for short) is a tuple

N = 〈P, T, In,Out, T ime〉, where:

• P and T are finite disjoint sets of places and transitions, respectively,

• In : T → (P × Var × I)⊕ is the input function,

• Out : T → (P × Var × I)⊕ is the output function.

Given a transition t ∈ T , we take Var(t) as the set of variables adjacent to

t, that is, Var(t) = {x ∈ Var | ∃p ∈ P, I ∈ I, (p, x, I) ∈ In(t) + Out(t)}. In

figures, for each (p, x, I) ∈ In(t) we draw an arc from p to t, labeled by x, I (and

analogously for postconditions).

29

30 CHAPTER 3. TIMED NETS

a0
p1

b0
p2

p3 p4

t

x, (0, 1] y, 1

x, (2, 4) ν, 0

a1
p1

b1
p2

p3 p4

t

x, (0, 1] y, 1

x, (2, 4) ν, 0

p1 p2

a3.5

p3
c0

p4

t

x, (0, 1] y, 1

x, (2, 4) ν, 0

→1 →t

Figure 3.1: Firing of transitions in a ν-TPN

Example 3.1.1 Fig. 3.1 shows a ν-TPNwith P = {p1, p2, p3, p4}, T = {t},

In(t) = {(p1, x, (0, 1]), (p2, y, [1, 1])} and Out(t) = {(p3, x, (2, 4)), (p4, ν, [0, 0])}.

Therefore, Var(t) = {x, y, ν}.

Now, we define a semantics for this syntax. Each token in a marking is pro-

vided with a name, a clock and the place where it is. Then, a marking is the

multiset of these tokens. For the formal definition of marking we consider a fixed

infinite set Id of names.

Definition 3.1.2 (Markings) A token of a ν-TPN is an element of P × Id ×

R≥0. A marking is a finite multiset of tokens.

We write p(a, r) instead of (p, a, r) to denote tokens. Intuitively, p(a, r) is a

token in p, carrying the name a, with clock value r. We use M , M ′, M1,. . . to

range over markings. We say M marks p ∈ P if there are a ∈ Id and r ∈ R≥0

such that p(a, r) ∈ M . We denote Id(M) = {a | ∃p, r, p(a, r) ∈ M}. In figures,

tokens are depicted as names with its age as a superscript. We assume • ∈ Id,

so that black tokens can appear in markings as in ordinary Petri nets. If an arc

is not labeled by any variable we assume that the token involved is •. Moreover,

in figures we do not write the interval [0,∞). Hence, ordinary notations in Petri

nets can be used.

Let us define how the markings may evolve in the executions. As expected,

they may change in two different ways: the elapsing of time (continuous or timed

transitions) and the firing of transitions (discrete transitions). In the following

definition, time elapsing is accomplished by simply adding the same amount of

time to each token in the net.

Definition 3.1.3 (Firing of timed transitions) Given a marking M =

{p1(a1, r1), . . . , pn(an, rn)} and a delay d ∈ R≥0, we write M+d to denote the

3.1. TIMED ν-PETRI NETS 31

marking {p1(a1, r1 + d), . . . , pn(an, rn + d)} in which the value of the clocks of all

tokens has increased by d. Then we write M
d
→M+d.

In order to fire a transition t ∈ T , we assign an identifier to each of the

variables in Var(t), in such a way that the identifiers assigned to special variables

in Υ are fresh names (not in the previous marking). Moreover, we need to ensure

that the preconditions are fulfilled, that is, if we assign the identifier a to variable

x, then for each (p, x, I) ∈ In(t) there is a token p(a, r) in the current marking

such that r ∈ I. Finally, the corresponding tokens are removed/added from/to

the net according to In, Out and the assignation we have chosen.

Definition 3.1.4 (Firing of discrete transitions) Let t ∈ T be a transition

with In(t) = {p1(x1, I1), . . . , pn(xn, In)} and Out(t) = {q1(y1, J1), . . . , qm(ym, Jm)}.

We say t is enabled or can be fired in marking M , evolving to M ′, and we denote

it by M
t
→ M ′, if there is an injection σ : Var(t) → Id, r1, . . . , rn ∈ R≥0 and

r′1, . . . , r
′
m ∈ R≥0 such that:

• ri ∈ Ii for all i ∈ n+ and r′j ∈ Jj for all j ∈ m+,

• σ(ν) /∈ Id(M) for all ν ∈ Υ,

• {p1(σ(x1), r1), . . . , pn(σ(xn), rn)} ⊆M ,

• M ′ = (M − {p1(σ(x1), r1), . . . , pn(σ(xn), rn)})+

{q1(σ(y1), r
′
1), . . . , qm(σ(ym), r′m)}.

Putting together the two previous definitions we obtain the semantics of

ν-TPN , so that we write M → M ′ if M
t
→ M ′ for some t ∈ T or M

d
→ M ′

for some d ∈ R≥0.

Example 3.1.2 The nets in Fig. 3.1 show the same ν-TPNwith three different

markings. In the first marking the transition t is not enabled, since the age of

the only token in p2 is not in [1, 1]. However, after a delay of one unit of time, t

becomes enabled, and can be fired reaching, for example, the marking depicted in

the right. If we call M1, M2 and M3 the markings represented in the first, second

and third nets, respectively, M1
1
→M+1

1 =M2 and M2
t
→M3 with mode σ, where

σ(x) = a, σ(y) = b and σ(ν) = c.

Notice that we are defining a weak semantics, in which time elapsings can

happen even if they disable transitions. For instance, from M1 in Fig. 3.1 two

units of time can elapse, which disables the firing of t forever.

32 CHAPTER 3. TIMED NETS

Now that we have defined our model and its semantics, we focus on solving

the decidability of the control-state reachability problem.

Definition 3.1.5 The control-state reachability problem is that of deciding, given

a ν-TPNN and a place p of N , whether p is marked in some reachable marking.

As the previous definition does not depend on the time model, it will apply

to the rest of the models in the paper. We use this terminology, even if places

in ν-TPN are not necessarily control-states. In fact, if we consider that m ∈

(P × Id)⊕ is coverable if there is a reachable marking M such that its tokens

cover m in an untimed manner (as in ν-PN), then control-state reachability is

equivalent to coverability: control-state reachability is in fact coverability of the

marking with only one token in the control-state place, and coverability of a

markingm can easily be reduced to control-state reachability by adding to the net

a control-state place p and a transition with tokens in marking m as precondition

and p as postcondition (without caring about the ages of the tokens).

Figure 3.2: How eCall works?

Let us illustrate the previous definitions with an example.

Example 3.1.3 It is well known that in case of a crash, the time of reaction

of the emergency services is fundamental to save lifes. 75% of the deaths caused

by an accident happen in the “golden hour”, the first hour after the crash. The

European Union has voted that from April of 2018 all the cars must be equiped with

the so-called eCall system (http://www.imobilitysupport.eu/), which is a system

3.1. TIMED ν-PETRI NETS 33

NC SL SM SP

FPLate

Satellite Car PSAP112

Emergency

Too late

T ime

ν, 0 x, [0, 5] x, 0 x, [1, 2] x, 0 x, 0

x, 0

x, [2, 5]

x, 0x, [2, 5]

x, 0

x, (b,∞)

ν, 0

x, [1, 6]

x, 0

Figure 3.3: A ν-TPN representing the eCall system

that automatically calls the nearest emergency centre in case of a crash, sending a

“minimum set of data” (MSD), which includes the exact location of the accident.

Hence, in a short time the emergency services know that an accident has happened

and where it is.

Fig. 3.2 shows how eCall works in a simplified way. When the crash happens,

a satellite indicates the precise location of the car. Then, the MSD is sent from

the car to the Public Safety Answering Point 112 (PSAP112), where an operator

can see the location of the incident, call the emergency services and give informa-

tion of the accident to the traffic information and management centre. Then, an

ambulance is sent to the location of the accident.

The ν-TPN in Fig. 3.3 represents the eCall system. For simplicity, we write

x, 0 instead of x, [0, 0] in the labels of the arcs. Each name in the net represents a

different accident. The firing of NC creates a new name which represents a new

accident. A token of this new name is set to place time. The age of this token will

represent the time that has elapsed since the corresponding crash. Transition Late

can only fire if more than b units of time have elapsed since the accident and the

ambulance has arrived to the location at this moment (where b is the maximum

amount of time we consider acceptable to get the ambulance). Hence, we want to

ensure that place Too Late cannot be marked, that is, we are interested in solving

the control-state reachability problem for place Too Late. The different steps of

the processing of the information of the accident with their time constraints are

simulated by the rest of the transitions of the net.

Note that as we are not considering urgency, some tokens can get stuck in the

net if they become too old. For example, if there is a token older than 5 in place

34 CHAPTER 3. TIMED NETS

satellite it gets stuck in this place. However, this does not affect the property we

want to verify, since Late can only be marked by instances which fulfill the time

constraints of the arcs.

3.1.1 Undecidability of safety properties for ν-TPN

We are going to prove that control-state reachability is undecidable for ν-TPN by

giving a reduction from a Turing-complete model. Despite the fact that there are

many well-known Turing complete formalisms, such as Minsky or Turing Ma-

chines, for simplicity, we prefer to perform a reduction from a model which is

closer to ν-TPN . In particular, we choose ν-Replicated net systems [101, 79],

which are collections of ν-PN which can synchronize with each other and create

new instances of the net. Let us formally introduce this model before giving the

proof of undecidability.

3.1.1.1 ν-replicated net systems

Let us fix an arbitrary set S of service names and let Sync = {s?, s! | s ∈ S}. We

will use the elements of Sync for the synchronizations, in the way of CCS.

Definition 3.1.6 (ν-RN systems [101, 79]) A ν-RN system is a tuple N =

〈P, T, F,H, λ〉, where:

• 〈P, T, F,H〉 is a ν-PN ,

• λ : T → L assigns a label to each transition,

where L = (S ∪Sync)× (P × Id)⊕. An instance of N is an element of (P × Id)⊕.

A marking of N is a multiset of instances of N .

Intuitively, when two transitions are labelled by s! and s? respectively, for

some s ∈ S, they can synchronize their firings, creating a new instance of the

net. We write Var(t) to denote the set of arcs adjacent to t. For two instances M

and M ′ we write M
t(σ)
−−→ M ′ if M can reach M ′ after the firing of t with mode

σ, following the semantics of ν-PN . We write Id(M) to denote the set of names

that appear in marking M. We identify any marking M with M + {∅}, so that

empty instances, ie, instances without tokens, can be removed.

Definition 3.1.7 (Firing of autonomous transitions) Let t ∈ T be such that

λ(t) = (s,M), and M and M ′ be two instances such that M
t(σ)
−−→M ′ with σ(ν) /∈

3.1. TIMED ν-PETRI NETS 35

ap

q

k

b k

s?

s!

x ν

y x
→

ap

q

c

a a

s?

s!

x ν

y x

abp

q

k

a k

s?

s!

x ν

y x

Figure 3.4: Synchronous firing in a ν-RN system.

Id(M) for ν ∈ Υ. Then {M} + M
t
−→ {M ′,M} + M for any marking M such

that σ(ν) /∈ Id(M) for ν ∈ Υ.

Definition 3.1.8 (Firing of synchronizing transitions) Let t1, t2 ∈ T be such

that λ(t1) = (s?,M1) and λ(t2) = (s!,M2) for some s ∈ S, and let M1,M
′
1,M2

and M ′
2 be instances such that Mi

ti(σi)
−−−→ M ′

i with σ1(x) = σ2(x) for all x ∈

Var(t1) ∩ Var(t2) and σ(ν) /∈ Id(M i) for i = 1, 2.

Then {M1,M2} + M
(t1,t2)
−−−−→ {M ′

1,M
′
2,M1,M2} + M for any marking M such

that σ(ν) /∈ Id(M) for ν ∈ Υ.

Notice that when M , M1 or M2 are empty then no instance is created. For

more details about ν-RN systems, see [101, 79].

Example 3.1.4 Figure 3.4 shows the firing of two compatible transitions t1 and

t2, which create a new instance M with M(p) = {a, b} and M(q) = {a}.

Definition 3.1.9 (Control-state reachability) We define the control-state

reachability problem as that of deciding, given a ν-RN system N and a place

p of N , whether there is a reachable marking containing an instance M such that

(p, a) ∈M for some a ∈ Id.

In [79] ν-RN systems are proved to be Turing-complete. Moreover, termina-

tion for Turing machines can be easily reduced to control-state reachability for

ν-RN , which is therefore undecidable.

3.1.1.2 Proof of undecidability

In order to simplify the proof of undecidability of control-state reachability for

ν-TPN , we can safely assume that only autonomous transitions can create new

instances in a ν-RN system (and only one in each firing). Moreover, the new

instances will all have the same marking, consisting of a token in a single place

(denoted by p0). Indeed, such ν-RN are enough to simulate Turing machines, as

shown in [79].

36 CHAPTER 3. TIMED NETS

Proposition 3.1.1 Control-state reachability is undecidable for ν-TPN .

Proof: We reduce control-state reachability for ν-RN systems to our problem.

Given a ν-RN N = 〈P, T, In,Out, λ〉, we build a ν-TPN N ′ = 〈P ′, T ′, In′, Out′〉

which simulates it. In particular, we build N ′ such that P ⊂ P ′, and a place

p ∈ P can be marked in N iff it can be marked in N ′.

Intuitively, we represent each instance of N by a multiset of tokens with the

same clock value in N ′. The construction guarantees that all the transitions in N ′

use only tokens with clocks set to 1. Hence, tokens with clocks older than 1 are

dead tokens, that cannot be used for the firing of transitions. In order to allow

instances not to become dead, we will add transitions that reset tokens with clock 1

to 0. These transitions may not reset every token with clock 1, in which case some

tokens are lost (after the elapsing of time). Therefore, in some simulations some

tokens are lost, but there are also perfect simulations in which no tokens are lost.

In this sense our simulation is lossy, though it preserves control-state reachability,

since losing tokens can only remove behavior (no spurious behavior is introduced).

We also guarantee in our construction that we do not merge instances, that is,

that no two tokens with different clock values may end up having the same clock

value.

Executions in N ′ simulate executions of N in two steps: In the first step N ′

creates an unbounded number of tokens with different clock values, which rep-

resent all the instances that may take part in the simulation. Again, there are

executions which may get stuck because we do not generate all the tokens we need

in this first phase. However, if the control place is marked in some execution r

of N , then there are executions of N ′ which generate enough tokens in the first

step to simulate r. The second step is the simulation itself. We consider in N ′

two places s1 and s2 (marked in mutual exclusion) to specify in which of the two

steps the simulation currently is.

Step 1 (creation of instances): In the first step, depicted in Fig. 3.5, we

repeatedly fire a transition new , which creates new tokens with clock 0 in place

ins. The clock of each token in ins will represent a different instance of N , so that

we need to ensure that they are all different. We do that by forcing some time

elapsing between two consecutive firings of new , by demanding that the token in

s1 is strictly older than 0 when new is fired (and setting it back to 0). Initially,

there is only one token in place s1, with clock 0.

3.1. TIMED ν-PETRI NETS 37

•0
s1

s2

ins p0

initnew
x, (0,∞) x, [0, 0]

x, (0,∞)

x, [0, 0]

x, [0, 0]
x, [1, 1] x, [0, 0]

Figure 3.5: Creation of instances

The firing of a transition init concludes step 1, by moving the token in s1 to

s2 when the token in s1 has a non-null clock. It also sets the initial marking of

N , by taking a token of clock value 1 from ins and putting it in p0, with clock 0.

Notice that this guarantees that the clock value of the token in the initial instance

is different from all the clock values of the tokens in ins.

Step 2 (simulation of transitions): As mentioned before, only tokens with

clocks between 0 and 1 (both included) are valid tokens, that represent a token in

some instance. Step 1 guarantees that at the beginning of step 2 there are no two

tokens having clocks set to 0 and 1, respectively. Moreover, at any point in step

2, two tokens in P with clocks 0 and 1 belong to the same instance. Now we show

how we reset the clock of tokens, and how we simulate the firing of autonomous

transitions (possibly creating a fresh instance), and the synchronization of two

compatible transitions.

Resetting tokens: In order to be able to perform perfect (non-lossy) simu-

lations, we need to be able to reset the clock of tokens with value 1. For that

purpose, for each place p ∈ P ′ we add a transition tp which takes from p a token

of clock 1 and puts it back with clock set to 0.1 Formally, In′(tp) = {(p, x, [1, 1])}

and Out′(tp) = {(p, x, [0, 0])}. Notice that this is correct because before resetting

there are no tokens with clock set to 0.

Simulation of the firing of an autonomous transition: The simulation of the

(autonomous) transition t ∈ T is simply achieved by demanding that the clock of

all tokens involved in the firing is set to 1. Thus, we consider t ∈ T ′, and we attach

the interval [1, 1] to every arc adjacent to t. More precisely, if (p, x) ∈ In(t) then

(p, x, [1, 1]) ∈ In′(t) (and analogously for postconditions). We also add place s2 as

pre/postcondition of t. Moreover, if t creates a fresh instance, it puts a token in a

new place act . Intuitively, we store in act a token (of any age) for each instance

that the simulation has created, but that has not been initialized yet. In order to

initialize new instances, we add a new transition tset, which takes a token from

1It is enough to reset places in which the clock is meaningful, unlike e.g. s2.

38 CHAPTER 3. TIMED NETS

p

q

t

x

x

 s2

p

q

act

ins

p0
t tset

x, [1, 1]

x, [1, 1]

x, [1, 1]

x, [0, 0]

Figure 3.6: Simulation of the firing of t, assuming t creates a fresh instance

p1 p2

p3 p4

t1 t2

x

x

x

ν

p1

p2

start1

start2

x, [1, 1]

x, [1, 1]

p̄1

p̄2

x

x
u

x

x

p̄3

p̄4

x

ν

role1

role2

[1, 1]

[1, 1]

end1

end2

y, [1, 1]

y, [1, 1]

p3

p4

x, [1, 1]

x, [1, 1]

x, [1, 1]

x, [1, 1]

Figure 3.7: Synchronizing transitions

act and a token with clock value 1 from ins, and puts a token in p0 with clock set

to 0, analogously as init (see Fig.3.6). Again, notice that when there is a token

with clock value 1 in ins there is no token with clock 0 in the whole net, so that

we are correctly creating the new instance.

Simulation of synchronizing transition: Let us see how we simulate the firing

of u = (t1, t2) ∈ T × T , where t1 and t2 are two compatible transitions according

to λ(see Fig. 3.7). We simulate u by means of the consecutive firing of transitions

start1u, start
2
u, u, end

1
u and end2u in T ′. We guarantee (thanks to s2 and new

control places, not shown in Fig. 3.7) that these transitions can only be fired in

the order shown, and that start1u can only be fired when there is a token in s2 (no

simultaneous simulations of firings can take place).

Let us consider in P ′ new places, role1 and role2 (whose content can also be

reseted, as explained above), and for each p ∈ P let us consider p ∈ P ′. The firing

of start1u removes the tokens from the preconditions p of t1 with clock value 1 and

puts them in the corresponding p (with any value for the clock). More precisely,

if (p, x) ∈ In(t1) then (p, x, [1, 1]) ∈ In′(start1u) and (p, x, [0,∞)) ∈ Out′(start1u).

Moreover, a token (with any name, e.g. a black token) is added to role1 with

clock value 1. The case of start2u is analogous.

The firing of u simulates the firing of u (that is, the simultaneous firing of t1

and t2) in the overlined places. More precisely, if (p, x) ∈ In(ti) for i ∈ {1, 2}

then (p, x, [0,∞)) ∈ In′(u) (and analogously for postconditions). In particular, it

3.1. TIMED ν-PETRI NETS 39

checks that names in different places are matched according to the variables in

the arcs, and new names are created if needed. Notice that if the names selected

by start1u and start2u do not match then u is disabled. Hence, our simulation may

introduce deadlocks, though it still preserves control-state reachability. Notice also

that this firing can take place independently of the clocks of the tokens involved.

Finally, transitions end1u and end2u set the clocks of the tokens involved in the

firing of u to their correct values. For that purpose, endiu takes the token from rolei

with clock value 1, and for every p postcondition of ti it takes the token in p and

puts it in p with clock value 1. More precisely, for i = 1, 2, (rolei, y, [1, 1]) ∈ In′(ti)

(where y is a fresh variable), and if (p, x) ∈ Out(ti) then (p, x, [0,∞)) ∈ In′(endiu)

and (p, x, [1, 1]) ∈ Out′(endiu).

The previous simulation preserves control-state reachability. Indeed, if p is

marked by some execution of N , then that execution can be perfectly simulated,

ending up in a marking that marks p. Conversely, if p is marked by some execu-

tion of N ′, by construction that execution corresponds to the simulation of some

execution of N which also marks p (possibly with more tokens, if some were lost).

2

We have proved that control-state reachability is undecidable for ν-TPN by

performing a reduction in which, basically, we use clocks to represent instances.

We think that this technique may be generalizable to perform reductions between

models with time and models with (maybe ordered) instances.

Next, we prove that control-state reachability is undecidable even for ν-TPN

with two tokens (and therefore two clocks) per instance. We prove it by performing

a reduction from the same problem for Timed Petri nets with two clocks per token,

which is undecidable [1]. Let us first define such model:

Definition 3.1.10 (Timed Petri net with two clocks per token) A timed

Petri net with two clocks per token (2TdPN for short) is a tuple 〈P, T, F,H〉 where

P and T are two finite disjoint sets of places and transitions, respectively, and

F,H : P × T → (I × I)⊕.

The semantics of 2TdPN is similar to the semantics of TdPN . In fact, the

only difference between them is the presence of a second clock per token, which

is managed exactly as the other one. Hence, a marking m of a 2TdPN is an

element of (P × R≥0 × R≥0)
⊕. Intuitively, (p, r, s) ∈ m means that there is a

token with clocks r and s in place p at the marking m. In a notation abuse, we

40 CHAPTER 3. TIMED NETS

denote by m(p) the multiset of pairs of clocks of tokens in p at the marking m.

Again, the marking of a 2TdPN may evolve in two ways: by elapsing time and

firing discrete transitions. Given a marking m = {(p1, r1, s1), . . . , (pn, rn, sn)} and

d ≥ 0, we write m
d
−→ m′, where m′ = {(p1, r1+d, s1+d), . . . , (pn, rn+d, sn+d)},

that is, the marking in which the two clocks of every token are d units of time

older. A transition t is enabled at a marking m if for each p ∈ P with F (p, t) =

{(I11 , I
2
1), . . . , (I

1
n, I

2
n)}, there is Inp = {(r1, s1), . . . , (rl, sl)} ⊆ m(p) such that for

each i ∈ {1, . . . , l}, r1i ∈ I1i and r2i ∈ I2i . Then, t can be fired from m, reaching a

new marking m′ such that for each p ∈ P with H(p, t) = {(J1
1 , J

2
1), . . . , (J

1
l , J

2
l)},

m′(p) = (m(p) − Inp) + Outp, where Outp = {(j11 , j
2
1), . . . , (j

1
l , j

2
l)} with j1i ∈ J1

i

and j2i ∈ J2
i for each i ∈ {1, . . . , l}, and denote this by m

t
−→ m′. Finally, we write

m→ m′ if there is d ≥ 0 with m
d
−→ m′ or there is t ∈ T with m

t
−→ m′.

The control-state reachability problem for 2TdPN is defined in the same way

as for ν-TPN , that is, given a 2TdPN with initial marking m0 and a place

p, the control-state reachability problem is that of deciding if there is a marking

which is reachable from m0 and marks the place p. Undecidability of control-state

reachability problem is proved in [1], by defining a reduction from the control-state

reachability problem for 2-counter machines.

Now, we are ready to prove that control-state reachability is undecidable for

ν-TPN with only two tokens per instance.

Proposition 3.1.2 Given a 2TdPN N with initial marking m0 and a place p of

N , there is a ν-TPN N ′ with an initial marking m′
0, and a place p′ of N ′ such

that p is reachable from m0 in N if and only if p′ is reachable from m′
0 in N ′.

Moreover, all the markings of N ′ that are reachable from m′
0 have at most two

tokens per instance.

Proof: Given a 2TdPN N = 〈P, T, F,H〉 we define the corresponding

ν-TPN N ′ = 〈P ′, T ′, In,Out〉 with:

• P ′ = {p1, p2 | p ∈ P} and T ′ = T .

• For each t ∈ T , In(t) =
⊎

p∈P

⊎

(I1i ,I
2
i)∈F (p,t){(p

1, xi, I
1
i)} ∪ {(p2, xi, I

2
i)}.

• Analogously, for each t ∈ T , Out(t) =
⊎

p∈P

⊎

(I1i ,I
2
i)∈H(p,t){(p, xi, I

1
i)} ∪

{(p, xi, I
2
i)}.

Moreover, given a marking m = {(p1, r1, s1), . . . , (pn, rn, sn)} of N , we define

the corresponding marking of N ′ as m′ = {p11(a1, r1), p
1
2(a2, r2), . . . , p

1
n(an, rn)}+

{p21(a1, s1), p
2
2(a2, s2), . . . , p

2
n(an, sn)}.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 41

•0,1

p

•3,1

q

t
((0, 1] [3, 5]) ((3, 4] [2, 2])

a0

p1

b3

q1

t1

x, (0, 1]

x, (3, 4]

a1 p2 b1

q2

x, [3, 5]

x, [2, 2]

→

Figure 3.8: From 2TdPN to ν-TPN .

Intuitively, we represent the first and the second clock of the tokens of N in

the first and second copy of the places of N in N ′, respectively, as depicted in

Fig. 3.8. In fact, it is trivial to prove that m1 → m2 in N if and only if m′
1 → m′

2

in N ′. Hence, p of N is reachable from m0 if and only if the place p1 (or p2) is

reachable from m′
0.

2

Therefore, we obtain the next corollary:

Corollary 3.1.3 Control-state reachability is undecidable for ν-TPN with only

two tokens per instance.

3.2 Locally synchronous ν-Petri nets

In this section we define and study a new timed extension of ν-Petri nets which

differs from the previous one in the number of clocks: this time, our model is

locally synchronous, meaning that all the tokens of each instance share one clock.

The timed restrictions of the firings are expressed in the same way as ν-TPN .

Hence, this new model could be expressed as a syntactic restriction of the previous

one, by selecting a distinguished token per instance, which would carry the age of

the instance. However, we prefer to define locally synchronous ν-Petri nets from

scratch, thus obtaining more manageable notations to be used in the forthcoming

proofs. Again, we fix a set of variables Var and Υ ⊂ Var a subset of special

variables.

Definition 3.2.1 (Locally synchronous ν-PN) A locally synchronous ν-Petri

net (ν-lsPN for short) is a tuple N = 〈P, T, In,Out, T ime〉 where:

• P and T are finite disjoint sets of places and transitions, respectively,

42 CHAPTER 3. TIMED NETS

ab

p1

b

p2

a
p3 p4

t

x, (0, 1] y, [1, 1]

x, (2, 4) ν, [0, 0]

ab

p1

b

p2

a
p3 p4

t

x, (0, 1] y, [1, 1]

x, (2, 4) ν, [0, 0]

b

p1 p2

aa
p3

c
p4

t

x, (0, 1] y, [1, 1]

x, (2, 4) ν, [0, 0]

M1 = a:({p1, p3}, 0),
b:({p1, p2}, 0.5)

M2 = a:({p1, p3}, 0.5),
b:({p1, p2}, 1)

M3 = a:({p3, p3}, 3), b:({p1}, 1),
c:({p4}, 0)

→ →

Figure 3.9: Firing of a transition in a ν-lsPN .

• for each t ∈ T , Int, Outt : Var → P⊕ are the input and output functions of

T , respectively,

• for each t ∈ T , Timet : Var → I × I is the time constraints function of T .

We denote by Time1t (x) and Time2t (x) the first and the second component

of Time(x), respectively. Again, for each t ∈ T we define Var(t) = {x ∈ Var |

Int(x) + Outt(x) 6= ∅}, that is, the set of variables labelling arcs adjacent to t.

Moreover, we split this set into the subsets nfVar(t) = Var(t)\Υ and fVar(t) =

Var(t)∩Υ. For example, in any of the nets depicted in Fig. 3.9, Var(t) = {x, y, ν},

fVar(t) = {ν} and nfVar(t) = {x, y}.

In order to define the markings for ν-lsPN , we fix a set Id of names.

Definition 3.2.2 (Markings of ν-lsPN) A marking M of a ν-lsPN is an ex-

pression of the form a1:(m1, r1), . . . , an:(mn, rn), where Id(M) = {a1, ..., an} ⊂ Id

are pairwise different names, and for each i ∈ n+, ∅ 6= mi ∈ P⊕ and ri ∈ R≥0.

We call instances the elements of the form a:(m, r), and we say that a:(m, r)

is an instance with name a, tokens according to m and age (or clock) r. We treat

markings as multisets of instances, and we use M,M ′, . . . to range over them. We

assume that each mi is not empty and we say that a marking M marks a place

p ∈ P if there is a:(m, r) ∈M such that p ∈ m.

Now, we define the semantics of the model. As in the previous one, markings

may evolve in two ways: the elapsing of time and the firing of transitions.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 43

Definition 3.2.3 (Firing of timed transitions) Given M = a1 : (m1, r1), ...,

an : (mn, rn) and d ∈ R≥0, we write M+d to denote the marking

a1 : (m1, r1 + d), ..., an : (mn, rn + d), in which the clock of every instance has

increased by d. We write M
d
−→M+d.

In order to define the firing of discrete transitions, we need to be able to

add and remove instances a : (m, r) with empty m, obtained when removing the

preconditions of a transition. For that purpose, we say that M ′ is an ∅-expansion

of a marking M (or M is an ∅-contraction of M ′) if M ′ is obtained by adding

instances a : (∅, r) to M .

Definition 3.2.4 (Firing of discrete transitions) Let t ∈ T with nfVar(t) =

{x1, ..., xn} and fVar(t) = {ν1, ..., νk}. We say t is enabled at marking M if:

• M = a1 : (m1, r1), ..., an : (mn, rn) +M , for some M ,

• for each i ∈ n+, Int(xi) ⊆ mi and ri ∈ Time1t (xi).

Then, t can be fired, and taking

• {b1, ..., bk} pairwise different names not in Id(M),

• m′
i = (mi − Int(xi)) +Outt(xi) for all i ∈ n+,

• m′′
j = Outt(νj) for all j ∈ k+,

• r′i any value in Time2t (xi), for all i ∈ n+,

• r′′j any value in Time2t (νj), for all j ∈ k+,

we can reach M ′, denoted by M
t
−→ M ′, where M ′ is the ∅-contraction of a1 :

(m′
1, r

′
1), ..., an:(m

′
n, r

′
n), b1:(m

′′
1, r

′′
1), ..., bk:(m

′′
k, r

′′
k) +M

In order to understand how the firing of transitions works, focus on Fig. 3.9,

which depicts a ν-lsPN with three different markings. In the first marking M1

the transition t is not fireable, because no instance with a clock value in [1, 1] has

a token in place p2. However, after waiting 0.5 units of time (that is, after firing

M1
0.5
−−→ M2), the marking M2 is reached, and t becomes enabled. Then, we can

fire t by assigning a to x, b to y and c to ν thus reaching, for example, the marking

M3 in the figure.

Let us give a more realistic example of a ν-lsPN representing the Fischer’s

protocol, to show how ν-lsPN can represent real life processes.

44 CHAPTER 3. TIMED NETS

In Sw W Cs
k == 0 → xi := 0 xi < a→ k := i, xi := 0 k == i ∧ xi > d

k 6= i ∧ xi > d

k := 0

Figure 3.10: Timed automaton modeling the i-th process of Fischer’s mutual
exclusion protocol

Example 3.2.1 Fischer’s protocol:

We model a parameterized version of Fischer’s protocol for mutual exclusion,

which considers n processes pi (where n is a parameter), each of those endowed

with a real clock xi. Moreover, a shared integer variable k ∈ {1, . . . , n} is consid-

ered, in order to set the turn for entering the critical section.

Each process pi can be modeled by the timed automaton of Fig. 3.10, and

behaves as follows:

1 repeat

2 non critical section 7 until k==i;

3 repeat 8 critical section;

4 await k==0; 9 k:=0;

5 k:=i; 10 non critical section

6 delay(d); 11 until false;

Process pi repeatedly tries to enter the critical section (state In). For that

purpose, it waits until k = 0, which means that no other process is in the critical

section (state Sw). Then, it sets k := i, to ask for permission to enter (state W).

After a delay of d units of time, if k is still i, the process enters the critical section

(state Cs), setting k = 0 when it leaves. Otherwise, it repeats lines 4−6. In order

to make the algorithm satisfy the mutual exclusion property, it is important to fix

a proper delay d, greater than the time a each process takes to execute line 5.

Then in Fig. 3.10 we take a < d.

Let us define our model: We consider the net depicted in Fig 3.11. Intuitively,

each token in places In, Sw, W and Cs represents a different instance. The

variable k is represented by a place k that contains a black token if k = 0 or a

token with the identifier that changed its last value. When a transition t is fired,

if there are two different variables x, y ∈ Var(t), then the names of the tokens

associated to x and y in the firing are different (hence checking if k == i). Notice

the transition new, that can create any number of processes in their initial state.

To prove mutual exclusion, we have to prove that no marking with two tokens in

place Cs can be reached, which can be easily reduced to control-state reachability.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 45

new

In
t1

y, [0,∞)

ν

Swy, [0, 0]
w

y, [0, a) Wy, [0, 0]
t2

y, [d,∞) Cs

y

t3

y, (d,∞)y

• k

y

t4

y y

y

x

x

y

Figure 3.11: Fischer’s mutual exclusion protocol as a ν-lsPN

Note that the timed automaton in Fig. 3.10 modeling Fischer’s protocol and

our parametric model are very similar. In [5], the authors model Fischer’s protocol

using Timed Petri nets. As they do not use colors, they need to use a counting ab-

straction (which considers the state space of each process and the shared variable),

and the obtained model is far more complicated than ours.

3.2.1 Decidability of control-state reachability for ν-lsPN

Let us recall that the control-state reachability problem for ν-lsPN is defined anal-

ogously as for ν-TPN , as reachability of the set of markings which mark a control

place p. In order to prove its decidability, we first need to define a more manage-

able model, equivalent to ν-lsPN , up to control-state reachability. Note that our

model is infinite in three dimensions: It may reach markings with an unbounded

number of instances, each of which is potentially unbounded and endowed with a

clock in an uncountable domain. Moreover, any marking has infinitely-many pos-

sible successors due to time delays, and therefore, the transition system induced

by a ν-lsPN is not finitary. We use the theory of regions [6, 10] to obtain a model

with finitary transition system over a countable domain, which is equivalent to

ν-lsPN , up to control-state reachability. Moreover, the model we define will be a

WSTS, thus obtaining the decidability of the control-state reachability problem

by reducing it to a coverability problem.

In this section, we fix a ν-lsPN N = 〈P, T, In,Out, T ime〉 and we denote by

max the maximum integer bound appearing in Time.

Definition 3.2.5 (Regions) A region is an expression of the form A0 ∗A1 ∗ . . .∗

An ∗ A∞ with n ≥ 0, where Ai ∈ (P⊕ × Ii)
⊕ for every i ∈ n∗∞ and I0 = max ∗,

Ii = (max − 1)∗ for i ∈ n+ and I∞ = {max + 1}. We write |R| =
∑

i∈n∗
∞
|Ai|.

46 CHAPTER 3. TIMED NETS

As we want to obtain a discrete domain of states, we cannot keep all the

information about the (real) ages of the instances. In fact, we only need to retain

the integer part of the age of the instances, and the order between the fractional

parts of the instances because, despite time is continuous, the limits of the intervals

are natural numbers. Moreover, we do not need to keep the concrete names of the

instances and the concrete age of instances older than max , since this information

is not useful from the point of view of control-state reachability. Therefore, we

represent the information of each instance a : (m, r) by the pair (m, ⌊r⌋) which

consist of the multiset of places m and a natural number representing the integer

part of its age ⌊r⌋. Then, in order to represent each marking by a region, we split

the pairs representing its instances into three multisets:

• The multiset M0 of instances with integer age lower than max ,

• the multiset M∞ of instances older than max and

• a multiset Mm with the rest of instances.

Finally, we put the pairs representing instances in M0 and M∞ in A0 and A∞

respectively, and we keep in A1, . . . An the pairs representing instances in Mm,

ordered according to the fractional part of their ages. More formally:

Definition 3.2.6 (Region of a marking) Let M be a marking. We define the

region RM = A0 ∗A
x1 ∗ ... ∗Axn ∗A∞ where:

• |RM | = |M |, x1, ..., xn ∈ (0, 1) and i < j iff xi < xj,

• A0 = {(m, r) | a:(m, r) ∈M, r ∈ max∗},

• Ax = {(m, ⌊r⌋) | a:(m, r) ∈M, r < max, frct(r) = x},

• A∞ = {(m,max+1) | a:(m, r) ∈M, r > max}.

Let us illustrate the previous definition by an example:

Example 3.2.2 The first part of Fig. 3.12 represents the marking

M = a : (pq, 1.5), b : (p, 2), c : (ppq, 4.5), d : (q, 2.3), e : (qq, 0.3). Suppose that

max = 3. Then, we split the instances in the three multisets depicted in the mid-

dle of the figure. Finally, we lose the information about the names of the instances

and the fractional part of the ages. Moreover, we split the multiset Mm into the

two multisets A1, which consists of the instances b and c with fractional part of

the age 0.3, and A2, with the instance a which has fractional part of the age 0.5.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 47

M : a : ({pq}, 1.5) b : ({p}, 2) c : ({ppq}, 4.5) d : ({q}, 2.3) e : ({qq}, 0.3)

M0
< {p}, 2 >

Mm
< {pq}, 1.5 > < {q}, 2.3 > < {qq}, 0.3 >

M∞
< {ppq}, 4.5 >

A0

< {p}, 2 >

A1

< {qq}, 0 > < {q}, 2 >

A2

< {pq}, 1 >

A∞

< {ppq}, 4 >

Figure 3.12: The region associated to a marking

Now we define the transition system over regions induced by a ν-lsPN . Let us

fix some notations: Given A ∈ (P⊕×I)⊕, we define A< = {(m, r) ∈ A | r < max},

A= = {(m, r + 1) ∈ A | r = max} and A+1 = {(m, r + 1) | (m, r) ∈ A)}. Finally,

for the next definitions we consider a region R = A0 ∗A1 ∗ . . . An ∗A∞.

Time elapsing : There are two ways in which time may elapse in regions. If

A0 6= ∅, the region may evolve to ∅ ∗ A<
0 ∗ A1 ∗ . . . ∗ An ∗ (A∞ + A=

0), which

corresponds to a small elapsing of time that makes all the instances in A0 have a

non-integer clock value, and so that the instances in An do not reach an integer

value. Notice that instances in A0 with clock max are added to A∞. Otherwise,

when A0 = ∅, the region may evolve to A+1
n ∗A1∗ . . .∗An−1∗A∞, which represents

an elapsing of time that causes the instances in An (those with a higher fractional

part) to reach the next integer part. Formally:

Definition 3.2.7 (Time elapsing for regions) Let R = A0 ∗A1 ∗ . . .∗An ∗A∞

be a region. We write R
δ
։R′, where

R′ =

{

∅ ∗A<
0 ∗A1 ∗ . . . ∗An ∗ (A∞ +A=

0) if A0 6= ∅

A+1
n ∗A1 ∗ . . . ∗An−1 ∗A∞ otherwise

Example 3.2.3 Let us consider the region R = A0 ∗ A1 ∗ A2 ∗ A∞ depicted in

Fig. 3.13 and suppose that max = 3. As A0 6= ∅, the elapsing we take is of the

first type in the definition. Hence, we obtain a region with A0 = ∅. From this new

region, time elapses in the second way, and therefore the multiset A+1
3 becomes

A0.

48 CHAPTER 3. TIMED NETS

A0
< {p}, 2 >

A1
< {pq}, 1 >

A2
< {qq}, 0 > < {q}, 2 >

A∞
< {ppq}, 4 >

A0
p

A1
< {p}, 2 >

A2
< {pq}, 1 >

A3
< {qq}, 0 > < {q}, 2 >

A∞
< {ppq}, 4 >

A0
< {qq}, 1 > < {q}, 3 >

A1
< {p}, 2 >

A2
< {pq}, 1 >

A∞
< {ppq}, 4 >

Figure 3.13: Time elapsing for regions

Firing of transitions: In order to define the firing of transitions for regions we

first need to define ∅-expansions/contractions for them.

Definition 3.2.8 (∅-expansion/contraction) We say R′ is an ∅-expansion of

a region R = A0 ∗A1 ∗ . . . ∗An ∗A∞ (or R is the ∅-contraction of R′) if R′ is of

the form A′
0 ∗ u0 ∗A

′
1 ∗ u1 ∗ . . . ∗A

′
n ∗ un ∗A′

∞ and for each i ∈ N:

• A′
i = Ai +Bi with m = ∅ for all (m, r) ∈ Bi,

• ui = Bi
1 ∗ . . . ∗B

i
ki

with ki ≥ 0 and m = ∅ for all (m, r) ∈ Bi
j.

Intuitively, we obtain an ∅-expansion of a region R by adding to R pairs with

empty marking in new multisets Bi
j which we insert in R, or in the multisets Ai

in R.

Example 3.2.4 Fig. 3.14 shows a region R and one of its ∅-expansions R′. Note

that R′ can be built from R by adding the two multisets B0
1 and B0

2 with pairs

representing instances with empty markings and the pair < {∅}, 3 > to A1.

Intuitively, in order to fire a discrete transition from a region R, it must be

enabled, which means that we must be able to assign to each variable x ∈ Var(t)

a different pair (m, r) in some multiset Ai of R, in such a way that Int(x) ⊆ m

and the clock of the instance which represents (m, r) is in Time1t (x). In order

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 49

A0
< {p}, 2 >

A1
< {pq}, 1 >

A∞
< {ppq}, 4 >

A′
0

< {p}, 2 >
B0

1
< {∅}, 1 >

B0
2

< {∅}, 2 >
A′

1
< {pq}, 1 > < {∅}, 3 >

A′
∞

< {ppq}, 4 >

Figure 3.14: ∅-expansion of a region

to improve readability, we define a predicate match which encompasses these two

requirements.

Definition 3.2.9 (Match predicate) Given a = (m, r) ∈ (P⊕×R≥0) and α =

(m′, I) ∈ P⊕ × I, the predicate match(a, α) holds if m′ ⊆ m and r ∈ I.

If a transition is enabled then it can be fired, reaching a new region in which

we update the markings of the pairs assigned to each variable according to Int

and Outt, and we update the clocks of the pair according to Time2t . Moreover,

we possibly need to remove some of the pairs we have chosen from some Ai they

are in, and put them in a different Aj , according to one of the possible clocks

they may represent. Finally, for each ν ∈ Υ, we put a new pair (Outt(ν), r) in

a proper (and maybe new) multiset of the region. In order to make the previous

assignments, we define modes for regions. For any interval I, we call left closure

of I the result of replacing the left delimiter of I by a closed one (for instance, the

left closure of (a, b) is [a, b)). Moreover, in the rest of this chapter, given t ∈ T ,

we denote lt = |Var(t)|.

Intuitively, in order to define the modes for the firings of discrete transitions

in ν-lsPN , we are going to define three functions τ1, τ2 and τ3 which assign to

each variable of t a pair of the region to perform the firing, the (integer) clock

value to which we update the clock of this pair and the new position in the region

that the pair takes, respectively. For this purpose we enumerate the pairs in the

multisets of the region (or more precisely, an ∅-expansion of the region), that is,

for each Ai in the region, we denote Ai = {(mi1, ri1), . . . , (mik, rik)}, taking the

first lt pairs, the ones that are assigned to variables by τ1. Moreover, for each

j ∈ k+ we denote aj = (mij , aij).

50 CHAPTER 3. TIMED NETS

Definition 3.2.10 Let t ∈ T be a transition and A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ be

an ∅-expansion of a region R. A mode for t and R is any tuple τ = (τ1, τ2, τ3)

where τ1 : Var(t) → (n∗∞ × l+t) is an injection, and τ2 : Var(t) → (max+1)∗ and

τ3 : Var(t) → n∗∞ ∪ (n∗ × l+t) are mappings such that:

• For all x ∈ Var(t), τ2(x) is in the left closure of Time2t (x),

• if τ2(x) > max then τ3(x) = ∞,

• if Time2t (x) = (a, b] or Time2t (x) = (a, b) and τ2(x) = a then τ3(x) 6= 0.

The first condition above ensures that the integers we choose to update the

clocks are correct according to Time2t (x). We need to consider the left closure

of Time2t (x) because in regions we do not represent the fractional parts of the

clocks, and therefore, if a+ ǫ < a+1 is the clock of a new created instance, which

belongs to the interval (a, b) = Time2t (x), then this clock is represented by a in

the corresponding region, which belongs to the left closure of Time2t (x), but not

to Time2t (x). The second condition makes sure that pairs with clocks older than

max are stored in A∞. Finally, the third condition ensures that the newly created

pairs representing instances with a clock value of integer part a, that must not

be exactly a, are not stored in A0. Let us now define the firing of transitions for

regions.

Definition 3.2.11 We say a transition t is enabled at a region R if there is an

∅-expansion A0 ∗A1 ∗ . . . ∗An ∗A∞ of R and a mode τ = (τ1, τ2, τ3) such that for

each i ∈ n∗∞, Āi = {(mij , rij) | τ1(x) = (i, j)} ⊆ Ai and for each x ∈ Var(t) with

τ1(x) = (i, j):

• If x ∈ Υ, then mij = ∅,

• If i ∈ {0,∞} then match((mij , rij), (Int(x), T ime
1
t (x))) and

• match((mij , rij + 0.5), (Int(x), T ime
1
t (x))) otherwise.

Then, we define m′
ij = (mij−Int(x))+Outt(x) and take for all k ∈ n∗ and b ∈ l+t :

• Bk = Ak − Āk,

• Dk = {(m′
ij , r) | ∃x ∈ Var(t) with τ1(x) = (i, j), τ2(x) = r, τ3(x) = k},

• Ck = Bk +Dk and

• Ckb = {(m′
ij , r) | ∃x ∈ Var(t) with τ1(x) = (i, j), τ2(x) = r, τ3(x) = (k, b)}.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 51

Then, we write R
t
։R′, where R′ is the ∅-contraction of C0 ∗ C01 ∗ . . . ∗ C0lt ∗

C1 ∗ C11 ∗ . . . ∗ C1lt ∗ . . . ∗ Cn ∗ Cn1 ∗ . . . ∗ Cnlt ∗ C∞.

Intuitively, for each i ∈ n∗∞, Āi represents the multiset of instances selected by

τ1 from the multiset Ai which take part in the firing. We requirematch((mij , rij+

0.5), (Int(x), T ime
1
t (x))) if i /∈ {0, 1} because in this case, the age of the instances

represented in Ai is not natural, and therefore, if r is the age of such an instance,

r + 0.5 must be in the corresponding interval in order to to be selected for the

firing. Therefore, Bi is the multiset obtained after removing from Ai the instances

corresponding to the preconditions. Finally, Ci represents Bi after adding the

postconditions, and the Cijs represent multisets of instances which we assign to

clocks with fractional parts not appearing in R. Note that between two Cis we

add lt Cijs. This is so to handle the case in which all the instances update their

clocks to different values with a fractional part between the ones represented by

Ci and Ci+1.

Example 3.2.5 The top of Fig. 3.15 shows a region R for max = 3, and the

values of the functions In,Out and Time for a transition t. Let us consider the

mode τ = (τ1, τ2, τ3) where:

• τ1(x) = (1, 1), τ2(x) = 0, τ3(x) = 0,

• τ1(y) = (∞, 1), τ2(y) = 4, τ3(y) = ∞,

• τ1(ν1) = (0, 2), τ2(ν1) = 2, τ3(ν1) = 0,

• τ1(ν2) = (0, 3), τ2(ν2) = 2, τ3(ν2) = (1, 1).

Transition t can be fired from R considering the mode τ . With the previous

notations, we have:

• Ā0 = ∅, so B0 = A0 and C0 = {({p}, 2), ({p}, 2)},

• Ā1 = {({pq}, 1)}, so B1 = A1 − {({pq}, 1)} = {({q}, 0)} = C1,

• Ā∞ = {({ppq}, 4)}, so B∞ = ∅ and C∞ = {({pqq}, 4)} and

• C11 = {({pq}, 2)}.

Therefore, we obtain the region depicted in the bottom of Fig. 3.15.

Let
∆
։ be the reflexive and transitive closure of

δ
։ and ։ =

∆
։ ∪

⋃

t∈T

t
։.

52 CHAPTER 3. TIMED NETS

A0
< {p}, 2 >

A1
< {pq}, 1 > < {q}, 0 >

A∞
< {ppq}, 4 >

Int(x) = {p, q}, T imet(x) = ((0, 2], [0,∞)), Outt(x) = ∅

Int(y) = {p}, T imet(y) = ([3,∞), [2,∞), Outt(y) = {q}

Int(ν1) = ∅, T imet(ν1) = ([0,∞), [2, 2]), Outt(ν1) = {p}

Int(ν2) = ∅, T imet(ν2) = ([0,∞), [1, 3]), Outt(ν2) = {p, q}

C0
< {p}, 2 > < {p}, 2 >

C1
< {q}, 0 >

C11
< {pq}, 2 >

C∞
< {pqq}, 4 >

Figure 3.15: Firing of a discrete transition from a region

3.2.1.1 Correctness of the simulation

Now that we have defined the semantics of regions, we are ready to prove that

this new model simulates the behavior of ν-lsPN properly.

Proposition 3.2.1 The following relations between → and ։ hold:

• If M −→∗ M ′ then RM։
∗
RM ′ ,

• If RM։
∗
R′ then there is M ′ with R′ = RM ′ and M −→∗ M ′.

Before giving the proof of the previous proposition, let us fix some notations:

We denote C(M) = {r | a : (m, r) ∈ M} ∈ R≥0
⊕. Moreover, for simplicity, we

sometimes extend firings of transitions in regions, to firings in ∅-expansions of

regions in the natural way.

In order to improve readability, we are going to split the proof of the previous

proposition in the following nine lemmas. Their proofs are rather technical, so if

the reader is not interested in these quite technical details, we recommend to skip

them. However, there is a point which would be interesting to focus on, which is

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 53

how we manage the elapsings of time. In Def. 3.2.7 there are two ways in which

time may elapse, depending on the region we consider. Both ways correspond

to a small elapse, of less than a unit of time. However, we need to be able to

represent longer elapsings. Prop. 3.2.1 can be proved because
∆
։ is defined as the

reflexive and transitive closure of
δ
։, and therefore, we can concatenate as many

small elapsings as we need, in order to represent longer elapsings of time.

We consider the continuous and the discrete firings separately for both parts

of the proposition. Moreover, we split the proof for the simulation of continuous

firings in several lemmas, considering the different cases of continuous firing sepa-

tatedly. The first lemma proves that a small delay from a marking with instances

of a natural age lower than max can be simulated by a continuous firing for regions

of the first type. By “small” delay we mean that no instance with a non integer

age reaches or exceeds the next integer age.

Lemma 3.2.2 Let M be a marking such that C(M) ∩ max∗ 6= ∅ and ǫ =

max{frct(r) | r ∈ C(M), r < max}. If 0 < d < 1− ǫ then RM
δ
։RM+d . Moreover,

C(M+d) ∩ max∗ = ∅.

Proof: Suppose thatRM = A0∗A
x1∗...∗Axn∗A∞, where 0 < x1 < ... < xn < 1

are the fractional parts of the ages of the instances younger than max in M .

Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, 0 < d < 1 − ǫ and C(M) ∩ N 6= ∅,

the fractional parts of the ages of the instances younger than max in M+d are

d, x1+d, ..., xn+d (with xn+d < 1). For each i ∈ n+, the instances and markings

with fractional parts of its ages xi + d in M+d are the same as the ones in M

with fractional parts of its ages xi. Moreover, the instances and markings with

fractional parts of its ages d in M+d are the instances with natural ages younger

than max in M . Therefore, RM+d = ∅ ∗ Ad ∗ Ax1+d ∗ ... ∗ Axn+d ∗ A′
∞ as defined

in Def. 3.2.6, where in A′
∞ are represented the instances in A∞ and the instances

in A0 with age max, and in Ad are represented the instances in A0 which are

younger than max. By the first case of Def. 3.2.7, we have that RM
δ
։R′, where

R′ = ∅∗A<
0 ∗Ax1 ∗ ...∗Axn ∗(A∞+A=

0) = ∅∗Ad ∗Ax1+d ∗ ...∗Axn+d ∗A′
∞ = RM+d .

2

Next, we consider the case of a small delay from a marking without instances

of a natural age lower than max, and prove that the region of the marking we

obtain is the same as the region of the initial marking.

54 CHAPTER 3. TIMED NETS

Lemma 3.2.3 Let M be a marking such that C(M) ∩ max∗ = ∅ and ǫ =

max{frct(r) | r ∈ C(M), r < max}. If d < 1− ǫ then RM = RM+d .

Proof: Suppose that RM = ∅∗Ax1 ∗...∗Axn ∗A∞, where 0 < x1 < ... < xn < 1

are the fractional parts of the ages of the instances younger than max in M .

Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, d < 1 − ǫ and C(M) ∩ N = ∅,

the fractional parts of the ages of the instances younger than max in M+d are

x1 + d, ..., xn + d < 1, and moreover, for each i ∈ n+, the instances and markings

with fractional parts of its ages xi + d in M+d are the same as the ones in M

with fractional parts of its ages xi. Therefore, by the definition of region, RM+d =

∅ ∗Ax1+d ∗ ... ∗Axn+d ∗A∞ = ∅ ∗Ax1 ∗ ... ∗Axn ∗A∞ = RM .

2

Now we consider the remaining case of time elapsing.

Lemma 3.2.4 Let M be a marking such that C(M) ∩ max∗ = ∅ and ǫ =

max{frct(r) | r ∈ C(M), r < max}. If d = 1 − ǫ then RM
δ
։RM+d . Moreover, if

{r ∈ C(M) | r < max, r /∈ N} 6= ∅, then C(M+d) ∩ max∗ 6= ∅.

Proof: Suppose that RM = ∅ ∗ Ax1 ∗ ... ∗ Axn ∗ A∞, where x1, ..., xn ∈ (0, 1)

with i < j iff xi < xj , are the fractional parts of the ages of the instances younger

than max in M . Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, d = 1 − ǫ and

C(M) ∩ max∗ = ∅, the fractional parts of the ages of the instances younger than

max in M+d are 0, x1 + d, ..., xn−1 + d. For each i ∈ (n− 1)+, the instances

and markings with fractional parts of its ages xi + d in M+d are the same as

the ones in M with fractional parts of its ages xi. Moreover, the instances with

natural ages lower than max+1 inM+d are the instances with ages with fractional

part xn in M . Therefore, RM+d = A0 ∗ Ax1+d ∗ ... ∗ Axn−1+d ∗ A∞ as defined

in Def. 3.2.6. By the second case of Def. 3.2.7, we have that RM
δ
։R′, where

R′ = A+1
n ∗Ax1 ∗ ... ∗Axn−1 ∗A∞ = A0 ∗A

x1+d ∗ ... ∗Axn−1+d ∗A∞ = RM+d .

2

In the following lemma we use the previous ones in order to prove that regions

can simulate delays of 1 unit of time.

Lemma 3.2.5 Let M be a marking of a ν-lsPN . Then RM
∆
։RM+1.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 55

Proof: First, let us suppose that C(M) ∩ max∗ 6= ∅. Let RM = A0 ∗ A1 ∗

... ∗ An ∗ A∞ and let xi be the fractional part of the ages of instances repre-

sented in Ai for i ∈ n∗ (so x0 = 0) and take xn+1 = 1. Then x0 < x1 <

... < xn < xn+1. We define ǫi = (xi+1 − xi)/2 for i ∈ n∗. Let Mn+1 = M ,

M ′
i+1 = M+ǫi

i+1 for i ∈ n∗ and Mi−1 = (M ′
i)

+ǫi for i ∈ (n+ 1)+. Then we have

M = Mn+1
ǫn
։M ′

n+1

ǫn
։Mn

ǫn−1

։ ...
ǫ1
։M1

ǫ0
։M ′

1

ǫ0
։M0. Notice that

∑

i∈n∗ 2ǫi = 1, so

that M0 = M+1. It also holds that C(Mi) ∩ N 6= ∅ for all i ∈ (n+ 1)∗ and

C(M ′
i) ∩ N = ∅ for all i ∈ (n+ 1)+. Moreover, the maximum fractional part of

the reals in Mi+1 is 1− 2ǫi for i ∈ n+, and that of M ′
i+1 is 1− ǫi for i ∈ n∗. Then

Mi+1 and ǫi are in the hypothesis of Lemma 3.2.2, and M ′
i+1 and ǫi in the ones of

Lemma 3.2.4. Therefore, RMi

δ
։RM ′

i
for i ∈ (n+ 1)+ and RM ′

i+1

δ
։RMi

for i ∈ n∗,

so that RM = RMn+1

∆
։RM0 = RM+1 .

Now, let us suppose that C(M) ∩max∗ = ∅. If {r ∈ C(M) ≤ max} = ∅, then

RM = RM+1 , so we are done (all the instances in the marking are represented

in A∞ with age max+1). Otherwise, there is an instance with clock r < max,

and therefore, RM is of the form ∅ ∗ A1 ∗ ... ∗ An ∗ A∞, with n > 0 and An 6= ∅.

Therefore, by applying lemma 3.2.4, if ǫ = max{frct(r) | r ∈ C(M), r < max} and

d = 1 − ǫ then RM
δ
։RM+d , with C(M+d) ∩ max∗ 6= ∅, reaching a region of the

case which has been analyzed previously (with A0 6= ∅), except for the delay +d.

Therefore, by a similar reasoning we can prove that RM
∆
։RM+1 .

2

Finally, we use the previous lemmas to prove that the relation
∆
։ for regions

simulates any continuous firing in a ν-lsPN .

Lemma 3.2.6 Given two markings M and M ′ and d > 0, if M
d
−→ M ′ then

RM
∆
։RM ′ .

Proof: Let d > 1 (the other case is easier) and M
d
−→M ′. Then, we have that

M
1
−→M+1 1

−→M+2 1
−→ . . .

1
−→M+⌊d⌋ frct(d)

−−−−→M ′. Because of Lemma 3.2.5 we know

that RM
∆
։RM+1

∆
։RM+2

∆
։ . . .

∆
։RM+⌊d⌋ . Therefore, we only need to prove that

RM+⌊d⌋

∆
։RM ′ . As in Lemma 3.2.5, let RM+⌊d⌋ = A0∗A1∗...∗An∗A∞ and let xi be

the fractional part of the ages of instances represented in Ai for i ∈ n∗, xn+1 = 1,

ǫi = (xi+1 − xi)/2 for i ∈ n∗, Mn+1 = M+⌊d⌋, M ′
i = M+ǫi

i and Mi−1 = (M ′
i)

+ǫi .

Now, we select k such that 1 − xk ≤ frct(d) and 1 − xk−1 > frct(d), and we

define y = xk − (1 − frct(d)) and My = M+y
k . Note that

∑n
i=k 2 ∗ ǫ + y =

56 CHAPTER 3. TIMED NETS

(1−xk)+xk−(1−frct(d)) = frct(d), so thatMy =M+⌊d⌋+frct(d)
=M ′. Repeating

a similar reasoning as for the proof of Lemma 3.2.5, we can conclude thatRM+⌊d⌋ =

RMn+1

∆
։RMy = RM ′ and therefore RM

∆
։RM ′ .

2

Next, we consider the discrete firing of a transition from a marking, and we

prove that it can be simulated by the firing of a transition from the corresponding

region.

Lemma 3.2.7 Given two markings M and M ′, if M
t
−→M ′ then RM

t
։RM ′ .

Proof: Let us suppose that M
t
−→ M ′ and without loss of generality, let us

suppose that for each t ∈ T and for each ν ∈ fVar(t), Int(ν) = ∅. Then, if

nfVar(t) = {x1, ..., xn1} and fVar(t) = {xn1+1, ..., xn2} then we have M = a1 :

(m1, r1), ..., an1 : (mn1 , rn1) + M and for each i ∈ n+1 , (1) Int(xi) ⊆ mi and

(2) ri ∈ Time1t (xi). Moreover, if RM = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞, let R∅
M =

A0 ∗A1 ∗ . . .∗An ∗An+1 ∗A∞ be the ∅-expansion of RM , where An+1 only contains

n2 empty instances. We denote Ai = {(m∅
i1, r

∅
i1), . . . , (m

∅
iki
, r∅iki)} for i ∈ n∗∞ and

L = max{ki | i ∈ n∗∞}.

Let us define a mode τ = (τ1, τ2, τ3) for firing t from RM , obtaining a region

R′
M . First of all, we define τ1, and prove that t is enabled at RM with a mode with

τ1 as its first component. Let Φ1 : n
+
1 → n∗∞×L, be the function which associates

each i ∈ n+1 to the location of the pair which represents the instance ai in RM .

We define the mode τ in such a way that the instances in M will not be selected

by τ1, and therefore, they will remain in the same Ais after firing t in the region.

We define τ1 such that τ1(xi) = Φ1(i) if xi ∈ nfVar(t) and τ1(xi) = (n + 1, i)

otherwise. Then, we have that, for each x ∈ Var(t):

• If x ∈ Υ then τ1(x) = (n+ 1, i), and mn+1,i = ∅.

• If τ1(x) = (i, j), then Int(x) ⊆ m∅
ij , because of (1).

• rij ∈ Time1t (x) if i ∈ {0,∞}, and rij + 0.5 ∈ Time1t (x), otherwise, because

of (2).

• If x /∈ Υ, τ1(x) = (i, j), and i ∈ {0,∞} then match((m∅
ij , rij),

(Int(x), T ime
1
t (x))), because of the two previous points.

• Analogously, if x /∈ Υ, τ1(x) = (i, j), and i /∈ {0,∞} then match((m∅
ij , rij +

0.5), (Int(x), T ime
1
t (x))).

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 57

Therefore, t is enabled at RM . Now, we prove that we can fire it in such a way

that we reach RM ′ . For that purpose, we first need to define the proper functions

τ2 and τ3 of the mode for the firing.

Let us call Φ2 : Var(t) → R≥0 the function which associates each xi ∈ Var(t)

to the age to which the instance ai of M is updated in the firing. Then, we

define τ2 such that, for each x ∈ Var(t), τ2(x) = ⌊Φ2(x)⌋ if Φ2(x) ≤ max and

τ2(x) = max + 1 otherwise. With this definition, for each x ∈ Var(t), τ2(x) is in

the left closure of Time2t (x), as Def. 3.2.10 demands. Finally, we define τ3 such

that:

• If τ2(x) = n + 1 then τ3(x) = ∞ (and therefore, the second condition

demanded by Def. 3.2.10 is met), else

• if τ2(x) = Φ2(x), that is, if Φ2(x) ∈ N then τ3(x) = 0, else

• if frct(Φ2(x)) is a fractional part which has names represented in Ai then

τ3(x) = i, else

• if Ai represents the names with the greatest fractional part f lower than

frct(Φ2(x)), and Φ2(x) has the j
th fractional part greater than f of

{frct(Φ2(xi)) | xi ∈ Var(t)}, then τ3(x) = (i, j).

The third condition of Def. 3.2.10 holds for the mode τ we have defined,

because if Time2t (x) = (a, b] or Time2t (x) = (a, b) and τ2(x) = a, then τ2(x) 6=

Φ2(x) and therefore τ3(x) 6= 0.

Now, we prove that the region R that we reach by firing t from RM with mode

τ is RM ′ . We do it by proving that A′
i is in RM ′ iff it is in R.

We analyze different cases:

• First, we consider A′
0 of RM ′ .

A′
0 =

⊎

a∈Id{(m, r) | a : (m, r) ∈ M̄, r ∈ N, r ≤ max}+
⊎

k∈n+
1
{(m, r) | Φ1(k) = (i, j),m = (m∅

ij − Int(xk)) + Outt(xk),Φ2(xk) =

r}+
⊎

k∈{n1+1,...,n2}
{(m, r) | m = Outt(xk),Φ2(xk) = r, r ∈ N, r ≤ max} =

{(m∅
0j , r

∅
0j) ∈ A0 | ∄x ∈ V ar(t) with τ1(x) = (0, j)}+

⊎

x∈nfVar(t)|τ3(x)=0{(m, r) | τ1(x) = (i, j),m = (m∅
ij−Int(x))+Outt(x), τ2(x) =

r}+
⊎

ν∈fVar(t){(m, r) | m = Outt(ν), τ2(ν) = r, τ3(ν) = 0} which is the first

multiset in R.

• Now, we consider A′
∞ of RM ′ .

A′
∞ =

⊎

a∈Id{(m,max + 1) | a : (m, r) ∈ M̄, r > max}+

58 CHAPTER 3. TIMED NETS

⊎

k∈n+
1
{(m,max+1) | Φ1(k) = (i, j),m = (m∅

ij−Int(xk))+Outt(xk),Φ2(xk) =

r, r > max} +
⊎

k∈{n1+1,...,n2}
{(m,max + 1) | m = Outt(xk),Φ2(xk) =

r, r > max} = {(m∅
∞j ,max + 1) ∈ A∞ | ∄x ∈ V ar(t) with τ1(x) =

(∞, j)} +
⊎

x∈nfVar(t){(m,max + 1) | τ1(x) = (i, j),m = (m∅
ij − Int(x)) +

Outt(x), τ2(x) = max+1}+
⊎

ν∈fVar(t){(m,max+1) | m = Outt(ν), τ2(ν) =

max+ 1}, which is the last set in R.

• Now, let us consider the case in which A is a set of RM ′ which repre-

sents instances in M with the fractional part of the age ρ. Moreover, let

us suppose Ak is the set of RM which represents instances with this frac-

tional part of the age. Then A =
⊎

a∈Id{(m, r) | a : (m, r′) ∈ M̄, r =

⌊r′⌋, frct(r′) = ρ, r′ ≤ max} +
⊎

k′∈n+
1
{(m, r) | Φ1(k

′) = (i, j),m = (m∅
ij −

Int(xk′)) + Outt(xk′),Φ2(xk′) = r′, r = ⌊r′⌋, frct(r′) = ρ, r′ ≤ max} +
⊎

k′∈{n1+1,...,n2}
{(m, r) | m = Outt(xk′),Φ2(xk′) = r′, r = ⌊r′⌋, frct(r′) =

ρ, r′ ≤ max} = {(m∅
kj , r

∅
kj) ∈ Ak | ∄x ∈ V ar(t) with τ1(x) = (k, j)}+

⊎

x∈nfVar(t){(m, r) | τ1(x) = (i, j),m = (m∅
ij − Int(x)) + Outt(x), τ2(x) =

r, τ3(x) = k}+
⊎

ν∈fVar(t){(m, r) | m = Outt(ν), τ2(ν) = r, τ3(ν) = k}, which

is in R.

• Finally, we consider the case in which A is a set of R′
M which represents in-

stances with fractional part of the age ρ different to all the ones inM . Then,

A =
⊎

k∈n+
1
{(m, r) | Φ1(k) = (i, j),m = (m∅

ij−Int(xk))+Outt(xk),Φ2(xk) =

r′, r = ⌊r′⌋, frct(r′) = ρ, r′ ≤ max}+
⊎

k∈{n1+1,...,n2}
{(m, r) | m = Outt(xk),

Φ2(xk) = r′, r = ⌊r′⌋, frct(r′) = ρ, r′ ≤ max} =
⊎

x∈nfVar(t){(m, r) | τ1(x) =

(i, j),m = (m∅
ij − Int(x)) + Outt(x), τ2(x) = r, τ3(x) = (k1, k2) where Ak1

represents the names with the greatest fractional part f lower than Φ2(xk),

and Φ2(x) has the k2
th fractional part greater than f of {frct(Φ2(xi)) |

xi ∈ Var(t)}} +
⊎

ν∈fVar(t){(m, r) | m = Outt(ν), τ2(ν) = r, τ3(ν) = (k1, k2)

where Ak1 represents the names with the greatest fractional part f lower

than Φ2(xk), and Φ2(ν) has the k2
th fractional part greater than f of

{frct(Φ2(xi)) | xi ∈ Var(t)}}, which is in R.

We have considered all the multisets, both in RM ′ and in R. Finally, note that

the order of the sets of R correspond to the order of the corresponding A′
i of R

′
M .

That is because we have defined τ , in such a way that we order the different sets

depending on the fractional part of r′′gs younger than max, setting the instances

older than max in A′
∞, as in R′

M .

2

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 59

So far, we have proved that any firing from a marking in a ν-lsPN can be

simulated by a firing from its corresponding region. Now, we prove that each

firing from a region of a marking represents some firing in the original ν-lsPN .

First, we focus on the discrete firings.

Lemma 3.2.8 Given a marking M , if RM
t
։R′ then there is M ′ with R′ = RM ′

and M
t
−→M ′.

Proof: Let us suppose that RM
t
։R′ with mode τ = (τ1, τ2, τ3). We define a

marking M ′ with R′ = RM ′ , and then we prove that M
t
−→ M ′. Let us suppose

RM = A0 ∗A1 ∗ . . . ∗An ∗A∞ and R′ = A′
0 ∗A

′
1 ∗ . . . ∗A

′
n′ ∗A′

∞. We define M ′ as

the marking such that:

• For each (m, r) ∈ A′
0, a:(m, r) ∈M ′.

• For each (m,max + 1) ∈ A′
∞, a : (m, r) ∈ M ′, where r is the age of the

corresponding instance a:(m, r) ∈M if (m,max+1) is in A∞, and max+1

otherwise.

• Analogously, we consider (m, r) ∈ A′
i, where A

′
i is a multiset obtained in the

firing of t from the multiset A of RM which represents instances with age of

fractional part ρ(A′
i). Then, a:(m, r

′) ∈M ′, where r′ = r + ρ(A′
i).

• Finally, for each A′
i which is a new multiset obtained in the firing of t, we

define some ρ(A′
i) ∈ (0, 1) such that if j < i < j′ then ρ(A′

j) < ρ(A′
i) <

ρ(A′
j′). Then, for each (m, r) ∈ A′

i, a:(m, r
′) ∈M ′, where r′ = r + ρ(A′

i).

Due to the way we have defined M , taking the pairs representing instances and

building the corresponding instances, it is clear that R′ = RM ′ . Now, we prove

that t is enabled at M and M
t
−→ M ′. We know that t is enabled at RM with

mode τ , and therefore, for each x ∈ nfVar(t) with τ1(x) = (i, j):

• Int(x) ⊆ mij and

• rij ∈ Time1t (x) if i ∈ {0,∞}, and rij + 0.5 ∈ Time1t (x).

Then, if nfVar(t) = {x1, ..., xn}, we can rename M = a1 : (m1, r1), ..., an :

(mn, rn)+M , in such a way that for each i ∈ n+, Int(xi) ⊆ mi and ri ∈ Time1t (xi),

where mi is mjk of RM if τ1(xi) = (j, k). Therefore, t is enabled at M , so

there is (at least) a marking M ′′ such that M
t
→ M ′′. We prove that we can

60 CHAPTER 3. TIMED NETS

obtain a marking M ′′ from the firing such that for each instance in M ′′, the same

instance is in M ′, and therefore, as the number of instances of M ′ and M ′′ are

the same (because of the definition of firing of transition for region), M ′′ = M ′.

Let a:(m, r) ∈M ′′. We consider different cases:

• If a : (m, r) ∈ M then it is in M too. Let us suppose that (mij , rij) ∈ Ai

is the pair which represents this instance in RM . Then, because of how we

have renamed M , there is not x ∈ Var with τ1(x) = (i, j), and therefore

(mij , rij) ∈ A′
k, where A

′
k is the set of R′ which represents instances that

remain in a certain Ak after firing. Therefore, a:(m, r) ∈M ′, because of the

third point in the definition of M ′.

• Suppose a:(m, r) /∈ M . Then, a:(m, r) is associated to some xi ∈ Var(t) in

the firing, that is, there is xi such that a = ai and m = (mi − Int(xi)) +

Outt(xi) if xi ∈ nfVar(t) and m = Outt(xi) if xi ∈ fVar(t). We analyze

the first case, and suppose τ3(xi) 6= ∞ (the other cases are analogous). If

τ1(xi) = (j, k) then (mjk, rjk) ∈ RM , where mjk = mi and rjk = ⌊ri⌋.

Then, after firing t from RM with mode τ , we have that (m, τ2(xi)) ∈ A′
τ3(x)

(with the notations of the firings for R′). Therefore, because of how we have

defined M ′, the instance a:(m, r) is in M ′ (note that r = τ2(xi) + ρ(A′
τ3(x)

),

where ρ(A′
τ3(x)

) represents the fractional part of the ages of the instances

represented in A′
τ3(x)

.

Therefore, M ′′ =M ′, so M
t
−→M ′.

2

Now, we focus on continuous firings. First, we prove that each “small” con-

tinuous firing RM
δ
։R′ from the region which represents a marking M , represents

a certain small elapsing of time from M in a proper way.

Lemma 3.2.9 Given a marking M , if RM
δ
։R′ then there is M ′ with R′ = RM ′

and M
d
−→M ′ for some d ∈ (0, 1).

Proof: Let us suppose that RM
δ
։R′. Let us first consider the case in which

RM = ∅ ∗ Ax1 ∗ ... ∗ Axn ∗ A∞, where xi is the fractional part of the age of the

instances represented in Axi . Then, R′ = Axn+1 ∗ Ax1 ∗ ... ∗ Axn−1 ∗ A∞. Let

d = 1−xn. Let M
′ be a marking such that M

d
−→M ′. We are going to prove that

R′ = RM ′ . By the definition of region of a marking, RM ′ = A′
0∗A

x′
1∗...∗Ax′

n−1∗A′
∞

where:

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 61

• A′
0 =

⊎

a∈Id{(m, r) | a : (m, r) ∈ M ′, r ∈ max∗} =
⊎

a∈Id{(m, r) | a:(m, r − d) ∈M, r ∈ max∗} = A+1
n .

• Ax′
i =

⊎

a∈Id{(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′i} =
⊎

a∈Id{(m, ⌊r⌋) | a:(m, r− d) ∈M, r− d < max, frct(r− d) = xi} = Axi , for

each i ∈ (n− 1)+.

• A′
∞ =

⊎

a∈Id{(m,max+1) | a : (m, r) ∈ M ′, r > max} =
⊎

a∈Id{(m,max+1) | a:(m, r − d) ∈M, r − d > max} = A∞.

Now, we consider the case in which RM = A0 ∗A
x1 ∗ ...∗Axn ∗A∞ and A0 6= ∅.

Then, R′ = ∅ ∗A<
0 ∗Ax1 ∗ ... ∗Axn ∗ (A∞ +A=

0). Let 0 < d < 1− xn, and let M ′

be a marking such that M
d
−→ M ′. Again, we are going to prove that R′ = RM ′ .

By the definition of region of a marking, RM ′ = A′
0 ∗A

x′
1 ∗ ... ∗Ax′

n ∗A′
∞ where:

• A′
0 =

⊎

a∈Id{(m, r) | a : (m, r) ∈ M ′, r ∈ max∗} =
⊎

a∈Id{(m, r) | a:(m, r − d) ∈M ′, r ∈ max∗} = ∅.

• Ax′
1 =

⊎

a∈Id{(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′1} =
⊎

a∈Id{(m, ⌊r⌋) | a:(m, r − d) ∈M, r < max, frct(r) = x′1} = A<
0 .

• Ax′
i =

⊎

a∈Id{(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′i} =
⊎

a∈Id{(m, ⌊r⌋) | a:(m, r− d) ∈M, r− d < max, frct(r− d) = xi} = Axi , for

each i ∈ {2, . . . , n}.

• A∞ =
⊎

a∈Id{(m,max+1) | a : (m, r) ∈ M ′, r > max} =
⊎

a∈Id{(m,max+1) | a : (m, r) ∈ M, r − d > max} ∪ {(m,max+1) | a :

(m, r) ∈M, r = max} = A∞ +A=
0 .

2

Finally, we prove that any continuous firing from a region of a marking M

represents a continuous firing from M , that is, it reaches the region of a marking

which can be reached from M after a certain delay.

Lemma 3.2.10 Given a marking M , if RM
∆
։R′ there is M ′ with R′ = RM ′ and

M
d
−→M ′ for some d ∈ R≥0.

Proof: Suppose that RM
∆
։R′. As

∆
։ is the reflexive and transitive closure of

δ
։, we have that RM = R0

δ
։R1

δ
։ . . .

δ
։Rk = R′. We can prove by an inductive

reasoning that for each i ∈ n+, there existMi, di such that Ri = RMi
andMi−1

di−→

62 CHAPTER 3. TIMED NETS

R A0
< {p}, 2 >

A1
< {pq}, 1 >

A∞
< {ppq}, 4 >

R′
B0

< {p}, 2 > < {q}, 1 >
B1

< {qq}, 1 >
B2

< {pq}, 1 > < {q}, 3 >
B∞

< {ppq}, 4 >

Figure 3.16: R ⊑ R′

Mi, by applying the previous claim to each Ri. Therefore, we have that M =

M0
d1−→ M1

d2−→ . . .
dk−→ Mk and R′ = Rk = RMk

. Therefore, if we take d =
∑

i∈k+ di, then we have that M
d
−→Mk and R′ = RMk

2

As ։ =
∆
։ ∪

⋃

t∈T

t
։, Prop. 3.2.1 easily follows from the previous lemmas.

Hence, we have proved that the model we have defined simulates the behavior of

ν-lsPN .

3.2.1.2 Coverability for regions is decidable

In order to reduce control-state reachability for ν-lsPN to some problem over

regions, we first need to define an order over them.

Definition 3.2.12 (Order over regions) We define (m, r) ≤ (m′, r′) iff m ⊆

m′ and r = r′. Then, we define A0 ∗A1 ∗ . . . ∗An ∗A∞ ⊑ B0 ∗B1 ∗ . . . ∗Bm ∗B∞

iff A0 ≤
⊕ B0, A∞ ≤⊕ B∞ and A1 . . . An≤

⊕⊛B1 . . . Bm.

Example 3.2.6 Fig. 3.16 shows two regions R and R′. Note that A0 ⊆ B0,

A1 ⊆ B2 and A∞ ⊆ B∞. Hence, R ⊑ R′.

Notice that we are using the word order induced by the multiset order, and

therefore ⊑ is a decidable wpo. Formally:

Proposition 3.2.11 ⊑ is a decidable wpo.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 63

Proof: In the first place, ⊑ is trivially decidable. To prove that it is a wpo,

let us remark that a region R = A0 ∗A1 ∗ ... ∗An ∗A∞ can be seen as an element

of X = X⊕
max∗ × (X⊕

(max−1)∗)
⊛ × X⊕

{max+1}, where for every I ⊆ (max+ 1)∗,

XI = P⊕ × I. Indeed, A0 ∈ X⊕
max∗ , A∞ ∈ X⊕

{max+1} and u = A1 ∗ ... ∗ An can

be seen as a word over X⊕
(max−1)∗ . Therefore, ⊑ is just the standard order in X,

as defined in the preliminaries. Then, ⊑ is a wpo because it is built from wpos

(finite sets with equality2) using operators that preserve well-orders (multisets,

words and the product).

2

The order ⊑ we have defined induces a coverability problem in our transition

system with regions as states. Let us recall that in this case the coverability

problem is that of deciding if, given region R, there is a reachable region R′ such

that R ≤ R′. Let us see that we can reduce control-state reachability for ν-lsPN

to this problem.

Proposition 3.2.12 Given p ∈ P we can compute a set of regions Rp such that

there is a reachable marking that marks p iff ↑Rp can be reached.

Proof: Let Rr
0 = {({p}, r)} ∗ ∅ for each r ∈ max∗∞, R∞ = ∅ ∗ {({p},max+1)}

and Rr = ∅ ∗ {({p}, r)} ∗ ∅ for r ∈ (max−1)∗. Let us see that Rp = {Rr
0 |

r ∈ max∗∞} ∪ {Rr | r ∈ (max−1)∗} ∪ {R∞} satisfies the thesis. First, let us

assume that M0 →∗ M with a : (m, r) ∈ M with p ∈ m. By Prop. 3.2.1 we have

RM0։
∗
RM = A0 ∗A1 ∗ ... ∗An ∗A∞. Let us distinguish cases for r ∈ R≥0.

• If r ∈ max∗ then by Def. 3.2.6, (m, r) ∈ A0 and Rr
0 ⊑ RM .

• If r > max also by Def. 3.2.6 we have (m,max+1) ∈ A∞, so that R∞ ⊑ RM .

• If r ≤ max and r /∈ N, we have (m, ⌊r⌋) ∈ Ai for some i ∈ n+, so that

R⌊r⌋ ⊑ RM .

In any of the previous cases, RM ∈↑Rp.

Conversely, let us assume that RM0։
∗
R with R ∈↑Rp. By Prop. 3.2.1 there

is M reachable such that R = RM . Since RM ∈↑Rp there is R′ ∈ Rp such that

R′ ⊑ R. Let us denote R = A0 ∗A1 ∗ ...∗An ∗A∞. Analogously as in the converse

implication, and using again Def. 3.2.6, we distinguish cases over R′:

2Multiset containment is the multiset order induced by the equality.

64 CHAPTER 3. TIMED NETS

• Suppose that R′ = Rr
0, for some r ∈ max∗∞. As R′ ⊑ R, {({p}, r)} ≤⊕ A0.

Therefore, there is (m, r) ∈ A0 such that m marks p. Then, by Def. 3.2.6,

there is a ∈ Id such that a:(m, r) ∈M and M marks p.

• Now, suppose that R′ = R∞. As R′ ⊑ R, {({p},max+1)} ≤⊕ A∞. There-

fore, there is (m,max+1) ∈ A∞ such that m marks p. By Def. 3.2.6, there

are a ∈ Id and r > max such that a:(m, r) ∈M and M marks p.

• Finally, let R′ = Rr for some r ∈ max∗∞. As R′ ⊑ R, there is i ∈ N such that

{({p}, r)} ≤⊕ Ai. Then, there is (m, r) ∈ Ai such that m marks p. Hence,

by Def. 3.2.6, there are a ∈ Id and ǫ ∈ (0, 1) such that a:(m, r+ ǫ) ∈M and

M marks p.

In any of the previous cases, we obtain that a : (m, r) ∈ M for some m with

p ∈ m, so we conclude.

2

Therefore, in order to prove the decidability of control-state reachability for

ν-lsPN , we just need to prove that coverability is decidable for the transition

system over regions we have defined. Let us recall from the preliminaries that

coverability is decidable for WSTS with effective Pred-basis. Hence, since we

have proved that ⊑ is a decidable wpo, it only remains to prove that the transition

relation is compatible with the order, and that the effective Pred-basis property

holds, in order to prove that coverability for the transition system over regions

induced by a ν-lsPN is decidable. We start by showing that the transition relation

is compatible with ⊑ by proving that
∆
։ and

t
։ are compatible with ⊑, and

considering the union of both relations.

We start by proving the compatibility for a small delay δ.

Lemma 3.2.13 If R1
δ
։R2 and R1 ⊑ R′

1 then there is R′
2 such that R′

1 ⊑ R′
2 and

R′
1

∆
։R′

2.

Proof: Let R1 = A0 ∗A1 ∗ ...∗An∗A∞ and R′
1 = B0 ∗u0∗B1 ∗ ...∗Bn∗un ∗B∞

with Ai ≤
⊕ Bi.

First, we assume that A0 6= ∅, so that B0 6= ∅. By Def. 3.2.7 we have R2 =

∅ ∗ A<
0 ∗ A1 ∗ ... ∗ An ∗ (A∞ + A=

0) and since B0 6= ∅ we also have R′
1

δ
։R′

2 =

∅∗B<
0 ∗u0 ∗B1 ∗ ...∗Bn ∗un ∗ (B∞+B=

0). Since A0 ≤ B0 we also have A<
0 ≤⊕ B<

0 ,

A=
0 ≤⊕ B=

0 and thus (A∞ +A=
0) ≤

⊕ (B∞ +B=
0). Then R

′
1 ⊑ R′

2.

3.2. LOCALLY SYNCHRONOUS ν-PETRI NETS 65

Now, let us assume that A0 = ∅, so that R2 = A+1
n ∗ A1 ∗ ... ∗ An−1 ∗ A∞.

We also assume that B0 6= ∅ (the other case is slightly more simple). If un =

C1 ∗ ... ∗Ck then R′
1

∆
։∗R′

2 = B+1
n ∗ (C+1

1)< ∗ ... ∗ (C+1
k)< ∗B<

0 ∗ u0 ∗B1 ∗ u1 ∗ ... ∗

un−1 ∗ (B∞ + B=
0 + (C+1

1)= + ... + (C+1
k)=) in 2k + 2 steps. As A+1

n ≤⊕ B+1
n ,

A∞ ≤⊕ B∞ +B=
0 + (C+1

1)= + ...+ (C+1
k)= and Ai ≤

⊕ Bi, we have R2 ⊑ R′
2.

2

Since
∆
։ is the reflexive and transitive closure of

δ
։, we obtain the compatibility

for ∆ as a corollary of the previous lemma.

Corollary 3.2.14 If R1
∆
։R2 and R1 ⊑ R′

1 then there is R′
2 such that R′

1 ⊑ R′
2

and R′
1

∆
։R′

2.

In order to prove compatibility for discrete transitions, we first need to prove

a lemma concerning the ∅-expansions of the regions we consider.

Lemma 3.2.15 Let R and R′ be two regions such that R ⊑ R′. If A0 ∗ A1 ∗ ... ∗

An ∗ A∞ is an ∅-expansion of R, then there is an ∅-expansion of R′ of the form

B0 ∗ u0 ∗B1 ∗ u1 ∗ ... ∗ un−1 ∗Bn ∗ un ∗B∞ such that for all i ∈ n∗∞:

• Ai ≤
⊕ Bi,

• (∅, r) ∈ Ai iff (∅, r) ∈ Bi.

Proof: Indeed, the ∅-expansion of R′ in the lemma can be obtained by adding

to R′ the same empty instances added to R in order to obtain A0∗A1∗...∗An∗A∞.

2

We are ready to tackle the compatibility for discrete transitions.

Lemma 3.2.16 If R1
t
։R′

1 and R1 ⊑ R2 then there is R′
2 such that R2 ⊑ R′

2 and

R2
t
։R′

2.

Proof: Assume R1
t
։R′

1 with mode τ . Let A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ be

the ∅-expansion of R1 in the firing of t. By the previous lemma, there is an ∅-

expansion of R2 of the form A2
0 ∗ u0 ∗A

2
1 ∗ u1 ∗ ... ∗ un−1 ∗A

2
n ∗ un ∗A2

∞ such that

Ai ≤
⊕ A2

i and (∅, r) ∈ Ai iff (∅, r) ∈ A2
i for all i. Without loss of generality, we

can suppose that for each i ∈ n∗∞, if Ai = {(m1, r1), . . . , (mn′ , rn′)} and A2
i =

{(m2
1, r

2
1), . . . , (m

2
n′′ , r2n′′)} then, for each j ∈ n′+, mij ⊆ m2

ij and rij = r2ij . Let us

66 CHAPTER 3. TIMED NETS

see that we can fire t from R2 with mode τ , obtaining R′
2 greater than R′

1. Note

that mode τ for R2 is an abuse of notation, since we are forgetting about the uis.

However, we prefer to keep this notation in order to avoid renamings. First, we

prove that t is enabled at R2 with mode τ . Let x ∈ Var(t) with τ1(x) = (i, j).

• If x ∈ Υ, then mij = ∅, and therefore, m2
ij = ∅ (because of how we have

defined the ∅-expansion of R2).

• Int(x) ⊆ mij ⊆ m2
ij .

• As rij = r2ij , the conditions for r2ij hold trivially.

Therefore, t is enabled at R2. Let us see that R2
t
։R′

2 ≤ R′
1. Suppose R′

1 =

C0∗C01∗ . . .∗C1∗ . . .∗Cn′ ∗Cn′1∗ . . .∗C∞ and R′
2 = C2

0 ∗C
2
01∗ . . .∗u1∗ . . .∗C

2
1 ∗ . . .∗

C2
n ∗C

2
n1 ∗ . . .∗un ∗ . . .∗C

2
∞, as in the definition of firings of transitions for regions.

Again, this is an abuse of notation, because we are forgetting about the us. This

could be fixed by defining another τ ′3, by simply doing a renumeration. However,

for the ease of understanding, we prefer to keep using τ3 and only consider the

C2
i s (in fact, the us do not take part in the firing). We prove that for each index

i there is C2
i′ with Ci ≤

⊕ C2
i′ . Let i be one of the indices in R′

1. We prove that for

each (m′
ij , r

′
ij) ∈ Ci, (m

2′
ij , r

2′
ij) is such that m′

ij ⊆ m2′
ij and r′ij = r2

′

ij . We consider

two cases:

• Suppose that there is not x with τ3(x) = (i, j). Then, (m′
ij , r

′
ij) ∈ Ai, and

therefore there is (m2′
ij , r

2′
ij) ∈ A2

i , with m
′
ij ⊆ m2′

ij and r2
′

ij = r′ij . Moreover,

as there is not x with τ3(x) = (i, j), (m2′
ij , r

2′
ij) ∈ C2

i .

• Suppose that there is x with τ3(x) = (i, j). Then, if τ1(x) = (k, l) then

m′
ij = (mkl−Int(x))+Outt(x) ⊆ (m2

kl−Int(x))+Outt(x) = m2′
ij . Moreover,

r′ij = τ2(x) = r2
′

ij .

2

Finally, we obtain compatibility as a corollary of Lemma 3.2.14 and

Lemma 3.2.16.

Corollary 3.2.17 ։ is compatible with ⊑.

3.3. EXPRESSIVENESS 67

We have proved that the transition systems over regions endowed with the

order we have defined are Well Structured Transition Systems. Now, we focus on

proving that the effective Pred-basis property holds for them. For that purpose,

we need to prove that we are able to compute min(↑ Pre(↑R)) for any region

R. We do it by defining a function Pre to compute the predecessors of a region.

We split Pre into Pre∆(R) = {R′ | R′ ∆։R} and Pret(R) = {R′ | R′ t
։R}, and

we define Pre∆ and Pret for each t ∈ T , so that Pre∆(↑R) =↑ Pre∆(R) and

Pret(↑R) =↑Pret(R). The details of the proof are rather technical, and hence, we

prefer not to include them in this chapter, and to put them instead in Appendix A.

Proposition 3.2.18 ։ has effective Pred-basis.

Therefore, we have proved that the transition system induced by the regions

of a ν-lsPN is a Well Structured Transition System, with effective Pred-basis.

Hence, coverability is decidable for it. Finally, we are able to obtain the decid-

ability of control-state reachability for ν-lsPN as a corollary of the previous result

and Prop. 3.2.12.

Corollary 3.2.19 Control-state reachability is decidable for ν-lsPN .

3.3 Expressiveness

In the previous sections we have studied several extensions of ν-Petri nets, proving

that if we provide each instance with a clock in the way of Timed Petri nets, the

model we obtain (ν-lsPN) has decidable control-state reachability. More precisely,

working with regions, we showed that this model belongs to the class of WSTS,

for which coverability is decidable. Moreover, we have proved that control-state

reachability is undecidable for any model in which we associate more than one

clock to each instance in the way of Timed Petri nets.

Several works [40, 4, 16, 32] study the languages generated by the labelled

transition systems of extensions of Petri Nets, by associating a label with each

transition. Several acceptance conditions, like reachability, coverability or no

condition, may be considered. These languages are commonly used to compare

the expressiveness of different models.

In [40] coverability languages (those obtained with coverability as acceptance

condition) are proposed as a measure to compare the expressiveness of WSTS.

In [4, 40, 32, 16] Petri nets (PN), Petri nets with transfers and resets (AWN),

68 CHAPTER 3. TIMED NETS

•1
p1

•0
p2

p3

p4

t

[1, 2]

(0,∞)

[2, 5)

[0, 0]

a1
p1

b0
p2

p3

p4

t

x1, [1, 2]

x2, (0,∞)

ν3, [2, 5)

ν4[0, 0]

Figure 3.17: Illustrating Prop. 3.3.1

ν-PN and Data Nets (DN), an extension of ν-PN with ordered data, are com-

pared, proving the following strict relations:

PN ≺ AWN ≺ ν-PN ≺ DN ≈ TdPN

In this section, we compare the expressiveness of ν-lsPN with the expressiveness

of other well-structured models by comparing the coverability languages they

accept. First, we study bounded ν-lsPN , and we prove that they accept the same

coverability languages as TdPN , and then we consider the general case. In order

to analyze the expressiveness of ν-lsPNwe partition that class into
⋃

k≥0 ν-lsPN k,

where ν-lsPN k denotes the class of ν-lsPN with at most k unbounded places.

Alternatively, we could consider the class with exactly k unbounded places, though

we claim these two classes are equivalent with respect to coverability languages.

A place p is bounded if there is some b ∈ N such that every instance a : (m, r)

satisfies m(p) ≤ b in every reachable marking. This is actually an undecidable

problem [80], though this is not important for the study of expressiveness. If a

ν-lsPN has P as set of unbounded places and m places bounded by b, we can

represent each instance as an element of Q× P⊕ with Q = {0, . . . , b}m.

3.3.1 Bounded ν-lsPN

First, we see that ν-lsPN 0, that is, bounded ν-lsPN , is at least as expressive as

TdPN . For that purpose, given a TdPN we are going to build a ν-lsPN 0 which

accepts the same coverability language.

Proposition 3.3.1 TdPN � ν-lsPN 0

Proof: Given a TdPNN = 〈P, T, F,H〉 we build a ν-lsPN 0 N
′ =

〈P ′, T ′, In,Out, T ime〉 such that L(N) = L(N ′). The net N ′ has the same sets of

3.3. EXPRESSIVENESS 69

places and transitions (with the same labels) as N , respectively, that is, P ′ = P

and T ′ = T . We simulate a token in p with age r by an instance with a single

token in p, and with age r. Each transition is simulated by a transition (with the

same label, hence accepting the same language) that removes instances/tokens

with clocks with the proper values and creates fresh instances, again with clocks

with the proper values.

Therefore, for each input arc of a transition t from place pi of N , labelled by

an interval Ij , we add to N ′ an arc labelled by (xij , Ij), as depicted in Fig. 3.17.

Analogously, for each output place pi of a transition t of N labelled by an interval

I ′j , we add toN ′ an arc labelled by (νij , I
′
j) (to represent the creation of new tokens,

we create new instances, in order to guarantee the net is bounded). Formally, for

each place pi and transition t of N , with F (pi, t) = {I1, . . . , In}, for each j ∈ n+

we have Int(xij) = {pi}, Outt(xij) = ∅ and Timet(xij) = Ij . Moreover, for each

place pi and transition t of N , with H(pi, t) = {I1, . . . , In}, for each j ∈ n+ we

have Outt(νij) = {pi} and Timet(νij) = Ij .

If the initial marking of the TdPN is {(p1, r1), . . . , (pn, rn)} we consider m0 =

a1:(p1, r1), . . . , an:(pn, rn) (for arbitrary a1, . . . , an) as initial marking of the ν-lsPN

(and analogously for the final marking). Each instance in N ′ has exactly one to-

ken in any marking of any run beginning from m0, so that N ′ ∈ ν-lsPN 0. It is

easy to see that every run of N ′ can be simulated by the same run in N ′, except

for the fact that the tokens of N ′ are all coloured by different names.

2

Now we prove the converse of the previous result by performing a standard

counting abstraction over the markings.

Proposition 3.3.2 ν-lsPN 0 � TdPN .

Proof: Let N ∈ ν-lsPN 0. As N is bounded, we can define a finite set of

control places Q = {q ∈ P⊕ | there are a reachable marking M, r ∈ R≥0 and a ∈

Id such that M = a:(q, r) +M for some M}. Then, each instance in each reach-

able marking can be represented by a token in control-state q ∈ Q carrying the

value of its clock r ∈ R≥0. We perform a standard counting abstraction (see

Fig. 3.18): we build a TdPN with Q as set of places, so that each token (with a

clock value) in a place q represents an instance in state q (with the same clock

value). Then, a transition t ∈ T is simulated by consuming a token from q (with

a legal clock value) for each instance that has to be in state q in order to fire

70 CHAPTER 3. TIMED NETS

t in N (and analogously for postconditions). That is, for each transition t with

nfVar(t) = {x1, . . . , xn} and fVar(t) = {ν1, . . . , νm} and for each pair (Q1, Q2)

Q1 = {q11, . . . , q
1
n}, Q2 = {q21, . . . , q

2
n, q

2
n+1, . . . , q

2
n+m} ⊆ Q, such that:

• for each i ∈ n+, q1i ∈ Q,

• for each i ∈ n+m+, q2i ∈ Q,

• for each i ∈ n+ Int(xi) ⊆ q1i ,

• for each i ∈ n+ q2i = (q1i − Int(xi)) +Outt(xi) (q
2
i may be ∅),

• for each i ∈ m+ q2n+i = Outt(νi),

we add to N ′ a transition tQ1Q2 such that:

• for each i ∈ n+, F (q1i , tQ1Q2) = {Time1t (xi)},

• for each i ∈ n+, H(q2i , tQ1Q2) = {Time2t (xi)} and

• for each i ∈ m+, H(q2n+i, tQ1Q2) = {Time2t (νi)}.

The concrete names of the tokens in ν-lsPN are abstract, meaning that they

only need to be remembered in order to compare tokens of the same or different in-

stances. As we have one token marking a control place representing each instance

of N in our simulation, this ensures that we do not merge tokens representing

different instances. Moreover, the constraints over transitions are set just as in

the original net. Hence, for each pair of reachable markings M1 and M2 of N ,

such that M1
t
−→M2, we have that M1 = a1:(q

1
1, r

1
1), . . . , ai:(q

1
i , r

1
i)+M , M2 = b1:

(q21, r
2
1), . . . , bi+j :(q

2
i+j , r

2
i+j) +M and if Q1 = {q11, . . . , q

1
i } and Q2 = {q21, . . . , q

2
j },

then we have the corresponding firing in N ′: {(q11, r
1
1), . . . , (q

1
i , r

1
i)} +M

′ tQ1Q2−−−−→

{(q21, r
2
1), . . . , (q

2
j , r

2
j)}+M

′
, where M

′
is the marking of N ′ representing M .

2

As a corollary, we obtain that TdPN and ν-lsPN 0 admit the same coverability

languages.

Corollary 3.3.3 TdPN ≃ ν-lsPN 0

3.3. EXPRESSIVENESS 71

p1

p2

q1

t

x, [1, 2]

y, (0,∞)

ν1, [2, 5)

{p1, p2}

{p1}

{q1}

tQ1Q2

(0,∞)

[1, 2]
[2, 5)

Figure 3.18: Illustrating Prop. 3.3.2, when the initial marking of the ν-lsPN in
the left-side is M = a : ({p1, p2}, 1), b : ({p1}, 2), c : ({q1}, 0). We consider Q1 =
{{p1, p2}, {p1}} and Q2 = {{p1}, {q1}}.

3.3.2 Expressiveness of general ν-lsPN

In the previous section we have proved that ν-lsPN 0 and TdPN have the same

expressiveness concerning the coverability languages they admit. Now we prove

that ν-lsPN � TdPN , that is, that the language of some ν-lsPN cannot be

obtained as the language of any TdPN . We do it indirectly, by proving that

ν-lsPN k ≺ ν-lsPN k+1, which by the previous corollary in particular implies that

TdPN ≺ ν-lsPN 1. Clearly, ν-lsPN k � ν-lsPN k+1 holds. Let us prove that

ν-lsPN k+1 � ν-lsPN k. In order to give this proof, we are going to use a framework

previously defined by Bonnet et al.

Framework: In [16] a framework for the strict comparison of WSTS is

developed, in order to compare the relative expressiveness of classes of WSTS

based on their state spaces. More precisely, the framework is mainly based in two

concepts: reflexions and witness languages.

Definition 3.3.1 (Reflexion) Let (X,≤X) and (Y,≤Y) be two well partial or-

dered sets. A mapping ϕ : X → Y is a reflection if ϕ(x) ≤Y ϕ(x′) implies x ≤X x′

for all x, x′ ∈ X.

We write X ⊑refl Y if there is a reflection from X to Y . A reflection is

an isomorphism if it is bijective and x ≤X x′ implies ϕ(x) ≤Y ϕ(x′) (note that

the symmetric property of monotonicity is the reflexion). We extend the relation

⊑refl to classes of wpo by X ⊑refl X
′ if for any X ∈ X there is X ′ ∈ X′ such that

X ⊑refl X
′.

Given an alphabet Σ = {a1, . . . ,ak}, we consider a disjoint copy Σ = {a1, . . . ,ak}.

72 CHAPTER 3. TIMED NETS

This notation is extended to words by ω = a1 . . .ak if ω = a1 . . .ak ∈ Σ⊛ and

analogously, if L is a language, we define L = {ω | ω ∈ L}.

Definition 3.3.2 Let Σ be a finite alphabet. A Σ-representation of a wpo X is

any surjective partial function γ : Σ⊛ → X. For a Σ-representation γ of X, we

define Lγ = {uv | u, v ∈ dom(γ) and γ(v) ≤ γ(u)}, where we denote by dom(γ)

the domain of γ, and then we say Lγ is a witness of X.

Intuitively, given x ∈ X, each ω ∈ Σ⊛ with γ(ω) = x is a representation of x.

Therefore, the fact that a WSTS can recognize the language Lγ witnesses that in

some sense it can represent the structure of X: it can accept all words starting in

some u ∈ Σ⊛, followed by some v ∈ Σ
⊛
, representing that γ(v) ≤ γ(u).

Example 3.3.1 Let X = Q×N, with Q finite, with its standard order ≤ ((q, n) ≤

(p,m) iff q = p and n ≤ m). Taking Σ = {a} ∪ Q, a Σ-representation of X is

γ : Σ⊛ → X with γ(qan) = (q, n), so Lγ = {qanq̄ām | m ≤ n} is a witness of X.

Finally, in order to apply the framework to two classes of WSTS, we need to prove

that both classes are able to accept encodings of their own state space. We call

these classes self-witnessing. Formally, if S is a class of WSTS whose state spaces

are included in the class of wpos X, (X,S) is self-witnessing if, for all X ∈ X,

there is S ∈ S that recognizes a witness of X.

Proposition 3.3.4 ([16]) Let (X,S) and (X′,S′) be self-witnessing WSTS classes.

If S � S′ then X ⊑refl X
′.

We use the previous result to prove non-inclusions of the families of coverability

languages of ν-lsPN n. Now, we define the state space of ν-lsPN by using regions,

in terms of standard set constructions, like products, multisets or words.

Definition 3.3.3 We define Xk as the class of sets X⊕
max∗ × (X⊕

(max−1)∗)
⊛ ×

X⊕
{max+1} for some max ∈ N and P,Q finite sets with |P | = k, where for every

I ⊆ (max+1)∗, XI = Q× P⊕ × I.

Note that we can represent each region of a ν-lsPN as an element of some

X ∈ Xk. If R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ is a region, A0 is represented by an

element of X⊕
max∗ , A1 ∗ . . .∗An by a word over the alphabet X⊕

(max−1)∗ and A∞ by

an element of X⊕
{max+1}. In particular, each (m, r) ∈ Ai is represented by some

(q, {p1, . . . , pn}, k) ∈ Q×P⊕ × I, where q ∈ Q is a control state corresponding to

the bounded part of m.

3.3. EXPRESSIVENESS 73

For X ∈ Xk, we will write QX , PX and maxX to refer to Q, P and max as

above (or just Q, P and max, abusing notation). Now, we show the order we use

in Xk:

• As Xk is the class of sets of X⊕
max∗ × (X⊕

(max−1)∗)
⊛ ×X⊕

{max+1} we use the

standard order over the Cartesian product to define the order over the class.

That is, given X,X ′ ∈ X⊕
max∗ , ω, ω

′ ∈ (X⊕
(max−1)∗)

⊛ and Z,Z ′ ∈ X⊕
{max+1},

we say that (X,ω, Z) ≤c (X ′, ω′, Z ′) if X ≤ X ′, ω ≤∗ ω′ and Z ≤ Z ′.

• We order the elements in (X⊕
(max−1)∗)

⊛ by the standard order for words ≤∗.

That is, given two words a1, . . . , an and b1, . . . , bm, we say that a1, . . . , an ≤

b1, . . . , bm if there is a strictly increasing mapping φ : n+ → m+ such that,

for each i ∈ n+, ai ≤ bφ(i).

• Again, if I ⊆ (max+1)∗, we define the order over XI as the standard order

over the Cartesian product of Q× P⊕ × I, ≤c .

• Finally, we use the equality over Q, the standard multiset order defined in

Sec. 2.1 over P⊕ and the standard order for naturals over I.

Example 3.3.2 Let us recall the region R = A0 ∗ A1 ∗ A2 ∗ A∞ in Ex. 3.2.2,

depicted in Fig. 3.12, where A0 = {({p}, 2)}, A1 = {({qq}, 0) , ({q}, 2)}, A2 =

{({pq}, 1)} and A∞ = {({ppq}, 4)}. Suppose that max = 3 and q is the only

bounded place, bounded by 2. We can take Q = {q0, q1, q2}, where qi is a state

representing an instance with i tokens in q, and P = {p}. Then, we can write the

region R as:

({(q0, {p}, 2)}, {(q2, ∅, 0), (q1, ∅, 2)}{(q1, {p}, 1)}, {(q1, {p
2}, 4)})

which belongs to X⊕
max∗ × (X⊕

(max−1)∗)
⊛ ×X⊕

{max+1}, for max = 3.

In order to apply Prop. 3.3.4 to prove ν-lsPN k+1 � ν-lsPN k we have to see that

every (Xk, ν-lsPN k) is self-witnessing and that Xk+1 6⊑refl Xk. Given X ∈ Xk,

we define a Σ-representation γX ofX, and therefore, we obtain a witness LγX ofX.

We first need to define three auxiliary functions γI1 , γ
I
2 and γI3 . Intuitively, γ1, γ2

and γ3 are in charge of the creation of tuples representing instances, multisets and

words, respectively. More precisely, the encoding of an instance (q, {p1, . . . , pn}, k)

will be the word qp1 . . . pnk. Given u1, . . . , un encodings of pairs, the encoding of

the multiset of these pairs will be u1# . . .#un. Finally, v1 ∗ . . . ∗ vn will be the

encoding of the word formed by the multisets represented by v1, . . . , vn.

74 CHAPTER 3. TIMED NETS

Definition 3.3.4 Given X ∈ Xk, let Σ = Q ∪ P ∪ (max+1)∗ ∪ {∗,#,&}. We

define γI1 : Σ⊛ → XI , γ
I
2 : Σ⊛ → X⊕

I and γI3 : Σ⊛ → (X⊕
I)⊛ as follows:

• γI1(qp1 . . . pnk) = (q, {p1, . . . , pn}, k), with pi ∈ P , q ∈ Q and k ∈ I,

• γI2(u1# . . .#un) = {γI1(u1), . . . , γ
I
1(un)}, with ui ∈ dom(γI1) for every i,

• γI3(v1 ∗ . . . ∗ vn) = γI2(v1) . . . γ
I
2(vn), where vi ∈ dom(γI2) for every i.

Finally, we define the partial function γX : Σ⊛ → X as

γX(u&v&w) = (γmax∗

2 (u), γ
(max−1)∗

3 (v), γ
{max+1}
2 (w))

γX is surjective, so that it is a Σ-representation of X and Lγ is a witness of

X. Although not explicitly mentioned in the results from [16] shown above, if

X ∈ Xk+1 and Xk+1 6⊑refl Xk then LγX proves that ν-lsPN k+1 6� ν-lsPN k.

Proposition 3.3.5 (Xk, ν-lsPN k) is self-witnessing.

Proof: Given X ∈ Xk we have to prove that there is N ∈ ν-lsPN k such that

L(N) = LγX . Notice that N must have at most k unbounded places. N operates

in two phases: the first phase generates u with γ(u) = R = A0 ∗A1 ∗ . . .∗An ∗A∞,

and the second one recognizes any v with γ(v) ≤ R. In turn, each of the phases has

three consecutive sub-phases, dealing with A0, A1 ∗ . . . ∗An and A∞, respectively.

We use control places to move from one subphase to the next (with transitions

labeled by & or &). In order to differentiate between phases, we say that we

generate words in the first one, but we recognize them in the second.

We explain the generation of A1 ∗ . . . ∗An, which is depicted in Fig. 3.19 (the

other phases are simpler). In the figure, we omit the labels of the arcs labelled

by [0,∞). Let Ai = {(qi1,m
i
1, r

i
1), . . . , (q

i
ni
,mi

ni
, rini

)}. We use a different name

to represent each process instance. Moreover, instances in the same Ai have the

same age. We use a place now that holds the name (with age 0) of the instance

currently being generated. For a given i, we start by firing a transition of the

form tq (labelled by some q ∈ Q) which copies the name in now to a place q.

This firing is followed by the (possibly multiple) firing of transitions tp (labelled

by some p ∈ P), each copying the name in now to a place p. These firings are

followed by the firing of some tr (labelled by r ∈ (max−1)∗), which copies the

name in now to a place r.

3.3. EXPRESSIVENESS 75

s12 s122 s123

s124

now

all

tq q

x

y, [0, 0]

x

y

tp1 tpk
p1 pk

...x x

x x

y
y

aax x

t1

tmax−1

1

max−1

...

y

y

y

yx

x

x

x

t#

y

y

x, [0, 0]

xν, [0, 0]

t∗ y

y, [0, 0]

ν[0, 0]

x

time

ν, [0, 0]

z, [0, 0]

z, (0,∞)

Figure 3.19: Generation of the encoding of A1 ∗ . . . ∗An

Therefore, a word u with γ
(max−1)∗

1 (u) = (qi1,m
i
1, k

i
1) ∈ X(max−1)∗ can be pro-

duced. Next, there are two options: the immediate firing of a discrete transition,

or an elapsing of time, leading to the generation of the next Ai:

If no time has elapsed from the previous firing of some transition q ∈ Q, the

name in now can be moved to a place all , and replaced by a fresh name, with age

0 by one of the following sequence of firings:

• By firing transition t#, labeled by #, which sets a token of age 0 in place

s12.

• By firing a transition t′∗ labeled by ∗ (omitted from the figure), which sets

a token of age 0 in an auxiliary place, in order to force to wait some time

to fire another transition t′′# which finally sets a token of age 0 in place s12.

This sequence is fired in order to start to generate the encoding of a new

element in X⊕
(max−1)∗ .

76 CHAPTER 3. TIMED NETS

s21 s22 s23

s24

now

all

time

tq

x, [1, 1]

y, [0, 0] y

xν, [0, 0]

t̄q

q

y y

x

x

¯tp1 ¯tpk
p1 pk

...

x x

x x

y
y

t̄1

¯tmax

1

max−1

...

y

y

y

y

x

x

x

x

t̄#

y

y, [0, 0]

xz[0, 0]

t̄∗

y

y, [0, 0]

xz, (0,∞)

Figure 3.20: Generation of the encoding of Ā′
1 ∗ . . . ∗ Ā

′
k

Otherwise, some time has elapsed and hence we are forced to “forget” the

instance in now, and start the generation of the next element Ai in X⊕
(max−1)∗ ,

by firing transition t∗.

These actions can be repeated to generate (the encoding of) any element in

X⊕
(max−1)∗ .

After this phase, there is any number of pairwise different names (each repre-

senting an instance) in all , some of which have the same age (representing those

instances in the same Ai). Moreover, for any name a in all , a may belong to some

of the places in P (possibly repeated), and exactly to one place q and one place

k.

The transitions in the second phase (the recognizing phase) demand that the

age of the instances involved is exactly 1. Moreover, they are all labeled with

symbols in Σ.

This phase starts by taking any name in all with age 1 and putting it back to

now . Then, a transition of the form tq (labelled by q) can remove a token from q

3.3. EXPRESSIVENESS 77

with the same name as the one in now . Then, transitions of the form tp (labeled

by p) can be fired, each consuming a name from p matching the name in now . At

any point, a transition of the form tk, labeled by k (with k ∈ (max)∗) can be fired,

which consumes from k a name matching the one in now . Thus, if the current

name represented an instance (q,m, k) then (an encoding of) any (q,m′, k) with

m′ ⊆ m can be recognized. If no time has elapsed since the last firing of the first

transition of this phase, the name in now can be consumed by firing transition t#

labeled by # in order to start recognizing the next instance.

At any point of the recognizing of some instance time can elapse. Then, when

we finish recognizing some instance, t∗ can be fired, labeled by ∗, with the same

effect as t#. In that case, in order to start recognizing instances in the next Ai,

another instance in now may have reached age 1, and hence, we start recognizing

it. Notice that when time elapses, all the names with age greater than 1 are

lost (the encodings of the instances they represent cannot be recognized). This is

consistent with the fact that we must recognize (the encoding of) a state which is

less or equal than the one we generated. Notice also that even in the first phase,

names with ages older than 1 become garbage. However, it is possible to generate

all the names in the first phase with an age smaller than 1, so that the same state

can be recognized.

Even though the order between instances is not preserved within each Ai (this

is not demanded by the order in X⊕
(max−1)∗), this order is preserved between

different Ai’s, because older instances reach the age of 1 before. To conclude, we

consider as final marking the one with a token in the control-state marked in the

second phase (the recognizing one). Note that the built net has max = 1, that is,

the maximum integer bound in the intervals labelling the arcs of the net we build

is 1.

2

Thus, to apply Prop. 3.3.4 it only remains to see that Xk+1 6⊑refl Xk. In

order to prove it we use ordinal theory (see Prop. 3.3.6 below). Ordinal theory

was introduced by Cantor in 1883 [19], and intuitively, it is used to measure the

“length” of well-ordered sets, which is called the order type of the set.

Let us explain the needed concepts about ordinals (for more details see [16]).

Each ordinal α is equal to the set of ordinals {β | β < α} below it, and the class of

ordinals is totally ordered by inclusion. For example, the ordinal 30 is the order

type of all the ordinals below it, that is, the ordinals between 0 and 29. Hence, it

is identified as the set {0, . . . , 29}. Every total well order (X,≤) is isomorphic to

78 CHAPTER 3. TIMED NETS

a unique ordinal ot(X,≤), called the order type of X. In the context of ordinals,

we define 0 = ∅, n = {0, . . . , n− 1} and ω = N, ordered by the usual order. The

ordinals below ǫ0 (those bounded by a tower ωω··
·ω

) can be represented by the

hierarchy of ordinals in Cantor Normal Form (CNF), recursively given by C0 =

{0}, and Cn+1 = {ωα1 + . . . + ωαp | p ∈ N, α1, . . . , αp ∈ Cn and α1 ≥ . . . ≥ αp}

ordered by ωα1 + · · · + ωαp ≤ ωα′
1 + · · · + ωα′

q iff (α1, . . . , αp) ≤lex (α′
1, . . . , α

′
q),

where ≤lex is the lexicographic order. For example, given a finite set P , the order

type of P⊕ is ω|P |, which is in Cantor Normal form.

Each ordinal below ǫ0 has a unique CNF. We abbreviate α+
k
· · ·+ α = α ∗ k.

A linearization of a po ≤ is a total order ≤′ st x ≤ y ⇒ x ≤′ y. A linearization of

a wpo is well and total, hence isomorphic to an ordinal. The maximal order type

of (X,≤) is ot(X,≤) = sup {ot(X,≤′) | ≤′ linearization of ≤}.

The following result states that we can prove Xk+1 6⊑refl Xk by comparing

their ordinal types.

Proposition 3.3.6 ([103]) For X and Y wpos, if X ⊑refl Y then ot(X) ≤

ot(Y).

Using [28, 84, 103], we can compute the order type of products, domains of

finite words or finite multisets. In particular, we will need the following result.

Lemma 3.3.7 For every Q, P and I finite, ot((Q×P⊕× I)⊕⊛) = ωωωω|P |∗|Q|∗|I|

.

In particular, ot(P⊕⊕⊛) = ωωωω|P |

.

Proof: Let X be any wpo with ω ≤ ot(X) < ε0 and Y a finite set. In [28, 84]

it is proved that ot(X × Y) = ot(X) ∗ |Y | and ot(X⊛) = ωωot(X)
, and [103] proves

that ot(X⊕) = ωot(X). Moreover, P⊕ is isomorphic to N|P |, so that ot(P⊕) =

ot(N|P |) = ω|P |. This allows us to compute the ordinals in the lemma.

2

Now, we apply the previous results in order to prove that the expressiveness

of ν-lsPN grows with the number of unbounded places.

Proposition 3.3.8 ν-lsPN k ≺ ν-lsPN k+1 for each k ≥ 0.

Proof: Trivially ν-lsPN k � ν-lsPN k+1 holds. In order to prove ν-lsPN k+1 6�

ν-lsPN k it is enough to apply Prop. 3.3.4, since both classes are self-witnessing

(Prop. 3.3.5). Let us see that Xk+1 6⊑refl Xk. We consider only the part of the

3.3. EXPRESSIVENESS 79

state spaces composed of words (of multisets), the one playing the relevant part.

Let us take Xk+1 = P⊕⊕∗ ∈ Xk+1 (i.e., with only one control-state and max = 1),

so that |P | = k + 1. For any Xk ∈ Xk we have that Xk = (Q × P ′⊕ × I)⊕∗ for

some max ∈ N and finite P ′ and Q with |P ′| = k. By the previous lemma,

ot(Xk+1) = ωωωωk+1

and ot(Xk) = ωωωωk∗|I|∗|Q|

, which satisfy ot(Xk+1) 6≤ ot(Xk).

Since this is true for any Xk ∈ Xk we have that Xk+1 6⊑refl Xk.

2

Finally, we obtain the following result as a corollary.

Corollary 3.3.9 TdPN ≃ ν-lsPN 0 ≺ ν-lsPN 1 ≺ ν-lsPN 2 ≺ . . . ≺ ν-lsPN

Hence, we have completed the picture at the beginning of this section, obtain-

ing:

PN ≺ AWN ≺ ν-PN ≺ DN ≃ TdPN ≃ ν-lsPN 0 ≺ ν-lsPN 1 ≺ . . . ≺ ν-lsPN

In particular, this implies that ν-lsPN is the most expressive class of all the

WSTS classes whose expressiveness have been compared up to coverability lan-

guages, up to our knowledge.

Despite we have not focused on the complexity issues about the safety problems

we are studying, note that, since ν-lsPN are more expressive than Data Nets or

TPN, we can already obtain a lower bound for coverability and termination at

level Fωωω [43] in the fast-growing hierarchy. It would be interesting to know if

this lower bound is tight, though we may expect it is not, due to the higher order

types of the state space in ν-lsPN .

80 CHAPTER 3. TIMED NETS

Chapter 4

Priced-Timed Nets

The goal of this chapter is to define a model to represent timed systems whose runs

carry an associated cost in which different instances intervene, and to define and

study safety properties over the prices of these runs. As in the previous chapter

we found that the nets with more than one clock per instance had undecidable

control-state reachability, we take ν-lsPN as the timed model in which we base

our new extension. We define a costs model based on the one in [2]. We add the

costs by considering a function Cost which assigns natural prices to places and

transitions. Then, we will consider that each run produces two kinds of costs:

storage costs and firing costs. Storage costs are associated to places, and are

produced in the delays. These costs represent the ones produced by the storing

and conservation of materials/resources. The costs associated to transitions are

the firing costs, and represent the costs of performing actions. Then, the total

price of a run will be the sum of the firing and storage costs it produces.

In such priced systems, we often want to remain under a given budget. Hence,

the safety problem we will define consists in determining if every run which reaches

a given set of final states keeps under this given budget. We will study the

decidability of this problem by defining an abstraction which is equivalent to

our new model, as done in [2], and proving that this abstraction belongs to the

framework of Well Structured Transition Systems, as done in the previous chapter.

4.1 Priced-timed ν-Petri nets

First of all, let us define our priced and timed model.

Definition 4.1.1 (Priced-timed ν-Petri nets) A priced-timed ν-Petri net

81

82 CHAPTER 4. PRICED-TIMED NETS

ab

p1

b

p2

a
p3 p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

ab

p1

b

p2

a
p3 p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

b

p1 p2

aa
p3

c
p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

M1 = a:({p1p3}, 0),
b:({p1p2}, 0.5)

M2 = a:({p1p3}, 0.5),
b:({p1p2}, 1)

M3 = a:({p3p3}, 3), b:({p1}, 1),
c:({p4}, 0)

→ →

Figure 4.1: Firing of a transition in a ν-PTdPN .

(ν-PTdPN for short) is a tuple N = 〈P, T, In,Out, T ime,Cost〉 where 〈P, T, In,

Out, T ime〉 is a ν-lsPN called the underlying ν-lsPN and Cost : P ∪ T → N.

The behavior of a ν-PTdPN is given by the semantics of its underlying ν-lsPN .

Therefore, the costs function does not change any behavior, it is only used to

compute the prices of the runs. Hence, control-state reachability as defined for

ν-lsPN is still decidable, and it is an interesting property to verify over ν-PTdPN .

However, we would like to study safety properties dealing with prices too.

The price of a run is defined as the sum of the firing costs (the price of firing

discrete transitions) and storage costs (the price of storing tokens in places while

timed transitions are fired). Let us formally define the price of a run.

Definition 4.1.2 (Price of a run) The cost of firing a discrete transition t ∈ T

is defined as

Cost(M
t
−→M ′) = Cost(t).

The cost of firing a timed transition with delay d ∈ R≥0 is defined as

Cost(M
d
−→M ′) = d ∗

∑

p∈P

∑n
i=1mi(p) ∗ Cost(p),

where M = {a1:(m1, r1), . . . , an:(mn, rn)}.

Let π = M1
l1−→ . . .

ln−1
−−−→ Mn be a run of a ν-PTdPN . We define the price of

π as

Cost(π) =
∑n−1

i=1 Cost(Mi
li−→Mi+1).

Let us illustrate the previous definition by an example:

4.1. PRICED-TIMED ν-PETRI NETS 83

Example 4.1.1 We consider the ν-PTdPN defined by the underlying ν-lsPN de-

picted on Fig. 4.1, and the function Cost with Cost(p1) = Cost(t) = 2, Cost(p2) =

1 and Cost(n) = 0 otherwise. Then, the price of the firing M1
0.5
−−→ M2, depicted

in the left-hand side of the figure is 0.5∗ ((1∗2)+(1∗2)+(1∗1)) = 2.5. The price

of the second firing M2
t
−→ M3 is Cost(t) = 2. Hence, the price of the complete

run is 4.5.

In order to define the safety problem for ν-PTdPN we first need to define an

order over its markings.

Definition 4.1.3 (Order over markings) Given a markingM of a ν-PTdPN ,

let us call Mk(M) the multiset over P⊕ × R≥0 with

Mk(M)(m, r) = |{a ∈ Id | a:(m, r) ∈M}| .

Then, given two markings M and M ′, we say that M ≪ M ′ if Mk(M) ⊆

Mk(M ′), where ⊆ is the standard order over multisets.

For example, Mk(M3) = {({p3, p3}, 3), ({p1}, 1), ({p4}, 0)}, where M3 is the

third marking in Fig 4.1.

Now we define the safety problem. Intuitively, a ν-PTdPN is b-safe for an

initial marking M0 and a final marking Mf if each run from M0 to a marking

which covers Mf costs less that b. Without loss of generality, we will suppose

that all the instances in the initial marking have age 0.

Definition 4.1.4 (Safety problem) Let b ∈ N and M0,Mf be two markings of

a ν-PTdPN N , where all the instances in M0 have age 0 and all the instances in

Mf have integer age. We say that N is b-safe for the pair of markings M0,Mf ,

if for each run π = M0 → · · · → M starting from M0 and reaching M ≫ Mf ,

Cost(π) < b.

In [2] Abdulla and Mayr study the Cost-Threshold problem for Priced-Timed

Petri nets, which consists in deciding whether a given marking can be covered

in some run without spending more than a given budget. For this purpose, they

prove that to solve the problem it is enough to consider computations where the

ages of the clocks are arbitrarily close to an integer. Despite we are not trying to

solve the same problem, we will use the same ideas to prove decidability of safety.

Without loss of generality, in this section we suppose that M0 = a:({p0}, 0), that

is, that the initial marking has only one token of age 0 in an special place p0.

84 CHAPTER 4. PRICED-TIMED NETS

Given a marking M , note that we can make the following decomposition in a

unique way:

• M =M−n + . . .+M−1 +M0 +M1 + . . .+Mm.

• If a:(m, r) ∈Mi and i < 0, then frct(r) ≥ 1/2. Analogously, if a:(m, r) ∈Mi

and i > 0 , then frct(r) < 1/2. Finally, if a:(m, r) ∈M0 then frct(r) = 0.

• a : (m, r) ∈ Mi and a′ : (m′, r′) ∈ Mj , then frct(r) = frct(r′) if and only if

i = j, and if −n ≤ i < j < 0 or 0 ≤ i < j ≤ m then frct(r) < frct(r′).

• If i 6= 0 then Mi 6= ∅.

Example 4.1.2 Let M = a : ({p}, 0.3), b : ({pq}, 2.2), c : ({qq}, 4), d : ({p}, 0.6), e :

({q}, 2.6). The previous decomposition would be M = M−1 + M0 + M1 + M2,

with M−1 = d : ({p}, 0.6), e : ({q}, 2.6), M0 = c : ({qq}, 4), M1 = b : ({pq}, 2.2) and

M2 = a:({p}, 0.3).

Definition 4.1.5 (Detailed transition) Let M = M−n + . . . + M−1 + M0 +

M1 + . . . +Mm be a marking of a ν-PTdPN decomposed as previously defined,

and ǫ the fractional part of the clocks of the instances in M−1, if it exists, or

1/2 otherwise. A firing of a timed transition M
d
−→ M ′ is detailed if at most one

fractional part of the clocks of the instances changes in a way that makes it reach

or exceed the next integer value, that is, 0 < d ≤ 1− ǫ or M0 = ∅ and d = ǫ.

Each timed transition in a run can be decomposed in several firings of detailed

timed transitions. Moreover, the price of the firing of the timed transition is equal

to the sum of the prices of all the detailed transitions. Hence, from now on, in

order to study the safety problem for a ν-PTdPN N , we only need to consider

the runs of N in which all the timed transitions are detailed. This is similar to

the cases of the proofs of lemmas 3.2.2-3.2.6 of previous section, in which we only

need to consider the timed transitions from markings in which there are instances

with natural age lower than max and no other instance reaches or exceeds the

next integer age, or in which there are not instances with natural age lower than

max and only the instances lower than max with the greatest fractional part of

the age in the marking reach the next natural age.

Now, we formally define the concept of “computations where the ages of the

clocks are arbitrarily close to an integer” and prove that it is enough to consider

such computations in order to solve our safety problem, in the way of [2].

4.1. PRICED-TIMED ν-PETRI NETS 85

Definition 4.1.6 (δ-form) Let 0 < δ ≤ 1/5.

• An instance a:(m, r) is in δ-form if frct(r) < δ or frct(r) ≥ 1− δ.

• A marking is in δ-form if all its instances are in δ-form.

• A discrete transition is fired in δ-form if the instances created by the firing,

and the instances whose clocks are changed by the firing are in δ-form.

• A run π is in δ-form if every discrete transitions in π is fired in δ-form and

for each timed transition M
d
−→M ′ in π, 0 < d < δ or 1− δ < d < 1.

We require δ ≤ 1/5 in order to ensure that the cases frct(r) < δ and frct(r) ≥

1− δ do not overlap, and even after a delay d ≤ 1/5, if δ′ = δ+ d ≤ 1/5, the cases

frct(r) < δ′ and frct(r) ≥ 1− δ′ still do not overlap.

Proposition 4.1.1 Let π = M0
l0−→ . . .

ln−1
−−−→ Mn be a run of a ν-PTdPN , with

Mf an upward-closed set of markings such that Mn ∈ Mf . For each 0 < δ < 1/5

there is a run π′ =M0
l′0−→M ′

1

l′1−→ . . .
ln′−1
−−−→M ′

n in δ-form such that:

• M ′
n ∈ Mf ,

• Cost(π) ≤ Cost(π′),

• for each i ∈ n∗, |Mi| = |M ′
i |, and

• if π is detailed, then π′ is detailed.

Proof: Let nt be the number of timed transitions in π, for i ∈ nt+, let di

be the delay of the ith timed transition in π and let 0 < δ < 1/5. Let nc be the

number of times the value of a clock of an instance is changed in π, including

the case of the creation of new instances. Let us fix an arbitrary order over this

“newly updated” or “newly created” clocks, and call them c1, . . . , cnc ∈ R≥0.

Let a1, . . . , anc be the instances these clocks belong to. Note that this (multi)set

of transitions may have repetitions. In that case, without loss of generality, we

suppose that each instance is renamed when the value of its clock is changed by

the firing of a discrete transition. We can simulate these renamings in a lossy way,

preserving reachability.

We consider the set S of all the runs with the same structure as π, that is, the

same transitions and modes as π, but maybe modifying the values of d1, . . . , dnt

(the time delays) and c1, . . . , cnc. These runs have the same length as π, and the

86 CHAPTER 4. PRICED-TIMED NETS

size of each marking is preserved too. Moreover, if π is detailed, a run π′ in S is

detailed too. Next, we find a run π′ in S in δ-form with Cost(π) ≤ Cost(π′).

The set of tuples (d1, . . . , dnt, c1, . . . , cnc) for which such a run is in S is defined

by a set of inequations that depend on the intervals labelling transition. Each of

the following conditions must be expressed by this set of equations:

• The time always advances, that is, di > 0.

• If an instance ai is created by an output arc with interval [a, b], then we

have a ≤ ci ≤ b. The case of (half) open intervals is analogous, using strict

inequalities.

• Analogously, if the clock of an instance ai is changed by an output arc with

interval [a, b], then we have a ≤ ci ≤ b. Again, the case of (half) open

intervals is analogous, using strict inequalities.

• Suppose ai is an instance such that some of its tokens are input of some

discrete transition t via an arc labelled by [a, b]. Let dk, dk+1, . . . , dk+l be

the delays between the setting of the clock ci and the firing of t. Then, we

have a ≤ ci + dk + dk+1 + . . .+ dk+l ≤ b.

The previous inequations describe a polyhedron PH which contains all pos-

sible tuples such that the runs they represent are in S. The tuple corresponding

to π is in S, and therefore PH is nonempty, so we can build the closure PH

of the polyhedron by substituting the strict inequalities by normal ones. Let

v = (d1, . . . , dnt, c1, . . . , cnc) be a vector of variables. Then, PH can be described

by the inequation M ∗v ≤ c, where c is a vector of integers and M is a matrix. M

has the same form as the PTPN matrices defined in [2]. Moreover, in Theorem

23 of [2] it is proved that the coordinates of the vertices of a polyhedron which is

defined by such a matrix and a vector c of integers, are integers. Therefore, the

coordinates of PH are integers.

Since the Cost function is linear in d1, . . . , dnt, the supreme of the prices of

the runs in S is represented by a vertex of PH, which has integer coordinates

by [2]. Therefore, we can get arbitrarily close to the supreme of the costs giving

to d1, . . . , dnt, c1, . . . , cnc values arbitrarily close to integers. Therefore, for every

π, there is π′ in S with the same structure as π, in δ-form (that is, arbitrarily

close to integers), such that Cost(π) ≤ Cost(π′).

2

4.2. ABSTRACT ν-PTDPN 87

Hence, we obtain the following corollary.

Corollary 4.1.2 For every 0 < δ < 1/5, if M0
π
−→Mn is a run of a ν-PTdPN N ,

there is a run M0
π′

−→M ′
n in δ-form such that Cost(π) ≤ Cost(π′) and Mn ≪M ′

n.

Hence, given a ν-PTdPN N , in order to solve the safety problem for N , that

we have defined previously, we only need to analyze the runs in δ-form, for some

0 < δ < 1/5.

4.2 Abstract ν-PTdPN

Now we define an abstraction of ν-PTdPN merging the way of ordering the clocks

in [2] and the way of abstracting instances in Chapter 3. The runs of the new model

will represent runs of ν-PTdPN s in δ-form, for infinitesimally small δ. Moreover,

the states of the model (called priced regions), will represent the accumulated cost

of the run. Then, as in the case of ν-lsPN , we will prove that the new abstraction

is a WSTS and that we can solve the safety problem for ν-PTdPN by reducing

it to a coverability problem for the abstraction. The new abstract model has the

same syntax as ν-PTdPN : for each ν-PTdPN N = 〈P, T, In,Out, T ime,Cost〉,

we define the corresponding abstract ν-PTdPN N ′ = 〈P, In,Out, T ime,Cost〉,

denoted by ν-aPTdPN (N). Now, we define the semantics of the abstract model.

Definition 4.2.1 (Priced regions) A priced region is a tuple of the form

〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉, with c, n,m ∈ N and Ai ∈ (P⊕×(max+ 1)∗)⊕

for i ∈ {−n, . . . ,m}.

Intuitively, in a priced region, if i < 0, Ai represents a set of instances whose

clocks have the same fractional part (as in Chapter 3), which is greater than 1−δ.

Analogously, if i > 0, Ai represents a set of instances whose clocks have the same

fractional part, which is smaller than δ. Moreover, if i < j < 0 or 0 < i < j,

the clocks of the instances in Ai have fractional part smaller than the ones in

the instances in Aj . Finally, A0 represents the instances whose clocks are natural

numbers. The number c represents the accumulated cost of the run in the abstract

model. For simplicity, we suppose that Ai 6= ∅ if i 6= 0.

Definition 4.2.2 (Priced region of a marking) Given a marking of a

ν-PTdPN M = M−n + . . . + M−1 + M0 + M1 + . . . + Mm decomposed in its

88 CHAPTER 4. PRICED-TIMED NETS

M : a : ({pq}, 1.6) b : ({p}, 2) c : ({ppq}, 5.7) d : ({q}, 2.3) e : ({qq}, 0.3)

M0
< {p}, 2 >

Mm
< {q}, 2.3 > < {qq}, 0.3 >

MM
< {ppq}, 5.7 > < {pq}, 1.6 >

A−2

< {pq}, 1 >

A−1

< {ppq}, 4 >

A0

< {p}, 2 >

A1

< {qq}, 0 > < {q}, 2 >

Figure 4.2: The abstract region associated to a marking

fractional parts as previously defined, we define the priced region

PR(M) = 〈0, A−n ∗ . . . ∗A−1, A0, A1 ∗Am〉

where for every i ∈ {−n, . . . ,m}, Ai((m,n)) = |{a ∈ Id | ∃r ∈ R≥0 with n =

⌊r⌋, a : (m, r) ∈ Mi}| for n ≤ max, and Ai((m,max + 1)) = |{a ∈ Id | ∃r >

max, a:(m, r) ∈Mi}| .

Let us illustrate the previous definition with an example.

Example 4.2.1 The upper part of Fig. 4.2 represents a marking of a ν-PTdPN

with max = 3. The first step we take to build its corresponding abstract region is

to sort the instances by the fractional part of their clocks, forgetting the concrete

names: we consider the multiset M0 of instances with natural age (b), the multiset

Mm of instances with fractional part of the age lower than 0.5 (d and e) and the

multiset MM of instances with fractional part of the age greater than 0.5 (a and

c). Finally, we forget about the concrete fractional parts of the ages, we change

the age of the only instance older than max (c) to max+1, and we build multisets

of instances with the same fractional part of the age, setting first the instances in

MM , then the instance in M0 and finally the instances in Mm.

Now, we define the transition relation֌ for ν-aPTdPN . Note that in addition

to managing the abstraction of the markings, we need to calculate the increment

of (abstract) costs in each transition. We first consider the firing of abstract

4.2. ABSTRACT ν-PTDPN 89

timed transitions, so we need to handle the addition of storage costs. Given

A ∈ (P⊕ × (max+1)∗)⊕, we denote A+1 ∈ (P⊕ × (max+ 1)∗)⊕ defined by:

A+1((m, r + 1)) = A((m, r)) if 0 < r ≤ max and A+1((m,max+1)) =

A((m,max+1)) + A((m,max)) otherwise. Note that as in the abstraction for

ν-lsPN , all the ages greater than max are represented by max+1.

Definition 4.2.3 (Firing of timed transitions in ν-aPTdPN) We consider

four kinds of abstract timed transitions
i
֌:

• 〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗ . . . ∗Am〉
1
֌〈c, A−n ∗ . . . ∗A−1, ∅, A0 ∗A1 ∗Am〉,

• 〈c, A−n ∗ . . . ∗A−1, ∅, A1 ∗ . . . ∗Am〉
2
֌〈c, A−n ∗ . . . A−2, A

+1
−1, A1 ∗ . . . ∗Am〉,

• 〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉
3
֌〈c′, A+1

−n∗. . .∗A
+1
−1∗A0∗. . .∗Ak, ∅, A

+1
k+1∗

. . . ∗A+1
m 〉, with c′ = c+

∑m
i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗Cost(p).

• 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉
4
֌〈c′, A+1

−n ∗ . . . ∗ A+1
−1 ∗ A0 ∗ . . . ∗

Ak, A
+1
k+1, A

+1
k+2 ∗ . . .∗A

+1
m 〉, with c′ = c+

∑m
i=−n

∑

(m′,r)∈Ai
Ai(m

′, r)∗
∑

p∈P

m′(p) ∗ Cost(p).

Moreover, we define
∆
֌ as the reflexive and transitive closure of

1
֌∪

2
֌∪

3
֌∪

4
֌.

The first and second types of firings represent infinitesimally small delays

(lower than the considered δ) so we consider that the price of the run is not

incremented. In the first type the instances in A0 change to a non-integer value

but the instances in A−1 do not reach or exceed the next integer. In the second

type A0 = ∅, and instances in A−1 reach the next integer age.

The third and fourth types of firings represent delays which are close to one

(greater than 1 − δ) so we consider that the price of the run is incremented by

c′ = c +
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p), that is, the storage

costs corresponding to one unit of time. In the third type only the clocks of the

instances in A0 ∗ . . . ∗Ak do not exceed the next integer, and no instance reaches

an integer age. In the fourth type only the clocks of the instances in A0∗ . . .∗Ak+1

do not exceed the next integer, and the instances represented by Ak+1 reach the

next integer age.

Example 4.2.2 Let us consider the same ν-PTdPN as in the previous example,

with max = 3. The first and second regions depicted on Fig. 4.3 represent a firing

of a timed transition of type 1. Hence, the multiset A0 becomes A1, and A0 gets

90 CHAPTER 4. PRICED-TIMED NETS

A−2

< {pq}, 1 >

A−1

< {ppq}, 4 >

A0

< {p}, 2 >

A1

< {qq}, 0 > < {q}, 2 >

B−2

< {pq}, 1 >

B−1

< {ppq}, 4 > p

B1

< {p}, 2 >

B2

< {qq}, 0 > < {q}, 2 >

C−1

< {pq}, 1 >

C0

< {ppq}, 4 >

C1

< {p}, 2 >

C2

< {qq}, 0 > < {q}, 2 >

D−3

< {pq}, 2 >

D−2

< {ppq}, 4 >

D−1

< {p}, 2 > p

D1

< {qq}, 1 > < {q}, 3 >

Figure 4.3: Time elapsing for regions

empty. Then, there is a time elapsing of the second kind from the second region to

the third one, in which the instance in A−1 goes to A0. Note that the age of this

instance is not incremented, since it is already greater than max. Finally, a firing

of type 3 is represented by the third and fourth regions, in which all the instances

but the ones in A0 and A1 exceed their next integer age, and no instance reaches

exactly the next integer age.

Now, we define the firings of discrete transitions. In order to make this defi-

nition simpler, we consider the predicate match defined in the previous chapter,

which relates the abstract representation of instances (pairs of P⊕ × R≥0) with

the inputs and outputs of the transitions.

Moreover, if a = (m, r) ∈ (P⊕ ×R≥0) we denote a+ǫ = (m, r+ ǫ). Finally, we

are ready to define the firing of discrete transitions in ν-aPTdPN .

Definition 4.2.4 (Firing of discrete transitions in ν-aPTdPN) Let t ∈ T .

We have 〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉
t
֌〈c′, B−n′∗. . .∗B−1, B0, B1∗. . .∗Bm′〉

if for each i ∈ {−n, . . . ,m}, there are AI
i , A

rest
i , O,AO

0 , O
ν , Aν

0 ∈

(P⊕ × (max+ 1)∗) such that, for each 0 < ǫ < 1 the following conditions hold:

• c′ = c+ Cost(t).

4.2. ABSTRACT ν-PTDPN 91

• Ai = AI
i +Arest

i .

• There are two bijections f : nfVar(t) →
⊎

i∈{−n,...,m}A
I
i and h : nfVar(t) →

O +AO
0 such that, if f(x) = (m, r) and h(x) = (m′, r′) then:

– If f(x) is selected from A0 then match(f(x), (Int(x), T ime
1
t (x))) and

match(f(x)+ǫ, (Int(x), T ime
1
t (x))) otherwise.

– m′ = (m − Int(x)) + Outt(x) and if h(x) is selected from AO
0 then

r′ ∈ Time2t (x) and r
′ + ǫ ∈ Time2t (x) otherwise.

• There is a bijection h′ : fVar(t) → Oν+Aν
0 such that, if h′(ν) = (m, r) then:

– m = Outt(ν),

– If h′(ν) is selected from Aν
0 then r ∈ Time2t (ν) and r + ǫ ∈ Time2t (ν)

otherwise.

• There is a strictly monotone injection ϕ : {i ∈ {−m, . . . , n} | Arest
i 6=

∅} ∪ {0} → {−m′, . . . , n′} with ϕ(0) = 0 such that:

– For all i ∈ {−n, . . . ,−1, 1, . . . ,m}, Arest
i ⊆ Bϕ(i).

– B0 = Arest
0 +AO

0 +Aν
0.

–
⊎

i∈{−n,...,−1,1,...,m}Bi = (
⊎

i∈{−n,...,−1,1,...,m}A
rest
i) +O +Oν .

The first condition of the previous definition makes the cost represented by

the initial region be incremented by the cost of firing t. The second condition

expresses that the multisets Ai in the initial region are split into two parts: the

instances AI
i which are assigned to some variable in the firing, and those Arest

i

which keep unchanged. In the third and fourth conditions the injection f selects

the appropriate pairs to be associated to the incoming variables of t (which fit

into the conditions of In and Time1), and express how the outcoming instances,

selected by the injection h and h′ from O and AO
0 , must be. Note that if an

instance which takes part in the firing is not selected from A0, we add ǫ to the

age when checking if it is in the corresponding interval Time1t (x). This is because

the natural number in the pair of the selected instance corresponds to the natural

part of the age of the instance in the non abstract net, that has fractional part

greater than 0. Finally, the last condition basically expresses that the order of the

remaining multisets in the new region must not change (because ϕ is monotone),

and that the new region is obtained from the old one by removing the multisets

of the region which represent instances assigned to preconditions, and adding

92 CHAPTER 4. PRICED-TIMED NETS

to some of the multisets (or maybe to new ones), the pairs representing new or

changed instances, which are in O and AO
0 .

Then, we define the transition relation ֌ over ν-aPTdPN as ֌ =
∆
֌ ∪

⋃

t∈T

t
֌.

4.2.1 Correctness of the simulation

In this section we prove that the previous abstraction simulates ν-PTdPN in a

correct way. More precisely, we will prove that given a ν-PTdPN N with an

initial marking M0 and a final marking Mf , the supremum of the prices of the

runs which begin in M0 and finish in a marking greater than Mf in N and in its

ν-aPTdPN coincide. This condition is enough to reduce the safety problem for

ν-PTdPN to an analogous problem for ν-aPTdPN . We consider several lemmas

in order to prove the previous result.

In the rest of this chapter, given a region R = 〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗ . . . ∗

Am〉, we denote R+x = 〈c+x,A−n ∗ . . .∗A−1, A0, A1 ∗ . . .∗Am〉. Let us first focus

on the case of a discrete transition.

Lemma 4.2.1 Given a marking M of a ν-PTdPN in δ-form, for some δ ≤ 1/5,

and c ∈ R≥0, there is a firing of a discrete transition in δ-form M
t
−→ M ′ if and

only if PR(M)+c
t
֌PR(M ′)+(c+Cost(t)).

Proof: Let M−n + . . .+M−1 +M0 +M1 + . . .+Mm be the decomposition of

M as defined previously, and PR(M)+c = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ Am〉. We

prove both implications.

First, suppose there is a firing of a discrete transition in δ-form M
t
−→ M ′.

Note that if PR(M)+c
t
֌R for some region R then the first component of R will

be c + Cost(t), by Def. 4.2.4. Hence, we focus on proving that this transition

can be performed, and the rest of the components of R are as required. Let us

consider M = a1 : (m1, r1), ..., an : (mn, rj) + M as in Def. 3.2.4, and let us

call M̃ = a1 : (m1, r1), ..., an : (mn, rj). Then, for each k ∈ {−n . . .m} we can

decompose Mk = M̃k +Mk, where M̃k ≪ M̃ and Mk ≪ M . Let us define, for

each k ∈ {−n . . .m}, the multisets AI
k, A

rest
k ∈ (P⊕ × N)⊕ for the abstract firing,

with:

• AI
k((m,n)) =

∣

∣

∣
{a ∈ Id | ∃r ≤ max with n = ⌊r⌋, a:(m, r) ∈ M̃k}

∣

∣

∣
if n ≤

max, AI
k((m,max+ 1)) =

∣

∣

∣
{a ∈ Id | ∃r > max, a:(m, r) ∈ M̃k}

∣

∣

∣
,

4.2. ABSTRACT ν-PTDPN 93

• Arest
k ((m,n)) = |{a ∈ Id | ∃r ≤ max with n = ⌊r⌋, a : (m, r) ∈ Mk}| if

n ≤ max and Arest
k ((m,max+ 1)) = |{a ∈ Id | ∃r > max, a:(m, r) ∈Mk}|.

Note that Ak = AI
k +Arest

k . Now, if for each instance ai:(mi, ri) ∈ M̃ , and m′
i

and r′i are the ones defined in the firing of t, then we define

O =
⊎

i∈j+|r′i /∈N
(m′

i, ⌊r
′
i⌋)

and

AO
0 =

⊎

i∈j+|r′i∈N
(m′

i, ⌊r
′
i⌋).

Analogously, if fVar = {ν1, . . . , νj′}, for each i ∈ j′+ if we consider m′′
i and r′′i as

in the firing of t, then we define

Oν =
⊎

i∈j′+|r′′i /∈N
(m′′

i , ⌊r
′′
i ⌋)

and

Aν
0 =

⊎

i∈j′+|r′′i ∈N
(m′′

i , ⌊r
′′
i ⌋).

Now, we only have to prove that the five conditions in Def.4.2.4 hold. The first

and second conditions have already been proved. Let us check the three remaining

ones:

• First, we define f : Suppose that nfVar(t) = {x1, . . . , xj} as in Def. 3.2.4.

Then, for each i ∈ j+, we define f(xi) = (mi, ⌊ri⌋), that is, we assign

to xi the pair corresponding to (mi, ri) in the abstract net. If f(x) is

selected from A0 then ⌊ri⌋ = ri and by the second point in Def. 3.2.4,

match(f(xi), (Int(xi), T ime
1
t (xi))) holds. Otherwise, ri = ⌊ri⌋+ ǫ for some

0 < ǫ < 1 and hence match(f(xi)
+ǫ, (Int(xi), T ime

1
t (xi))) holds.

Now we define h in an analogous way: for each i ∈ j+, we define h(xi) =

(m′
i, ⌊r

′
i⌋), that is, we assign to each xi the pair representing (m′

i, r
′
i) in O or

AO
0 . Then, by the fourth point in Def. 3.2.4, m′

i = (m − Int(xi)) +Ht(xi).

Moreover, if h(xi) is selected from AO
0 then r′i = ⌊r′i⌋ and therefore, by the

sixth point in Def. 3.2.4, r′i ∈ Time2t (xi). Otherwise, r′i = ⌊r′i⌋+ ǫ for some

0 < ǫ < 1 and hence ⌊r′i⌋+ ǫ ∈ Time2t (xi).

• For each i ∈ j′+, we define h′(νi) = (m′′
i , ⌊r

′′
i ⌋), where (m′′

i , r
′′
i) is as defined

94 CHAPTER 4. PRICED-TIMED NETS

in Def. 3.2.4. Therefore, by the fifth point in Def. 3.2.4, m′′
i = Out(νi).

Moreover, if h′(νi) is selected from Aν
0 then r′′i = ⌊r′′i ⌋ and, by the last

point in Def. 3.2.4, ⌊r′′i ⌋ ∈ Time2t (νi). Otherwise, there is 0 < ǫ < 1 with

r′′i = ⌊r′′i ⌋+ ǫ, and hence ⌊r′′i ⌋+ ǫ ∈ Time2t (νi).

• Then, we define B0 = Arest
0 + AO

0 + Aν
0 , ensuring the second condition.

Moreover, the mutisets {(m′
i, r

′
i) | xi ∈ nfVar(t)} and

{(m′′
i , r

′′
i) | νi ∈ fVar(t)} can be decomposed into increasing fractional parts

in an unique way, as done for M . Let us suppose that these two decomposi-

tions areM ′
−n′∗. . .∗M ′

−1,M
′
0,M

′
1∗. . .∗M

′
m′ andM ′′

−n′′ , ∗ . . .∗M ′′
−1,M

′′
0 ,M

′′
1 ∗

. . . ∗M ′′
m′′ , respectively. Then, we consider the abstractions of these decom-

positions, A′
−n′∗. . .∗A′

−1, ∅, A
′
1∗. . .∗A

′
m′ and A′′

−n′′∗. . .∗A′′
−1, ∅, A

′′
1∗. . .∗A

′′
m′′ ,

by only taking the integer part of the ages, and discarding the pairs with in-

teger age which are represented in AO
0 and Aν

0 . Note that
⊎

i∈{−n′,m′}A
′
i = O

and
⊎

i∈{−n′′,m′′}A
′′
i = Oν .

Then, we can merge these two decompositions with the sequence

Arest
−n ∗ . . . ∗ Arest

−1 , A
rest
0 , Arest

1 ∗ . . . ∗ Arest
m , by summing the multisets rep-

resenting instances with the same fractional part of the age, obtaining a

sequence B−n′ ∗ . . . ∗ B−1, B0, B1 ∗ . . . ∗ Bm′ for which there is a strictly

monotone injection ϕ : {i ∈ {−m, . . . , n} | Ai 6= ∅} → {−m′, . . . , n′} with

f(0) = 0 such that for each i ∈ {−n, . . . ,−1, 1, . . . ,m}, Arest
i ⊆ Bϕ(i) and

⊎

i 6=0Bi = (
⊎

i 6=0A
rest
i) +O +Oν .

Now we prove the other implication. Let us suppose that there are two mark-

ings of a ν-PTdPN M and M ′ with PR(M)+c
t
֌PR(M ′)+(c+Cost(t)). For each

i ∈ {−n, . . .m}, we consider the decomposition in Def. 4.2.4, Ai = AI
i + Arest

i .

Moreover, let us suppose that PR(M ′) = 〈c+Cost(t), B−n′ ∗. . .∗B−1, B0, B1∗. . .∗

Bm′〉. In order to prove that we can fire t fromM , we takeM =
⊎

i∈{−n,...,m}M
rest
i ,

where Arest
i are the pairs corresponding to the abstraction ofM rest

i , and we denote

Arest =
⊎

i∈{−n,...,m}A
rest
i . Suppose that nfVar(t) = {x1, . . . , xj}. Then, for each

i ∈ j+, we denote ai:(mi, ri) the instance of M such that f(xi) = (mi, ⌊ri⌋) is the

pair representing it in PR(M). Then, by the third point of Def. 4.2.4, we have

that i ∈ j+, Int(xi) ⊆ mi and ri(t) ∈ Time1t (xi). Hence, t is enabled at M .

Let us show that M
t
−→M ′. First, we focus on the instances with natural age.

We have that B0 = Arest
0 + AO

0 + Aν
0 . Hence, by the third point of Def. 4.2.4,

each selected instance with integer age in M ′ assigned whose abstraction in the

abstract firing is assigned to a non-free variable xi by f (and hence it is in AO
0) is

4.2. ABSTRACT ν-PTDPN 95

of the form ai:(m
′
i, r

′
i), where m

′
i = (mi− Int(xi))+Outt(xi) and r

′
i ∈ Time2t (xi).

Note that such values can be taken for the firingM
t
−→M ′, by the fourth and sixth

points of Def. 3.2.4. Analogously, by the fourth point of Def. 4.2.4, each selected

instance with integer age inM ′ whose abstraction in the abstract firing is assigned

to a free variable νi by h
′ (and hence it is in Aν

0) is of the form bi:(m
′′
i , r

′′
i), where

m′′
i = Outt(νi), r

′′
i ∈ Time2t (νi) and bi is a new name which is not in Id(M).

Again, such values can be taken for the firing of M
t
−→ M ′, by the fifth and

seventh points of Def. 3.2.4. Hence, if we do not take any more instances with

natural ages in the firing, we ensure that the instances with natural ages that we

obtained after firing t from M in that way are exactly represented in B0.

Now, we focus on the rest of the instances of M ′. Let ai : (m
′
i, r

′
i) be an

instance in M ′ such that ai ∈ Id(M). Then, by the third point of Def. 4.2.4,

m′
i = (mi − Int(xi)) + Outt(xi) and ⌊r′i⌋ + ǫ ∈ Time2t (xi). As r′i /∈ N, r′i ∈

Time2t (xi). Hence, by the fourth and sixth points of Def. 3.2.4, we can take these

values of m′
i and r′i for the firing of t from M . Analogously, if ai : (m

′
i, r

′
i) is

an instance in M ′ such that ai /∈ Id(M), then by the third point of Def. 4.2.4,

m′′
i = mi +Outt(νi) and ⌊r′i⌋+ ǫ ∈ Time2t (xi). Again, as r

′
i /∈ N, r′i ∈ Time2t (xi).

Hence, by the fifth and seventh points of Def. 3.2.4, we can take these values ofm′′
i

and r′′i for the firing of t from M . Therefore, we have obtained all the instances

of M ′ by firing t from M . Moreover, note that all the m′
is and m

′′
i s in the firing

from M have been defined. Hence, M
t
−→M ′.

Finally, it is easy to see that ifM is in δ-form thenM ′ can be chosen in δ-form.

As the ages of the instances represented by Arest
i in the firing do not change, we

only have to ensure that the fractional part of the newly created ages can be lower

than δ or greater than 1−δ. Moreover, the instances whose ages are newly created

and have fractional part as some of the instances in M , or are in between the

fractional parts of the ages of two instances of M both greater than 1− δ or lower

than δ, are trivially in δ-form. Hence, ifM =M−n+. . .+M−1+M0+M1+. . .+Mm,

then we only need to focus on the newly created ages which are larger than the

ones in M1, . . . ,Mm and lower than any of the ones in M−n, . . . ,M−1. First, note

that since the timing restrictions are defined as intervals with natural bounds,

the concrete fractional part of the taken ages do not affect the fulfilling of the

restrictions (only whether they are 0 or not). Hence, whenever we have a fractional

part of the age greater than 1/2, we can take a fractional part greater than 1− δ

instead, and whenever we have a fractional part of the age lower than 1/2, we

can take a fractional part lower than δ instead. Moreover, note that if α is

96 CHAPTER 4. PRICED-TIMED NETS

the maximum fractional part in M1, . . . ,Mm, then α < δ, because M is in δ-

form. Hence, there is space for an unbounded number of instances with different

fractional part of the age in (α, δ). Analogously, if β is the minimum fractional

part in M−n, . . . ,M−1, then β > 1 − δ, because M is in δ-form. Hence, there

is space for an unbounded number of instances with different fractional parts of

their ages in (1− δ, 1− β).

2

Now we focus on the correction of the simulation of the timed transitions. We

consider two different cases: the “small” delays close to zero, lower than δ, and

the “big” delays close to one and greater than 1 − δ. We first analyze the first

case.

Lemma 4.2.2 Given a marking M of a ν-PTdPN in δ-form for some δ ≤ 1/5,

d ∈ (0, δ) and c ∈ R≥0, there is a detailed transition M
d
−→ M+d iff there is an

abstract timed transition PR(M)+c
1
֌PR(M+d)+c or PR(M)+c

2
֌PR(M+d)+c.

Proof: Let M−n + . . . +M−1 +M0 +M1 + . . . +Mm be the decomposition

of M as defined previously, ǫ be the fractional part of the ages of the instances

in M−1 and M ′ = M+d
−n + . . . +M+d

−1 +M+d
0 +M+d

1 + . . . +M+d
m . Moreover,

let PR(M)+c = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉. If M is in δ-form then

0 < 1 − ǫ < δ. As the transition M
d
−→ M+d is detailed, either d < 1 − ǫ or

d = 1− ǫ and M0 = ∅. We analyze both cases:

• If d < 1 − ǫ then the fractional part of the ages of the instances in M+d
−1

is ǫ + d, with 1 − δ < ǫ + d < 1. Moreover, the fractional part of the

instances in M+d
0 is d, with 0 < d < δ. Therefore, we can apply the first

case of Def. 4.2.3, getting that PR(M)+c = 〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗ . . . ∗

Am〉
1
֌〈c, A−n ∗ . . . ∗ A−1, ∅, A0, A1 ∗ . . . ∗ Am〉 = PR(M ′)+c if and only if

M
d
−→M+d.

• If d = 1− ǫ and M0 = ∅ then the fractional part of the ages of the instances

inM+d
−1 is frct(ǫ+(1−ǫ)) = 0, that is, these instances reach the next integer

age. Therefore, we can apply the second case of Def. 4.2.3 to obtain that

PR(M)+c = 〈c, A−n∗. . .∗A−1, ∅, A1∗. . .∗Am〉
2
֌〈c, A−n∗. . .∗A−2, A

+1
−1, A0∗

A1 ∗ . . . ∗Am〉 = PR(M ′)+c if and only if M
d
−→M+d.

2

4.2. ABSTRACT ν-PTDPN 97

Finally, let us analyze what happens with the delays greater than 1− δ.

Lemma 4.2.3 Given a marking M of a ν-PTdPN in δ-form for some δ ≤

1/5, d ∈ (1 − δ, 1) and c ∈ R≥0, there is a detailed transition M
d
−→ M+d

if and only if there is an abstract timed transition as defined in the third or

the fourth types of Def. 4.2.3 such that PR(M)+c
d
−→ PR(M+d)+c′ , where c′ =

c+
∑

a∈Id(M)

∑

m|∃r∈R≥0 with a:(m,r)∈M

∑

p∈P m(p) ∗ Cost(p).

Proof: Again, letM−n+. . .+M−1+M0+M1+. . .+Mm be the decomposition

of M as defined previously. This time, let ǫk be the fractional part of the ages of

the instances in Mk, for k ∈ m∗. As M is in δ-form, 0 ≤ ǫk < δ. Moreover, let

PR(M)+c = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉. Then, there must be k ∈ m+

such that either d = 1− ǫk or d ∈ (1− ǫk−1, 1− ǫk). Let us analyze both cases:

• If there is k ∈ m+ with d = 1 − ǫk then the fractional part of the ages

of the tokens in Mk after the firing is frct(ǫk + 1 − ǫk) = 0, that is,

these instances reach the next integer age. Moreover, the instances in

M−n, . . . ,M−1 andMk+1, . . . ,Mm exceed the next integer age, while the in-

stances in M0, . . . ,Mk−1 do not reach the next integer age, and are slightly

below it after the firing. Hence, if we apply the fourth kind of firing

of Def. 4.2.3, we get that PR(M)+c = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗

Am〉
4
֌〈c′, A+1

−n∗ . . .∗A
+1
−1∗A0∗ . . .∗Ak−1, Ak, A

+1
k+1∗ . . .∗A

+1
m 〉 = PR(M ′)+c′ ,

where c′ = c +
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p) = c +

∑

a∈Id(M)

∑

m|∃r∈R≥0 with a:(m,r)∈M

∑

p∈P m(p)∗Cost(p), if and only ifM
d
−→

M+d.

• Finally, if there is k ∈ m+ with d ∈ (1 − ǫk−1, 1 − ǫk) then no instance

has fractional part of age 0 after the firing. Moreover, the instances in

Mk, . . . ,Mm andM−n, . . . ,M−1 exceed then next integer age, while the rest

of the instances do not reach the next integer age, and keep slightly under it.

Hence, if we apply the third kind of firing of Def. 4.2.3, we get PR(M)+c =

〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉
3
֌〈c′, A+1

−n∗. . .∗A
+1
−1∗A0∗. . .∗Ak−1, ∅, A

+1
k ∗

. . . ∗ A+1
m 〉 = PR(M ′)+c′ , where c′ = c +

∑m
i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p)∗Cost(p) = c+

∑

a∈Id(M)

∑

m|∃r∈R≥0 with a:(m,r)∈M

∑

p∈P m(p)∗

Cost(p), if and only if M
d
−→M+d.

2

Now we focus on how the abstraction simulates the costs of the runs.

98 CHAPTER 4. PRICED-TIMED NETS

Lemma 4.2.4 Let M0 be a marking of a ν-PTdPN with all the instances of age

0. For each run π =M0 −→M1 −→ . . . −→Mf in detailed δ-form, with f ∗ δ ≤ 1/5,

there is a run PR(M0)֌PR(M1)+c1֌ . . .֌PR(Mf)+cf such that:

|cost(π)− cf | ≤ f ∗ δ ∗ (max0≤i≤f (
∑

aj :(mj ,rj)∈Mi

|mj |)) ∗ (maxp∈PCost(p)).

Conversely, for each run 〈0, ∅, A0, ∅〉 = R0֌R1֌ . . .֌Rf = 〈c, B−n ∗ . . . ∗

B−1, B0, B1 ∗ . . . ∗Bm〉 and every δ ≤ 1/5, there is a run π′ =M0 −→M1 −→ . . . −→

Mf with Ri = PR(Mi)+ci for each i ∈ f∗ and ci ∈ R≥0 such that:

∣

∣c− cost(π′)
∣

∣ ≤ f ∗ δ ∗ (max0≤i≤f (
∑

(mj ,rj) in Ri

|mj |)) ∗ (maxp∈PCost(p)).

Proof: Let π = M0 −→ M1 −→ . . . −→ Mf be a run of a ν-PTdPN in de-

tailed δ-form, with f ∗ δ ≤ 1/5. As π is in detailed form, the previous lem-

mas can be applied. Hence, there is a corresponding abstract computation π′ =

PR(M0)֌PR(M1)+c1֌ . . .֌PR(Mf)+cf . Note that the price of firing a transi-

tion t in a ν-PTdPN is exactly the price which is added to the first component of

the corresponding region in the abstract run when firing t. Hence, we only need to

focus on the differences of costs in the timed transitions. As π is in δ-form, each

timed transition Mi
d
−→Mi+1 in the run has d ∈ (0, δ) or d ∈ (1− δ, 1). Moreover,

as the run begins with all instances of age 0, the fractional part of the age of each

instance in a marking Mi of the run is less than i ∗ δ ≤ f ∗ δ < 1/5 far from the

nearest integer. Then, for every timed transition Mi
d
−→Mi+1 of the run, we have

∣

∣

∣
Cost(Mi

d
−→Mi+1)− (ci+1 − ci)

∣

∣

∣
≤ δ ∗ (

∑

aj :(mj ,rj)∈Mi

|mj |) ∗ (maxp∈PCost(p)).

Therefore, we have:

|cost(π)− cf | ≤ f ∗ δ ∗ (max0≤i≤f (
∑

aj :(mj ,rj)∈Mi

|mj |)) ∗ (maxp∈PCost(p)).

Conversely, let us consider the abstract run 〈0, ∅, A0, ∅〉 = R0֌R1֌ . . .֌Rf =

〈c, B−n ∗ . . . ∗ B−1, B0, B1 ∗ . . . ∗ Bm〉, and let M0 = PR(R0). Note that all the

instances of M0 have age 0. We can use the previous lemmas to build the run

π′ =M0 −→M1 −→ . . . −→Mf we need. For each 0 ≤ i ≤ f , let δi = δ ∗ 2i−f . Then,

by the previous lemmas, we can build a run π′ for which the following properties

4.2. ABSTRACT ν-PTDPN 99

hold:

• For each 0 ≤ i ≤ f , Ri = PR(Mi).

• Mi is in δi-form. We prove it by induction. For M0 the property holds

trivially, since all the instances in this marking have age 0. Suppose thatMi

is in δi form. Then, from the previous lemmas we obtain that if Mi −→Mi+1

is a timed transition
d
−→, then either we have d ∈ (0, δi) or d ∈ (1 − δ, 1).

Hence, Mi+1 is in 2 ∗ δi = δi+1-form.

Again, we only need to analyze the difference of prices of the timed transitions.

For every timed transitionMi
d
−→Mi+1 of π

′, if ci and ci+1 are the first components

of Ri and Ri+1 respectively, we have

∣

∣

∣
Cost(Mi

d
−→Mi+ 1)− (ci+1 − ci)

∣

∣

∣
≤ δi ∗ (

∑

(mj ,rj) in Ri

|mj |) ∗ (maxp∈PCost(p)).

Hence, we obtain:

∣

∣c− cost(π′)
∣

∣ ≤ f ∗ δ ∗ (max0≤i≤f (
∑

(mj ,rj) in Ri

|mj |)) ∗ (maxp∈PCost(p)).

2

Finally, we can prove that the abstraction we have defined properly works

to reduce the price safety problem for ν-PTdPN to a coverability problem for

ν-aPTdPN .

Proposition 4.2.5 Given two markings M0,Mf of a ν-PTdPN N , where all the

instances in M0 have age 0,

sup{Cost(π) |M0
π
−→M ≫Mf} =

sup{c | PR(M0)֌
∗
PR(M) = 〈c, A−n′ ∗ . . . ∗A−1, A0, A1 ∗Am〉 with M ≫Mf}.

Proof: We denote S = sup{Cost(π) | M0
π
−→ M ≫ Mf} and

S′ = sup{c | PR(M0)֌
∗
PR(M) = 〈c, A−n′∗. . .∗A−1, A0, A1∗. . .∗Am〉 with M ≫

Mf}. First, let us prove that S ≮ S′. We need to prove that for each run of N

finishing in a marking which covers Mf with cost c, there is a run in the ab-

stract net that finish in a region corresponding to a marking which covers Mf

and has a price greater than or equal to c. Let πǫ be a run such that M0
πǫ−→ M ,

100 CHAPTER 4. PRICED-TIMED NETS

with M ≫ Mf and S − Cost(πǫ) = ǫ. We can assume that πǫ is in detailed

form. Let πǫ = M0 −→ M1 −→ . . . −→ Mn, and δǫ = min{1/(5 ∗ n), ǫ/(n ∗

(max0≤i≤n(
∑

aj :(mj ,rj)∈Mi
|mj |)) ∗ (maxp∈PCost(p)))}. By Prop. 4.1.1, there is

a run M0
π′
ǫ−→M ′

n ≫Mf of N in detailed δǫ-form such that:

• Cost(π′ǫ) ≥ Cost(πǫ) and

• for each i ∈ n∗, |Mi| = |M ′
i |.

Hence, S −Cost(π′ǫ) ≤ ǫ. Moreover, by Lemma 4.2.4, there is an abstract run

π′′ǫ = PR(M0)֌PR(M ′
1)+c1֌ . . .֌PR(M ′

n)+cn with |Cost(π′ǫ)− cn| ≤ n ∗ δǫ ∗

(max0≤i≤n(
∑

aj :(mj ,rj)∈M ′
i
|mj |))∗(maxp∈PCost(p)) ≤ ǫ. Hence, S−Cost(π′′ǫ) ≤ ǫ

and therefore S ≮ S′.

Now we prove that S′ ≮ S. Let πǫ = RM(M0)
πǫ

֌PR(Mn)+cn = 〈c, A−n′ ∗

. . .∗A−1, A0, A1 ∗ . . .∗Am〉 with Mn ≫Mf be a run of the abstract net such that

S′ − c = ǫ (note that c = cn). Again, let us define δǫ = min{1/(5 ∗ n), ǫ/(n ∗

(max0≤i≤n(
∑

(mj ,rj) in Ri
|mj |)) ∗ (maxp∈PCost(p))}. By Lemma 4.2.4, there is

a run π′ǫ = M0 −→ . . . −→ Mn in detailed δǫ-form such that |c− cost(π′ǫ)| ≤ n ∗

δǫ ∗ (max0≤i≤n(
∑

(mj ,rj) in Ri
|mj |))∗ (maxp∈PCost(p)). Hence, S

′−Cost(π′ǫ) ≤ ǫ,

and therefore S′ ≮ S.

Therefore, we obtain that S = S′.

2

4.2.2 Coverability for ν-aPTdPN is decidable

In this section we are going to define an order over priced regions which induces a

(priced) coverability problem for ν-aPTdPN , in order to reduce priced safety for

ν-PTdPN to this problem. Then, we will prove that coverability is decidable for

ν-aPTdPN by applying the framework of Well Structured Transition Systems, as

we did for ν-lsPN in the previous chapter. We first define the order for ν-aPTdPN .

Definition 4.2.5 (Order over priced regions) We define

〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗ . . . ∗Am〉 ⊑Pr 〈c′, B−n′ ∗ . . . ∗B−1, B0, B1 ∗ . . . ∗Bm′〉

iff A0 ≤
⊕ B0, A−n ∗ . . . ∗A−1≤

⊕⊛B−n′ ∗ . . . ∗B−1, A1 ∗ . . . ∗Am≤⊕⊛B1 ∗ . . . ∗Bm′

and c ≤ c′.

This order induces a coverability problem in the transition system generated

by a ν-aPTdPN with priced regions as states. Note that if b ∈ N and M0,Mf are

4.2. ABSTRACT ν-PTDPN 101

two markings of a ν-PTdPN N , where all the instances in M0 have age 0, we can

reduce b-safety of N for the pair of markings M0,Mf to the coverability problem

induced by ⊑Pr for the initial region PR(M0) and the final region PR(Mf)+b.

Indeed, N is b-safe for M0,Mf if and only if for each run π = M0 → · · · → M

starting from M0 and reaching M ≫ Mf , Cost(π) < b. By Prop. 4.2.5, this is

equivalent to: sup{Cost(π) | M0
π
−→ M ≫ Mf} = sup{c | PR(M0)֌

∗
PR(M) =

〈c, A−n′ ∗ . . . ∗A−1, A0, A1 ∗ . . . ∗Am〉 for some M ≫Mf} < b. Hence, N is b-safe

for M0,Mf if and only if the region PR(Mf)+b is not coverable from PR(M0).

Hence, we focus on proving the decidability of coverability for ν-aPTdPN .

First of all, we need to prove that ⊑Pr is a decidable wqo.

Proposition 4.2.6 ⊑Pr is a decidable wqo.

Proof: First, ⊑Pr is trivially decidable. Moreover, note that a priced re-

gion 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉 can be seen an element of X =

N×(X⊕
(max+1)∗)

⊛×X⊕
(max+1)∗×(X⊕

(max+1)∗)
⊛, whereX(max+1)∗ = P⊕×(max+ 1)∗

because A0 ∈ X⊕
(max+1)∗ and A−n ∗ . . . ∗ A−1 and A1 ∗ . . . ∗ Am can be seen as

words over X⊕
(max+1)∗ . Hence, ⊑Pr is the standard order in X, as defined in the

preliminaries. Then, ⊑Pr is a wpo because it is built from wpos using operators

that preserve well-orders.

2

Now we prove that֌ is compatible with ⊑Pr. We are going to split this proof

in several lemmas, handling the discrete and the continuous firings separately,

and then merging them. Before starting with the continuous case, given a word

w = A1 ∗ . . . ∗ An over (P⊕ × (max+ 1)∗)⊕ and m ∈ N, let us define w+m =

A+m
1 ∗ . . . ∗A+m

n .

Lemma 4.2.7 Given i ∈ {1, 2, 3, 4} and R1, R2 and R′
1 three priced regions, if

R1
i
֌R2 and R1 ⊑Pr R′

1 then there is a priced region R′
2 such that R′

1֌
∗
R′

2 and

R2 ⊑
Pr R′

2.

Proof: Suppose that R1 = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉 and R′
1 =

〈c′, a−n−1 ∗A
′
−n ∗ a−n ∗ . . . ∗A

′
−1 ∗ a−1, A

′
0, a0 ∗A

′
1 ∗ a1 ∗ . . . ∗A

′
m ∗ am〉, with c′ ≥ c

and for each j ∈ {−n − 1, . . . ,m}, Aj ≤⊕ A′
j and aj ∈ ((P⊕ × (max+ 1)∗)⊕)⊛.

Let us analyze the four cases:

• First, suppose that 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉
1
֌〈c, A−n ∗ . . . ∗

A−1, ∅, A0 ∗ A1 ∗ Am〉 = R2. Then 〈c′, a−n−1 ∗ A′
−n ∗ a−n ∗ . . . ∗ A′

−1 ∗

102 CHAPTER 4. PRICED-TIMED NETS

a−1, A
′
0, a0 ∗ A

′
1 ∗ a1 ∗ . . . ∗ A

′
m ∗ am〉

1
֌〈c′, a−n−1 ∗ A

′
−n ∗ a−n ∗ . . . ∗ A′

−1 ∗

a−1, ∅, A
′
0 ∗ a0 ∗A

′
1 ∗ a1 ∗ . . . ∗A

′
m ∗ am〉 ⊒Pr R2.

• If 〈c, A−n ∗ . . .∗A−1, ∅, A1 ∗ . . .∗Am〉
2
֌〈c, A−n ∗ . . . A−2, A

+1
−1, A1 ∗Am〉 = R2,

then one of the two following cases hold:

– If A′
0 = ∅ then, by concatenating firings of the second and the first

kind, we get 〈c′, a−n−1 ∗A
′
−n ∗a−n ∗ . . . ∗A

′
−1 ∗a−1, ∅, a0 ∗A

′
1 ∗a1 ∗ . . . ∗

A′
m ∗am〉֌

∗
〈c′, a−n−1 ∗A

′
−n ∗a−n ∗ . . . ∗a−2, A

′
−1

+1, a+1
−1 ∗a0 ∗A

′
1 ∗a1 ∗

. . . ∗A′
m ∗ am〉 ⊒Pr R2.

– If A′
0 6= ∅ then, by concatenating firings of the first and the second

kind, we get 〈c′, a−n−1 ∗ A
′
−n ∗ a−n ∗ . . . ∗ A′

−1 ∗ a−1, A
′
0, a0 ∗ A

′
1 ∗ a1 ∗

. . .∗A′
m ∗am〉֌

∗
〈c′, a−n−1 ∗A

′
−n ∗a−n ∗ . . .∗a−2, A

′
−1

+1, a+1
−1 ∗A

′
0 ∗a0 ∗

A′
1 ∗ a1 ∗ . . . ∗A

′
m ∗ am〉 ⊒Pr R2.

• Now, suppose 〈c, A−n∗ . . .∗A−1, A0, A1∗ . . .∗Am〉
3
֌〈c′′, A+1

−n∗ . . .∗A
+1
−1∗A0∗

. . .∗Ak, ∅, A
+1
k+1∗ . . .∗A

+1
m 〉 = R2, with c

′′ = c+
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r)∗
∑

p∈P m
′(p) ∗ Cost(p). Then, we have 〈c′, a−n−1 ∗ A

′
−n ∗ a−n ∗ . . . ∗ A′

−1 ∗

a−1, A
′
0, a0 ∗ A′

1 ∗ a1 ∗ . . . ∗ A′
m ∗ am〉

3
֌〈c′′′, a+1

−n−1 ∗ A′
−n

+1 ∗ a+1
−n ∗ . . . ∗

A′
−1

+1 ∗ a+1
−1 ∗ A′

0 ∗ a0 ∗ . . . ∗ A′
k, ∅, a

+1
k ∗ A′

k+1
+1 ∗ . . . ∗ A′

m
+1 ∗ a+1

m 〉 =

R′
2, with c′′′ = c′ +

∑m
i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p) +

∑m
k=−n−1

∑

Bi∈ak

∑

(m′,r)∈Bi
Bi(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p) , and hence

R′
2 ⊒

Pr R2.

• Finally, suppose that 〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉
4
֌〈c′, A+1

−n∗. . .∗A
+1
−1∗

A0 ∗ . . . ∗Ak, A
+1
k+1, A

+1
k+2 ∗ . . . ∗A

+1
m 〉, with c′′ = c+

∑m
i=−n

∑

{m|∃r,(m,r)∈Ai}
∑

p∈P m(p) ∗Cost(p). Then, 〈c′, a−n−1 ∗A
′
−n ∗ a−n ∗ . . . ∗A

′
−1 ∗ a−1, A

′
0, a0 ∗

A′
1 ∗ a1 ∗ . . . ∗ A′

m ∗ am〉
4
֌〈c′′′, a+1

−n−1 ∗ A′
−n

+1 ∗ a+1
−n ∗ . . . ∗ A′

−1
+1 ∗ a+1

−1 ∗

A′
0 ∗ a0 ∗ . . . ∗ A′

k ∗ ak, A
′
k+1

+1, a+1
k+1 . . . ∗ A

′
m

+1 ∗ a+1
m 〉 = R′

2, with c′′′ =

c′ +
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗Cost(p) +

∑m
k=−n−1

∑

Bi∈ak
∑

(m′,r)∈Bi
Bi(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p), and hence R′

2 ⊒
Pr R2.

2

Now we focus on the firings of discrete transitions.

Lemma 4.2.8 Given t ∈ T and R1, R2 and R′
1 three priced regions, if R1

t
֌R2

and R1 ⊑
Pr R′

1 then there is a priced region R′
2 such that R′

1

t
֌R′

2 and R2 ⊑
Pr R′

2.

4.2. ABSTRACT ν-PTDPN 103

Proof: Suppose that R1 = 〈c, A−n∗. . .∗A−1, A0, A1∗. . .∗Am〉
t
֌〈c′′, B−n′∗. . .∗

B−1, B0, B1∗. . .∗Bm′〉 = R2 and R
′
1 = 〈c′, a−n−1∗A

′
−n∗a−n∗. . .∗A

′
−1∗a−1, A

′
0, a0∗

A′
1∗a1∗. . .∗A

′
m∗am〉, with c′ ≥ c and for each j ∈ {−n−1, . . . ,m}, Aj ≤

⊕ A′
j and

aj ∈ ((P⊕ × (max+ 1)∗)⊕)⊛. We define the components firing R′
1 = 〈c′, a−n−1 ∗

A′
−n ∗ a−n ∗ . . . ∗A′

−1 ∗ a−1, A
′
0, a0 ∗A

′
1 ∗ a1 . . . ∗A

′
m ∗ am〉֌〈c′′′, ω1, B

′
0, ω2〉 = R′

2,

in order to get R′
2 ⊒

Pr R2.

First, note that c′′ = c+ Cost(t), and c′′′ = c′ + Cost(t). Hence, as c ≤ c′, we

have c′′ ≤ c′′′. Now, suppose f, h, h′ and ϕ are the injections defined for the firing

of t from R1. Let us define the injections for the firing from R′
1:

• For each i ∈ {−n − 1, . . . ,m} and A′ ∈ ai, we define A′rest = A′ and

A′I = ∅. Moreover, for each i ∈ {−n, . . . ,m} there is an injection ξi : Ai −→

A′
i such that, if (m, r) ∈ Ai, then (m, r) ≤ ξi((m, r)). Then, we define

A′
i
I =

⊎

(m,r)∈Ai
{ξi((m, r))} and A′

i
rest = A′

i −A′
i
I .

• We define f ′ : nfVar(t) →
⊎

i∈{−n,...,m}A
′
i
I such that, if x ∈ nfVar(t),

then f ′(x) = (m′, r′) if f(x) = (m, r) and (m′, r′) = ξi(m, r) for some i ∈

{−n, . . . ,m}. In this case, note that m ⊆ m′, and hence, if f ′(x) is selected

from A′
0 then match(f ′(x), (Int(x), T ime

1
t (x))) holds, or

match(f ′(x)+ǫ, (Int(x), T ime
1
t (x))) holds otherwise.

If f(x) is taken from Ai, h(x) = (m1, r1), and ξi(f(x)) = (m′, r′) then we

define h′′(x) = (m2, r2) withm2 = (m′−Int(x))+Outt(x) ⊇ m1 and r2 = r1.

Hence, we takeO′ =
⊎

i∈{−n,...,m}

⊎

{(m1,r1)∈O|∃x∈nfVar ,h(x)=(m1,r1) and f(x)∈Ai}

{(m2, r1) | ξi(f(x)) = (m′, r′) and m2 = (m′ − Int(x)) + Outt(x)}. Analo-

gously, AO
0
′
=

⊎

i∈{−n,...,m}

⊎

{(m1,r1)∈AO
0 |∃x∈nfVar ,h(x)=(m1,r1) and f(x)∈Ai}

{(m2, r1) | ξi(f(x)) = (m′, r′) and m2 = (m′ − Int(x)) + Outt(x)}. Note

that as we take the same clocks as in the firing from R1, the timing con-

ditions concerning h′(x) trivially hold. Moreover, note that in the previous

definitions of O′ and AO
0
′
, it holds that m1 ⊆ m2.

• We consider the same multisets Oν and Aν
0 and the injection h′ of the firing

of t from R1. Hence, the conditions over them trivially hold.

• Let us denote R′
2 = 〈c′, b−n′−1 ∗B

′
−n′ ∗ b−n′ ∗ . . . ∗B′

−1 ∗ b−1, B
′
0, b0 ∗B

′
1 ∗ b1 ∗

. . . ∗B′
m′bm′〉, with bi = B′

i1 ∗ . . . ∗B
′
iki

for i ∈ {−n′ − 1, . . . ,m′}

Moreover, we denote ai = A′
i1 ∗ . . . ∗A

′
ili

for i ∈ {−n− 1, . . . ,m}. Then, we

define ϕ′ (by abusing notation, since it is defined over natural numbers and

pairs of natural numbers) such that:

104 CHAPTER 4. PRICED-TIMED NETS

– For all i ∈ {−n, . . . ,m} such that Arest
i 6= ∅, ϕ′(i) = ϕ(i),

– if ϕ(i) = j, then ϕ′ assigns the multisets in ai to bj , in the order they

are, that is, for each i′ ∈ l+i , ϕ(ii
′) = ji′.

Note that ϕ′(0) = ϕ(0) = 0. Moreover, with this assignation, which is

clearly a monotone injection, we can define R′
2 such that:

– For all i ∈ {−n, . . . ,m} such that A′
i
rest 6= ∅, A′

i
rest ⊆ B′

ϕ(i). Moreover,

for each A′
ij ∈ ai, A

′
ij = B′

ϕ(ij),

– B′
0 = A′

0
rest +AO

0
′
+Aν

0 ,

–
⊎

i∈({−n′,...,−1,1,...,m′}})(B
′
i +

⊎

j∈k+i
B′

ij) =

(
⊎

i∈({−n′,...,−1,1,...,m′}})(A
′
i +

⊎

j∈l+i
A′

ij
rest)) +O′ +Oν .

Hence, the firing is well defined, according to Def.4.2.4. Moreover, as Arest
i ≤⊕

A′
i
rest for each i ∈ {−n, . . . ,m}, O ≤⊕ O′ and AO

0 ≤⊕ AO
0
′
, if we define the

assignation of the elements in O′ to the different B′
i as done with the elements in

O to the multisets Bi, it holds that R2 ⊑
Pr R′

2.

2

Hence, by combining the two previous lemmas, we obtain compatibility.

Corollary 4.2.9 ֌ is compatible with ⊑Pr.

At this point, we have proved that ν-aPTdPN with the order ⊑Pr belong to

the framework of Well Structured Transition Systems. Hence, in order to prove

decidability of coverability, it only remains to prove that ֌ has effective Pred-

basis, that is, that we can compute min(↑Pre(↑R)) for any region R. We handle

the priced and timed transitions separately. Therefore, as done for ν-lsPN , we

split Pre into Pre∆(R) = {R′ | ∃i ∈ 4+R′ i
֌R} and Pret(R) = {R′ | R′ t

֌R},

and we define Pre∆ and Pret for each t ∈ T , so that Pre∆(↑R) =↑Pre∆(R) and

Pret(↑R) =↑Pret(R). The details of the proof are quite technical, so we prefer

to omit them from this chapter. The interested reader can see these details in

Appendix B.

Proposition 4.2.10 ֌ has effective Pred-basis.

We have proved that the transition system defined by ν-aPTdPN with the

order ⊑Pr belongs to the frame of Well Structured Transition Systems and has

4.2. ABSTRACT ν-PTDPN 105

effective Pred-basis. Hence, the coverability problem for ν-aPTdPN is decidable.

Therefore, as a corollary of Prop. 4.2.5, we finally obtain the decidability of priced

safety for ν-PTdPN .

Corollary 4.2.11 Priced Safety is decidable for ν-PTdPN .

106 CHAPTER 4. PRICED-TIMED NETS

Chapter 5

Resource Constrained

Workflow Nets

Workflow nets have been widely used to model business processes and a rich

theory for their analysis and verification has been developed [97, 92]. Basically, a

workflow net is a Petri net with two special places: in and out. A run of a workflow

net represents a process, which begins in a state represented by the marking with

a token in in and empty elsewhere, and (hopefully) finishes in a state represented

by a token in out and empty elsewhere. The fundamental verification problem

for workflows is the soundness problem, which consists in deciding if the net can

always reach this final state properly. In particular, the runs of sound workflows

do not have deadlocks or livelocks. In [92] soundness is proved to be decidable for

workflow nets.

Recent works study an extension of wf-nets, called resource-constrained wf-

nets (rcwf-nets) [53, 44], which are wf-nets in which some places are dynamic

(representing the processes that execute the workflow) and some are static (repre-

senting some shared resources). Following a terminology from OOP, a rcwf-net can

be seen as the definition of a class, with its local and static attributes, represented

by dynamic and static places, respectively. Then, the rcwf-net can be instantiated

several times, but every instance must share the tokens in static places.

Even if a single instance of a rcwf-net is sound, several instances could deadlock

because of static places. In [44] the authors define dynamic soundness, which

essentially amounts to the condition stating that any number of instances running

simultaneously can always reach the final state, in which all the tasks have been

completed.

107

108 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

In both works, the authors consider rcwf-nets that do not create or consume

static resources, that is, rcwf-nets that always return a global resource after using

it. In particular, the behavior of a single instance of a rcwf-net is such that the

number of tokens in the static places in the initial and final markings coincide.

Under this assumption, the number of tokens in the static places is bounded

by the number of tokens in the initial marking. The authors prove in [44] that

dynamic soundness is decidable whenever there is only a single static place, that

is, whenever there is a single type of global resources. Recently, [53] further studies

the problem of dynamic soundness, extending the previous result to rcwf-nets with

any number of static places, but considering a fixed number of initial resources

(unlike in [44], in which the existence of a minimal number of resources for which

the rcwf-net is sound is part of the problem). Under these assumptions, it is

enough for the authors to study the absence of deadlocks.

As a formalism to model resource constrained business processes, it would be

interesting to add prices and time to rcwf-nets, since in many occasions there are

fundamental requirements regarding the timings and the costs of these systems,

such as finishing each task before a deadline, or without expending too much

money. That is why in the following chapter we will use some of the models defined

in the previous sections in order to add costs and time to rcwf-nets. However,

before that, we want to continue the study of dynamic soundness (without costs)

under some more general conditions. In particular, we study the problem of

dynamic soundness for rcwf-nets with any number of static places, and without

restricting their behavior so that instances can terminate their task having created

new global resources or having consumed some.

Before tackling dynamic soundness, let us fix some notations and the definition

of workflow, for which we use the definition in [53].

Definition 5.0.6 (Workflow Petri net) A workflow Petri net (shortly a wf-

net) is a P/T net N = (P, T, F) such that:

• there are in, out ∈ P with •in = ∅ and out• = ∅,

• for each p ∈ P \ {in, out}, •p 6= ∅ and p• 6= ∅.

The second condition intuitively states that all the places contribute to the

completion of the task. Since we can always force that condition to be satisfied,

we will from now on ignore it. Most works consider another additional condition

for the definition of workflow net: for each n ∈ P ∪ T there is a path in =

5.1. ASYNCHRONOUS ν-PETRI NETS 109

n1, n2, . . . , nj = n, . . . , nk = out with F (ni, ni+1) > 0 for 1 ≤ i ≤ k − 1. We

will call this condition the path property, and we prefer to consider it apart from

the definition of workflow in order to be able to talk about workflows with or

without the path property, and study decidability issues about soundness for

both of them. We denote by min the marking of N with a single token in in, and

empty elsewhere. Analogously, mout is the marking of N with a single token in

out and empty elsewhere. There are several definitions of soundness of wf-nets in

the literature. We will use one called weak soundness in [92]. A wf-net is weakly

sound if for any marking reachable from min it is possible to reach mout.

5.1 Asynchronous ν-Petri nets

As mentioned before, one can intuitively see each name in a ν-PN as a different

process running in the net. Then, we can see a firing of a transition in which

different names are involved as a synchronization between the corresponding pro-

cesses.

Next, we prove that we can assume that actually each process can only syn-

chronize with a global shared memory, so that a synchronization between two

processes must be achieved via this shared memory. Technically, we will use

ordinary black tokens to represent this global memory, and names to represent

processes.

Definition 5.1.1 (Asynchronous ν-PN) An asynchronous ν-PN is a ν-PN

(P, T, F,H) such that:

• for each t ∈ T , either Var(t) ⊆ {ν, ǫ} or Var(t) ⊆ {x, ǫ},

• for each p ∈ P , either Var(p) = {x} or Var(p) = {ǫ}.

We call static places those p ∈ P with Var(p) = {ǫ}, and dynamic places those

p ∈ P with Var(p) = {x}. We will write P = PS ∪ PD, with PS the set of static

places and PD the set of dynamic places. Thus, we will disallow a situation in

which x, y ∈ Var(t) with x 6= y. Let us now see that asynchronous ν-PN can

simulate ν-PN so that reachability is preserved.

Proposition 5.1.1 Let N be a ν-PN, and m0 a marking of N . There is an

asynchronous ν-PN N ′ and a marking m′
0 of N ′ such that m0 →

∗ ∅ iff m′
0 →

∗ ∅.

110 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

Proof: Let N = 〈P, T, F,H〉 be a ν-PN with initial marking m0. We build an

asynchronous ν-PN N ′ = 〈P ′, T ′, F ′, H ′〉 which simulates N as required. We sim-

ulate the firing of each transition t ∈ T in an isolated way, by the sequential firing

of several transitions satisfying the requirement in the definition of asynchronous

ν-PN. For that purpose, we have a set of control places with plain tokens, whose

adjacent arcs will be labelled by ǫ, and the rest of the arcs, involving instances of

the original net, will be labelled by x. We consider that P ⊆ P ′, so a markingm′ of

N ′ simulates the restriction of this marking to the places P inN . Before explaining

how we simulate transitions, we want to guarantee that the simulation of a tran-

sition is done atomically, that is, whenever such a simulation is started, no other

simulation can start until the former has finished. For that purpose, we add a place

p0, which will be marked whenever the simulation of a transition is allowed to start.

Now, let us consider t ∈ T , and assume that Var(t) = {x1, . . . , xn} and for each

i ∈ n+ we have F (t) = {(p11, x1), . . . , (p1k1 , x1) . . . (pn1, xn), . . . , (pnkn , xn)} and

analogously H(t) = {(q11, x1), . . . , (q1l1 , x1) . . . (qn1, xn), . . . , (qnln , xn)}. Then, we

add to T ′ transitions t1, . . . , tn, each one of them managing the consumption/ad-

dition of the tokens of a different instance. Moreover, for each i ∈ (n− 1)+ we

add a place pti which is postcondition of ti and precondition of pti+1. The cases

of t1 and tn are handled apart because they are postcondition and precondition

of p0 instead of any pti. Formally, for each i ∈ {2, . . . , n− 1} we have:

• F (ti) = {(pti−1, ǫ)}+ {(pi1, x), . . . , (piki , x)},

• H(ti) = {(pti, ǫ)}+ {(qi1, x), . . . , (qili , x)}.

Analogously, we have F (t1) = {(p0, ǫ)} + {(p11, x), . . . , (p1k1 , x)}, H(t1) =

{(pt1, ǫ)}+ {(q11, x), . . . , (q1l1 , x)} and F (tn) = {(ptn−1, ǫ)}+ {(pn1, x), . . . ,

(pnkn , x)}, H(tn) = {(p0, ǫ)}+ {(qn1, x), . . . , (qnln , x)}.

In this way, we simulate the firing of each transition t by the firings of tran-

sitions t1, . . . , tn and hence, if we start from the marking of N ′ m0 + {(•, p0)},

we can simulate the firings in all the runs of N . Notice that this simulation can

introduce deadlocks (for instance, when we fire t1 but we cannot continue with t2

due to absence of tokens), but it does preserve reachability.

2

Fig. 5.1 illustrates the previous construction when Var(t) = {x, y, ν}.

As reachability is undecidable for ν-PN we obtain the following corollary.

Corollary 5.1.2 Reachability of ∅ is undecidable for asynchronous ν-PN.

5.2. RESOURCE-CONSTRAINED WORKFLOW NETS 111

a a

b a

t

x x

y ν

a a

b a

a

a

a

A,

A,

A,

x x

x

ν

p1

p0

p2

q1

q2

tx

ty

tν

Figure 5.1: Simulation of a transition t

5.2 Resource-constrained workflow nets

In [44] rcwf-nets are defined. We propose here a slightly different presentation of

rcwf-nets, though equivalent. We directly define rcwf-nets using asynchronous

ν-PN, in order to shorten the gap between rcwf-nets and ν-PN, and use its

(un)decidability properties to obtain results about dynamic soundness.

Given a ν-PN N = (P, T, F,H) and x ∈ Var we define the P/T net Nx =

(P, T, Fx), where for each p ∈ P and t ∈ T , Fx(p, t) = F (t)(p, x) and Fx(t, p) =

H(t)(p, x). Moreover, for Q ⊆ P , we define F |Q as the multiset over Q× T such

that, for each q ∈ Q and t ∈ T , F |Q(q, t) = F (t)(q, x). Intuitively, we select

the arcs of the ν-PN restricted to the ones adjacent to Q and labelled by x.

Analogously, we define H|Q ∈ (T × Q)⊕ such that, for each q ∈ Q and t ∈ T ,

H|Q(t, q) = H(t)(q, x). We are now ready to define rcwf-nets.

Definition 5.2.1 (Resource-constrained Wf-net) A resource-constrained wf-

net (or rcwf-net for short) is an asynchronous ν-PN N = (P, T, F,H) such that:

• for all t ∈ T , and ν ∈ Υ, ν /∈ Var(t),

• Np = (PD, T, F |PD
+H|PD

)x is a wf-net.

Np is the P/T net obtained by removing static places, which we call production

net of N . Then, a rcwf-net is an asynchronous ν-PN that does not create new

tokens (because no variable ν ∈ Υ labels any arc) and such that its production

net is a wf-net. In particular, it contains two special places in and out given by

the definition of wf-nets. When there is no confusion we will simple refer to these

places as in and out, respectively. In figures, we represent static places by bold

circles, and dynamic places by normal circles. Moreover, for simplicity, sometimes

112 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

aaa
p1

a • a
s

aaa

in

aaa

out

aaa
p3

aaa
p2

aaa
p4t4

t1 t2

t3 t5

Figure 5.2: A proper rcwf-net N

we omit the labels x and ǫ from the arcs. For example, Fig. 5.2 shows a rcwf-net

with only one static place s.

Definition 5.2.2 (Initial marking of a rcwf-net) Let N = (P, T, F,H) be a

rcwf-net and m0 ∈ P⊕
S . For any k ≥ 0, we define mk

0, as the marking of N given

by:

• mk
0(s) contains m0(s) black tokens, for each s ∈ PS,

• mk
0(in) contains k pairwise different names,

• mk
0(d) is empty for every d ∈ PD \ {in}.

Moreover, for mk
0 we define the set of final markings Mk

out that contain the same

k names in out, and empty in the rest of the dynamic places.

Notice that in the final markings we are not fixing the amount of tokens in

static places, unlike in [44, 53].

Definition 5.2.3 (Dynamic soundness) Let N = (P, T, F) be a rcwf-net and

m0 ∈ P⊕
S . We say N is dynamically sound for m0 if for each k ≥ 0 and for each

m reachable from mk
0, we can reach some marking in Mk

out.

5.3 Undecidability result

In this section we prove undecidability of dynamic soundness for rcwf-nets by

reducing reachability for asynchronous ν-PN, which is undecidable, to it.

For this purpose, given an asynchronous ν-PN N , an initial marking m0 of N

(which we can assume to contain a single token in a given place i), we are going

to construct a rcwf-net N ′ which is dynamically sound if and only if the empty

5.3. UNDECIDABILITY RESULT 113

a, a,

a,

a,

a,
a,

A, A,

A,

in

t1 tr1

tout

out

step1

step2

d

colours

x

x x

x x

x

x

x

Figure 5.3: Step 1

marking is not reachable from m0. Intuitively, the runs of N ′ will be divided into

four steps: In the first step, the net gets ready for the simulation; in the second

step, the initial marking m0 of N is set; the third step simulates N ; and finally,

the last step is intuitively used to force that ∅ is not reachable if and only if N ′ is

dynamically sound.

Let us explain with detail the four steps. In order to control in which step

we are, we consider four static places step1, step2, step3 and step4, that will be

marked in mutual exclusion. Initially, step1 is marked.

5.3.1 Step 1: getting ready

First of all, as we want to build a rcwf-net, we add two special places in and out.

We add a transition tout which can move a token from in to out. This transition

does not have any other precondition, so that it can be fired in any of the steps.

We will also consider two dynamic places, d and colours. The purpose of d will

be explained in the last step. The place colours will store all the colours that we

will use in the simulation of N , so that each transition in the construction which

takes a token from in, will add it to colours. We store all the colours in order to

be able to add them to out even if N consume all the tokens of some color. We

need the place colours because N could erase some names, but we cannot do this

in N ′ without being dynamically unsound.

In this first step, a transition t1 is fired, removing a token from in and adding

it to the two dynamic places d and colours. The purpose of placing a token in

d will be explained later, in the last step. It also moves the token from step1 to

114 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

a,

a,

a,

a,

a, a,

a,
t

t

t3

ν

x

x
xp

in

colours

step3 step4

qp

Figure 5.4: Step 3

step2, thus moving on to the next step.

Finally, we need the firing of t1 to be “reversible” (for the case in which we

have a single name in in). Therefore, we add a new transition tr1 which moves a

token from step2 to step1, removes the tokens in colours and d, and adds a token

of the same color to out (not to in, since it cannot have incoming arcs). Fig. 5.3

illustrates the first step.

5.3.2 Step 2: setting the initial marking

In order to simulate the behavior of N , we consider in N ′ the set of places of N .

In this step we set the initial marking, which consists only of a name in the place

of N that we call i. Therefore, we take a token from in and put it both in i and

in colours. Moreover, we move the token from step2 to step3.

5.3.3 Step 3: simulating N

In this step we simulate the behavior of N . Since N is an asynchronous ν-PN,

it only uses variables x, ν and ǫ. Since N ′ is a rcwf-net, we have to simulate the

creation of new names without using ν. We do it analogously as in the previous

steps, by taking from in a name whenever one must be created, and placing it

both in colours and whatever places pointed by arcs labeled by ν. Since all the

names contained in the place in are different, this is a correct simulation of the

creation of a fresh name.

It may be the case that at some point there are no more tokens in the place

in, so that no more name creations can be simulated. Therefore, a run of N ′

with k different names in the place in simulates a run of N in which at most k

names are used (actually, k−1 because of the name that is put in d). Notice that

the dynamic soundness has to do with the behavior of a rcwf-net from any initial

5.3. UNDECIDABILITY RESULT 115

a,

a,

a,

a,

a, a,

A,

A,

A,

A,

A,

b

b

x x

SIMULATION

OF N

step4

colours

out

q

remove

tp

rp

tf

x

x

x
d

Figure 5.5: Step 4

marking, so that all the behaviors of N will be considered.

In this step we add step3 both as precondition and postcondition of any tran-

sition in N , so that transitions in N can only be fired in this step. At any point,

we can fire a transition t3 that moves the token from step3 to step4, thus finishing

the simulation of N . Moreover, it also puts a black token in a new static place q,

whose purpose we will explain later. Fig. 5.4 shows the simulation of a transition

with a ν.

5.3.4 Step 4: reducing reachability to dynamic soundness

When the fourth step starts, there is a name in d, a black token in step4 (which

will stay there until the end of the execution of N ′) and in q, the set of names

that have been used along the execution of the rcwf-net is stored in colours and

the places of N are marked with a marking which is reachable in N .

We add a transition tf , which can move all the tokens from colours to out,

and with step4 both as precondition and postcondition, so that it cannot be fired

until this step starts.

We want to force N ′ to be dynamically unsound whenever ∅ is reachable.

Since we can move names directly from in to out, we need to build a marking

from which it is not possible to remove names from places different from out.

We add to N ′ a transition tp for each place p of N . When q is marked, there

is a choice between all the transitions tp, each of which removes a token from p,

116 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

and puts a black token in a static place remove. Intuitively, we are only able to

fire some tp if the current marking of N is not ∅. Otherwise, if t3 was fired exactly

from ∅, then no transition tp can be fired.

If we are able to fire some tp then we have a token in remove. In that case,

we can fire transitions rp for each dynamic place p (different from colours, in and

out), that removes a token from p, and puts the token back to remove. Therefore,

if remove is marked, we can empty every dynamic place different from colours,

in and out. In particular, the firing of rd is the only way to remove the token in

d. Fig. 5.5 sketches how the fourth step is performed.

5.3.5 Undecidability

Now we are ready to prove that the previous construction reduces reachability for

asynchronous ν-PN to dynamic soundness for rcwf-nets.

Proposition 5.3.1 Given a ν-PN N with initial marking m0, the rcwf-net N ′

built is dynamically sound if and only if ∅ is not reachable from m0 in N .

Proof: First, let us suppose that ∅ is reachable from m0 in N . Let n be the

number of different names created in some run that reaches ∅. If we consider the

net N ′ with n+ 1 or more instances (that is, with at least n+ 1 different names

in the place in), then we can reach a marking m′ of N ′ in which the places of N

are unmarked, the names that have been used in the computation are stored in

colours, d is marked by a color and step4 and q are marked with black tokens.

From this marking, we cannot fire any of the tp transitions, and therefore, we

cannot remove the token from q. Therefore, remove cannot be marked, which is

the only way in which the name in d can be removed. Summing up, from the

initial marking with n+ 1 different names in in we have reached a marking from

which we cannot reach a final marking of N ′ (that in which the only marked

dynamic place is out), so that N ′ is not dynamically sound.

Conversely, let us suppose that ∅ is not reachable. We have to prove that

for each k ≥ 0 and for each m reachable from mk
0, we can reach some marking

in Mk
out. Let us consider several cases, depending on which step the considered

marking is in.

• If step1 is marked in m then all the names are either in the place in or in

out. Therefore, we can fire tout repeatedly, transferring all the tokens in in

to out, and we are done.

5.4. DECIDABILITY OF DYNAMIC SOUNDNESS 117

• If step2 is marked in m we can fire tr1, reaching a marking in which step1

is marked, so we can apply the previous case.

• If step3 is marked in m we can fire t3, reaching a marking in which step4 is

marked. We discuss this case next.

• If step4 is marked in m we can fire tf repeatedly, putting all the names

that have been used by the construction in out, thus emptying colours.

Moreover, we can fire tout repeatedly, moving all the tokens which remain

in in to out. Therefore, all the tokens that initially were set in in, are set in

out, so we only have to prove that we can empty the other dynamic places.

If step4 is marked then there must be a token in q or remove. If the token

is in q, since ∅ is not reachable, there is some name in some place p of N .

Therefore, we can fire the transition tp from m, reaching a marking in which

remove is marked. Finally, if remove is marked in m, we can remove all the

tokens from the dynamic places different from colours, in and out, reaching

the desired marking.

2

The previous result proves that reachability of the empty marking in asyn-

chronous ν-PN, which is undecidable, can be reduced to dynamic soundness for

rcwf-nets. Therefore, we finally obtain the following result:

Corollary 5.3.2 Dynamic soundness is undecidable for rcwf-nets.

5.4 Decidability of dynamic soundness for a subclass

of rcwf-nets

We have proved that dynamic soundness is undecidable in general. However, if

we consider more restrictive requirements for our rcwf-nets, dynamic soundness

turns decidable. In the literature, several notions of rcwf-nets and soundness have

been studied, most of them being more restrictive than our general definition.

In particular, in [44] the authors consider wf-nets which satisfy the following

condition, which we have not required: for each node n, there are paths from in

to n and from n to out. We are going to consider a less restrictive requirement,

namely that every transition has some dynamic postcondition. In that case, and

considering some very reasonable requirements, dynamic soundness is decidable

118 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

even if shared resources can be consumed or created by instances. This reasonable

requirement is the following: when a single instance is given arbitrarily many

global resources, then it evolves properly. This is equivalent to just removing

static places in the case of one instance.

We are now ready to define our subclass of rcwf-nets:

Definition 5.4.1 (Proper rcwf-net) We say that a rcwf-net N = (P, T, F,H)

is a proper rcwf-net if the two following conditions hold:

• for each t ∈ T , t• ∩ PD 6= ∅,

• the production net Np of N is weakly sound.

Intuitively, the behavior of Np represents the maximal behavior of each in-

stance of N , meaning that it is not constrained by the presence (or absence) of

resources. Hence, the behavior Np is the behavior of each instance in N when

providing an unbounded number of resources. In particular, if m is a reachable

marking of a rcwf-net N , then the markings of Np obtained by projecting m to

each of the names in m are all reachable too.

In [44, 53] other classes more restricted than proper rcwf-nets are defined.1

However, the previous conditions are enough for our decidability result, and indeed

our requirement can be deduced from the conditions required in [44, 53].

Lemma 5.4.1 The production net Np of a proper rcwf-net N is bounded.

Proof: Let us suppose that Np is sound and unbounded (assuming the initial

marking m1
0). Then, there are markings of Np, m1, m2, and m

′
1 such that m1

0 →
∗

m1 →
∗ m2 = m1 +m′

1 with m′
1 non empty. Since Np is sound, m1 → out, so that

m2 = m1+m
′
1 →

∗ out+m′
1. Again, by soundness of Np, it must be the case that

out + m′
1 →∗ out. Since out• = ∅, it must be the case that m′

1 →∗ ∅, but this

is not possible because N is proper (and, in particular, all the transitions of Np

have postconditions).

2

Actually, in the proof of decidability of dynamic soundness for proper rcwf-

nets, we only need that the production net is bounded (and boundedness is de-

cidable for P/T nets). By the previous result, we know that the production net of

1E.g., by demanding that there are paths from in to every node, and from every node to out.

5.4. DECIDABILITY OF DYNAMIC SOUNDNESS 119

a proper rcwf-net is bounded, but even if our rcwf-net is not proper, we can still

check whether its production net is bounded, in which case our proof still holds.

We reduce dynamic soundness to the so-called home space problem in P/T

nets, which is decidable. Hence, we first introduce this problem.

Definition 5.4.2 (Home space problem for P/T nets) Given a P/T net N ,

a marking m0 and a set H of markings of N , we say that H is a home space if

for every reachable marking m, there is a marking m′ ∈ H reachable from m.

The problem of deciding whether a linear set of markings is a home space

is decidable too [27, 34]. A linear set is a set of vectors that can be obtained

as linear combinations of a given set of vectors. More precisely, and considering

that markings can be seen as vectors, a marking m and a finite set of markings

{m1, ...,mn} define the linear set of markings L = {m+
∑n

i=1 λi ∗mi | λi ∈ N}.

Let us explain intuitively how the construction works. It is similar to a con-

struction used in [53]. Given a proper rcwf-net N , we know that Np is bounded.

Then, we can consider the state machine associated to the reachability graph of

Np. More precisely, if m is a reachable marking in Np, then we will consider a

place also denoted by m. A token in m stands for an instance of N in marking

m. Notice that this is correct because all the markings reachable in N must be

reachable in Np (after projecting). So far, the construction is like in [53]. More-

over, the static places will be considered as places of the new net too, and will be

pre/postconditions of the transitions we add, in the same way as they were in the

original net.

Finally, we have to consider one more place src in order to set the initial

number of instances that we are going to consider for the net. Let us denote

by R(N) the set of markings reachable in a wf-net net N from min. Now we

are ready to define the construction which will let us prove the decidability of

dynamic soundness.

Definition 5.4.3 Let N = (P, T, F,H) be a proper rcwf-net and ms
0 ∈ P⊕

S . We

define the P/T net N tr = (P tr, T tr, F tr) as follows:

• P tr = PS ∪R(Np) ∪ {src, ok},

• T tr = {(m1, t,m2) ∈ R(Np)× T ×R(Np) | m1
t
→ m2 in Np} ∪ {new, stop},

• F tr is such that:

– F tr(m1, (m1, t,m2)) = F tr((m1, t,m2),m2) = 1,

120 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

new

aaa src aaa ok

stop

aaa
{p1}

a • a
s

a • a

{in}

aaa

{out}

aaa

{p2, p3}

aaa

{p4}

t4

t1 t2

t3 t5

Figure 5.6: N tr obtained by applying Def. 5.4.3 to N in Fig. 5.2 (omitting the
arcs from ok)

– F tr(src, stop) = F tr(stop, ok) = 1,

– F tr(src, new) = F tr(new, src) = F tr(new, in) = 1,

– F tr(ok, (m1, t,m2)) = F tr((m1, t,m2), ok) = 1,

– If s ∈ PS and (m1, t,m2) ∈ T tr then F tr((m1, t,m2), s) = H(t)(s, ǫ)

and F tr(s, (m1, t,m2)) = F (t)(s, ǫ),

– F tr(x, y) = 0, otherwise.

The initial marking of N tr is mtr
0 , given by mtr

0 (src) = 1, mtr
0 (m) = 0 for m ∈

R(Np) and m
tr
0 (s) = ms

0(s) for s ∈ PS.

Figure 5.6 shows the previous construction for the net in Fig. 5.2. Note that

N tr is finite because Np is bounded, so that it can be effectively computed. In-

tuitively, N tr creates by means of transition new several instances in its initial

state, after which if fires stop, marking place ok, which is a precondition of the

rest of the transitions, so that from then on they can be fired.2 Each token in a

place m ∈ R(Np) of N
tr represents an instance of N , running concurrently with

other instances and sharing the resources in the static places with them. There-

fore, the net will simulate runs of as many instances of the original net as times

the transition new has been fired. Let us define a correspondence between the

markings of N and the markings of N tr.

Definition 5.4.4 Given a marking m of N , we define the marking mtr of N tr

as follows: mtr(src) = 0, mtr(ok) = 1, mtr(s) = m(•, s) for s ∈ PS, and for

m′ ∈ R(Np) m
tr(m′) = |{a ∈ Id(m) | m(a, p) = m′(p) ∀p ∈ PD}|, that is, the

number of instances in marking m′ in m.

2Actually, the construction still works without place ok, though it simplifies the forthcoming

explanations.

5.4. DECIDABILITY OF DYNAMIC SOUNDNESS 121

Notice that all the markings reachable in N tr with ok marked are of the

form mtr for some marking m reachable in N . The following result is trivial by

construction of N tr.

Lemma 5.4.2 mk
0 →∗ m in N if and only if mtr

0
newk·stop
−→ (mk

0)
tr →∗ mtr. More-

over, all the computations in N tr start by firing new k ≥ 0 times, possibly followed

by stop, in which case (mk
0)

tr is reached.

Finally, we are ready to prove that this construction reduces the dynamic

soundness problem for proper rcwf-nets to the home space problem for P/T nets.

Given p ∈ P , we denote by ep the marking given by ep(p) = 1 and ep(q) = 0 for

q 6= p.

Proposition 5.4.3 Let N be a proper rcwf-net. N is dynamically sound if and

only if the linear set L generated by {out}∪{es | s ∈ PS} is a home space for N tr.

Proof: We start by remarking that L contains markings with any number

of tokens in out and in static places, and empty elsewhere. Notice also that each

transition different from new and stop has exactly one precondition in R(Np) and

one postcondition in R(Np). Therefore, after the firing of stop, the total number

of tokens in places in R(Np) remains constant. Therefore, if new is fired k times

and a marking in L is reached, then necessarily this marking has k tokens in out.

Finally, notice that m ∈ Mk
out iff m

tr ∈ L and it contains exactly k tokens in out.

Let us first suppose that N is not dynamically sound. Then, there is a k > 0

and a marking m reachable from mk
0 from which no marking in Mk

out is reachable.

By Lemma 5.4.2, the marking mtr is reachable after firing new k times. Then,

from mtr no marking in L can be reached. Indeed, if some marking m′tr in L is

reached from mtr it has necessarily k tokens in out and again by Lemma 5.4.2,

m′ ∈ Mk
out is reached in N , contradicting our first hypothesis. Then, L is not a

home space and we conclude this implication.

Reciprocally, let us assume that L is not a home space. Then, there is a

reachable marking of N tr from which no marking of L can be reached. Let us

suppose that this marking is of the form mtr (otherwise, we consider the marking

obtained after firing stop, and no marking of L can be reached from it). Let us

suppose that there are k tokens in places in R(Np) in m
tr. Then, by Lemma 5.4.2

and the previous remarks (analogously to the previous case) no marking in Mk
out

can be reached from m, so that N is not dynamically sound.

2

122 CHAPTER 5. RESOURCE CONSTRAINED WORKFLOW NETS

Finally, as the home space problem is decidable for linear sets of markings of

P/T nets [27], we obtain the following result:

Corollary 5.4.4 Dynamic soundness for proper rcwf-nets is decidable.

Chapter 6

Resource Constrained

Workflow Nets with Time and

Prices

In this chapter we finally extend wf-nets and rcwf-nets with time and prices. More

precisely, we are going to add storage and firing costs to them in a similar way as

we did for ν-PTdPN . We are going to do it in two different ways. First, we define

priced workflow nets and priced resource-constrained workflow nets, for which we

suppose that time elapses only when transitions are fired, that is, the firing of

transitions simulate the performance of activities that take some time, and no

time can elapse between one activity is accomplished and another activity starts.

Hence, both storage and firing costs are produced when firing transitions. On the

other hand, we also define priced-timed resource-constrained workflow nets, which

represent a model of costs as in ν-PTdPN , that is, basically, time may elapse at

any time, so storage costs are produced when time elapses and firing costs are

produced when transitions are fired.

For both models of costs, we will define and study several soundness problems.

Essentially, a net is sound if we can always reach the final marking, without

spending more than a given budget. First, we study the decidability of this

problem for Priced workflow nets. However, since for rcwf-nets we must consider

the behavior of an arbitrary number of instances, the definition of soundness for

our new model is not so straightforward. We consider a parametric definition:

For any run, we collect the prices of every instance in the run, so that safety and

soundness are parametric in the way in which local prices are aggregated to obtain

123

124 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

s

p

•

• • •

• • •

•• •

t1

t2

t3

t4

t5

tfti

Figure 6.1: prcwf-net representing the practical exercise of the Chemistry degree

a global price. The definition is open to many different variants. We study several

such variants: the maximum, the sum, the average and the discounted sum.

Before defining our models, let us introduce a motivating example. We con-

sider the following real scenario, taken from the Chemistry Degree of the Com-

plutense University, where every student of the second course must do a practical

exercise which consists in synthesizing two different chemical components and

comparing their properties. Each student has to perform several steps for which

they need to use some devices. We can model the procedure that each student

has to follow as a wf-net, and the interaction of all the students (with limited

resources) as the rcwf-net depicted in Fig. 6.1. We model each step of the exercise

as a transition, and tokens in places represent students who are ready to perform

the next step. In most of the steps, the use of the corresponding device has a cost,

which corresponds to a firing costs. Hence, each transition t will have a firing cost

FC(t) associated. However, these are not the only costs we need to take into

account. When all the devices of a certain kind are being used at the same time,

there may be students who need to wait to use these devices and the components

they have made until this moment, may go wrong because of the delay if they

do not keep them at some specific conditions, as a specific temperature, for ex-

ample. Therefore, there are costs that depend on the number of students that

are waiting to use the devices. These costs will correspond to storage costs, that

is, costs produced when a transition is fired and there are some tokens in some

specific places. Therefore, for each transition t and place p, there is a storage cost

SC(p, t) associated to them. In our example, performing steps two (transition t2)

and three (transition t3) costs 1, so that C(t2) = C(t3) = 1. In the exercise, step

two can possibly go wrong, in which case the students need to repeat it, which is

possible thanks to t1. The device used in those two steps is the same, and there

is only one such device, which is modeled by the static place s with initially one

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 125

token. Moreover, the cost of a student waiting in p for the necessary device is

1, and therefore S(p, t2) = S(p, t3) = 1. Then, the price for the university of a

student performing the whole exercise is the sum of the costs of using each device

and the costs that come from other students waiting for the devices she is using.

Then, the university could be interested in setting a bound for:

• The total amount of money spent in all students in a class;

• The money spent on each student;

• The average of the amounts spent in each student.

This corresponds to the study of priced soundness of the corresponding model

for the different price predicates.

6.1 Priced resource-constrained workflow nets

We first define a priced extension of wf-nets, adding prices supposing that time

elapses only when transitions are fired. Essentially, we add two functions to a

wf-net, defining the price of the firing of each transition, and the cost of storing

tokens when a transition is fired, respectively, following the cost model in [9].

6.1.1 Priced workflow-nets

Definition 6.1.1 (Priced workflow net) A priced workflow net (pwf-net) with

price arity k ≥ 0 is a tuple N = 〈P, T, F, C, S〉 such that:

• 〈P, T, F 〉 is a wf-net, called the underlying wf-net of N ,

• C : T → Zk is a function assigning firing costs to transitions, and

• S : P × T → Zk is a function assigning storage costs to pairs of places and

transitions.

Notice that costs may be negative. The behavior of a pwf-net is given by

its underlying wf-net. In particular, adding prices to a wf-net does not change

its behavior, as the costs are not a precondition for any transition. That is the

main difference between resources and prices. Indeed, although firing costs could

be seen as resources, storage costs cannot, because they depend not only on the

transitions which are fired, but also on the number of tokens in the rest of the

places when the transitions are fired. Let us define the price of a transition.

126 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

Definition 6.1.2 (Price of a run) Let t be a transition of a pwf-net enabled at

a marking m. We define P(t,m), the price of the firing of t at m, as

P(t,m) = C(t) +
∑

p∈m−•t

S(p, t)

Then, the price of a run r = m1
t1−→ m2

t2−→ m3 . . .mn
tn−→ mn+1 of a pwf-net is

P(r) =
∑n

i=1 P(ti,mi).

Notice that in the definition of P(t,m) the term m−• t is a multiset, so that

if a place p appears twice in it then we are adding S(p, t) twice in turn. It can be

seen that firing costs can be simulated by storage costs, though we prefer to keep

both to follow the approach in [9]. However, storage costs cannot be simulated

by firing costs, since the former are marking dependent, while the latter are not.

Next, we define safety of a pwf-net with respect to prices.

Definition 6.1.3 (b-p-safety) Given b ∈ Nk
ω, we say that a pwf-net is b-p-safe

if for each run r reaching mout, P(r) ≤ b.

Therefore, a pwf-net is b-p-safe if all the runs that reach the final marking cost

less than the given budget. Next, we define soundness for pwf-nets.

Definition 6.1.4 (b-p-soundness) Given b ∈ Nk
ω, we say that a pwf-net is b-p-

sound if from each marking m, reachable from min via some run r1, we can reach

mout via some run r2 such that P(r1 · r2) ≤ b.

Intuitively, for a pwf-net to be sound we need to be able to reach the final

marking at any point with a price that does not exceed the budget b ∈ Nk
ω. It is

easy to see that a pwf-net is b-p-sound iff it is weakly sound and b-p-safe. However,

as we prove next, the latter is undecidable when dealing with negative costs.

Proposition 6.1.1 b-p-safety is undecidable, even for priced workflow nets whose

underlying workflow satisfies the path property.

Proof: We reduce the cost-threshold-reachability problem for PPN with neg-

ative costs, and price arity 1, which is undecidable [9]. A PPN with arity 1 is

a P/T net 〈P, T, F 〉, endowed with a function C : P ∪ T → Z associating costs

to transitions and places. Moreover, T is the disjoint union of T0, the set of

instantaneous transitions, and T1, the set of timed transitions. The cost of fir-

ing t ∈ T0 in any marking is just C(t). The cost of m
t
−→ m′ with t ∈ T1 is

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 127

C(t) +
∑

p∈P C(p) ·m(p). The cost of a run is the sum of all the transitions costs

in it. The cost-threshold-reachability problem consists in, given mf and b ∈ N,

decide whether there is a run σ with m0
σ
−→ mf such that C(σ) ≤ b. It is proved

in [9] that this problem is undecidable.

Given a PPN N = 〈P, T, F, C〉, a final marking mf and b ∈ N, let us build a

pwf-net N ′ as follows.

First, we add new places, pi, p0, in and out, and transitions ti, t0 and tf .

Transition t0 sets the initial marking of N , and tf has mf as precondition and

puts a token in out. Places pi and p0 and transition ti are added in order to make

N ′ satisfy the second and third conditions of the definition of workflow net. In

order to satisfy the path property, at the beginning of each run we put a token

in each place of the net, and remove them by firing ti and t0. Moreover, p0 will

be connected to each transition of the net and will be emptied in the final step,

when tf is fired. More precisely:

• Transition ti takes a token from in, and puts a token in each place of N ′

except for p0, in and out, connecting each place with in.

• We set each place of N ′ except for in, p0 and out as a precondition of t0,

and p0 and every place of m0 as a postcondition of t0, connecting each place

except for out to p0.

• We make p0 be a precondition and postcondition of each t ∈ T , connecting

each transition to p0.

• Finally, we set p0 and every place of mf as a precondition of tf , connecting

each place and transition of the net with out.

The new places have no storage cost, t0 has firing cost b + 1 and tf and ti

have firing cost 0. For every t ∈ T we take −C(t) as the firing cost of t in N ′.

Moreover, if t is an instantaneous transition we set S(p, t) = 0 for every p ∈ P ,

and if it is a timed transition we take S(p, t) = −C(p) for every p ∈ P .

By construction, if r is a run in N with cost c, then tit0 · r is a run in N ′

with cost b+ 1− c. Let us see that there exists a run r of N such that m0
r
−→ mf

with C(r) ≤ b iff N ′ is not 0-p-safe. Let r be a run such that m0
r
−→ m ≥ mf

and C(r) ≤ b. Let us call r′ = tit0rtf the corresponding run of N ′. Then,

C(r′) = 1 + b − C(r) ≥ 1. Therefore, N ′ is not 0-p-safe. Conversely, suppose

that for every run r of N with m0
r
−→ mf , C(r) > b. Then, for every run r′ of N ′

128 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

reaching mout, necessarily of the form tit0rtf , C(r
′) = 1+b−C(r) ≤ 0. Therefore,

N ′ is b-p-sound.

2

Despite the previous result, we can prove that b-p-soundness is decidable.

Proposition 6.1.2 b-p-soundness is decidable.

Proof: Let N be a pwf-net. If the underlying wf-net N ′ of N is not weakly

sound, then there is a reachable marking from which mout is not reachable, and

therefore N is not b-sound. Let us suppose that N ′ is weakly sound. Then, N ′

is bounded [94] and therefore we can build its reachability graph, which is finite.

More precisely, we build the graph whose nodes are the reachable markings of N ′,

and there is an arc connecting two markingsm1 andm2 if and only ifm1
t
→ m2 for

some t ∈ T , labeled by P(t,m1). In that way, the price of a run of N corresponds

to the length of the corresponding path in the reachability graph. Then, since N ′

is weakly sound, N is not b-sound if and only if there is a run from min to mout

with a price which is not smaller than b, that is, if and only if there is a path from

min to mout in the reachability graph with a length c, and i ∈ {1, ..., k}, such that

c[i] > b[i]. Therefore, in this case b-p-soundness can be reduced to computing the

longest path from min to mout in the finite reachability graph, which can be done

polynomially in the number of states, even with negative labels [24].

2

To conclude this section, notice that if a pwf-net is b-p-safe (b-p-sound) then

it is also b′-p-safe (b′-p-sound) for any b′ > b, so that the set B(N) = {b ∈ Nk
ω | N

is b-p-safe (b-p-sound)} is an upward-closed set. In this situation, we can apply

the Valk & Jantzen theorem:

Theorem 6.1.3 ([89]) Let V be an upward-closed set. We can compute a finite

basis of V if and only if for each v ∈ Nk
ω we can decide whether ↓v ∩ V 6= ∅.

Therefore, we can compute a finite basis of the set B(N), i.e., the minimal

budgets b for which the pwf-net is b-p-safe (b-p-sound), provided we can decide

b-p-safety (b-p-soundness) for each b ∈ Nk
ω.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 129

ab

in ••

••

••

out

••• s

p1

p2

t2 t3

t1

S(p1, t1) = (1, 0)

S(p1, t3) = (0, 1)

S(p, tj) = (0, 0) ow.

C(t1) = (0, 0)

C(t2) = (0, 1)

C(t3) = (1, 0)

Figure 6.2: A priced resource-constrained workflow net

6.1.2 Priced resource-constrained workflow-nets

Now, we define the first model dealing with different instances and prices. Basi-

cally, we add to rcwf-nets two functions C and S, assigning the firing and storage

costs [9].

Definition 6.1.5 (Priced rcwf-net) A priced rcwf-net (prcwf-net) with price

arity k ≥ 0 is a tuple N = 〈P, T, F,H,C, S〉 such that:

• 〈P, T, F,H〉 is an rcwf-net, called the underlying rcwf-net of N ,

• C : T → Zk and S : P × T → Zk are functions specifying the firing and

storage costs, respectively.

The behavior of a priced rcwf-net is given by its underlying rcwf-net. In fact,

prices are different from resources in that they do not constrain the behavior of

the net. However, the runs of a priced rcwf-net have a price which is defined as

follows.

Definition 6.1.6 (Price of an instance) We define the price of an instance

a ∈ Id(m0) in a run r = m0
t1(σ1)
−−−−→ m1

t2(σ2)
−−−−→ m2 . . .mn−1

tn(σn)
−−−−→ mn of a prcwf-

net as

P(a, r) =
n
∑

i=1
σi(x)=a

(C(ti) +
∑

p∈P

|mi−1(p)− σ(Ft(p))| ∗ S(p, ti))

Intuitively, we are considering those transitions in r fired by a, and computing

their price. In particular, we are assuming that when computing the price of the

firing of a transition by an instance, the tokens belonging to other instances are

accounted for. In other words, a pays a penalization for the storage of all tokens

130 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

when it fires a transition. We could have also decided that each instance only pays

for its own tokens, thus being in a slightly different setting, but the techniques

used in our results would also apply.

Since in rcwf-nets we are interested in the behavior of several concurrent in-

stances, we collect their prices in the following definition.

Definition 6.1.7 (Price of a run) Given a run r of a prcwf-net starting in m0,

we define the price of r as the multiset

P(r) = {P(a, r) | a ∈ Id(m0)} ∈ (Zk)⊕.

Let us illustrate this definition by an example.

Example 6.1.1 Focus on Fig. 6.2, and let us consider the run r in which we first

fire t2 with instance b, then we fire t1 with instance a and finally we fire transition

t3 with instance b. Then, we have that the prices of the instances are P(a, r) =

(0, 1) and P(b, r) = (1, 1), so the price of the run is P(r) = {(1, 0), (1, 1)}.

Instead of fixing the condition to be satisfied by all the prices of each instance,

we define a parametric version of priced safety and dynamic soundness. More

precisely, those properties for prcwf-nets are parameterized with respect to a price-

predicate.

Definition 6.1.8 (Price-predicate) A price-predicate φ of arity k ≥ 0 is a

predicate over Nk
ω × (Zk)⊕ such that if b ≤ b′ and A′ ≤⊕ A then φ(b, A) → φ(b′, A′)

holds.

Intuitively, b stands for the budget, and A stands for the price of a run. Notice

that price-predicates are upward-closed in their first argument, but downward-

closed in their second argument. Intuitively, if a price-predicate holds for given

budget and costs, then it holds with a greater budget and less costs, as expected.

From now on, for a price-predicate φ and b ∈ Nk
ω, we will denote by φ(b) the

predicate over (Zk)⊕ that results of specializing φ with b. Moreover, when there

is no confusion we will simply say that a run r satisfies a predicate when P(r)

satisfies it.

Now, we define the concepts of priced safety (p-safety for short) and dynamic

soundness with respect to a given price predicate.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 131

Definition 6.1.9 (φ-p-safety) Let b ∈ Nk
ω and φ be a price-predicate. We say

that the prcwf-net N is φ(b)-p-safe for m0 ∈ P⊕
S if for each j > 0, every run of

N starting in mj
0 satisfies φ(b).

Hence, φ-p-safety is only related to the prices of the runs of the net, and not

to its behavior. In order to encompass the requirements about the behavior of

the net and the prices of the run, we define the (priced) dynamic soundness with

respect to some price predicate.

Definition 6.1.10 (φ-dynamic soundness) Let b ∈ Nk
ω and φ be a

price-predicate. We say that the prcwf-net N is φ(b)-dynamically sound for

m0 ∈ P⊕
S if for each j > 0 and for each marking m reachable from mj

0 by firing

some r1, we can reach a marking mf ∈ Mj
out by firing some r2 such that r1 · r2

satisfies φ(b).

Note that ordinary dynamic soundness is obtained by taking φ as the con-

stantly true predicate. As we have mentioned before, prices are different from

resources in that they do not constrain the behavior of the net. However, once

we are interested in checking a priced-soundness problem, it is natural to consider

the available “budget” as an extra resource. Indeed, this can be done but only for

firing costs, which are local to transitions, but again this is not possible for storage

costs. Let us see some simple facts about φ-p-safety and φ-dynamic soundness.

Proposition 6.1.4 The following holds:

1. If φ1 → φ2 holds, then φ1(b)-p-safety implies φ2(b)-p-safety, and φ1(b)-

dynamic soundness implies φ2(b)-dynamic soundness.

2. For any φ, φ-dynamic soundness implies (unpriced) dynamic soundness.

3. In general, φ-dynamic soundness is undecidable for (non-proper) rcwf-nets.

Proof: (1) is straightforward by Def. 6.1.9 and Def. 6.1.10. (2) follows from

(1), considering that any φ entails the constantly true predicate. (3) follows from

the undecidability of (unpriced) dynamic soundness for general (non proper) rcwf-

nets proved in Chapter 5.

2

132 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

Therefore, φ-dynamic soundness is undecidable for some φ, though certainly

not for all. As a (not very interesting) example, if φ is the constantly false price-

predicate, no prcwf-net is φ-dynamically sound, so that it is trivially decidable.

Now we factorize φ-dynamic soundness into unpriced dynamic soundness and p-

safety. As we proved in the previous section, if we consider negative costs safety

is undecidable even for priced wf-nets. Therefore, for now on we will focus on

rcwf-nets with non-negative costs.

Proposition 6.1.5 Let φ be a price-predicate and N a prcwf-net with non-negative

costs. Then N is φ(b)-dynamically sound if and only if it is dynamically sound

and φ(b)-p-safe.

Proof: First notice that for any run r of N and any run r′ extending r we

have φ(b,P(r · r′)) → φ(b,P(r)). Indeed, it is enough to consider that, because

we are considering that costs are non-negative, P(r) ≤⊕ P(r · r′) holds and, by

Def. 6.1.8, φ is downward closed in its second parameter. For the if-part, if N is

dynamically sound and all its runs satisfy φ(b) then it is clearly φ(b)-dynamically

sound. Conversely, if it is φ(b)-dynamically sound it is dynamically sound by

Prop. 6.1.4. Assume by contradiction that there is a run r that does not satisfy

φ(b). By the previous observation, no extension of r can satisfy φ(b), so that N

is not φ(b)-dynamically sound, thus reaching a contradiction.

2

Therefore, to decide φ-dynamic soundness we can consider those two properties

separately. Though (unpriced) dynamic soundness is undecidable for rcwf-nets

(without the path property), it is decidable for the subclass of proper rcwf-nets.

Next, we study the decidability of φ(b)-p-safety for various price-predicates, even

if N is not proper.

As previously, notice that for any price-predicate φ, the set Bφ(N) = {b ∈

Nk
ω | N is φ(b)-dynamically sound (φ(b)-p-safe)} is upward-closed because of the

upward-closure in the first parameter of price-predicates. Therefore, and as we

did for pwf-nets, we can apply the Valk & Jantzen result to compute the minimal

budgets b for which N is φ(b)-p-safe (φ(b)-dynamically sound) whenever we can

decide φ(b)-p-safety (φ(b)-dynamic soundness) for each b ∈ Nk
ω.

6.1.3 Selected price predicates

Now, we study some specific cases of these price predicates. In particular, we

study the maximum, the sum, the average and the discounted sum.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 133

S(p, t1) = 2

C(t1) = C(t2) = 0

S(q, tj) = 0 otherwise.

in outp

• • • • • • • • •t1 t2

Figure 6.3: prcwf-net not Sum(b) neitherMax (b)-dynamically sound for any b ∈ N

Sum and Max -dynamic soundness

Let us now study the two first of the concrete priced problems for prcwf-nets.

When we consider several instances of a workflow net running concurrently, we

may be interested in the overall accumulated price, or in the highest price that

the execution of each instance may cost.

Definition 6.1.11 (Sum and Max price-predicates) We define the price-

predicates Sum and Max as:

Sum(b, A) ⇐⇒
∑

x∈A x < b

Max (b, A) ⇐⇒ x < b for all x ∈ A

Sum and Max are indeed price-predicates because they satisfy the conditions

in Def. 6.1.8. They are both upward closed in the first parameter and downward

closed in the second. Let us remark that the cost model given by Sum, in which all

the prices are accumulated, is the analogous to the cost models in [9, 2]. However,

since we are here interested in the behavior of an arbitrary number of instances,

a necessary condition for Sum(b)-p-safety is that all instances, except for a finite

number of them, have a null price (for those components in b that are not ω).

Example 6.1.2 Consider the prcwf-net N in Fig. 6.3, and a run of N with n

instances, and in which t2 is not fired until t1 has been fired n times. The price

of the i-th instance in any such run is 2 · (i − 1). Indeed, the first firing of t1

costs nothing, because there are no tokens in p, but in the second one there is

already a token in p, so that the second firing costs 2 (because S(p, t1) = 2). In

particular, the last instance of the net costs 2·(n−1). Therefore, the net is neither

Max (b)-p-safe nor Sum(b)-p-safe for any b ∈ N.

134 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

Now, suppose that S(p, t) = 0 for each place p and transition t, C(t1) = 1 and

C(t2) = 0. Each instance costs exactly 1, so that it is Max (2)-p-safe. However,

if we consider a run in which n instances have reached out, then the sum of the

prices of all instances is n, and the net is not Sum(b)-p-safe for any b ∈ N.

Before tackling the decidability of Max (b)-p-safety and Sum(b)-p-safety, we

need to introduce a model which will be useful in the proofs of decidability of

the predicates. As previously, in order to model different instances running in

the same net, we will use names, each name representing a different instance.

We obtain wν-PNs (w stands for whole-place) as an extension of ν-PN which also

allows whole-place operations and broadcasts, similar to Data Nets [62]. Data Nets

extend P/T nets by considering a linearly ordered and dense domain of tokens,

and in which whole place operations can be performed. Therefore, wν-PNs can

be seen as an unordered version of Data nets [62] in which names can be created

fresh. When a transition t of a wν-PN is fired, four operations are performed: the

subtraction of several tokens of different colors, whole-place operations (affecting

every color in the same way), the creation of new names and the addition of

tokens.

As for ν-PN, let us consider a set Var of variables and Υ ⊂ Var a set of

name creation variables. A wν-PN is a tuple N = 〈P, T, F,G,H〉 where P and

T are finite disjoint sets of places and transitions, respectively; for each t ∈ T ,

Ft : P → (V ar\Υ)⊕ is its subtraction function, Gt : P ×P → N is its whole-place

operations matrix, and Ht : P → V ar⊕ is its addition function. Moreover, if

x ∈ Ht(p) \Υ then x ∈ Ft(p
′) for some p′ ∈ P .

Let Id be an infinite set of names. A marking is anym : P → Id⊕. An a-token

in p is an occurrence of a ∈ m(p). Id(m) is the set of names appearing in m, that

is, Id(m) =
⋃

p∈P S(m(p)). We denote by Var(t) = {x ∈ V ar | ∃p ∈ P, x ∈

Ft(p) ∪Ht(p)} and Var(p) = {x ∈ Var | ∃t ∈ T, x ∈ Ft(p) ∪Ht(p)}. A mode is a

mapping σ : Var(t) → Id extended pointwise to σ : Var(t)⊕ → Id⊕. A transition

t is enabled at a marking m with mode σ if for all p ∈ P , σ(Ft(p)) ⊆ m(p) and for

all ν ∈ Υ, σ(ν) /∈ Id(m). Then, we say that t can be fired, reaching a new marking

m′, where for all p ∈ P , m′(p) =
∑

p′∈P ((m(p′)−σ(Ft(p
′)))∗Gt(p

′, p))+σ(Ht(p)),

which is denoted by m
t(σ)
→ m′.

Example 6.1.3 Let N = ({p1, p2}, {t}, F,G,H) be a wν-PN, where:

• Ft(p1) = {x}, Ft(p2) = ∅.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 135

a
p1

a
p2

a
p1

a
p2

ab bc adbc
b→t tx x, ν x x, ν

Figure 6.4: The firing of a wν-PN

• Ht(p1) = ∅, Ht(p2) = {x, ν}.

• Gt(p1, p1) = 1, Gt(p1, p2) = 0, Gt(p2, p1) = 1, Gt(p2, p2) = 0.

This net is depicted in Fig 6.4. Note that although Ft and Ht are represented

by arrows labeled by the corresponding variables, the effects of Gt are not depicted.

Let m be the marking of N such that m(p1) = {a, b} and m(p2) = {b, c}. Then,

t can be fired at m with mode σ, where σ(x) = a and σ(ν) = d, reaching a new

marking m′, such that m′(p1) = {b, b, c} and m′(p2) = {a, d}. Note that m′ is

obtained from m by the following steps:

• Removing an a-token from the place p1, due to the effect of F .

• Removing all tokens from p2 and copying them to p1, because of the effects

of G. Indeed, as Gt(p1, p1) = 1, the tokens in p1 remain unchanged in this

step, and as Gt(p2, p2) = 0, the tokens in p2 are all removed. Moreover, as

Gt(p2, p1) = 1, the tokens in p2 before this step are copied to p1.

• Adding an a-token and a d-token to p2, because of H.

We write m1 ⊑ m2 if there is a renaming m′
1 of m1 such that m′

1(p) ⊆ m2(p)

for every p ∈ P . A marking m is coverable from an initial marking m0 if we can

reach m′ from m0 such that m ⊑ m′.

A wν-PN could be considered as an unordered Data Net, except for the fact

that wν-PNs can create fresh names. In [4] the authors extend Data Nets with

fresh name creation and prove that coverability is still decidable by instantiating

the framework of Well Structured Transition Systems [37].

Proposition 6.1.6 Coverability is decidable for wν-PN.

Now we prove decidability of Max and Sum-p-safety by reducing them to non-

coverability problems in a wν-PN. Given a prcwf-net N and a budget (b1, . . . , bn),

we build a wν-PN C(N), the cost representation net of N , by adding to N n new

places, whose tokens represent the costs of each run. Then, the net will be safe

136 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

iff, for all i ∈ n+, no marking with bi tokens in the place representing the ith

component of the prices can be covered. We simulate firing costs by adding to N

“normal arcs”, without whole-place operations, but for the simulation of storage

costs we need the whole-place capabilities of wν-PN.

Proposition 6.1.7 Max-p-safety and Sum-p-safety are decidable for prcwf-nets,

even without the path property. Max-dynamic soundness and Sum-dynamic sound-

ness are decidable for proper prcwf-nets.

Proof: By Prop. 6.1.5, it is enough to consider the price-safety problems. We

reduce Sum-p-safety to (non)coverability for wν-PN. Then, we show how to adapt

this reduction to the case of Max -p-safety. Let N = 〈P, T, F,H,C, S〉 be a prcwf-

net with price arity k and b ∈ Nk
ω. We can assume that b has no ω-components,

or we could safely remove the cost information of those components. We build

the wν-PN C(N) = 〈P c, T c, F c, Gc, Hc〉 as follows:

• P c = P ∪ {c1, ..., ck},

• T c = T ∪ {tν} ∪ {tc1 , ..., tck}.

• For each t ∈ T ,

– F c
t (p) = Ft(p) if p ∈ P , and F c

t (p) = ∅, otherwise,

– Hc
t (p) = Ht(p) if p ∈ P , and Hc

t (ci) = C(t)[i] ∗ {x}, otherwise,

– Gc
t(p, p

′) =











S(p, t)[i] if p ∈ P , and p′ = ci,

1 if p = p′,

0 otherwise.

• For each i ∈ {1, ..., k},

– F c
tci
(ci) = {x, y}, and F c

tci
(p) = ∅ otherwise,

– Hc
tci
(ci) = {x, x}, and Hc

tci
(p) = ∅ otherwise, and

– Gc
tci

is the identity matrix.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 137

ab
••

••

••

•••• ••

t2 t3

t1

tν

tc1 tc2c2c1

ν

x, x

x, y

x, y

x, x

Figure 6.5: The costs representation wν-PN of the prcwf-net in Fig. 6.2

• Ftν (p) = ∅ for any p ∈ P c, Htν (in) = {ν} and returns the empty multiset

elsewhere, and Gtν is the identity matrix.

Any run r of N can be simulated by a run of C(N), preceded by several firings

of tν . Moreover, if r starts inm0 and finishes inm (seen as a run of C(N)), then by

construction of C(N) it holds that the sum of the prices of the instances in r, is the

vector formed by considering the number of tokens (maybe with different colors)

in c1, ..., ck. In particular, when a transition in T is fired, we add the corresponding

firing costs to places ci by “normal arcs”, that is, we have Hc
t (ci) = C(t)[i] ∗ {x}

(which denotes the multiset with C(t)[i] xs). Moreover, we add storage costs by

copying the necessary number of times the tokens in dynamic places to places ci,

that is, we have Gc
t(p, ci) = S(p, t)[i]. Finally, as each transition tci takes two

tokens with different names from ci, and puts them back, changing the name of

one of them by the name of the other token, these transitions allow to reach each

marking in which the sum of the prices of all instances of a run is represented by

the tokens in the places ci, all of them with the same name. Then, N is Sum(b)-p-

unsafe if and only if there is j ∈ {1, ..., k} such that the marking with b[j] tokens

of the same color in cj and empty elsewhere is coverable, and we are done.

The previous construction with some modifications also yields decidability of

Max (b)-p-safety. We add one more place last (which will always contain the name

of the last instance that has fired a transition) and for each i ∈ {1, ..., k}, we add

a new place di (where we will compute the costs).

When a transition t ∈ T is fired, in C(N) we replace the name in last by the

name of the current transition, and reset every place ci (by setting Gt(ci, ci) = 0).

Moreover, we change the effect of every tci : they now take a token from ci, and

put a token of the name in last in the place di (see Fig. 6.6). Hence, each time an

instance a fires a transition, the corresponding firing and storage costs are stored

138 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

aa a

lastci di

tci

x
y

y

Figure 6.6: The mechanism added for Max

in ci with different names, and can be transferred to di with name a by repeatedly

firing tci , if no other transition of the net is fired while the transference is being

performed. When other transition is fired, ci is emptied, and the token in last is

changed, ensuring that we do not consider the same name to represent the costs

of different instances in di.

Therefore, when a transition t ∈ T is fired, it is possible to reach a marking in

which the costs of firing t are added to every di (represented by the name of the

instance that has fired t) by firing t followed by the firing of every tci ni times,

provided t put ni tokens in ci. Notice that if another transition fires before tci
is fired exactly ni times, then that run is lossy, in the sense that it is computing

an underapproximation of its cost, but it is always possible to compute the exact

cost. Therefore, N is Max (b)-p-unsafe if and only if there is j ∈ {1, ..., k} such

that the marking with b[j] tokens of the same color in dj and empty elsewhere is

coverable.

2

Example 6.1.4 Fig. 6.5 shows the costs representation net of the net N in

Fig. 6.2. For a better readability, we have removed some of the labels of the

arcs. As the prices in N are vectors of N2, we have added two places, c1 and c2,

to store the costs; and two transitions tc1 and tc2, which take two tokens of dif-

ferent colors of the corresponding places and put them back, with the same color.

Moreover, we have added arcs that manage the addition of the cost of transitions.

In particular, dashed arcs denote copy arcs, meaning that when the corresponding

transition is fired, tokens are copied in the places indicated by the arrows (which

is the effect of G in the proof of the previous result). Then, Sum(b)-p-safety is

reduced to non-coverability problems: the prcwf-net is Sum(1, 1)-p-safe iff neither

m1 (the marking with only one token carrying the same name in c1) neither m2

(the marking with only one token carrying the same name in c2) are coverable.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 139

We remark that if we consider a cost model in which each instance only pays for

its own tokens, as discussed after Def. 6.1.6, the previous proof can be adapted by

considering a version of wν-PN with finer whole-place operations, which are still a

subclass of the ones considered in [4], so that the result would still apply. Next we

show that we can reduce b-p-soundness and b-p-safety problems for pwf-nets with

non-negative costs, defined in Sect. 6.1.1, to Max -dynamic soundness for prcwf-

nets. Therefore, if we consider non-negative costs, we can prove the decidability

of b-p-soundness (already proved in Prop. 6.1.2 in the case with negative costs

but considering that the path property holds), and decidability of b-p-safety.

Corollary 6.1.8 b-p-safety and b-soundness are decidable for pwf-nets with non-

negative costs, even without the path property.

Proof: Let N be a pwf-net. To decide b-safety it is enough to build a prcwf-

net N ′ by adding to N a single static place s, initially containing one token, two

new places in′ and out′ (the new initial and final places), and two new transitions

tin and tout. Transition tin can move a name from in′ to in whenever there is a

token in s, that is, Ftin(in
′) = {x}, Ftin(s) = {ǫ} and Ftin is empty elsewhere,

and Htin(in) = {x} and empty elsewhere. Analogously, tout can move a name

from out to out′, putting the black token back in s, that is, Ftout(out) = {x}, and

empty elsewhere, and Htout(out
′) = {x}, Htout(s) = {ǫ}, and empty elsewhere. In

this way, the concurrent executions of N ′ are actually sequential. Since there is

no other way in which instances can synchronize with each other (because there

are no more static places) the potential behavior of all instances coincide, and

coincide in turn with the behavior of N . Finally, we take the cost of firing tin

and tout as null, as well as the cost of storing tokens in in′ and out′ for any

transition, and the cost of storing tokens in any place for tin and tout. More

precisely, C(tin) = C(tout) = 0, S(p, tin) = S(p, tout) = 0 for any p ∈ P , and

S(in′, t) = S(out′, t) = 0 for any t ∈ T . In this way, the cost of each instance is

the cost of a run of N . Therefore, N is b-p-safe if and only if N ′ is Max (b+1)-p-

safe. Since weak soundness is decidable for wf-nets [92], we conclude.

2

Av-dynamic soundness

Now we study the next of the concrete priced-soundness problems. Instead of

demanding that the execution of each instance does not exceed a given budget

140 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

••

••

••

••

•

tin tout

s

in′ out′

in out

Nb b b b b b

Figure 6.7: The construction of Cor. 6.1.8

(though the price of one instance depends on the others), we will consider an

amortized, or average price.

Definition 6.1.12 (Av price-predicate) We define the price-predicate Av as

Av(b, A) ⇔ (
∑

x∈A x)/ |A| < b.

Therefore, N is Av(b)-p-safe if in average, the price of each instance does not

exceed b, for any number of instances. Alternatively, we could have a slightly more

general definition, in which we only considered situations in which the number of

instances exceeds a given threshold l > 0. More precisely: Av l(b, A) ⇔ |A| ≥

l → (
∑

x∈A x)/ |A| < b. We will work with Av , though we claim that with fairly

minor changes in our techniques we could also address the slightly more general

price-predicate Av l.

Example 6.1.5 Consider the prcwf-net in Fig. 6.8. The cost of firing t1 is twice

the number of instances in place in when t1 is fired. Therefore, the net is Av(2)-

p-safe, though it is not Max (b)-p-safe for any b ∈ N.

Now suppose that we force t2 to be fired in the first place, t1 in second place, and

then t2 as many times as possible, by adding some static conditions. Moreover,

consider that the cost of firing t1 is three times the number of instances in place

out (instead of twice the number of instances in in) when t1 is fired. Then, if

we consider any run r with two or more instances, in which we fire t1 and t2 in

the beginning, the sum of the prices of the instances of r is 3. Therefore, if we

consider such a run with two instances, the average price is 3÷2 > 1, and then the

net is not Av(1)-p-safe. However, if we consider that the number of instances is

greater than three, the average of the prices always remains under 1, and therefore

the net is Av l(1)-p-safe if we consider any threshold l ≥ 4.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 141

S(in, t1) = 2C(t1) = C(t2) = 0

S(q, ti) = 0 otherwise.

in out

s

• • •

•••

• • •

t2

t1

Figure 6.8: Av -p-safety does not imply Max -p-safety

We can reduce Av(b)-dynamic soundness of a prcwf-net N to (unpriced) dy-

namic soundness of an rcwf-net N b. In order to ensure Av(b)-p-safety, the max-

imum budget we may spend in an execution with n instances is (b ∗ n) − 1. Es-

sentially, the idea of this construction is to add to N new places s1 . . . sk in which

tokens represent the remaining budget, and remove tokens from them when tran-

sitions are fired. Moreover, each transition will have s1 . . . sk as preconditions,

so that if the net has consumed all the budget, then it halts before reaching the

final marking. Therefore, we add b [i] tokens to si each time an instance starts its

execution, for each i. The simulation is “lossy” because of how we manage storage

costs, but it preserves dynamic soundness. The proof of the next proposition gives

a detailed explanation of this construction.

Proposition 6.1.9 Given a prcwf-net N and b ∈ Nk
ω, there is an rcwf-net N b

such that N is Av(b)-dynamically sound if and only if N b is dynamically sound.

Proof: Let k be the price arity of N . We start the construction of N b by

adding to N new static places s1, ..., sk that are initially empty. These new places

store the budget that can be consumed by instances. For that purpose, every

instance adds b[i] tokens to si when it starts. When a transition t is fired, we

remove from si C(t)[i] tokens to cope with firing costs. We will later explain how

to cope with storage costs (notice that N b is an rcwf-net, and in particular it

does not have whole-place operations). Moreover, each transition has s1, ..., sk

as preconditions and postconditions. In particular, we add a final transition tout

that has s1, ..., sk and out as preconditions, and s1, ..., sk and a new place out′,

which works as the final place of N b, as postconditions. Therefore, the net will

deadlock when some si is empty, meaning that it has used strictly more than

the allowed budget. Then, if N is not Av(b)-dynamically sound, N b halts before

reaching the final marking for some execution, and therefore, it is not dynamically

sound. Moreover, if N is Av(b)-dynamically sound, then N b is dynamically sound,

because each place si always contains tokens, and therefore the executions of N b

142 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

•••• ••••

•

tin toutt

s

in′ out′in out

b

Original net

b b b b b b

Figure 6.9: Construction for Av(b)-dynamic soundness

represent executions of N . Fig. 6.9 shows a schema of the reduction for price arity

1.

Now we address the simulation of storage costs. Fig. 6.10 depicts the following

construction. We simulate them in a “lossy” way, meaning that if the firing of t

in N costs v, in the simulation we will remove at most v[i] tokens from si. To do

that, for each place p of N we will add a new place p′. When a transition t is

fired, for each place p we transfer tokens from p to p′, one at a time (transition tp

in the figure), removing at each time S(p, t)[i] tokens from si. We add the same

mechanism for the transfer of tokens from p′ to p and some static conditions to

make sure that if we have started transferring tokens from p to p′ because of the

firing of a transition, we do not transfer tokens from p′ to p because of the same

firing, and the other way around. At any point, the transfer can stop (even if

some tokens have not been transfered), which finishes the simulation of t. Since

we now have two places representing each place p (p and p′), for each transition of

N , we need to add several transitions in order to be able to take (or put) tokens

from p, p′ or both.

Having lossy computations of the cost of a run, if N exceeds the average

budget for some execution and some number of instances, then N b will have a

deadlock when this execution is simulated correctly (meaning that all the tokens

which have to be transfered are indeed transfered). Then, N b is not dynamically

sound. Conversely, if N is Av(b)-dynamically sound (and in particular no run of

N exceeds the average budget), then N b never consumes all the tokens in any si,

and it behaves as N , so that it is dynamically sound.

2

Hence, we obtain the following decidability result.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 143

••

••

••

•••

tt′

t′

tp

p

p’

OK
s

Figure 6.10: Schema of the managing of storage costs assuming S(p, t) = 1

Corollary 6.1.10 Av-dynamic soundness is decidable for proper prcwf-nets.

Ordered prices

So far, we have considered that instances are not ordered in any way, following

directly the approaches in [44, 53]. Nevertheless, we could consider an order

between the instances, and use it to compute the price of a run in such a way

that the relative order between instances matter. A sensible way to do that is to

assume a linear order between instances within a run given by the order in which

they start their execution.

Definition 6.1.13 (Order between instances) Let N be a prcwf-net, and a

and b be two instances in a run r of N . We write a <r b if a is removed from in

in r before b, and a =r b if neither a nor b have been removed from in in r. We

write a ≤r b if a =r b or a <r b.

Then, the order ≤r is a total order over the set of instances in r. In this

situation we can write Id(r) = a1 ≤r · · · ≤r an to denote that a1, ..., an are all the

instances in r, ordered as indicated.

Definition 6.1.14 (Ordered price of a run) Given a run r of a prcwf-net with

Id(r) = a1 ≤r · · · ≤r an we define the ordered price of r as the word Po(r) =

P(a1, r)...P(an, r) ∈ (Nk)∗.

Notice that the previous definition is correct in the sense that whenever a =r b

then we have P(a, r) = P(b, r) = 0. Moreover, the instances of a run are always

ordered as a1 <r · · · <r am < am+1 =r ... =r an.

144 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

With the notion of ordered price, we can consider price-predicates that de-

pend on the order in which instances are fired. Therefore, ordered price-predicates

are predicates over Nk
ω × (Nk)∗. We consider the order ≤∗ over (Nk)∗ given by

w1...wn ≤∗ w1...w
′
m iff n ≤ m and for each 0 < i ≤ n, wi < w′

i. For instance, fol-

lowing [21], we can model situations in which costs in the future are less important

than closer ones.

Definition 6.1.15 (Ds-price predicate) Given 0 < λ < 1, we define the

discounted-sum price-predicate Dsλ as

Dsλ(b, v1...vn) ⇔
n
∑

i=1

λi ∗ vi < b

Example 6.1.6 Let us recall the run of the net N of Fig. 6.3 described in Ex. 6.1.2.

We proved that the net is neither Max (b)-p-safe nor Sum(b)-p-safe for any b ∈ N.

Moreover, the average price of the run is
∑n

i=1 2(i− 1)/n, which equals n− 1, so

that it is not Av(b)-p-safe for any b ∈ N. However, the discounted price of the run

is
∑n

i=1 2(i − 1)λi, with 0 < λ < 1. By using standard techniques, it can be seen

that the limit of those sums is b = 2λ2/(1−λ)2. Moreover, for λ = 1/c with c > 1

that formula simplifies to 2/(c − 1)2. As it is easy to prove that the considered

runs are the most expensive ones of N , it follows that it is Dsλ(b+ 1)-p-safe for

that b ∈ N.

Note that if we consider ≤∗, then Dsλ is downward-closed in its second ar-

gument. Decidability of Dsλ-p-safety remains open, but a weaker version of this

problem, in which we only consider finitely many instances, is decidable.

Definition 6.1.16 (Fds-price predicate) Given 0 < λ < 1 and l ∈ N, we

define the finite-discounted-sum price-predicate

Fds lλ(b, v1...vn) ⇔

min{n,l}
∑

i=1

λi ∗ vi < b

For this finite version of discounted-sum, p-safety is decidable.

Proposition 6.1.11 Let l ∈ N, c ∈ N \ {0} and λ = 1/c. Fds lλ-p-safety is

decidable for prcwf-nets. Fds lλ-dynamic soundness is decidable for proper prcwf-

nets.

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 145

Proof: We reduce Fds lλ-p-safety to coverability for wν-PN. Basically, we

build a new net, in which the first l instances are managed separately, in or-

der to store their weighted prices in places as in the proof of Prop. 6.1.7. We

consider l + 1 copies of the net, one for each of the first l instances, and one

for the rest of the instances, to give the proper weight to the prices that we

store. Let N = 〈P, T, F,H,C, S〉 be a prcwf net. Let us build a new wν-PN

N ′ = 〈P ′, T ′, F ′, G′, H ′〉 as follows:

For each dynamic place p ∈ P , we consider p, p1, . . . , pl in P ′, and for each

t ∈ T , we take t, t1, . . . , tl in T
′. If p 6= in then, for each i ∈ {1, . . . , l}, F ′

t(p) =

F ′
ti(pi) = Ft(p) and H ′

t(p) = H ′
ti(pi) = Ht(p). For each static place s ∈ P , we

consider s ∈ P ′. Moreover, for each t ∈ T and for each i ∈ {1, . . . , l}, F ′
t(s) =

F ′
ti(s) = Ft(s) and H

′
t(s) = H ′

ti(s) = Ht(s). Therefore N ′ has l + 1 copies of the

dynamic part of N , sharing the static part.

We manage separately the places in, in1, . . . , inl, in order to make sure that

the ith copy of the dynamic part of N corresponds with the ith instance that

has started. In particular, when we remove a token from a place ini, we set a

token in ini+1, to make possible the next instance to start. Given t ∈ T such

that Ft(in) 6= ∅ then, for each i ∈ {1, . . . , l}, F ′
t(ini) = F ′

ti(in) = Ft(in) and

for each i ∈ {1, . . . , l − 1}, H ′
ti(ini+1) = ν. Finally, the last instances will be

managed in the same last copy of the net, in which places do not have indexes,

so H ′
tl
(in) = H ′

t(in) = ν.

Now we have the structure for the different copies of the net, we add some

places to store the weighted prices of the first l instances. Let n be the arity of b.

Then, pr1, . . . , prn ∈ P ′ will be places where we store the prices. To give a weight

to each instance, we consider the following:
∑l

i=1 λ
i ∗ vi < b ⇔

∑l
i=1 1/c

i ∗ vi < b ⇔ cl(
∑l

i=1 1/c
i ∗ vi) < cl ∗ b ⇔

∑l
i=1 c

l−i ∗ vi < cl ∗ b.

Then, for each i, we will store the prices of the ith instance with weight cl−i
j as

in the proof of Prop. 6.1.7, that is, we define G′ and H ′ for places pri, considering

G′
ti and H

′
ti as G

′
t and H

′
t in Prop.6.1.7, multiplied by cl−i. Therefore if we prove

that for each run of N ′ and each place prj the total stored price in prj is less than

ci ∗ bj , the predicate Fds lλ(b) will hold for the net N .

Finally, as in Prop. 6.1.7, we add transitions to make all the tokens in each

pri be of the same name, and we just need to prove that no marking m with

m(pri) = {ac
l∗bi} and m(p) = ∅ otherwise (for an arbitrary a ∈ Id) is coverable

in N ′, to prove Fds-safety for λ, b and N .

146 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

2

6.1.4 Complexity

Of course, now that we have some positive decidability results, we would like to

study the complexity of the previous problems. As a preliminary result, we study

the complexity of the safety property for the defined priced predicates, in the case

in which the path property does not necessarily hold. More precisely, we reduce

coverability for ν-PN to each of the previous safety problems, and therefore, they

are at least non primitive-recursive. For that purpose, we introduce the single-

name coverability problem, which has the same complexity as coverability, and

we see that this problem can be reduced to the problem of deciding φ-p-safety,

for each of our predicates.

Definition 6.1.17 We define the single-name-coverability problem as that of given

a ν-PN N with initial marking m0, and mf a marking with a single identifier,

deciding whether mf can be covered in N .

Single-name-coverability is a problem more restricted than coverability, which

is decidable for ν-PN [80]. Next we prove that its complexity is the same as that

of general coverability.

Proposition 6.1.12 The single-name-coverability problem has non primitive re-

cursive complexity.

Proof: We reduce coverability, which has non primitive recursive complex-

ity [80], to single-name-coverability. Let mf be the final marking. It is enough

to add a new transition that can be fired whenever mf is covered, thus putting

a (black) token in a new place. Thus, mf can be covered in the original ν-PN iff

the marking with a black token in the new place can be covered.

2

We prove that single-name-coverability for ν-PNs can be reduced to the some

of the previous safety problems, and hence, these problems are non primitive

recursive.

Proposition 6.1.13 Single-name-coverability problem for ν-PNs can be reduced

to each of the following problems for prcwf-nets without the path property:

6.1. PRICED RESOURCE-CONSTRAINED WORKFLOW NETS 147

• Max(1)-p-safety.

• Sum(1)-p-safety.

• Av(1)-p-safety.

• Ds(2)-p-safety.

Proof: Let N be a ν-PN, and a marking mf of N with a single name. In order

to reduce the coverability of mf to the previous problems, we first build a new

rcwf-net N ′ which simulates the behavior of N , and then, we will add the prices

in three different ways, building three different prcwf -nets, N1, N2 and N3, in

order to reduce coverability of mf toMax(1)-p-safety, Av(1)-p-safety and dsλ(2)-

p-safety. In fact, in our construction the marking mf of N can be covered if and

only if the previous problems have a negative answer.

Let us first build the net N ′. In the proof of undecidability of dynamic sound-

ness in Ch. 5, given a ν-PN N , we show how to build a rcwf -net N ′ such that,

considering every number of instances, it simulates all possible runs of N . The

main idea of how we handle name creation, which is not permitted in rcwf-nets,

is by considering the place in as a name storage. Then, when a transition with

a ν is fired in N , in N ′ a name is taken from in, and put in the proper place.

Therefore, as we consider runs of N ′ with any number of names in in, all possible

runs of N are represented. Moreover, we add to N ′ a new transition tf which has

the marking mf as precondition and a place p in which every name that is taken

from in, is stored.

Finally, we assign the prices to N ′. In fact, the only transition with storage or

firing costs will be tf . Then, a run will have a price greater than zero if and only if

tf is fired in r, so that mf can be covered if and only if there is a run of N ′, with a

price greater than zero. Now we define the three different prices, which will reduce

coverability to Max(1)-p-safety, Av(1)-p-safety and Ds(2)-p-safety respectively.

• Max(1)-p-safety: C(tf) = 1 and S(q, tf) = 0 for each place q. If mf is

covered in N , there is a run r of N ′ in which tf is fired, and then, the price

of r is 1. Conversely, if mf is not covered in N , tf cannot be fired in any

run of N ′, and the price of any run is 0.

• Av(1)-p-safety: C(tf) = 0, S(p, tf) = 2 and S(q, tf) = 0 for each place

q 6= p. If mf is covered in N , there is a run r of N ′ in which tf is fired,

and then, the price of each instance in r is 2. Therefore, if n is the number

148 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

of instances which have started in r, the average sum of the price of r is

2 ∗ n/n = 2 > 1. The other implication is analogous to the previous case.

• Ds(2)-p-safety: C(tf) = 0, S(p, tf) = 1/λ and S(q, tf) = 0 for each place

q 6= p. The proof is analogous to the previous one.

2

Hence, we obtain the following complexity result as a corollary.

Corollary 6.1.14 Max(1)-p-safety, Av(1)-p-safety and Ds(1)-p-safety have non

primitive-recursive complexity.

6.1.5 Relating price predicates

In this subsection we study the relations between the previous price predicates.

More precisely, for each pair of predicates φ and ψ, we will study whether φ(b)-

dynamic soundness entails ψ(b′)-dynamic soundness for some b′. Moreover, we

will try to set the relation between these two bounds.

First of all, let us focus on the prcwf-nets of Fig. 6.3 and Fig 6.8. As we

showed in the previous examples, the first of these nets proves that a net may be

Dsλ(b)-dynamically sound for a certain b, but not Av-dynamically sound, Max-

dynamically sound nor Sum-dynamically sound for any bound. Analogously, the

second net is Av(b)-sound for some b ∈ N, but not Dsλ-dynamically sound, Max-

dynamically sound nor Sum-dynamically sound for any bound.

The next propositions set the remaining relations:

Proposition 6.1.15 Let N be a Sum(b)-dynamically sound prcwf-net for some

b ∈ N. Then, N is also Max(b)-dynamically sound, Av(b)-dynamically sound and

Dsλ(b)-dynamically sound for all λ.

Proof: If we prove that Sum(b) → Max(b), Av(b), Dsλ(b), then we are done

(Prop.6.1.4). Let A = {x1, . . . , xn} be a set of prices which satisfies Sum(b), that

is,
∑

x∈A x < b. Then, since we are considering non-negative prices, for all a ∈ A,

a ≤
∑

x∈A x < b, and therefore A satisfies Max(b). Moreover,
∑

x∈A x/n ≤
∑

x∈A x ≤ b and if 0 < λ < 1 then
∑n

i=1 λ
i ∗ xi <

∑

x∈A x < b. Then A satisfies

Av(b) and Dsλ(b) too.

2

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 149

Sum Max Ds Av

Sum X X X X

Max × (Ex. 6.1.2) X 2� X

Ds × (Fig. 6.3) × (Fig. 6.3) X × (Fig. 6.3)

Av × (Fig. 6.8) × (Fig. 6.8) × (Fig. 6.8) X

Table 6.1: Relations between predicates

Proposition 6.1.16 Let N be a Max(b)-dynamically sound prcwf-net for some

b ∈ N and 0 < λ < 1. Then, N is also Av(b)-dynamically sound and Dsλ(b
′)-

dynamically sound, where b′ = λ ∗ b/(1 − λ). In particular, N is Ds1/2(b)-

dynamically sound.

Proof: Let us prove that Max(b) → Av(b) and Max(b) → Dsλ(b
′). Let A =

{x1, . . . , xn} be a set of prices which satisfies Max(b), that is, for all x ∈ A x < b.

Let m = max{x1, . . . , xn}. Then,
∑

x∈A x/n ≤ n ∗m/n = m < b and therefore

A satisfies Av(b). Moreover, if 0 < λ < 1 then
∑n

i=1 λ
i ∗ xi ≤

∑n
i=1 λ

i ∗ m <
∑n

i=1 λ
i ∗ b ≤ λ ∗ b/(1− λ), so A satisfies Dsλ(b

′).

2

Finally, Table 6.1 summarizes all the relations between the different predicates.

AX symbol in row φ1 and column φ2 means that φ1(b)-dynamic soundness implies

φ2(b)-dynamic soundness; a 2� symbol means that the implication holds possibly

for a different b; a × means that the implication does not hold.

6.2 Priced-timed resource-constrained workflow nets

In the previous model we added prices to rcwf-nets supposing that time elapsed

only while firing transitions. This extension could be useful to model systems in

which no storage costs are produced between actions. However, sometimes we

need to represent systems in which the waiting times between actions produce

storage costs. Moreover, these delays could be restricted to values in concrete

intervals of time. In order to model such systems, we define another extension

of rcwf-nets by using the ν-PTdPN model which we defined in Chapter 4, that

is, by adding clocks to tokens and time restrictions to the firing of transitions.

Therefore, the storage costs will be produced in the delays instead of while firing

transitions. Let us define the new model formally.

Definition 6.2.1 (Priced-timed rcwf-nets) A priced-timed rcwf-net (ptrcwf-

net for short) is a ν-PTdPN N = 〈P, T, In,Out, T ime,Cost〉 such that:

150 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

• If we define F,H : T → (P × Var)⊕ such that for each t ∈ T , p ∈ P

and x ∈ Var, F (t)(p, x) = Int(x)(p) and H(t)(p, x) = Outt(x)(p), then

〈P, T, F,H〉 is an rcwf-net called the underlying rcwf-net of N .

• For each t ∈ T , Timet(ǫ) = ([0,∞) , [0,∞)).

Intuitively, a ptrcwf-net is a ν-PTdPN from which we get an rcwf-net by

removing time constraints and prices. Moreover, the age of the resources is not

constrained in the firings. The behavior of this net is given by the semantics of

its ν-PTdPN . However, we compute the prices of the runs in a different way, in

order to be able to apply the price predicates to them. Instead of putting together

the prices of all instances, we will compute the prices of the runs in a similar way

as done for prcwf-net, by considering the multiset of costs of the instances.

Definition 6.2.2 (Price of an instance) We define the price of an instance

a ∈ Id(m0) in a run r =M0
δ0−→M ′

0

t1(σ1)
−−−−→M1

δ1−→M ′
1

t2(σ2)
−−−−→M2 . . .M

′
n−1

tn(σn)
−−−−→

Mn of a ptrcwf-net as

P(a, r) =
n
∑

i=1
σi(x)=a

Cost(ti) +
n−1
∑

i=1
p∈P

δi ∗ Cost(p) ∗m
i
a(p),

where a:(ma
i , r) is an instance in Mi for some r ∈ R≥0.

Now, in order to study the decidability issues for this extension, we need to

define the price of a run, the soundness problem and the safety problem for the

different price predicates. Initially, we wanted to consider the same definitions as

for prcwf-nets. However, we found several drawbacks which made these definitions

not appropriate for ptrcwf-net. We now discuss these drawbacks and explain the

reasons that led us to consider the following definitions.

The behavior of ptrcwf-nets is constrained by the intervals labelling their arcs.

For example, focus on the net of Fig. 6.11. Note that if we start a run by elapsing

more than 1 unit of time, the run gets stuck, and the desired final marking cannot

be reached. This will happen whenever there is an interval with upper bound

b 6= ∞ labelling the only outgoing arc of a place. Therefore, the standard concept

of soundness is not appropriate in our new model, since delaying too much time

always causes not being able to finish runs correctly. As we do not have mecha-

nisms as urgent transitions to ensure that the system does not delay too much,

we cannot avoid this situation. In fact, a necessary condition for soundness would

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 151

In Out
t

x, (0, 1] x, [1, 1]

Figure 6.11: Problems with standard soundness for ptrcwf-nets.

be the existence of a path from every reachable place to out without “bounded”

outgoing arcs from places, which is certainly too strong, because it effectively

removes time constraints.

A solution to the previous problem could be considering a version of ptrcwf-net

in which the elapsing of time is forbidden if some token becomes too old because

of it. In this case, we could keep the previous definition of soundness. However,

this option amounts to the addition of urgency to our model, which quickly leads

to undecidability for most safety problems.

Summing up, we think that considering the soundness of the underlying rcwf-

net instead is most suitable. Therefore, from now on, we only consider ptrcwf-nets

with a proper underlying rcwf-net which is dynamically-sound (we require that

the net is proper in order to ensure decidability of dynamic soundness of the

underlying rcwf-net).

Although we have discarded considering a timed version of soundness, we can

still check whether every run can always finish without consuming more than a

given upper bound. Hence, we will focus on studying the decidability of φ-p-safety

for the different price predicates. However, the definition of φ-p-safety for ptrcwf-

net is also not appropriate for our new model, as happened with soundness. Focus

again on the net of Fig. 6.11, which has a dynamically sound underlying rcwf-net,

as we require. Suppose that the storage cost of place in is greater than zero, and

consider the same run as before, in which an instance gets stuck in in because

of delays. The price of this instance grows unboundedly, but the instance cannot

properly complete.

In order to compute the price of a run, we will only consider the prices of

the instances that have finished their task, that is, the names which have reached

the place out. In that way, if a net is safe, we ensure that the “good” runs, in

which the instances finish correctly, do not spend more than the given budget.

Moreover, with this definition, timed restrictions can be seen in two ways: as a

way to represent the time constraints of the systems, or a way to ensure that if

we restrict the behavior of our system to satisfy these constraints, then we will

152 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

not exceed the given budget.

Definition 6.2.3 (Price of a run) Given a run π of a ptrcwf-net starting in

M0 and finishing in Mf , we define the price of π as the multiset

P(π) = {P(a, r) | a ∈ Id(M0), a:({out}, r) ∈Mf} ∈ R≥0
⊕.

Note that, since we consider ν-PTdPN s as a base for the definition of ptrcwf-

nets, the price of a run is a multiset of real numbers instead of a multiset of tuples

of natural numbers. Also notice that, as we are only considering nets with proper

and dynamically sound underlying rcwf-net, and the time constraints only restrict

the behaviors, if a token of an instance reaches the place out at a marking m, then

there are no more tokens of this name at m.

Now, we define safety for ptrcwf-nets, which is analogous as φ-p-safety, con-

sidering the new definition of price of a run, that is, only taking into account the

finished instances. As previously, given k ∈ N and M0 ∈ P⊕
S , we consider Mk

0 the

initial marking which contains a M0(s) black tokens of age 0 in each static place

s ∈ PS , k pairwise different names in in with age 0, and d is empty for every

d ∈ PD \ {in}.

Definition 6.2.4 (φ-pt-safety) Let φ be a price-predicate and b ∈ Nω. We say

that the ptrcwf-net N is φ(b)-pt-safe for M0 ∈ P⊕
S if for each j > 0, every run of

N starting in M j
0 , satisfies φ(b).

Now, we study the decidability of φ-pt-safety for some of the price predicates

defined in the previous section. We start by proving the decidability of Max -pt-

safety (the definition of the predicate Max is the same as for the previous model).

We do it by reducing this problem to the safety problem for ν-PTdPN . The main

idea of the construction, depicted in Fig. 6.12 is to build a ν-PTdPN with two

copies of the dynamic places and transitions of the ptrcwf-net. Then, we select

an instance which runs in one of the copies of the net. The rest of the instances

run in the other copy. The firing and storage costs associated to the transitions

and places of the copy of the net in which all the instances but one run are 0, and

the costs of the other part of the net are like in the original ptrcwf-net. Hence,

the price of the runs of the ν-PTdPN will only take into account the selected

instance. Then, asking for Max (b)-pt-safety in the original net is equivalent to

asking for b-safety in the built ν-PTdPN with the final marking which only marks

the place out of the copy of the isolated instance with one token.

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 153

p0

p1

in

in′

out

out′

spsim

t0

ti

ts

[0, 0]

ν, [0, 0]

[0, 0]

[0, 0]

ν, [0, 0]
ND

N ′
D

Figure 6.12: Max pt-safety is decidable.

Proposition 6.2.1 Max-pt-safety is decidable for ptrcwf-nets with a proper un-

derlying rcwf-net which is dynamically-sound.

Proof: As mentioned before, we reduce this problem to the safety problem for

ν-PTdPN . Let N = 〈P, T, In,Out, T ime,Cost〉 be a ptrcwf-nets with a proper

and dynamically-sound underlying rcwf-net, b ∈ N and M ∈ P⊕
S . Without lost

of generality, we suppose that all the incoming arcs of place out are labelled

by [0, 0], that is, the tokens set in out are of age 0 initially. Let us consider

a new variable ǫ2, and a new identifier ∗ /∈ Id. We build a ν-PTdPN N ′ =

〈P ′, T ′, In′, Out′, T ime′, Cost′〉 as follows:

• P ′ = P ∪ {p′ | p ∈ PD} ∪ {p0, p1, psim}.

• T ′ = T ∪ {T ′ | t ∈ T} ∪ {t0, ti, ts}.

• Int0(ǫ2) = {p0}, Inti(ǫ2) = {p1} and Ints(ǫ2) = {p1}. Moreover, for each

t ∈ T :

– In′t(x) = Int(x), In
′
t(ǫ) = Int(ǫ), In

′
t(ǫ2) = {psim}.

154 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

– For each pd ∈ PD, In
′
t′(x)(p

′
d) = Int(x)(pd), for each ps ∈ PS ,

In′t′(ǫ)(ps) = Int(ǫ)(ps), In
′
t′(ǫ2) = {psim} and In′t′(y)(p) = 0 oth-

erwise.

• Analogously, Outt0(ǫ2) = {p1}, Outt0(ν) = {in′}, Outti(ǫ2) = {p1},

Outti(ν) = {in} and Outts(ǫ2) = {ps}. Moreover, for each t ∈ T , x ∈ Var:

– Out′t(x) = Outt(x), Out
′
t(ǫ) = Outt(ǫ),Out

′
t(ǫ2) = {psim}.

– For each pd ∈ PD Out′t′(x)(p
′
d) = Outt(x)(pd), for each

ps ∈ PS , Out′t′(ǫ)(ps) = Outt(ǫ)(ps), Out′t′(ǫ2) = {psim} and

Out′t′(y)(p) = 0 otherwise.

• For each t ∈ T , Time′t(x) = Time′t′(x) = Timet(x). Timet0(ǫ2) =

Timeti(ǫ2) = Timets(ǫ2) = Timet0(ν) = Timeti(ν) =

([0, 0], [0, 0]). Time′t(y) = ([0,∞) , [0,∞)) otherwise.

• For each pd ∈ PD, Cost
′(p′d) = Cost(pd). Analogously, for each t ∈ T ,

Cost′(t′) = Cost(t). Cost′(t) = 0 and Cost′(p) = 0 otherwise.

Let us consider the initial marking M0 with a token of name ∗ and age 0

in place p0, M(s) black tokens of age 0 in each static place s ∈ PS and empty

elsewhere. Note that if some time elapses between the start of a run and the

firing of ts then ts cannot be fired, and the simulation does not start. Otherwise,

after the firing of t0, a certain number n of firings of ti and a firing of ts, the

simulation of a run of the workflow with n + 1 instances of age 0 starts, where

the n instances created by the firings of ti run in a copy of the dynamic part of

the net without prices, and the other instance, created by the firing of t0, runs in

a copy of the net for which the prices are the same as the prices in the original

net. Note that the preconditions, postconditions and time constrains of the two

copies of the dynamic part in the new net are the same as in the original net,

and we start in a marking representing Mn+1. Hence, we simulate a run with

n + 1 instances. Let us suppose that the name of this first instance is a, and

the marking reached after firing ts is M1. Then, we have that the price of a run

r =M1
l1−→M1

l2−→ . . .
lk−1
−−−→Mk of N ′ is

Cost(r) =
k−1
∑

i=1

Cost(Mi
li−→Mi+1) =

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 155

k−1
∑

i=1,li∈R≥0

Cost(Mi
li−→Mi+1) +

k−1
∑

i=1,∃t∈T,li=t′

Cost(Mi
li−→Mi+1) =

k−1
∑

i=1,li∈R≥0

li ∗ (
∑

p∈P

∑

a:(m,r)∈Mi

m(p′) ∗ Cost(p′)) +
k−1
∑

i=1,∃t∈T,li=t′

Cost(li) = P(a, r′),

where r′ is the run of N , in which each transition of the form t′ for some t ∈ T

fired in r is replaced by the transition t. Note that the instance a can represent

any instance in N , and as the underlying rcwf-net of N is proper and dynamically-

sound, if a token of a reaches the place out′ at a marking m, then there are no

more tokens of this name at any other place of m. Therefore, N is Max (b)-pt-safe

for initial static marking M0 if and only if the price of every run of N ′ starting

from M0 and ending by a marking which marks out′ is under b, that is, N ′ is

b-safe for the pair of markings M0,Mf , where Mf is the marking with only one

token of age 0 in place out′.

2

The decidability of Sum-pt-safety and Av -pt-safety are still open for ptrcwf-

nets. In order to tackle the discounted sum predicate, we need to make an alter-

native definition of the ordered price of a run for ptrcwf-nets. The reason is the

same as the one for considering and alternative version of the price of a run: if

we consider the prices of all the instances running in the net, without requiring

them to have finished, then the discounted sum of the costs of the run may grow

unboundedly just because of delayings. We consider the order between instances

in Def. 6.1.13. However, for the ordered price of a run of a ptrcwf-net, we give

an alternative definition which only consider the instances that have reached the

place out. Formally:

Definition 6.2.5 (Ordered price of a run for ptrcwf-nets) Given a run r

of a ptrcwf-net with Id(r) = a1 ≤r · · · ≤r an, if af1 ≤r af2 . . . ≤r afk are the

instances that reach the place out in r, then we define the ordered price of r as

the word Po(r) = P(af1 , r) . . .P(afk , r) ∈ (R≥0)
∗.

With this definition of ordered price, we can consider the predicates Dsλ and

Fdsλ as in the previous section. Decidability of Dsλ-p-safety remains open. How-

ever, we can tackle the decidability of Fds-pt-safety. Again, we perform a reduc-

tion to safety for ν-PTdPN , by merging the ideas of the previous proof and the

156 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

in1

in2

inl

in

out1

out2

outl

out

p1

p2

pl

pl+1

p0

ts

t0

t1

t2

tl

t

ν, [0, 0]

ǫ2, [0, 0]

ǫ2, [0, 0]
N1

D

N2
D

N l
D

N l+1
D

...
...

...

Figure 6.13: Fds pt-safety is decidable.

proof of decidability of Fds-p-safety (Prop. 6.1.11). Given N a ptrcwf-net and

l ∈ N, if we want to check Fds lλ-pt-safety for some λ, we consider l + 1 different

copies of the dynamic part of the net and an additional copy without the place

out. A different instance will run in each of the first l copies, and the rest of the

instances will run in the two remaining ones. More precisely, the instances which

start before the lth selected instance will run in the copy without place out, in

order to avoid the runs in which these instances finish before the selected ones.

Moreover, the costs of the ith copy (where i ≤ l) will be the costs of the original

net, weighted by (1/λ)l−i, in order to obtain the total cost proportional to the

discounted sum. Of course, the costs of the two last copies will be 0. In that

way, we will reduce Fds lλ-pt-safety to (1/λ)l ∗ b-safety of the new net we have

built. Fig. 6.13 represents this construction (we have omitted some parts of the

construction for simplicity).

Proposition 6.2.2 Fds-pt-safety is decidable for ptrcwf-nets with a proper un-

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 157

derlying rcwf-net which is dynamically-sound.

Proof: We reduce this problem to safety for ν-PTdPN . Let N = 〈P, T, In,

Out, T ime,Cost〉 be a ptrcwf-nets with a proper and dynamically-sound under-

lying rcwf-net, an initial static marking M0 ∈ P⊕
S , l ∈ N, b ∈ N and 0 < λ < 1.

Again, we consider a new variable ǫ2 /∈ Var, and a new identifier ∗. We build a

ν-PTdPNN ′ = 〈P ′, T ′, In′, Out′, T ime′, Cost′〉 as follows:

• P ′ = P\{out}∪ {p1, . . . , pl, pl+1 | p ∈ PD}∪ {p0, p1, . . . , pl, pl+1}, that is, we

consider the original places different from out, l + 1 copies of the places of

the dynamic part of the net and some accessory places.

• T ′ = T\{t | out ∈ Outt(x)}∪{t
1, . . . , tl+1 | t ∈ T}∪{t0, ts}∪{tres1, . . . , tresl}∪

{t1
′
, . . . , tl

′
| t ∈ T, in ∈ Int(x)}, that is, we consider a copy of the tran-

sitions of the net which do not add any token to out, l + 1 copies of the

transitions of the net, l transitions tres1, . . . , tresl, l additional copies of the

initial transitions of the net and two more transitions t0 and ts.

• In′t0(ǫ2) = {p0} and In′ts(ǫ2) = {p0}. For each i ∈ l+, In′tresi(x) = {outi}.

For each t ∈ T :

– Suppose out /∈ Outt(x). Then, In′t(ǫ) = Int(ǫ) and if in /∈ Int(x)

then In′t(x) = Int(x). Otherwise, for each i ∈ l+, In′
ti′
(ǫ2) = {pi} and

In′
ti′
(x) = {in}.

– For i ∈ l+ and q ∈ PD, In
′
ti
(x)(qi) = Int(x)(q), In

′
ti
(ǫ) = Int(ǫ) and if

Int(x) = {in} then In′
ti
(ǫ2) = {pi}.

– In′
tl+1(ǫ) = Int(ǫ). If q ∈ PD, q 6= in then In′

tl+1(x)(q
l+1) = Int(x)(q).

In′
tl+1(x)(in) = Int(x)(in). If Int(x) = {in} then In′

tl+1(ǫ2) = {pl+1}.

and In′t′(y) = ∅ otherwise.

• Out′t0(ν) = {in}, Out′t0(ǫ2) = {p0} and Out′ts(ǫ2) = {p1}. For each i ∈ l+,

Out′tresi(x) = {outi}. For each t ∈ T :

– Suppose out /∈ Outt(x). Then Out′t(ǫ) = Outt(ǫ). Moreover, if in /∈

Int(x) then Out′t(x) = Outt(x). Else, for each i ∈ l+, Out′
ti′
(x) =

Outt(x) and Out
′
ti′
(ǫ2) = {pi}.

– For i ∈ l+, q ∈ PD, Out
′
ti
(x)(qi) = Outt(x)(q), Out

′
ti
(ǫ) = Outt(ǫ).

Moreover, if Int(x) = {in} and i ∈ l+ then Out′
ti
(ǫ2) = {pi+1}.

158 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

– Out′
tl+1(ǫ) = Outt(ǫ). For each q ∈ PD, Out

′
tl+1(x)(q

l+1) = Outt(x)(q).

Moreover, if Int(x) = {in} then Out′
tl+1(ǫ2) = {pl+1}.

and Out′t′(y) = ∅ otherwise.

• Time′t0(ν) = Time′t0(ǫ2) = Time′ts(ǫ2) = ([0, 0], [0, 0]). For each i ∈ l+,

Time′tresi(x) = ([0,∞), [0, 0]). If t ∈ T then Time′t(x) = Time′t1(x) = . . . =

Time′
tl+1(x) = Timet(x), Time

′
t(ǫ) = Time′t1(ǫ) = . . . = Time′

tl+1(ǫ) =

Timet(ǫ), if in ∈ Int(x) then Time′
t1′
(x) = . . . = Time′

tl′
(x) = Timet(x)

and Time′t′(y) = ([0,∞) , [0,∞)) otherwise.

• pd ∈ PD, and i ∈ l+ Cost′(pid) = Cost(pd) ∗ (1/λ)l−i. Analogously, for

each t ∈ T , Cost′(ti) = Cost(t) ∗ (1/λ)l−i. Cost′(t′) = 0 and Cost′(q) = 0

otherwise.

We consider the initial marking with an instance ai of age 0 in each place of

the form ini, the static places marked as in M0 ∈ P⊕
S , a token of name ∗ in place

p0 and empty elsewhere. Note that in the simulation, we can add any amount

of tokens to place in, so we can simulate any amount of instances greater that l

running in the net. Moreover, this instances can start before, after or between

the instances represented in the l selected copies. Indeed, the instances that start

before or between the selected copies are managed by the copy of the net without

the place out (and therefore, we force that they do not finish), and the instances

that start after the selected copies are managed in the copy l+ 1 of the net. The

price of any run r =M1
l1−→M1

l2−→ . . .
lk−1
−−−→Mk of N ′ is

Cost(r) =
∑

i∈k−1+

Cost(Mi
li−→Mi+1) =

∑

i∈k+|li∈R≥0

Cost(Mi
li−→Mi+1) +

∑

i∈k+|∃t∈T,j∈l+,li=tj

Cost(Mi
li−→Mi+1).

If li ∈ R≥0 then:

Cost(Mi
li−→Mi+1) =

∑

p∈P

∑

j∈l+

∑

a:(m,r)∈Mi

((1/λ)l−j ∗ Cost(p) ∗ li ∗m(pj)),

and if there are t ∈ T , j ∈ l+ with li = tj , then

Cost(Mi
li−→Mi+1) = (1/λ)l−j ∗ Cost(t).

6.2. PRICED-TIMED RESOURCE-CONSTRAINED WORKFLOW NETS 159

Therefore, the cost of r in N ′ is the sum of the cost of each instance aj ,

weighted by (1/λ)l−j . Moreover, note that if for i ∈ l+, ci ∈ R≥0, then:

l
∑

i=1

λi ∗ ci < b⇔
l

∑

i=1

(1/λ)i ∗ ci < b⇔

(1/λ)l(
l

∑

i=1

λi ∗ ci) < (1/λ)l ∗ b⇔
l

∑

i=1

(1/λ)l−i ∗ ci < (1/λ)l ∗ b.

Finally, note that each instance ai in N ′ cannot start if the place pi is not

marked, and when it is removed from ini a token is added to place pi+1. Hence,

we force that an instance ai cannot start if the previous instance has not started

yet. Therefore, we ensure that the order in which we weight the prices of the

instances is the correct one.

Moreover, note that if an instance ai has reached its corresponding final place

outi, then transition tresi can be fired, setting the age of ai to 0. Hence, if we

prove that N ′ is safe for b = (1/λ)l and the final marking Mf which marks each

place of the form outi for some i ∈ l+, with a token of a different instance ai with

age 0, then we are proving that the ordered price of every run of N in which l

instances reach the place out, satisfies Fds lλ(b). However, this would not ensure

that N is Fds lλ(b)-pt-safe, because we are missing the runs in which less that l

instances finish correctly, that may not satisfy the price predicate. Nevertheless,

it is not difficult to fix this problem. We just have to consider safety for the l

ν-PTdPN s which only consider the first 1, 2, . . . , l copies of the dynamic part of

the net in N ′, with the same temporal restrictions and costs as N ′. Hence, if all

of these nets are safe for b = (1/λ)l and the final marking which marks each place

of the form outi, for some i ∈ l+, with a token of a different instance ai, then N

is Fds lλ(b)-pt-safe.

2

Unfortunately, the problems of Sum-pt-safety and Av -pt-safety are still open

for ptrcwf-nets, even with a proper and dynamically-sound underlying rcwf-net.

The finite version of these problems could be proved to be decidable by applying

the same techniques as in the previous proofs, that is, by building the same number

of copies of the dynamic part of the net as the number of instances that we need

to consider for the price, and adding their prices accordingly to the price predicate

we are considering. However, the finite versions of these problems are not very

160 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

interesting for Sum and Av , so that we will not discuss them further.

6.3 Priced rcwf-nets in practice

Studying the decidability of a problem is only the first step towards the imple-

mentation of a tool for its verification that works in practice. Despite the good

decidability results we have achieved, the complexity of the problems we have

studied is too high to directly implement algorithms for them that terminate in

a reasonable time in all cases. Although in this thesis we focus on the theoretical

decidability aspects of these problems, in this section we discuss some ideas about

how we could tackle these problems in a more practical way in order to show that

the models we have defined can still be useful and interesting in practice.

There are already plenty of tools, such as Woflan [96, 102], YAWL [91], Wolf-

gang (http://doku.telematik.uni-freiburg.de/wolfgang) or TAPAAL [52] which ad-

dress the analysis of timed Petri nets, workflows, resource-constrained workflows

and timed workflows. Now, we sketch how we could adapt the algorithms in these

tools to give (partial) solutions to our problems.

Suppose we have an efficient algorithm to solve a certain problem for TdPN or

timed workflows, as the algorithms in TAPAAL, for example. We can consider

a bound b for the number of instances, that is, considering only runs with b or

less instances. Then, if we want to solve the same problem for a ν-lsPN or a

ptrcwf-net, we could adapt the previous algorithms in order to analyze our nets

by building b different copies of the net, handling each instance in a different copy

and simulating the creation of a new instance by the addition of a new token to a

copy that has not been used before. In that way (but taking care of the particular

issues of the problems and models we consider), we could solve the same prob-

lems without significantly increasing the complexity of the algorithms, assuming

a bound for the number of instances. Moreover, as many of the algorithms consist

in performing forward searches, in case we reach a certain marking which enables

a transition that creates a new instance, but we have already used the b copies

of the net, we could add a message to the result of the algorithm informing that

we could have explored markings with more instances, and suggesting to run the

algorithm providing a greater bound. Of course, if the net is bounded on the num-

ber of instances and we provide enough copies of the net, the algorithm would

return a total solution for the problem. Next, we show an example of a possible

application of the previous idea:

6.3. PRICED RCWF-NETS IN PRACTICE 161

Example 6.3.1 A timed workflow net is a TdPN such that if we remove the time

constraints then we obtain a workflow net. The concept of (weak) soundness is

defined analogously as for workflow nets: A workflow is sound if we can reach

the final marking with a token in out from every marking M which is reachable

from the initial marking with only a token in in. The algorithm in [64] studies the

soundness of discrete-timed workflows and returns the minimum time that has to

be spent to reach the final state. These algorithm is the following one:

1 INPUT: A timed workflow net N = 〈P, T, F,H〉 with in, out ∈ P .

2 OUTPUT: ‘‘true’’ together with the minimum execution time if N is sound;

‘‘false’’ otherwise.

3 BEGIN A marking M has an (initially emptyset) set of its parents

M.parents and a minimum execution time M.min (initially ∞);

Min := {(in, 0)}; Waiting := {Min}; Min.min = 0; Reached :=Waiting;

Final := ∅;

4 while Waiting 6= ∅ \textbf{do}

5 Remove some marking M from Waiting with the smallest M.min.

6 for each M ′ s.t. M
1
−→M ′ or M

t
−→M ′ for some t ∈ T do

7 M ′
c := cut(M ′); M ′

c.parents :=M ′
c.parents ∪ {M};

8 if M
1
−→M ′ then M ′

c.min =MIN(M ′c.min,M.min+ 1);

9 else M ′
c.min =MIN(M ′

c.min,M.min);

10 if |M ′
c(out)| ≥ 1 then

11 if M ′
c is a final marking then Final := Final ∪ {M ′

c};

12 else return false;

13 else

14 if M ′
c /∈ Reached then

15 if M ′
c is a deadlock then return false;

16 if ∃M ′′ ∈ Reached with cut(M ′′) ⊑ cut(M ′
c)

then return false;

17 Reached := Reached ∪ {M ′
c}; Waiting :=Waiting ∪ {M ′

c};

18 Waiting := Final;

19 while Waiting 6= ∅ do

20 Remove some marking M from Waiting;

162 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

21 Waiting :=Waiting ∪ (M.parents ∩Reached);

22 Reached := Reached \M.parents;

23 if Reached = ∅ then

24 time := ∞; for each M ∈ Final do time =MIN(time,M.min);

25 return true and time;

26 else

27 return false;

28 END

where, given a markingM , cut(M) is the marking obtained by replacing the tokens

in M older than max by tokens of age max+1.

Intuitively, the algorithm performs a forward search on the markings (lines

from 4 to 17) abstracting the ages older than max to max+1, and storing in

Waiting and Reached the discovered markings and the already explored markings,

respectively. At the same time, the algorithm computes the shortest path between

the initial marking and the reachable markings (lines 8 and 9). The algorithm

terminates if it reaches a marking covering an already discovered marking (that

is, if the workflow is not bounded). If we reach a final marking with a token in out

which is not a final marking, the algorithm returns “false” (line 12). Otherwise,

the marking is added to Final. If the marking we reach does not mark out and

it is a deadlock then the algorithm returns “false” too (line 15). If the algorithm

does not halt in the first phase, then it performs a backward search from the set

Final, to check if there is a path from every reachable marking to a final marking

(lines from 19 to 22). In that case, the algorithm returns “true” and the minimum

execution time.

A first step to adapt this algorithm for ptrcwf-nets with runs with a maximum

number of instances b is to consider a new TdPN Nb with b copies of the dynamic

part of the net, all sharing the static part. Moreover, we add two new places in

and out, which work as the initial and final place of the workflow we want to build,

respectively. Then, for each i ∈ {1, . . . , b} we add a transition, which removes a

token from in and adds a token in the initial place of the i first copies of the net.

Analogously, for each i ∈ {1, . . . , b}, we add a transition which removes a token

from the i first copies of the net and adds a token in out.

In that way, we have built a new timed workflow net without names. The

algorithm cannot be applied to this net yet, mainly because of the storage costs,

which do not need to be bounded in order to ensure soundness. However, a possible

solution to this problem could be abstracting the value of the costs that may grow

6.3. PRICED RCWF-NETS IN PRACTICE 163

unboundedly by ω.

Moreover, we could also adapt this algorithm in order to compute the max-

imum cost of a complete run, hence obtaining the safety or unsafety of the net

for the sum. It would be enough to compute the maximum cost of reaching a

marking instead of the minimum time spent in reaching it, that is, replacing

M ′
c.min =MIN(M ′c.min,M.min+1) by M ′

c.max =MAX(M ′c.max,M.max+

SC(M) in line 8, where SC(M) are the storage costs produced by a delay of

1 unit of time from M , and M ′
c.min = MIN(M ′

c.min,M.min) by M ′
c.max =

MAX(M ′
c.max,M.max + FC(t)) in line 9, where FC(t) are the firing costs of

the transition fired to reach M ′.

Another characteristic of some of the algorithms that are already used that

we would need to adapt (as the previous example) is their managing of discrete

time instead of real time. Since we have defined discrete models of regions which

represent our (real timed) models in a good way to study safety properties, we

could study these properties over regions instead of over the initial models. For

example, in the case of ν-PTdPN , we have proved that in order to study the safety

problem for them, we only need to focus on the continuous firings which are close

to an integer. Hence, we could try to adapt the algorithms for discrete timed

models, in which the steps are of size 1, to use them for ν-aPTdPN (restricting

the number of instances too).

Finally, the specific characteristics of Petri nets can be taken into account

in order to reduce the number of states we need to visit or store. As explained

in [104], several methods have been developed to improve the generation of state

spaces of Petri nets. For example, partial order reduction techniques [90, 70, 41]

consist in suppressing as many interleaved firings of concurrently enabled transi-

tions as possible, the symmetry method [85, 86, 54] uses symmetry to suppress the

consideration of a state if a symmetric state has been visited before, the sweep-line

method [22, 59] assumes that there is some notion of progress and goes over the

search space in order of increasing progress values, and cycle coverage [61] saves

space by increasing the execution time, storing less states, having to compute

the successors of forgotten states again. All of these ideas should be studied and

applied to our new models when considering a more practical point of view.

164 CHAPTER 6. RCWF-NETS WITH TIME AND PRICES

Chapter 7

Conclusions

In this chapter we conclude this thesis by summarizing our results from a more

global perspective. Moreover, we sketch the main future lines of work, and the

possible applications of our mostly theoretical results. Finally, we give a list of

publications related with this thesis, which validate this work among the scientific

community.

7.1 Summary and contributions

The main goal of this thesis was to enrich the already existing extensions of Petri

nets in order to define other extensions which could manage the representation and

verification of very natural properties of real systems such as the management of

time and costs, and the concurrency between different copies of the same process.

We have defined several extensions of Petri nets dealing with these properties.

Moreover, as we presented the different extensions, we have studied the decid-

ability of safety properties for them, and we have compared their expressiveness

with the expressiveness of other extensions which are already defined and well

studied in the literature. Finally, in the last part of the thesis, we have focused on

workflow nets, broadening the decidability results about soundness that already

exist for resource-constrained workflow nets, and extending them with time and

costs, making use of the previously defined extensions.

Fig. 7.1 summarizes the relations between the models that we have defined in

this thesis. A solid arrow from some model to another represents that the second

model extends the first one. The dashed arrow from ν-PTdPN to ptrcwf repre-

sents that the second model has been built by restricting the first one. Finally,

the dashed arrow from ν-lsPN to ν-PTdPN expresses that the second model has

165

166 CHAPTER 7. CONCLUSIONS

been built by extending the first one with costs.

Timed Models

ν-lsPN 0TdPN ≈ ≈ DN

ν-lsPN i

ν-lsPN

ν-TPN ≈ TM

Priced Workflow Models

pwf

ptrcwf

Timed Priced Models

ν-PTdPN

. . .

. . .

Figure 7.1: Overview of defined models

In Chapter 3 we have defined several extensions of Petri nets, based on the

already existing models of ν-Petri nets and Timed Petri net. These extensions

encompass the management of different instances running concurrently in the net,

and the management of time. Hence, they are quite appropriate to model real

systems in which the behavior is constrained by time and in which several pro-

cesses are considered. We have studied the decidability of safety properties for

the extensions we have defined. We have found that if we consider more than

7.1. SUMMARY AND CONTRIBUTIONS 167

one clock per instance in our model (ν-TPN), safety is undecidable. In fact, we

have performed a reduction from a Turing-complete model with both names and

different instances of the net, by representing the different instances by clocks.

We claim that this technique is applicable to build reductions from different mod-

els in which we represent different instances (maybe ordered) by clocks or vice

versa. Moreover, we prove that control-state reachability is undecidable even for

ν-TPN with only two tokens per instance. Hence, from that point on, we have

focused on the extension with one clock per instance (ν-lsPN), which is still able

to represent significant real systems reliably (we give an example of a parametric

version of Fischer’s protocol). We have proved that control-state reachability for

ν-lsPN is decidable.

At that point, we became interested in the place of ν-lsPN in the picture of

expressiveness among other models for which safety is decidable (in fact, among

WSTS). Models such as Data-nets, ν-Petri nets or Timed Petri nets are all more

expressive than Petri nets. We have proved that ν-lsPN are more expressive than

all of these models, and still not Turing-complete. More precisely, we have proved

that bounded ν-lsPN are as expressive as TPN or Data nets, and the expressive

power grows with the number of unbounded places we consider. In fact, ν-lsPN is

the most expressive WSTS extending Petri nets, up to our knowledge. Hence, the

definition of this extension takes an additional importance as a theoretical model,

in order to thin the line between WSTS and Turing machines, and exploring

systems with levels of expressiveness not found before among well structured Petri

net extensions.

Going back to the need of defining extensions to model the characteristics of

real systems, in Chapter 4 we have defined a new model (ν-PTdPN) based on

ν-lsPN and the costs model of Priced-Timed Petri nets, which adds prices to the

performance of actions and to the storage of resources in the runs. Again, this

point of view is quite intuitive and corresponds to how costs are produced in many

real systems, which need to pay not only for the use of machines, workers perform-

ing tasks or even resources spent while performing actions, but also for storing

and conserving the materials and resources while, for example, other activities

are performed. As previously, safety of these systems is an important concern.

As the semantics of ν-PTdPN is defined as for ν-lsPN , the safety problem which

we consider for ν-lsPN is decidable for our new model too. However, this time

the safety properties that should be considered have also something to do with

the costs of the executions, since in many cases, besides achieving the goal of the

168 CHAPTER 7. CONCLUSIONS

systems without reaching pernicious states, these systems are required to stay on

a given budget. That is the reason why we have defined a specific priced safety

property for ν-PTdPN . Basically, a ν-PTdPN is price safe if each run which

covers a desired marking does not cost more than a given budget. Again, we

have proved that this problem is decidable. Hence, we successfully obtained the

decidability of safety, where safety means avoiding both too expensive runs and

runs reaching non desired states.

In the second part of the thesis we have focused on a concrete application

of some of the models that we have defined (ν-PTdPN), or that already existed

(ν-PN). We take advantage of the theoretical results about these models to study

the decidability of soundness and safety problems for workflow nets. First, we

exploit the capability of ν-PN to represent different processes running in the same

net to express rcwf nets in terms of them. Moreover, we broaden the decidability

results about soundness of rcwf nets in the literature by applying decidability

results for ν-PN.

As workflows frequently represent business processes, it makes sense to con-

sider prices over their runs, and to study priced safety properties over them. We

take the same price model that we took for ν-PTdPN , by adding storage and

firing costs to rcwf nets. We define two extensions which add prices to the runs

of the rcwf nets in two ways: First, we consider that time only elapses while

performing actions, and therefore we are not allowed to wait between the firing

of different transitions. The second point of view considers that time elapses in

between actions. For both extensions, we consider that the price of a run is the

multiset of the prices produced by the different instances in the net. In that way,

we can define the priced safety problem in a parametric way, considering different

ways to add the prices of the different instances, computing a final combined price.

We study the decidability of safety for different predicates: Sum, Max , Av , Ds

and Fds, getting positive results for the cases of Sum, Max , Av and Fds in the

case of the first extension, and Max and Fds in the case of the second extension.

7.2 Future lines of work

There are several ways in which we want to extend our work. First of all, there

are still open decidability problems among the safety properties we have studied.

Specifically, the decidability of Ds-safety for prcwf-nets and Sum, Av and Ds-

safety for ptrcwf-nets remain open. Of course, as the definition of ptrcwf-nets

7.2. FUTURE LINES OF WORK 169

relies on restricted ν-PTdPN , and we have focused only on safety and priced

safety problems for them, more theoretical work about the decidability of different

properties for ν-PTdPN , such as liveness properties for certain restrictions of

ν-PTdPN , could help us to achieve this goal.

Regarding complexity, since ν-lsPN are more expressive than TdPN , we know

that the complexity of the control-state reachability problem is non-primitive

recursive. More precisely, we can already obtain a lower bound at level Fωωω [43] in

the fast-growing hierarchy. Moreover, it is easy to reduce control-state reachability

for ν-lsPN to priced safety for ν-PTdPN , and hence this problem is non-primitive

recursive too. However, we would like to know if this lower bound is tight, though

we expect it is not, due to the higher order types of the state space in ν-lsPN , and

to obtain a finer-grained complexity analysis for both problems, as done in [43].

In this thesis we have focused on the study of the decidability of safety proper-

ties for the models we have defined. Nevertheless, it would be interesting to study

other properties. For example, as our models deal with time, properties as the

existence of Zeno behaviors [8] could be verified. Moreover, as Zeno behaviors are

not present in most of the real systems, the non-existence of these behaviors could

be required to define a significant restriction of our model. As some of the runs in

the constructions of our proofs must exhibit this behavior, the models obtained

by applying such a restriction could have different decidability properties from

the ones we have found for our models. Other directions for further study could

include the decidability of liveness properties, although negative results in the

untimed case are discouraging [80], or the study of models with discrete time. To

study the relation of our model with other models defined in literature would also

be interesting. For instance, we could study the relation of ν-lsPN to the exist-

ing works that model GALS (globally asynchronous locally synchronous) systems

using Petri nets [56]. In a different line, we have assumed that processes (or their

identifiers) are not ordered in any way. It would be interesting to see whether

our work scales in the case of ordered processes, which amounts to extend Data

Nets [62] with time.

Finally, besides completing and widening our theoretical results, we consider

that it is necessary to bring the models we have defined to a tool, in order to

make them available for verifying real systems. We plan to implement the priced

and timed models we have considered, maybe by extending the tool TAPAAL

(http://www.tapaal.net/), which is a tool for the analysis and verification of

bounded TdPN and workflows. As a first step, we are now extending the tool

170 CHAPTER 7. CONCLUSIONS

to consider prices over TdPN and to add an algorithm dealing with price safety

for workflow. In order to implement our models with names, we need to work on

data structures and algorithms to represent and verify their bounded restrictions.

Appendix A

Effective Pred-basis of the

transition relation ։ defined

for regions of ν-lsPN

We are going to define a function Pre to compute the predecessors of a region.

We split Pre into Pre∆(R) = {R′ | R′ ∆։R} and Pret(R) = {R′ | R′ t
։R}, and

we define Pre∆ and Pret for each t ∈ T , so that Pre∆(↑R) =↑ Pre∆(R) and

Pret(↑R) =↑ Pret(R). First, we define Pre∆, the function that computes the

predecessors corresponding to time delays, using in turn Preδ as an auxiliary

function, which corresponds to small time delays. Then, Pre∆ will be defined as

the reflexive and transitive closure of Preδ. Given A = {(a1, r1), . . . , (an, rn)} ∈

(P⊕ × N)⊕, with r1, . . . , rn > 0, we define A−1 = {(a1, r1 − 1), . . . , (an, rn − 1)}.

Definition A.1 (Preδ) Let R = A0 ∗A1 ∗ . . .∗An ∗A∞. We define Preδ(R) (and

extend it pointwise) as











































{(A1 +B−1
0) ∗A2 ∗ ... ∗An ∗B∞,

B−1
0 ∗A1 ∗ ... ∗An ∗B∞ | A∞ = B0 +B∞} if A0 = ∅

{∅ ∗A1 ∗A2 ∗ ... ∗An ∗A−1
0 ∗A∞}, if A0 6= ∅ and A−1

0 is well defined

∅, otherwise

Note that Preδ is ∅ in case A−1
0 is not well defined, that is, if the age of some

instance represented in A0 is 0. That makes sense, since intuitively, an instance

171

172 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

of age 0 cannot be younger.

We obtain the definition of Pre∆ by considering the union of the regions

obtained by applying Preδ recursively to a region.

Definition A.2 (Pre∆) We define:

• Preδ
0
(R) = R

• Preδ
i+1

(R) = Preδ
i
(R) ∪ Preδ(Preδ

i
(R)) and

• Pre∆(R) =
⋃

i≥0 Preδ
i
({R}).

Example A.1 Focus on the regions depicted in Fig. A.1, and let max = 1. We

are going to compute Pre∆(R1). If we apply the second case of Def. A.1, we obtain

Preδ(R1) = R2 , and hence Preδ
1
(R1) = {R1, R2}. Analogously, if we apply the

first case of Def. A.1, we can consider B0 = ∅ or B0 = {< {q}, 2 >}, so we obtain

Preδ(R2) = {R2, R3, R4, R5}, and therefore Preδ
2
(R1) = {R1, R2, R3, R4, R5}. If

we continue calculating until Preδ is the empty set for any new Ri in the Preδ
j
(R1)

we are considering, we obtain Pre∆(R1) = {R1, R2, R3, R4, R5, R6, R7}.

Now we prove that Pre∆ is defined as needed, which intuitively means that,

given a region R, Pre∆ is useful to compute Pre∆(↑R) in the sense that Pre∆(R)

is finite and its upward closure is Pre∆(↑R). First, we tackle the finiteness.

Lemma A.1 Given a region R, Pre∆(R) is finite.

Proof: For any R = A0∗A1∗...∗An∗A∞ we define size(R) = (r, i, |A∞|) ∈ n∗×

n∗∞ × N, where (r, i) = min{(r, i) | (m, r) ∈ Ai, i ∈ n∗}, where the pairs (r, i) are

ordered lexicographically, and we also compare tuples size(R) lexicographically.

If size(R) > (0, 0, 0) one of the following holds:

• size(R) = (r, 0, s), with r > 0: then Preδ(R) = {R′} with R′ = ∅ ∗A1 ∗A2 ∗

... ∗An ∗A−1
0 ∗A∞ and size(R′) = (r − 1, n, s).

• size(R) = (r, i, s) with 0 < i ≤ n: then the ages in A0, ..., Ai−1 are at least

r + 1. The case A0 6= ∅ is analogous to the previous one: there is only

one region R′ in Preδ(R), but now size(R′) = (r, i − 1, s). If A0 = ∅ then

any R′ in Preδ(R) is either of the form (A1 + B−1
0) ∗ A2 ∗ ... ∗ An ∗ B∞ or

B−1
0 ∗ A1 ∗ ... ∗ An ∗ B∞, with A∞ = B0 + B∞, so that size(R′) is either

(r, i− 1, s′) in the first case, or (r, i, s′) in the second case. Notice also that

in the second case, if R 6= R′ then s′ < s.

173

R1 A0
< {p}, 1 >

A∞
< {q}, 2 >

R2 A0
a

A1
< {p}, 0 >

A∞
< {q}, 2 >

R3 A0
< {p}, 0 >

A∞
< {q}, 2 >

R4 A0
< {q}, 1 > < {p}, 0 > A∞ a

R5 A0
< {q}, 1 >

A1
< {p}, 0 >

A∞
a

R6 A0
a

A1
< {p}, 0 >

A2
< {q}, 0 >

A∞
a

R7 A0
< {p}, 0 >

A1
< {q}, 0 >

A∞
a

Figure A.1: Pre∆(R1) = {R1, R2, R3, R4, R5, R6, R7}

• If size(R) = (max+1,∞, s) then R = ∅ ∗A∞ and every R′ in Preδ(R) is of

the form R′ = B−1
0 ∗ B∞ with A∞ = B0 + B∞. Notice that if B0 = ∅ then

R = R′. Otherwise, size(R′) = (max, 0, s′).

• If size(R) = (0, 0, s) then A−1
0 is undefined, and Preδ(R) = ∅.

Assume by contradiction that Pre∆(R) is infinite. Then there is a sequence

(Ri)i≥0 of pairwise different regions such that Ri+1 ∈ Preδ(Ri). By the previous

items notice that size(Ri+1) < size(Ri), which is a contradiction because the

174 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

lexicographic order is well-founded in n∗ × n∗∞ × N.

2

Let us now prove we can use Pre∆(R) in order to compute Pre∆(↑R).

Lemma A.2 Given a region R, ↑Pre∆(R) = Pre∆(↑R).

Proof: Let us first prove by induction that Pre∆(↑R) ⊆ ↑Pre∆(R), for which

it is enough to see that Preδ(↑R) ⊆↑Pre∆(R) (base case) and if R1 ∈↑Pre∆(R)

then Preδ(R1) ⊆↑Pre∆(R) (inductive step).

• Base case: Let R = A0 ∗A1 ∗ ...∗An ∗A∞, R′ and R′′ such that R′′ δ
։R′ with

R ⊑ R′. We want to prove that R′ ∈ ↑Pre∆(R) . Since R ⊑ R′ we can

write R′ = B0 ∗ u0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ B∞ with Ai ≤
⊕ Bi. We distinguish

three cases:

(i) If A0 6= ∅ then B0 6= ∅, in which case R′′ = ∅∗u0∗B1∗...∗Bn∗un∗B
−1
0 ∗B∞,

which is greater than ∅ ∗A1 ∗ ... ∗An ∗A−1
0 ∗A∞ ∈ Preδ(R) ⊆ Pre∆(R).

(ii) If A0 = ∅ and B0 6= ∅ then R′′ = ∅ ∗ u0 ∗B1 ∗ ... ∗Bn ∗ un ∗B−1
0 ∗B∞ ∈

↑R ⊆↑Pre∆(R).

(iii) Finally, if A0 = B0 = ∅ we distinguish two subcases. If u0 = ǫ then

R′′ = (B1+C1)∗u1∗B2∗...∗Bn∗un∗C2 with C
+1
1 +C2 = B∞, which is greater

than (A1 +D1) ∗A2 ∗ ... ∗An ∗D2 ∈ Preδ(R) for some D+1
1 +D2 = A∞. If

u0 6= ǫ then u0 = B∗u′0, in which case R′′ = (B+C1)∗u
′
0∗B1∗...∗Bn∗un∗C2

with C+1
1 +C2 = B∞, which is greater than D1 ∗A1 ∗ ...∗An ∗D2 ∈ Preδ(R)

for some D+1
1 +D2 = A∞.

• Inductive step: Now, suppose that R1 ∈↑Pre∆(R). Then, there is R2 ∈

↑Pre∆(R) such that R2 ⊑ R1. Hence, there is a region R3 ∈ Pre∆(R) such

that R3 ⊑ R2 ⊑ R1. Again, if R3 = A0 ∗ A1 ∗ ... ∗ An ∗ A∞, we can write

R1 = B0 ∗ u0 ∗B1 ∗ ... ∗Bn ∗ un ∗B∞ with Ai ≤
⊕ Bi. Analogously as in the

base case, we analyze the different subcases:

(i) If A0 6= ∅ then B0 6= ∅. Therefore, Preδ(R1) consist of the only region

R′
1 = ∅ ∗ u0 ∗ B1 ∗ . . . ∗ Bn ∗ un ∗ B−1

0 ∗ B∞, in case B−1
0 is defined and no

region otherwise. If Preδ(R1) = ∅, then Preδ(R1) ∈↑Pre∆(R). Otherwise,

Preδ(R3) consists of only one region R′
3 = A1 ∗ . . . ∗ An ∗ A−1

0 ∗ A∞, which

is in Pre∆(R). Clearly, R
′
3 ⊑ R′

1, so Preδ(R1) = {R′
1} ⊆↑Pre∆(R).

175

(ii) Now, suppose A0 = ∅ and B0 6= ∅. As in the previous case, Preδ(R1)

consist of the only instance R′
1 = ∅∗u0 ∗B1 ∗ . . .∗Bn ∗un ∗B

−1
0 ∗B∞, which

is clearly greater than R3 = ∅ ∗ A1 ∗ ... ∗ An ∗ A∞ ∈ Pre∆(R). Therefore,

Preδ(R1) = {R′
1} ⊆↑Pre∆(R).

(iii) Finally, let A0 = B0 = ∅. We consider two different subcases:

a) If u0 = B00 ∗ u
′
0, with B00 6= ∅, then Preδ(R1) = {B00 + B−1

∞1 ∗ u
′
0 ∗ B1 ∗

. . . ∗Bn ∗ un ∗B∞2, B
−1
∞1 ∗ u0 ∗B1 ∗ . . . ∗Bn ∗ un ∗B∞2 | B∞ = B∞1 +B∞2}.

Consider R′
1 = B00 + B−1

∞1 ∗ u
′
o ∗ B1 ∗ . . . ∗ Bn ∗ un ∗ B−1

∞2 ∈ Preδ(R1) with

B∞ = B∞1 + B∞2. As A∞ ≤⊕ B∞, we can split A∞ = A∞1 + A∞2

with A∞1 ≤⊕ B∞1 and A∞2 ≤⊕ B∞2, and then, if we define R′
3 = A−1

∞1 ∗

A1 ∗ . . . ∗ An ∗ A∞2 ∈ Pre∆(R), we have that R′
3 ⊑ R′

1. Analogously, if

R′
1 = B−1

∞1 ∗ u0 ∗ B1 ∗ . . . ∗ Bn ∗ un ∗ B∞2 with B∞ = B∞1 + B∞2, we can

split A∞ = A∞1 + A∞2 with A∞1 ≤⊕ B∞1 and A∞2 ≤⊕ B∞2. Again, we

define R′
3 = A−1

∞1 ∗ A1 ∗ . . . ∗ An ∗ A∞2 ∈ Pre∆(R), so R
′
3 ⊑ R′

1. Hence,

Preδ(R1) ⊆↑Pre∆(R).

b) If u0 = ∅, then R1 = ∅ ∗ B1 ∗ ... ∗ Bn ∗ un ∗ B∞. Therefore, Preδ(R1) =

{B1+B
−1
∞1 ∗u1 ∗B2 ∗ . . .∗Bn ∗B∞2, B

−1
∞1 ∗B1 ∗u1 ∗B2 ∗ . . .∗Bn ∗B∞2 | B∞ =

B∞1 +B∞2}. Let us consider R
′
1 = B1 +B−1

∞1 ∗ u1 ∗B2 ∗ . . . ∗Bn ∗B∞2 and

R′′
1 = B−1

∞1∗u0∗B1∗. . .∗Bn∗un∗B∞2, with B∞ = B∞1+B∞2. As previously,

we can split A∞ = A∞1 + A∞2 with A∞1 ≤⊕ B∞1 and A∞2 ≤⊕ B∞2.

Therefore, if we define R′
3 = A−1

∞1
+A1 ∗A2 ∗ . . . ∗An ∗A∞2 ∈ Pre∆(R) and

R′′
3 = A−1

∞1
∗A1 ∗A2 ∗ . . . ∗An ∗A∞2 ∈ Pre∆(R), then we have R′

1 ⊑ R′
3 and

R′′
1 ⊑ R′′

3 . Hence, Preδ(R1) ⊆↑Pre∆(R).

Now we prove by induction that ↑Pre∆(R) ⊆ Pre∆(↑R). Without loss of

generality, we suppose that Preδ(R) 6= ∅ (otherwise, Pre∆(R) = R, and ↑R ⊆

Pre∆(↑R) holds trivially). Again, we first prove the base case (↑Preδ(R) ⊆ Pre∆(↑

R)) and then we prove the inductive step (if R1 ∈ Pre∆(↑R) then ↑Preδ(R1) ⊆

Pre∆(↑R)).

• Base Case: Let us suppose that R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞. We analyze

two different cases:

(i) Suppose A0 6= ∅ and A−1
0 is defined. Then, Preδ(R) = A1 ∗ A2 ∗ . . . ∗

An ∗A
−1
0 ∗A∞. Hence, each R′ ∈↑Preδ(R) is of the form R′ = B1 ∗u1 ∗B2 ∗

. . . ∗ Bn ∗ un ∗ B−1
0 ∗ u0 ∗ B∞, where for each i ∈ n∗∞, Ai ≤

⊕ Bi. Suppose

u0 = U0 ∗ . . . ∗ Uk. If we apply the definition of time elapsing for regions to

176 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

R′ repeatedly, we obtain that R′ ∆։R1 = B0 ∗ U
+1<
0 ∗ . . . ∗ U+1<

k ∗ B1 ∗ u1 ∗

B2 ∗ . . . ∗ Bn ∗ un ∗ B∞ + U=
0 + . . . + U=

k , which is clearly greater than R.

Therefore, R′ ∈ Pre∆(↑R), so ↑Preδ(R) ⊆ Pre∆(↑R).

(ii) Now, suppose that A0 = ∅. Then, Preδ(R) = {(A1 + B−1
0) ∗ A2 ∗ ... ∗

An ∗ B∞, A
−1
∞1 ∗ A1 ∗ ... ∗ An ∗ A∞2 | A∞ = A∞1 + A∞2}. Let us consider

A∞ = A∞1 +A∞2. We analyze both cases in Preδ(R):

a) Suppose R′ = A1 + A−1
∞1 ∗ A2 ∗ ... ∗ An ∗ A∞2 ∈ Preδ(R). If R′ ⊑ R′′,

then R′′ is of the form R′′ = B1 + B−1
∞1 ∗ u1 ∗ B2 ∗ u2 ∗ ... ∗ Bn ∗ un ∗ B∞2,

where Ai ⊆ Bi for each i ∈ n∗ ∪ {∞1,∞2}. If we apply the definition

of time elapsing for regions to such an R′′ ∈↑ Preδ(R), then we obtain

R′′ δ
−→ R1 = ∅∗(B1+B

−1
∞1)

<∗u1∗B2∗u2∗ ...∗Bn∗un∗B∞2+(B1+B∞1)
= =

∅∗B<
1 +B−1<

∞1 ∗u1∗B2∗u2∗...∗Bn∗un∗B
=
1 +B∞2+B

=
∞1

. Note that, since no

pair in A1 reaches the age max and A1 ≤
⊕ B1, A1 ≤

⊕ B<
1 . Moreover, as the

pairs in A∞ has age max+1 and A∞ = A∞1+A∞2 ≤
⊕ B∞1+B∞2, A∞ ≤⊕

B=
∞1 +B∞2 (the instances in B<

∞1 are younger than max+1). Therefore, it

is clear that R1 is greater than R, which implies that R′′ ∈ Pre∆(↑R).

b) Let R′ = A−1
∞1 ∗ A1 ∗ ... ∗ An ∗ A∞2. If R′ ⊑ R′′, then R′′ is of the

form R′′ = B−1
∞1 ∗ u0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ B∞2, where Ai ⊆ Bi for each

i ∈ n∗ ∪{∞1,∞2}. Let u0 = U0 ∗ . . . ∗Uk. Again, we apply the definition of

time elapsing for regions to such an R′′ ∈↑Preδ(R), obtaining R
′′ δ
−→ R1 =

∅∗B−1<
∞1 ∗u0∗B1∗...∗Bn∗un∗B∞2+B

=
∞1. Anagously as in the previous case,

since all the pairs in A∞ have age max+1 and A∞1+A∞2 ≤
⊕ B∞1+B∞2,

A∞ ≤⊕ B∞2 + B=
∞1. Therefore, R ⊑ R1. Hence, R′′ ∈ Pre∆(↑ R), so

↑Preδ(R) ⊆ Pre∆(↑R).

• Inductive Step: Now we prove that if R1 ∈ Pre∆(↑R) then ↑Preδ(R1) ⊆

Pre∆(↑R) in two steps.

Since we have proved compatibility for ∆ in Lemma. 3.2.14, the fact that

R1 ∈ Pre∆(↑R) then ↑R1 ⊆ Pre∆(↑R) is almost trivial: Consider R′
1 ∈↑R1.

As R1 ∈ Pre∆(↑ R) there is a region R2 with R1
∆
−→ R2 and R ⊑ R2.

Therefore, due to the compatibility of ∆, there must be a region R′
2 such

that R′
1

∆
−→ R′

2 and R ⊑ R2 ⊑ R′
2. Therefore, R′

1 ∈ Pre∆(↑R) and ↑R1 ⊆

Pre∆(↑R).

Hence, it only remains to prove that if R1 ∈ Pre∆(↑R) then Preδ(R1) ⊆

Pre∆(↑R). Suppose R1 = A0 ∗A1 ∗ . . . ∗An ∗A∞ ∈ Pre∆(↑R). We consider

the different cases in the definition of Preδ:

177

(i) If A0 6= ∅ and A−1
0 is defined then Preδ(R1) = {R′

1 = A1 ∗ . . .∗An ∗A
−1
0 ∗

A∞}. Now, we consider the time elapsing R′
1 = A1 ∗ . . . ∗An ∗A

−1
0 ∗A∞

δ
−→

A0 ∗ A1 ∗ . . . ∗ An = R1. As R1 ∈ Pre∆(↑R), we have that R′
1

δ
−→ R1

∆
−→ R′,

with R ⊑ R′. Hence, Preδ(R1) ⊆ Pre∆(↑R).

(ii) If A0 6= ∅ and A−1
0 is not defined then Preδ(R1) = ∅, and Preδ(R1) ⊆

Pre∆(↑R) clearly holds.

(iii) If A0 = ∅ then Preδ(R1) = {(A1 +B−1
0) ∗A2 ∗ ... ∗An ∗B∞, B

−1
0 ∗A1 ∗

... ∗ An ∗ B∞ | A∞ = B0 + B∞}. Let R′
1 = (A1 + B−1

0) ∗ A2 ∗ ... ∗ An ∗ B∞

such that A∞ = B0 + B∞. Then, there is a time elapsing R′
1

δ
−→ ∅ ∗ (A1 +

B−1
0)< ∗A2 ∗ . . . ∗An ∗ (B∞+(A1+B−1

0)= = ∅ ∗A1 ∗A2 ∗ . . . ∗ (B∞+B0) =

R1. Now, consider R′
1 = B−1

0 ∗ A1 ∗ ... ∗ An ∗ B∞ | A∞ = B0 + B∞ with

A∞ = B0 + B∞. Again, we apply a time elapsing to R′
1, so we obtain

R′
1

δ
−→ ∅∗A1 ∗ . . .∗An ∗(B∞+B0) = R1. Since R1 ∈ Pre∆(↑R), in any of the

previous cases, we have that R′
1

δ
−→ R1

∆
−→ R′. Hence, Preδ(R1) ⊆ Pre∆(↑R).

2

Next, as previously done for the time delays, we define Pret for each discrete

transition t ∈ T of a ν-lsPN to prove that we are able to compute Pret(↑R). In

order to build this definition, for each t ∈ T and each region R, we first define a

family F(t, R) of functions which will assign a part of the region taking some role

in some firing to each variable in Var(t).

Definition A.3 (F(t, R)) Let t ∈ T and a region R = A0∗A1∗. . .∗An∗A∞, with

Ai = {(mi1, ri1), . . . , (miki , riki)}. Suppose that l = |V ar(t)| and q = max{ki | i ∈

n∗∞}. Moreover, we consider certain multiset An+1 = {(m(n+1)1, r(n+1)1), . . . ,

(m(n+1)l, r(n+1)l)} with m(n+1)i = ∅ for each i ∈ l+. A function f : Var(t) →

(n+ 1)∗∞×(q + 1)∗×(max+ 1)∗×(n∗∪{∞})×l∗ is in F(t, R) iff for all x ∈ Var(t),

f(x) = (b1, b2, b3, b4, b5) with:

• If b1 ∈ n+ and b2 ≤ kb1 then rb1b2 + 0.5 ∈ Time2t (x).

• If b1 = 0 and b2 ≤ k0 then rb1b2 ∈ Time2t (x).

• If b1 = ∞ then max+0.5 ∈ Time2t (x).

• If x ∈ Υ then mb1b2 ⊆ Outt(x).

• If b4 ∈ n+ ∪ {∞} then b3 + 0.5 ∈ Time1t (x).

178 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

• If b4 = 0 then b3 ∈ Time1t (x).

• If b4 = ∞ iff b3 = max+ 1.

• If y 6= x and f(y) = (b′1, b
′
2, b

′
3, b

′
4, b

′
5), then (b1, b2) 6= (b′1, b

′
2).

Intuitively, the first two numbers that the previous functions assign to a vari-

able x, correspond to the selection of the part of the region we assign to x to

remove the effects of Outt. Analogously, the two last components manage the

effects of Int. The third number assigns to each variable the natural number that

correspond to the age of the instance in the predecessor.

Clearly, the family F(t, R) is finite. We define Pret(R) as the effects of com-

puting the predecessors of R according to all the functions in F(t, R).

Definition A.4 (Pret) Let l = |V ar(t)|. Given t ∈ T , suppose f ∈ F(t, R) and

R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞, with Ai = {(mi1, ri1), ..., (miki , riki)}. Again, we

consider certain multiset An+1 = {(m(n+1)1, r(n+1)1), . . . , (m(n+1)l, r(n+1)l)} with

m(n+1)i = ∅ for each i ∈ l+. Then, we define Pre ft(R) as follows:

• First, we define the ∅-expansion R′′ = A′
00 ∗A

′
01 ∗ . . . ∗A

′
0l ∗A

′
10 ∗A

′
11 ∗ ... ∗

A′
nl ∗A

′
∞0, where:

– A′
j0 = Aj−{(mjk, rjk) | ∃x with f(x) = (j, k, b3, b4, b5) for some b3, b4, b5}

– A′
∞0 = A∞−{(m∞k,max+1) | ∃x with f(x) = (∞, k, b3, b4, b5) for some

b3, b4, b5}

– A′
ij = ∅ elsewhere.

• For each x ∈ Var(t), if f(x) = (b1, b2, b3, b4, b5), then we define m′
x =

(mb1b2⊖Outt(x))+Int(x) and r
′
x = b3, where (m1⊖m2)(x) = max(0,m1(x)−

m2(x)).

• Finally, Pre ft(R) is the ∅-contraction of B00 ∗ B01 ∗ . . . ∗ B0l ∗ B10 ∗ B11 ∗

. . . ∗ Bnl ∗ B∞0, where for each i ∈ n∗∞ and j ∈ l∗, Bij = A′
ij + {(m′

x, r
′
x) |

f(x) = (b1, b2, b3, i, j) for some b1, b2, b3}.

Then, we define Pret(R) = {Pre ft(R) | f ∈ F(t, R)}.

Intuitively, in R′′ we have removed the instances corresponding to the effects

of Outt, and added l empty multisets of instances between each Ai and Ai+1 in

order to be able to add pairs representing instances modified by Int in the firing,

with an age with a fractional part different to all the ones represented in R.

179

Lemma A.3 Given a region R and a transition t of a ν-lsPN , the set Pret(R)

is finite, computable and such that Pret(↑R) =↑Pret(R)

Proof: Clearly, Pret(R) as defined above is finite and computable, since the

family F(t, R) is finite, and the steps in Def. A.4 can be performed in a univocal

way.

First, we prove ↑ Pret(R) ⊆ Pret(↑ R). Let R′ ∈↑ Pret(R), we are going

to prove that R′ ∈ Pret(↑ R). Therefore, we need to prove that there is R′′′

with R ⊑ R′′′ such that R′ t
−→ R′′′. Let us call R = A0 ∗ A1 ∗ ... ∗ AnA

∗ A∞

with Ai = {(mA
ij , r

A
ij) | j ∈ |Ai|

+} and R′ = E0 ∗ E1 ∗ ... ∗ EnE
∗ E∞ with

Ei = {(mE
ij , r

E
ij) | j ∈ |Ei|

+}.

As R′ ∈↑Pret(R), there is R′′ ∈ Pret(R) such that R′′ ⊑ R′. Then, there

is f ∈ F(t, R) such that R′′ = Pre ft(R). Suppose that C00 ∗ C01 ∗ . . . ∗ C0l ∗

C10 ∗ C11 ∗ . . . ∗ Cnl ∗ C∞0, is the ∅-expansion of R′′ obtained in the third step of

Def. A.4. For simplicity, we consider the firing from this ∅-expansion. Abusing

notation, if x ∈ Var(t) with f(x) = (b1, b2, b3, b4, b5), we call (mC
b4b5x

, rCb4b5x) the

pair (mA
b1b2

⊖Outt(x))+Int(x), b3) we add in Cb4b5 , that is, we call that pair in Cb4b5

after the variable. In order to fire t from R′′, we define the mode τ = (τ1, τ2, τ3)

such that, for each x ∈ Var(t), if f(t, R) = (b1, b2, b3, b4, b5):

• τ1(x) = (b4b5, x)

• τ2(x) = rb4b5

• τ3(x) = b10

Now, we prove that t is enabled at R′′. Indeed, for each x ∈ Var(t), if f(x) =

(b1, b2, b3, b4, b5), τ1(x) = (b4b5, x), so:

• if x ∈ Υ then mA
b1b2

≤ Outt(x), so m
C
b4b5x

= (mA
b1b2

⊖Outt(x)) = ∅,

• mC
b4b5x

= (mA
b1b2

⊖Outt(x)) + Int(x), and therefore mC
b4b5x

≥ Int(x)

• rCb4b5x = b3. If b4 = 0 or b4 = ∞ then b3 ∈ Time1t (x). Otherwise, b3 + 0.5 ∈

Time1t (x), because of the definition of F .

• Therefore, if i ∈ {0,∞} then match((mC
b4b5x

, rCb4b5x), (Int(x), T ime
1
t (x))),

and match((mC
b4b5x

, rCb4b5x + 0.5), (Int(x), T ime
1
t (x))) otherwise.

Therefore, t is enabled at R′′, so it is enabled in R′ too. Because of how we have

defined τ , it is easy to see that R′′ t
։R̄ ⊇ R with this mode. We just need to prove

180 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

that if R′′ t
։R̄ then R̄ is of the form R̄ = A′

0 ∗ a0 ∗ A
′
1 ∗ a1 ∗ ... ∗ A

′
nA

∗ anA
∗ A′

∞,

where Ai ≤⊕ A′
i for each i ∈ nA

∗
∞ and aj ∈ ((P⊕ × N)⊕)⊛ for each j ∈ n∗A.

Suppose that F00 ∗ F001 ∗ . . . ∗ F00lt ∗ F01 ∗ . . . ∗ Fnl ∗ Fnl1 ∗ . . . ∗ Fnllt ∗ F∞0 is

the ∅-expansion obtained when firing t from the ∅-expansion C00 ∗ C01 ∗ . . . ∗

C0l ∗ C10 ∗ C11 ∗ . . . ∗ Cnl ∗ C∞0 with the mode τ we have defined. Then, we

can see that for each i ∈ nA
∗
∞, Ai ≤⊕ Fi00. Indeed, Fi00 = Bi0 + Di0 (with

the notations in Def. 3.2.11, where Bi0 = Ci0 − {(mC
i0x, r

C
i0x) | x ∈ Var(t)}

and Di0 = {(m′
i′j , r) | ∃x ∈ Var(t) with τ1(x) = (i′, j), τ2(x) = r, τ3(x) =

i0} = {(m′
i′j , ri′) | ∃x ∈ Var(t) with i′ = i′1i

′
2, f(x) = (i, b2, r, i

′
1, i

′
2)} for some b2,

with m′
i′j = (mi′j − Int(x)) + Outt(x). Note that Ai = (Ci0 − {(m′

x, r
′
x) |

f(x) = (b1, b2, r
′
x, i, j) for some b1, b2 with mx = (mb1b2 ⊖ Outt(x)) + Int(x)}) +

{(mik, rik) | ∃x with f(x) = (i, k, b3, b4, b5) for some b3, b4, b5}. Hence, Ai ≤⊕

Bi0 +Di0 = Fi00. As R′′ ⊑ R′, and the transition system is monotonic, there is

R′′′ such that R ⊑ R′′′, with R′ t
։R′′′.

Now, we prove that Pret(↑R) ⊆↑Pret(R). Let R = A0 ∗ A1 ∗ ... ∗ An ∗ A∞,

R′ and R′′ such that R′′ t
։R′ ⊒ R with mode τ . It is enough to see that there

exist f ∈ F(t, R′) such that R′′ ∈↑(Pre ft(R)). In order to define f , we give some

notations and renamings for these regions.

Suppose R′′ = F0 ∗ F1 ∗ . . . ∗ FnF
∗ F∞. We denote by S the set {Fi | Fi −

{(mij , rij) | τ1(x) = (i, j)} = ∅} and l = max({|Ai| | i ∈ n∗F }) + |Var(t)|. In

order to set the notations, and without loss of generality, let us suppose that the

∅-expansion of R′′ that we consider in the firing of t is F00 ∗ F01 ∗ . . . ∗ F0(l+1) ∗

. . . ∗ FnF 0 ∗ . . . ∗ FnF l ∗ F∞, with Fi0 = Fi if Fi /∈ S, Fij = Fk if Fk ∈ S and

Fk is the jth set in S after Fi; and Fij = ∅ otherwise. Hence, we consider that

the mode τ in the firing is defined for these ∅-expansion (here we are abusing

notation, since now the subscripts in the region are pairs of natural numbers

instead of single numbers) . Intuitively, we have renamed R′′ in order to define

b4 and b5 of f(x). That way, the Fks which do not “disappear” in the firing

of t because of the effects of Int, have index j0 for some j. Consider the ∅-

expansion of R′ Es0 ∗ Es01 ∗ . . . ∗ EsnF
∗ EsnF 1 ∗ . . . ∗ E∞ obtained when firing t

from the previous ∅-expansion of R′′, where s0, . . . , snF
,∞ are the subindices in

the multisets in R′′ (which are in (n∗× l∗)∪{∞}). Since R ⊑ R′, we can rename it

as Ek0 ∗u0 ∗Ek1 ∗ ...∗Ekn ∗un ∗E∞, and ki ∈ ((n∗× l∗)∪{∞})×|V ar(t)|+ , where

Ai ≤
⊕ Eki for i ∈ n∗∞. Without loss of generality, let us consider the denotation

181

of the multisets Ai and Eki , for i ∈ n∗∞, such that for each i ∈ n∗∞, j ∈ |Ai|
+,

(mij , rij) is a pair in Ai, (mkij , rkij) is a pair in Ei, withmij ≤ mE
kij

and rij = rEkij .

For each i ∈ n∗, let us denote ui = Eki1 ∗ . . . ∗ Ekini
. Moreover, let us define the

function rn : {ki | i ∈ n∗∞} ∪ {(ki, z) | i ∈ n∗∞, z ∈ n+i } → {si | i ∈ nF
∗
∞} ∪ {sij |

i ∈ nF , j ∈ |V ar(t)|+
∗
∞} such that rn(β) = α if the subindex α is renamed to β

by the previous renaming. With these notations, let us define f ∈ F(R, t). Given

x ∈ Var(t), suppose that τ1(x) = (i, j) and τ3(x) = i′, considering the renaming of

the ∅-expansion of R′′ we have defined. Then, we define f(x) = (b1, b2, b3, b4, b5)

such that:

• If (mE
ki′j

′ , rEk′ij′
) is the pair in Eki′

≥⊕ Ai′ that we add in the firing of t,

associated to x, such that it is produced by the removing of the pair (mF
ij , r

F
ij)

in the firing from R′′, that is, mE
i′j′ = (mF

ij − Int(x)) + Outt(x) and r
E
i′j′ =

τ2(x) , then b1 = i′, b2 = j′, b3 = rij , b4 = i and b5 = j.

• In case the pair we add in the firing of t, associated to x is in some multiset

Esi′j
′ ∈ uh, for some h ∈ n∗, or the pair is (mE

ki′j
′ , rEk′ij′

) ∈ Eki′
but j′ ≥ |Ai′ |,

then we define b1 = n+1. Moreover, if we consider that x1, . . . , xnf are the

non free variables of t, and x = xj′′ , then we define b2 = j′′. Again, if the

pair (mE
ki′j

′ , rEk′ij′
) ∈ Eki′

is produced by the removing of the pair (mF
ij , r

F
ij) in

the firing from R′′, that is, mE
i′j′ = (mF

ij−Int(x))+Outt(x) and r
E
i′j′ = τ2(x),

then b1 = i′, b2 = j′, b3 = rij , b4 = i and b5 = j, as previously.

Finally, we prove that if Rf = B00 ∗B01 ∗ . . .∗B20 ∗ . . .∗B∞0 is the ∅-expansion

obtained when calculating Pre ft(R) and R′
f is its ∅-contraction, then R′

f ⊑ R′′.

Given Rp = G0 ∗ Gi1 ∗ . . . ∗ Gim ∗ G∞ an ∅-expansion of a region we denote

Nemp(Rp) = {j | Gij 6= ∅ is a multiset in Rp}. We define a monotone injection

χ : Nemp(Rf) → Nemp(R′′) such that, for each Bij ∈ Nemp(Rf), Bij ≤
⊕ Eχ(ij).

Given ij ∈ Nemp(Rf) we define χ(i, j) = rn(ki) if j = 0 and χ(i, j) = kij

otherwise. As rn is a (monotone and injective) renaming, it is clear that χ is an

injection. Let us prove that for each Bij ∈ Nemp(Rf), Bij ≤
⊕ Eχ(ij). We analyze

two different cases.

• If j = 0 then χ(i, j) = rn(ki). In this case, Bi0 = (Ai − {(mik, rik) |

∃x with f(x) = (i, k, b3, b4, b5) for some b3, b4, b5}) + {(m′
x, r

′
x) | f(x) =

(b1, b2, b3, i, 0) for some b1, b2, b3,m
′
x = (mb1b2⊖Outt(x))+Int(x),r′x=b3)} ≤⊕

(Eki−{(mE
kik
, rEkik) | ∃x such that (mE

kik
, rEkik) is the pair in Eki that we add

in the firing of t, associated to x}) + {(mF
ij , r

F
ij) | ∃x such that (mF

ij , r
F
ij) is

the pair removed in the firing of t associated to x} = Ern(ki) = Eχ(ij).

182 APPENDIX A. EFFECTIVE PRED-BASIS OF ։

• Analogously, if j 6= 0 then we haveBij = ∅+{(m′
x, r

′
x) | f(x) = (b1, b2, b3, i, 0)

for some b1, b2, b3,m
′
x = (mb1b2⊖Outt(x))+Int(x),r′x=b3)} ≤⊕ {(mF

ij , r
F
ij) | ∃x

such that (mF
ij , r

F
ij) is the pair removed in the firing of t associated to x}

= Ern(kij) = Eχ(ij)

Hence, R′′ ⊒ R′
f ∈ Pre ft(R), and therefore Pret(↑R) ⊆↑Pret(R).

2

As։ =
∆
։∪

⋃

t∈T

t
։ and we have defined Pre∆ and Pret for each t ∈ T , which

are finite and computable, such that Pre∆(↑ R) =↑ Pre∆(R) and

Pret(↑R) =↑Pret(R) , we obtain the following corollary.

Corollary A.4 ։ has effective Pred-basis.

Appendix B

Effective Pred-basis of the

transition relation ֌ defined

for ν-aPTdPN

In order to prove that֌ has effective Pred-basis we handle the priced and timed

transitions separately. Therefore, as done for ν-lsPN , we split Pre into Pre∆(R) =

{R′ | ∃i ∈ 4+R′ i
֌R} and Pret(R) = {R′ | R′ t

֌R}, and we define Pre∆ and Pret

for each t ∈ T , so that Pre∆(↑R) =↑Pre∆(R) and Pret(↑R) =↑Pret(R).

We begin by defining Pre∆, the function in charge of computing the predeces-

sors corresponding to timed transitions of a region R. As there are four kinds of

time transitions, we will define four auxiliary functions Preδ1 , Preδ2 , Preδ3 and

Preδ4 to handle each case separately. Let us recall from the previous chapter that

given A = {(a1, r1), . . . , (an, rn)} ∈ (P⊕ × N)⊕, with r1, . . . , rn > 0, we define

A−1 = {(a1, r1 − 1), . . . , (an, rn − 1)}.

Definition B.1 (Pre∆) Suppose that R = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ . . . ∗ Am〉

is a region of a ν-aPTdPN . Then, we define:

• If A0 = ∅ then Preδ1 (R) = {〈c, A−n ∗ . . . ∗ A−1, A1, A2 ∗ . . . ∗ Am〉} (else

Preδ1 is not defined),

• if A−1
0 is well defined then Preδ2 (R) = {〈c, A−n ∗ . . .∗A−1 ∗A

−1
0 , ∅, A1 ∗ . . .∗

Am〉},

• Preδ3 (R) = {〈c, A−1
−n ∗ . . . ∗ A−1

−k−1, A−k, A−k+1 ∗ . . . ∗ A−1 ∗ A−1
0 ∗ A−1

1 ∗

. . .∗A−1
m 〉 | A−1

−n, . . . , A
−1
−k−1, A

−1
0 , A−1

1 , . . . , A−1
m are well defined}, where c′ =

183

184 APPENDIX B. EFFECTIVE PRED-BASIS OF ֌

c−
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p) and

• Preδ4 (R) = {〈c, A−1
−n ∗ . . . ∗A−1

−k−1 ∗A
−1
−k, ∅, A−k+1 ∗ . . . ∗A−1 ∗A

−1
0 ∗A−1

1 ∗

. . . ∗ A−1
m 〉 | A−1

−n, . . . , A
−1
−k, A

−1
0 , A−1

1 , . . . , A−1
m are well defined}, where c′ =

c−
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p).

Then, we define Pre∆(R) = {R} ∪ Preδ1 ∪ Preδ2 (R) ∪ Preδ3 (R) ∪ Preδ4 (R).

Note that, as in the previous chapter, we ensure we do not compute predeces-

sors with ages lower than 0, which would not make sense, by requiring A−1
i is well

defined whenever we consider it for the predecessor we are computing. Now, let

us prove that Pre∆(R) compute the predecessors corresponding to time delays in

the proper way.

Lemma B.1 Given an abstract region, Pre∆(R) is finite and ↑Pre∆(R) =

↑Pre∆(↑R).

Proof: We first prove the finiteness of Pre∆(R). The multisets obtained from

applying Preδ1 ,Preδ2 ,Preδ3 and Preδ4 to any region R are finite. Indeed, the

multisets we obtain when we apply Preδ1 and Preδ2 to a region have one element

as many. Moreover, as the number of multisets Ai in a region are finite, there is a

finite number of ways of decomposing the region, by considering different values

of k as in the previous definition. Hence, the multisets we obtain when applying

Preδ3 and Preδ4 are finite too. Hence, Pre∆(R) is finite.

Now we prove that ↑ Pre∆(R) = ↑ Pre∆(↑ R). We first prove that

↑Pre∆(R) ⊆ ↑Pre∆(↑R), and then we will prove the other containment.

Let us suppose that R1 ∈ ↑Pre∆(R), and R = 〈c, A−n∗ . . .∗A−1, A0, A1∗A2∗

. . .∗Am〉. Then, there isR′
1 ≪ R1 and i ∈ 4+ such that R′

1 ∈ Preδi (R). We analyze

the four different cases separately, proving that in each of them R1 ∈ ↑Pre∆(↑R),

that is, that there are R′′
1 ≪ R1 and R2 ≫ R such that R′′

1

i
֌R2.

• Suppose R′
1 ∈ Preδ1 (R). Then, A0 = ∅ and R′

1 = 〈c, A−n∗ . . .∗A−1, A1, A2∗

. . .∗Am〉. Hence, R1 is of the form 〈c, a−n−1∗A
′
−n∗a−n . . .∗A

′
−1∗a−1, A

′
1, a1∗

A′
2 ∗ . . . ∗ A

′
m ∗ a′m〉, where c′ ≤ c, A′

i ≤
⊕ Ai for all i ∈ {−n, . . . ,m} and

ai ∈ ((P⊕ × N)⊕)⊛. Then, R′
1

1
֌〈c, a−n−1 ∗ A

′
−n ∗ a−n . . . ∗ a−1, ∅, A

′
1 ∗ a1 ∗

A′
2 ∗ . . . ∗A

′
m ∗ a′m〉 ≫ R.

• Now, let R′
1 ∈ Preδ2 (R). Then, A

−1
0 is well defined, and R′

1 = 〈c, A−n ∗ . . . ∗

A−1∗A
−1
0 , ∅, A1∗A2∗. . .∗Am〉. Therefore, R1 is of the form 〈c, a−n−1∗A

′
−n∗

185

a−n . . . ∗ a−1 ∗ A
′
0
−1 ∗ a0, A

′, a ∗ A′
1 ∗ a1 ∗ A

′
2 ∗ . . . ∗ A

′
m ∗ a′m〉, where c′ ≤ c,

A′
i ≥⊕ Ai for all i ∈ {−n, . . . ,m} and a, ai ∈ ((P⊕ × N)⊕)⊛. Moreover,

R1 ≫ 〈c, a−n−1 ∗ A
′
−n ∗ a−n . . . ∗ a−1 ∗ A

′
0
−1, ∅, a ∗ A′

1 ∗ a1 ∗ A
′
2 ∗ . . . ∗ A

′
m ∗

a′m〉
2
֌〈c, a−n−1 ∗A

′
−n ∗a−n . . .∗a−1, A

′
0, a∗A

′
1 ∗a1 ∗A

′
2 ∗ . . .∗A

′
m ∗a′m〉 ≫ R.

• Let us suppose that R′
1 ∈ Preδ3 (R). Then, R

′
1 = 〈c′, A−1

−n ∗ . . .∗A
−1
−k−1, A−k,

A−k+1∗. . .∗A−1∗A
−1
0 ∗A−1

1 ∗. . .∗A−1
m 〉 for some k ∈ n+, whereA−1

−n, . . . , A
−1
−k−1

and A−1
0 , A−1

1 , . . . , A−1
m are well defined and c′ = c −

∑m
i=−n

∑

(m′,r)∈Ai

Ai(m
′, r) ∗

∑

p∈P m
′(p) ∗ Cost(p). Therefore, R1 is of the form 〈c′′, a−n−1 ∗

A′
−n ∗ a−n ∗ . . . ∗ A′

−k−1 ∗ a−k−1, A
′
−k, a−k ∗ A

′
−k+1 ∗ . . . ∗ a−2 ∗ A

′
−1 ∗ a−1 ∗

A′
0 ∗ a0 ∗ A′

1 ∗ a1 ∗ . . . ∗ A′
m ∗ am〉, where c′′ ≥ c′, ai ∈ ((P⊕ × N)⊕)⊛

for each i ∈ {−n − 1, . . . ,m}, for each j ∈ {−n, . . . ,−k − 1, 0, . . . ,m}

A−1
j ≤⊕ A′

j and for each i ∈ {−k . . . − 1}, Ai ≤⊕ A′
i. Moreover, R1 ≫

〈c′, A′
−n∗ . . .∗A

′
−k−1, A

′
−k, A

′
−k+1∗ . . .∗A

′
−1∗A

′
0∗A

′
1∗ . . .∗A

′
m〉

4
֌〈c′, A′

−n
+1∗

. . . ∗A′
−k−1

+1 ∗A′
−k ∗A

′
−k+1 ∗ . . . ∗A

′
−1, A

′
0
+1, A′

1
+1 ∗ . . . ∗A′

m
+1〉 ≫ R (note

that c′′′ ≥ c because in R1 there are at least the same amount of tokens in

each place as in R). In case A′
0 = ∅, the firing must be performed with

4
֌

instead, but the rest of the proof would work.

• The last case is analogous to the previous one: let R′
1 ∈ Preδ4 (R). Then,

R′
1 = 〈c′, A−1

−n ∗ . . .∗A
−1
−k−1 ∗A

−1
−k, ∅, A−k+1 ∗ . . .∗A−1 ∗A

−1
0 ∗A−1

1 ∗ . . .∗A−1
m 〉

for some k ∈ n+, where A−1
−n, . . . , A

−1
−k, A

−1
0 , A−1

1 , . . . , A−1
m are well defined

and c′ = c −
∑m

i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m(p) ∗ Cost(p). Then, R1

is of the form R1 = 〈c′′, a−n−1 ∗ A
′
−n ∗ a−n ∗ . . . ∗ A′

−k−1 ∗ a−k−1 ∗ A
′
−k ∗

a−k, A, a,A
′
−k+1∗ . . .∗am−1∗A

′
m∗am〉, , where c′′ ≥ c′, a, ai ∈ ((P⊕×N)⊕)⊛

for each i ∈ {−n−1, . . . ,m}, for each j ∈ {−n, . . . ,−k, 0, . . . ,m} A−1
j ≤⊕ A′

j

and for each i ∈ {−k + 1 . . . − 1}, Ai ≤
⊕ A′

i. Then, R1 ≫ 〈c′, A′
−n ∗ . . . ∗

A′
−k−1 ∗A

′
−k, ∅, A

′
−k+1 ∗ . . . ∗A

′
m〉

4
֌〈c′′′, A′

−n
+1 ∗ . . . ∗A′

−k
+1 ∗A′

−k+1 ∗ . . . ∗

A′
−1, A

′
0
+1, A′

1
+1 ∗ . . . ∗ A′

m
+1〉 ≫ R, because c′′′ ≥ c, since in R1 there are

at least the same amount of tokens in each place as in R). Again, if A′
0 = ∅,

the proof would work by performing the firing with
4
֌ instead.

Therefore, ↑Pre∆(R) ⊆ ↑Pre∆(↑R).

Conversely, suppose that R1 ∈ ↑Pre∆(↑R). Then, there are two regions

R2 and R′
1, and i ∈ 4+ such that R1 ≫ R2

i
֌R′

1 ≫ R. We prove that in each

of the possible cases, there is R′
2 with R2 ≫ R′

2 ∈ Preδi (R). Suppose that

R2 = 〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗A2 ∗ . . . ∗Am〉.

186 APPENDIX B. EFFECTIVE PRED-BASIS OF ֌

• First, suppose R2
1
−→ R′

1. Then, R
′
1 = 〈c, A−n ∗ . . .∗A−1, ∅, A0 ∗A1 ∗A2 ∗ . . .∗

Am〉 ≫ R. Therefore, R is of the form 〈c′, A′
−n∗. . .∗A

′
−1, ∅, A

′
0∗A

′
1∗A

′
2∗. . .∗

A′
m〉, where c ≥ c′ and for each i ∈ {−n . . .m}, A′

i ≤
⊕ Ai (if A

′
i is ∅, then it is

removed). Then, R′
2 = 〈c′, A′

−n∗ . . .∗A
′
−1, A

′
0, A

′
1∗A

′
2∗ . . .∗A

′
m〉 ∈ Preδ1 (R),

and clearly R2 ≫ R′
2 (Note that if A′

0 = ∅, then R2 ≫ R, and we are done).

• Analogously, letR2
2
−→ R′

1. Now, A0 = ∅ andR′
1 = 〈c, A−n∗. . .∗A−2, A

+1
−1, A1∗

A2∗. . .∗Am〉 ≫ R. Hence, R is of the form 〈c′, A′
−n∗. . .∗A

′
−2, A

′
−1

+1, A′
1∗A

′
2∗

. . .∗A′
m〉, where c ≥ c′ and for each i ∈ {−n . . .m}, A′

i ≤
⊕ Ai (if A

′
i is ∅, then

it is removed). Then, R′
2 = 〈c′, A′

−n ∗ . . . ∗A
′
−2 ∗A

′
−1, ∅, A

′
1 ∗A

′
2 ∗ . . . ∗A

′
m〉 ∈

Preδ2 (R), andR2 ≫ R′
2 clearly holds. Again, in case A′

−1 = ∅, thenR2 ≫ R.

• Suppose that R2
3
−→ R′

1. Then, there is k ∈ m+ such that R′
1 = 〈c′, A+1

−n ∗

. . . ∗A+1
−1 ∗A0 ∗ . . . ∗Ak, ∅, A

+1
k+1 ∗ . . . ∗A

+1
m 〉, with c′ = c+

∑m
i=−n

∑

(m′,r)∈Ai

Ai(m
′, r) ∗

∑

p∈P m
′(p) ∗ Cost(p). Therefore, R is of the form 〈c′′, A′

−n
+1 ∗

. . . ∗ A′
−1

+1 ∗ A′
0 ∗ . . . ∗ A′

k, ∅, A
′
k+1

+1 ∗ . . . ∗ A′
m

+1〉, with c′ ≥ c′′ and for

each i ∈ {−n . . .m}, A′
i ≤⊕ Ai (if A′

i is ∅, then it is removed). Then,

R′
2 = 〈c′′′, A′

−n ∗ . . . ∗A′
−1, A

′
0, A

′
1 ∗ . . . ∗A

′
m〉 ∈ Preδ3 (R) (or R

′
2 ∈ Preδ4 (R)

if A′
0 = ∅) and R2 ≫ R′

2.

• Finally, suppose that R2
4
−→ R′

1. Then, there is k ∈ m+ such that R′
1 =

〈c′, A+1
−n ∗ . . . ∗ A+1

−1 ∗ A0 ∗ . . . ∗ Ak, A
+1
k+1, A

+1
k+2 ∗ . . . ∗ A

+1
m 〉, with c′ = c +

∑m
i=−n

∑

(m′,r)∈Ai
Ai(m

′, r) ∗
∑

p∈P m
′(p) ∗ Cost(p). Therefore, R is of the

form 〈c′′, A′
−n

+1 ∗ . . . ∗A′
−1

+1 ∗A′
0 ∗ . . . ∗A

′
k, A

′
k+1

+1, A′
k+2

+1 ∗ . . . ∗A′
m

+1〉,

with c′ ≥ c′′ and for each i ∈ {−n . . .m}, A′
i ≤

⊕ Ai (if A
′
i is ∅, then it is

removed). Then, R′
2 = 〈c′′′, A′

−n ∗ . . . ∗ A′
−1, A

′
0, A

′
1 ∗ . . . ∗ A

′
m〉 ∈ Preδ3 (R)

(or R′
2 ∈ Preδ4 (R) if A

′
0 = ∅) and R2 ≫ R′

2.

Hence, ↑Pre∆(↑R) ⊆ ↑Pre∆(R), so ↑Pre∆(↑R) = ↑Pre∆(R).

2

Now we focus on the discrete firings. We define Pret for each transition t ∈ T

to prove that we can compute ↑Pret(↑R) for any priced region R. Now, we are

ready to define Pret .

Definition B.2 (Pret) Let t ∈ T be a transition of a ν-aPTdPN N , and R =

〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ A2 ∗ . . . ∗ Am〉 a region of N . Then, 〈c′, B−n′ ∗ . . . ∗

B−1, B0, B1 ∗B2 ∗ . . . ∗Bm〉 ∈ Pret(R) if and only if:

187

• c′ = c− Cost(t).

• There are O,Oν ∈ (P⊕×(max+ 1)∗)⊕ and for each i ∈ {−n, . . . ,−1, 1, . . . ,m}

there is Arest
i , such that there is a multiset A∅ ∈ (P⊕ × (max+ 1)∗)⊕ ,

such that if (m, r) ∈ A∅ then m = ∅, with A∅ +
⊎

i∈{−n,...,−1,1,...,m}Ai =

(
⊎

i∈{−n,...,−1,1,...,m}A
rest
i) +O +Oν .

• There are AO
0 , A

ν
0 ∈ (P⊕ × (max+ 1)∗)⊕ and Arest

0 such that there are not

pairs with empty marking in Arest
0 and A0 +A = AO

0 +Aν
0 +Arest

0 , where A

is some multiset made of pairs with empty marking (as A∅).

• There is an injection h′ : fVar(t) −→ Oν + Aν
0 such that, if h′(ν) = (m, r)

then m ⊆ Outt(ν) and if h′(ν) is selected from Aν
0 then r ∈ Time2t (ν) and

r + ǫ ∈ Time2t (ν) otherwise.

• There is a bijection h : nfVar(t) −→ O + AO
0 a function g : Var(t) −→

{−n′, . . . ,m′} and a monotone injection φ : {i ∈ {−n+ 1, . . . ,m} | Arest
i 6=

∅} ∪ {0} −→ {i ∈ {−n′, . . . ,m′} |} such that φ(0) = 0 and:

– For each (m, r) ∈ O with h(x) = (m, r), r + ǫ ∈ Time2t (x) and we

call γx((m, r)) = (m′, r′), where m′ = (m ⊖ Outt(x)) + Int(x) (where

a ⊖ b = max{0, a − b}), and r′ ∈ (max+ 1)∗, with r′ ∈ Time1t (x) if

g(x) = 0 and r′ + ǫ ∈ Time1t (x) otherwise.

– Analogously, for each (m, r) ∈ AO
0 with h(x) = (m, r), r ∈ Time2t (x)

and we call γx((m, r)) = (m′, r′), where m′ = (m ⊖ Outt(x)) + Int(x)

and r′ ∈ (max+ 1)∗, with r′ ∈ Time1t (x) if g(x) = 0 and r′ + ǫ ∈

Time1t (x) otherwise.

– For each i ∈ {−n′, . . . ,m′}, i 6= 0, if i = φ(j) for some j ∈ {−n +

1, . . . ,m}, then Bi = Arest
j +

⊎

x∈nfVar(t)|g(x)=i γx(h(x)) and Bi =
⊎

x∈nfVar(t)|g(x)=i γx(h(x)) otherwise.

It only remains to prove that Pret computes the predecessors of the regions of

ν-aPTdPN correctly.

Lemma B.2 Given an abstract region R and a transition t, Pret(R) is finite,

computable and ↑Pret(R) = ↑Pret(↑R).

Proof: Pret(R) is clearly finite and computable, since there is a finite number

of such ∅-expansions of the region R, and they are all finite, and therefore there

188 APPENDIX B. EFFECTIVE PRED-BASIS OF ֌

is a finite number of ways of choosing the multisets O,Oν , AO
0 , A

ν
0 and Arest

i .

Analogously, as the regions in Pret(R), the functions h, h
′, g and φ can be defined

in a finite number of ways too. Moreover, note that for each pair (m, r) with

γx((m, r)) = (m′, r′), m′ can only be (m⊖Outt(x))+ Int(x), and r
′ ∈ (max+ 1)∗

and therefore, it is able to take a finite number of values. Hence, Pret(R) is finite.

Now we prove that ↑Pret(R) =↑Pret(↑R). Again, we prove the two contain-

ments separately. Let us first prove that ↑Pret(R) ⊆ ↑Pret(↑R).

Suppose R1 ∈ ↑Pret(R). Then, there is R′
1 ≪ R1 such that R′

1 ∈ Pret(R).

If we prove that R′
1

t
֌R′ ≫ R then, by compatibility, R1

t
֌R′′ ≫ R, and we

are done. Suppose that R = 〈c, A−n ∗ . . . ∗ A−1, A0, A1 ∗ A2 ∗ . . . ∗ Am〉, R′
1 =

〈c′, B−n′ ∗ . . . ∗ B−1, B0, B1 ∗ B2 ∗ . . . ∗ Bm〉 and O,Oν , AO
0 , A

ν
0 , h, h

′, g, φ, γx and

Arest
i for i ∈ {−n, . . . ,m} and x ∈ nfVar(t), are the multisets and functions of the

previous definition for R′
1. Then, we prove that 〈c′, B−n′ ∗ . . . ∗B−1, B0, B1 ∗B2 ∗

. . .∗Bm〉
t
֌〈c, A′

−n∗. . .∗A
′
−1, A

′
0, A

′
1∗A

′
2∗. . .∗A

′
m〉, where for each i ∈ {−n, . . . ,m},

Ai ≤
⊕ A′

i. We prove the five conditions for the firing:

• By the first point of Def. B.2, c′ = c− Cost(t). Hence, c = c′ + Cost(t), as

required.

• For each i ∈ {−n, . . . ,m}, if φ(j) = i then we define Brest
i = Arest

j and

BI
i = Bi −Brest

i . Otherwise, Brest
i = ∅ and BI

i = Bi. Clearly, we have that

Bi = Brest
i +BI

i .

• For the firing, we consider the multisets O′ and AO
0
′
as follows: if (m, r) ∈

P⊕ × (max+ 1)∗, then O′((m, r)) = |{(m′, r) ∈ O | ∃x ∈ nfVar , h(x) =

(m′, r), γx((m
′, r)) = (m′′, r′′) and m′′ = (m − Int(x)) + Outt(x)}|. Hence,

in O′ we consider the same number of pairs as in O, and for each pair

(m, r) ∈ O′ there is a different pair (m′, r) ∈ O, such that m′ ⊆ m. Hence,

O ≤⊕ O′. We define AO
0
′
analogously. Moreover, we can consider a bijection

H : nfVar(t) → O′ + AO
0
′
such that, for each x ∈ nfVar(t), H(x) = (m, r)

with (m, r) ≥ h(x).

Note that
⊎

i∈n′,...,m′ BI
i =

⊎

i∈n′,...,m′

⊎

x∈nfVar(t)|g(x)=i γx(h(x)). Hence, we

define f : nfVar(t) −→
⊎

i∈n′,...,m′

⊎

x∈nfVar(t)|g(x)=i γx(h(x)). Indeed, for each

x ∈ nfVar(t), with h(x) = (m, r), we define f(x) = γx((m, r)). Then, if

h(x) = (m, r) and f(x) = γx((m, r)) = (m′, r′):

– If f(x) = γx((m, r)) is in B0 (so g(x) = 0), then m′ = (m⊖Outt(x))+

Int(x), so Int(x) ⊆ m′, and r′ ∈ Time1t (x) by the fifth condition of

189

Def. B.2. Hence, match(f(x), (Int(x), T ime
1
t (x))), as required. Anal-

ogously, if f(x) = γx((m, r)) is not in B0, then m
′ = (m⊖ Outt(x)) +

Int(x), so Int(x) ⊆ m′, and r′ + ǫ ∈ Time1t (x), so match(f(x) +

ǫ, (Int(x), T ime
1
t (x))).

– By the fifth point of Def. B.2, m′ = (m ⊖ Outt(x)) + Int(x), and

therefore m ⊆ m′′ = (m′ − Int(x)) +Outt(x). Moreover, by the fourth

condition, we have that if (m, r) (which in the firing will correspond to

(m′′, r)) is selected from AO
0 then r ∈ Time2t (x) and if (m, r) is selected

from O then r + ǫ ∈ Time2t (x).

• We consider the multisetsOν ′ andAν
0
′ as follows: if (m, r) ∈ P⊕×(max+ 1)∗,

then Oν ′((m, r)) = |{(m′, r) ∈ O | ∃ν ∈ nfVar , h(ν) = (m′, r) and m =

Outt(ν)}|. Hence, there is a bijection between Oν and Oν ′ such that, to

each pair (m, r) ∈ Oν , it corresponds a pair (m′, r) ∈ Oν ′ with m ⊆ m′. We

define Aν
0
′ analogously. Moreover, we consider the injection H ′ : fVar(t) →

Oν ′ + Aν
0
′ such that, for each ν ∈ nfVar(t), H ′(ν) = (Outt(ν), r) ≥ h′(ν) =

(m, r), for some m ⊆ Outt(ν). Then, if H
′(ν) = (m, r), then we have:

– m = Outt(ν) and

– by the fourth point of Def. B.2, if H ′(ν) is selected from Aν
0 then

r ∈ Time2t (ν) and r + ǫ ∈ Time2t (ν) otherwise.

• We define the injection ϕ : {i ∈ {−n′, . . . ,m′} | Brest
i 6= ∅} −→ {−n, . . . ,m}

such that φ(i) = j if and only if ϕ(j) = ϕ(i). Note that
∣

∣{i | Brest
i 6= ∅}

∣

∣ =
∣

∣{i | Arest
i 6= ∅}

∣

∣, so ϕ is completely defined this way. Moreover:

– By the last point of the previous definition, if i = φ(j) for some j ∈

{−n′, . . . ,m′}, then Bi = Arest
j +

⊎

x∈nfVar(t)|g(x)=i γx(h(x)). In this

case, j = ϕ(i) and Brest
i ⊆ Aϕ(i).

– By the third condition of Def. B.2, A0 + A = AO
0 + Aν

0 + Brest
0 , where

A only have instances with empty marking. Hence, we can define

A′
0 = AO

0
′
+Aν

0
′ +Brest

0 ≥⊕ A0.

– Finally, by the second condition, we have thatA∅+
⊎

i∈{−n,...,−1,1,...,m}Ai =

(
⊎

i∈{−n,...,−1,1,...,m}A
rest
i)+O+Oν , with A∅ made of pairs with empty

marking, which implies that A∅ +
⊎

i∈{−n,...,−1,1,...,m}

Ai = (
⊎

i∈{−n′,...,−1,1,...,m′}B
rest
i)+O+Oν ≤⊕ (

⊎

i∈{−n′,...,−1,1,...,m′}B
rest
i)+

O′ +Oν ′. Hence, for each i ∈ {−n, . . . ,m}, we can define A′
i such that

190 APPENDIX B. EFFECTIVE PRED-BASIS OF ֌

Brest
i ⊆ A′

φ(i) and
⊎

i∈{−n,...,−1,1,...,m}A
′
i = (

⊎

i∈{−n′,...,−1,1,...,m′}B
rest
i)+

O′ +Oν ′

Hence 〈c′, B−n′ ∗ . . . ∗B−1, B0, B1 ∗B2 ∗ . . . ∗Bm〉
t
֌〈c, A′

−n ∗ . . . ∗A
′
−1, A

′
0, A

′
1 ∗

A′
2 ∗ . . .∗A

′
m〉 ≫ 〈c, A−n ∗ . . .∗A−1, A0, A1 ∗A2 ∗ . . .∗Am〉, as we wanted to prove.

Now we prove that ↑Pret(↑R) ⊆ ↑Pret(R). Suppose that R1 ∈↑Pret(↑

R). Then, there is R′
1 ≪ R1 such that R′

1

t
֌R2 ≫ R. We prove that there is

R3 ∈ Pret(R) with R
′
1 ≫ R3. Let R = 〈c, A−n ∗ . . . ∗A−1, A0, A1 ∗A2 ∗ . . . ∗Am〉,

R2 = 〈c′, a−n−1∗A
′
−n∗a−n∗. . .∗A

′
−1∗a−1, A

′
0, a0∗A

′
1∗a1 . . .∗A

′
m∗am〉, with c′ ≥ c

and for each j ∈ {−n − 1, . . . ,m}, Aj ≤⊕ A′
j and aj ∈ ((P⊕ × (max+ 1)∗)⊕)⊛.

Moreover, let R′
1 = 〈c′′, B−n′ ∗ . . .∗B−1, B0, B1 ∗ . . .∗Bm′〉. We are going to define

R3 ∈ Pret(R) with R3 = 〈c′′′, B′
−n′ ∗ . . . ∗ B′

−1, B
′
0, B

′
1 ∗ . . . ∗ B

′
m′〉, with c′′ ≥ c′′′

and for each j ∈ {−n′, . . . ,m′}, Bj ≤⊕ B′
j (in fact, the R3 we obtain may be an

∅-expansion of the required region).

Let us consider the functions f, h, h′ and ϕ, the multisets O,AO
0 , O

ν , Aν
0 , and

the decomposition Bi = Brest
i + BI

i for each i ∈ {−n′, . . . ,m′} in the firing of t

from R′
1. Then, we define R3 = 〈c′′′, B′

−n′ ∗ . . . ∗B′
−1, B

′
0, B

′
1 ∗ . . . ∗B

′
m′〉 with:

• c′′′ = c − Cost(t), as required in the first condition of Def. B.2. Moreover,

c′ ≥ c, and c′′ = c′ − Cost(t). Hence, c′′′ ≤ c′′.

• Let us consider some Ai = {(a1, r1), . . . , (aki , rki)}, with i ∈ {−n, . . . ,m}.

As Ai ⊆ A′
i, there is an injection αi : Ai

A
−→

′

i such that for each (m, r) ∈ Ai,

αi((m, r)) = (m′, r), with m ≤ m′. Then, if there is j with ϕ(j) = i, then

for each pair (m, r) ∈ P⊕ × (max+ 1)∗ we define Arest(m, r) = |{k ∈ k+i |

(m, r) = (mk, rk), αi((mk, rk)) is one of the pairs in Brest
j in the

firing}|. Moreover, if i 6= 0, we define O′
i(m, r) = |{k ∈ k+i | (m, r) =

(mk, rk), αi((mk, rk)) is one of the pairs in O in the firing}| andOν ′
i(m, r) =

|{k ∈ k+i | (m, r) = (mk, rk), αi((mk, rk)) is one of the pairs in Oν in the

firing}|.

Let us call O′′ and Oν ′′ the multisets of pairs in O and Oν respectively,

which are set to a multiset in some ai , or have not been selected to

build any lower pair in any O′
i or Oν ′

i. Then, we define two multisets

O′
m+1, O

ν ′
m+1 ∈ (P⊕ × (max+ 1)∗)⊕ such that, O′

m+1(m, r) = 0 if m 6= ∅

and O′
m+1(∅, r) =

∑

m∈P⊕ O′′(m, r). Analogously, Oν ′
m+1(m, r) = 0 if

m 6= ∅ and Oν ′
m+1(∅, r) =

∑

m∈P⊕ O′′(m, r).

191

By Def. 4.2.4,
⊎

i∈{−n,...,−1,1,...,m}A
′
i +

⊎

i∈{−n−1,...,−1,1,...,m}

⊎

A∈ai
A =

(
⊎

i∈{−n′,...,−1,1,...,m′}B
rest
i) + O + Oν . Hence, for each Ai 6= A0 in R,

Ai = Arest + O′
i + Oν ′ and if we define O′ =

⊎

i∈{−n,...,−1,1,...,m+1}O
′
i and

Oν ′ =
⊎

i∈{−n,...,−1,1,...,m+1}O
ν
i
′, then O′

m+1 +Oν ′ +
⊎

i∈{−n,...,−1,1,...,m}Ai =

(
⊎

i∈{−n,...,−1,1,...,m}A
rest
i) +O′ +Oν ′, as required.

• Analogously, we define AO
0
′′
and Aν

0
′′ such that, for each (m, r) ∈ (P⊕ ×

(m+ 1)∗)⊕, AO
0
′′
(m, r) = |{k ∈ k+0 | (m, r) = (mk, rk), α0((mk, rk)) is one

of the pairs in AO
0 in the firing}| and Aν

0
′′(m, r) = |{k ∈ k+0 | (m, r) =

(mk, rk), α0((mk, rk)) is one of the pairs in Aν
0 in the firing}|.

Moreover, we call AO
0 1 and Aν

01 the multisets of pairs in AO
0 and Aν

0 respec-

tively, which we have not selected to build any lower pair in any AO
0
′′
or Aν

0
′′.

Then, we define two multisets AO
0
′′′
, Aν

0
′′′ ∈ (P⊕ × (max+ 1)∗)⊕ such that,

AO
0
′′′
(m, r) = 0 if m 6= ∅ and AO

0
′′′
(∅, r) =

∑

m∈P⊕ AO
0 1(m, r). Analogously,

Aν
0
′′′(m, r) = 0 if m 6= ∅ and Aν

0
′′′(∅, r) =

∑

m∈P⊕ Aν
01(m, r). We define

AO
0
′
= AO

0
′′
+AO

0
′′′

and Aν
0
′′ = Aν

0
′′ +Aν

0
′′′.

By Def. 4.2.4, B0 = Arest
0 + AO

0 + Aν
0 . Hence, A0 = Arest

0 + AO
0
′′
+ Aν

0
′′.

Moreover, A0 +AO
0
′′′
+Aν

0
′′′ = Arest

0 +AO
0
′
+Aν

0
′, as required.

• Note that there is a bijection β : Oν+Aν
0 → Oν ′+Aν

0
′ such that if β((m, r)) =

(m′, r′), then m′ ⊆ m and r = r′. Moreover, β assigns elements of Oν ′ to

elements of Oν and elements of Aν
0
′ to elements of Aν

0 . Hence, we can define

H ′ : fVar(t) −→ Oν ′ +Aν
0
′ with H ′(ν) = β(h′(ν)), and by Def. 4.2.4, we have

that if H ′(ν) = (m, r) then m ⊆ Outt(ν) and if H ′(ν) is selected from Aν
0
′

then r ∈ Time2t (ν) and r + ǫ ∈ Time2t (ν) otherwise.

• In an analogous way, there is a bijection χ : O + A0 → O′ + AO
0
′
such that

if χ((m, r)) = (m′, r′), then m′ ⊆ m and r = r′, which assigns elements

of O′ to elements of O and elements of AO
0
′
to elements of AO

0 . Then,

we define H : nfVar(t) −→ O + AO
0 with H(x) = χ(h(x)). We also define

g : Var(t) −→ {−n′, . . . ,m′} such that, for each x ∈ V ar(t), g(x) = i if f(x)

is selected from Ai in the firing from R′
1. Moreover, we define φ :

{i ∈ {−n+ 1, . . . ,m} | Arest
i 6= ∅} ∪ {0} −→ {−n′, . . . ,m′} such that for each

i ∈ {0} ∪ {j ∈ {−n+ 1, . . . ,m} | Arest
j 6= ∅} if i = ϕ(f), then φ(i) = j (it is

well defined because of the definition and conditions over ϕ in Def. 4.2.4).

We have:

– For each (m, r) ∈ O′ withH(x) = (m, r), we have that h(x) = (m1, r) ∈

192 APPENDIX B. EFFECTIVE PRED-BASIS OF ֌

O, for some m1 ⊇ m. Hence, by the third point of Def. 4.2.4, we have

r + ǫ ∈ Time2t (x). Let us call γx((m, r)) = (m′, r′), where m′ = (m ⊖

Outt(x))+ Int(x), and r
′ is such that there is m2 with f(x) = (m2, r

′).

Then, again by Def. 4.2.4, r′ ∈ (max+ 1)∗, with r′ ∈ Time1t (x) if

g(x) = 0 and r′ + ǫ ∈ Time1t (x) otherwise. In this case, since m1 =

(m2−Int(x))+Outt(x) ⊇ m,m′ = (m⊖Outt(x))+Int(x) ⊆ m2. Then,

if (m2, r
′) is in Bi, then we can set the corresponding pair (m′, r′) in

B′
i.

– For each (m, r) ∈ AO
0 with H(x) = (m, r), now we have that h(x) =

(m1, r) ∈ AO
0 , for some m1 ⊇ m. Therefore, by the third point of

Def. 4.2.4, we have r ∈ Time2t (x). Again, if we call γx((m, r)) =

(m′, r′), where m′ = (m⊖Outt(x)) + Int(x), and r
′ is such that there

is m2 with f(x) = (m2, r
′). Then, r′ ∈ (max+ 1)∗, with r′ ∈ Time1t (x)

if g(x) = 0 and r′+ǫ ∈ Time1t (x) otherwise. Sincem1 = (m2−Int(x))+

Outt(x) ⊇ m, we have m′ = (m ⊖ Outt(x)) + Int(x) ⊆ m2. Then, if

(m2, r
′) is in Bi, we can set the corresponding pair (m′, r′) in B′

i.

– Therefore, for each i ∈ {−n′, . . . ,m′}, i 6= 0, if i = φ(j) for some j ∈

{−n+1, . . . ,m}, then we defineB′
i = Arest

j +
⊎

x∈nfVar(t)|g(x)=i γx(H(x)).

Note that Arest
j ≤⊕ Brest

j and
⊎

x∈nfVar(t)|g(x)=i γx(H(x)) ≤⊕ BI
i , and

henceB′
i ≤

⊕ Bi. Otherwise, we defineB′
i =

⊎

x∈nfVar(t)|g(x)=i γx(h(x)) ≤
⊕

BI
i = Bi.

In fact, the obtained region 〈c′′′, B′
−n′ ∗ . . . ∗B′

−1, B
′
0, B

′
1 ∗ . . . ∗B

′
m′〉 may have

some empty mutisets. If we discard these multisets, we obtain a region R3 such

that, as we have proved, R′
1 ≫ R3 ∈ Pret(R). Hence, ↑Pret(↑R) ⊆ ↑Pret(R).

2

Therefore, as ֌ = {
i
֌ | i ∈ 4+} ∪ {

t
֌ | t ∈ T}, and we have defined Pre∆

and Pret for each t ∈ T , so that Pre∆(↑R) =↑Pre∆(R) and Pret(↑R) =↑Pret(R),

we obtain the following corollary.

Corollary B.3 ֌ has effective Pred-basis.

Bibliography

[1] P. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer

Science, pages 345–354, July 2004.

[2] P. Abdulla and R. Mayr. Computing optimal coverability costs in priced

timed Petri nets. In 26th Annual IEEE Symposium on Logic in Computer

Science (LICS), pages 399–408, June 2011.

[3] P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability

theorems for infinite-state systems. In Proceedings of the 11th Annual IEEE

Symposium on Logic in Computer Science, pages 313–321. IEEE Computer

Society, 1996.

[4] P. A. Abdulla, G. Delzanno, and L. V. Begin. A classification of the expres-

sive power of well-structured transition systems. Inf. Comput., 209(3):248–

279, 2011.

[5] P. A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Forward reachability

analysis of timed Petri nets. In Y. Lakhnech and S. Yovine, editors, FOR-

MATS/FTRTFT, volume 3253 of Lecture Notes in Computer Science, pages

343–362. Springer, 2004.

[6] P. A. Abdulla and B. Jonsson. Verifying networks of timed processes (ex-

tended abstract). In B. Steffen, editor, TACAS, volume 1384 of Lecture

Notes in Computer Science, pages 298–312. Springer, 1998.

[7] P. A. Abdulla and B. Jonsson. Ensuring completeness of symbolic verifi-

cation methods for infinite-state systems. Theoretical Computer Science,

256(1-2):145–167, 2001.

193

194 BIBLIOGRAPHY

[8] P. A. Abdulla, P. Mahata, and R. Mayr. Dense-timed Petri nets: Checking

zenoness, token liveness and boundedness. Logical Methods in Computer

Science, 3(1), 2007.

[9] P. A. Abdulla and R. Mayr. Minimal cost reachability/coverability in priced

timed Petri nets. In de Alfaro [26], pages 348–363.

[10] P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. In J. M. Colom and

M. Koutny, editors, ICATPN, volume 2075 of Lecture Notes in Computer

Science, pages 53–70. Springer, 2001.

[11] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.

INFORMATION AND COMPUTATION, 104:2–34, 1993.

[12] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.

[13] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[14] T. Araki and T. Kasami. Some decision problems related to the reachability

problem for Petri nets. Theoretical Computer Science, 3(1):85–104, 1976.

[15] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper

bounds in zone-based abstractions of timed automata. STTT, 8(3):204–215,

2006.

[16] R. Bonnet, A. Finkel, S. Haddad, and F. Rosa-Velardo. Ordinal theory for

expressiveness of well structured transition systems. Inf. Comput., 2012.

[17] P. Bouyer, T. Brihaye, V. Bruyre, and J.-F. Raskin. On the optimal reach-

ability problem of weighted timed automata. Formal Methods in System

Design, 31(2):135–175, 2007.

[18] M. Boyer and O. H. Roux. Comparison of the expressiveness of arc, place

and transition time Petri nets. In Proceedings of the 28th International

Conference on Applications and Theory of Petri Nets and Other Models of

Concurrency, ICATPN’07, pages 63–82, Berlin, Heidelberg, 2007. Springer-

Verlag.

[19] G. Cantor. Beitrge zur begrndung der transfiniten mengenlehre. Mathema-

tische Annalen, 46(4):481–512, 1895.

BIBLIOGRAPHY 195

[20] I. Cervesato. Typed msr: Syntax and examples. In V. Gorodetski, V. Sko-

rmin, and L. Popyack, editors, Information Assurance in Computer Net-

works, volume 2052 of Lecture Notes in Computer Science, pages 159–177.

Springer Berlin Heidelberg, 2001.

[21] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages.

ACM Trans. Comput. Log., 11(4), 2010.

[22] S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for

state space exploration. In Proceedings of the 7th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS 2001, pages 450–464, London, UK, UK, 2001. Springer-Verlag.

[23] G. Ciardo. Discrete-time markovian stochastic Petri nets, 1995.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, 2 edition, 2001.

[25] A. David, L. Jacobsen, M. Jacobsen, and J. Srba. A forward reachabil-

ity algorithm for bounded timed-arc Petri nets. In F. Cassez, R. Huuck,

G. Klein, and B. Schlich, editors, Proceedings Seventh Conference on Sys-

tems Software Verification, SSV 2012, Sydney, Australia, 28-30 November

2012., volume 102 of EPTCS, pages 125–140, 2012.

[26] L. de Alfaro, editor. Foundations of Software Science and Computational

Structures, 12th International Conference, FOSSACS 2009, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, York, UK, March 22-29, 2009. Proceedings, volume 5504 of Lecture

Notes in Computer Science. Springer, 2009.

[27] D. de Frutos-Escrig and C. Johnen. Decidability of home space property.

Technical Report LRI-503, Univ. de Paris-Sud, Centre d’Orsay, Laboratoire

de Recherche en Informatique, 1989.

[28] D. H. J. de Jongh and R. Parikh. Well partial orderings and hierarchies. In

Indagationes Mathematicae, volume 80, pages 195–207, 1977.

[29] G. Delzanno. An assertional language for the verification of systems para-

metric in several dimensions. Electr. Notes Theor. Comput. Sci., 50(4):371–

385, 2001.

196 BIBLIOGRAPHY

[30] G. Delzanno. An overview of MSR(C): A CLP-based framework for the

symbolic verification of parameterized concurrent systems. Electronic Notes

in Theoretical Computer Science, 76:65 – 82, 2002. {WFLP} 2002, 11th In-

ternational Workshop on Functional and (Constraint) Logic Programming,

Selected Papers.

[31] G. Delzanno. Constraint-based automatic verification of abstract models of

multithreaded programs. TPLP, 7(1-2):67–91, 2007.

[32] G. Delzanno and F. Rosa-Velardo. On the coverability and reachability lan-

guages of monotonic extensions of Petri nets. Theor. Comput. Sci, 467:12–

29, 2013.

[33] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers

with n distinct prime factors. American Journal of Mathematics, 35(4):413–

422, 1913.

[34] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey,

1994.

[35] A. Finkel. A generalization of the procedure of Karp and Miller to well

structured transition systems. In T. Ottmann, editor, ICALP, volume 267

of Lecture Notes in Computer Science, pages 499–508. Springer, 1987.

[36] A. Finkel. Reduction and covering of infinite reachability trees. Inf. Com-

put., 89(2):144–179, Dec. 1990.

[37] A. Finkel and P. Schnoebelen. Well-structured transition systems every-

where! Theoretical Computer Science, 256(1-2):63–92, 2001.

[38] R. Floyd. Assigning meanings to programs. In T. Colburn, J. Fetzer, and

T. Rankin, editors, Program Verification, volume 14 of Studies in Cognitive

Systems, pages 65–81. Springer Netherlands, 1993.

[39] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction, implementation,

specification, and testing. ACM Trans. Program. Lang. Syst., 3(3):211–223,

July 1981.

[40] G. Geeraerts, J.-F. Raskin, and L. V. Begin. Well-structured languages.

Acta Inf., 44(3-4):249–288, 2007.

BIBLIOGRAPHY 197

[41] P. Godefroid and P. Wolper. A partial approach to model checking. Inf.

Comput., 110(2):305–326, 1994.

[42] M. Hack. Petri net language. Technical report, Cambridge, MA, USA, 1976.

[43] S. Haddad, S. Schmitz, and P. Schnoebelen. The ordinal-recursive complex-

ity of timed-arc Petri nets, data nets, and other enriched nets. In LICS,

pages 355–364. IEEE, 2012.

[44] K. V. Hee, E. Serebrenik, N. Sidorova, and M. Voorhoeve. Soundness of

resource-constrained workflow nets. In In ICATPN, pages 250–267, 2005.

[45] M. Hennessy. Acceptance trees. J. ACM, 32(4):896–928, Oct. 1985.

[46] F. C. Hennine. Fault detecting experiments for sequential circuits. In Pro-

ceedings of the 1964 Proceedings of the Fifth Annual Symposium on Switch-

ing Circuit Theory and Logical Design, SWCT ’64, pages 95–110, Washing-

ton, DC, USA, 1964. IEEE Computer Society.

[47] G. Higman. Ordering by Divisibility in Abstract Algebras. Proc. London

Math. Soc., s3-2(1):326–336, jan 1952.

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, Oct. 1969.

[49] K. Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Petri Nets: Central Models and Their Properties, Advances in Petri

Nets 1986, Part I, Proceedings of an Advanced Course, Bad Honnef, 8.-19.

September 1986, volume 254 of Lecture Notes in Computer Science, pages

248–299. Springer, 1986.

[50] K. Jensen. Coloured Petri nets: A high level language for system design

and analysis. In Rozenberg [82], pages 342–416.

[51] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri nets and CPN

tools for modelling and validation of concurrent systems. STTT, 9(3-4):213–

254, 2007.

[52] K. Y. J. Joakim Byg and J. Srba. In Proceedings of 7th International Sym-

posium on Automated Technology for Verification and Analysis (ATVA’09),

volume 5799 of LNCS, Springer-Verlag, pages 84–89, Netherlands.

198 BIBLIOGRAPHY

[53] G. Juhs, I. Kazlov, and A. Juhsov. Instance deadlock: A mystery behind

frozen programs. In J. Lilius and W. Penczek, editors, Applications and

Theory of Petri Nets, volume 6128 of Lecture Notes in Computer Science,

pages 1–17. Springer Berlin Heidelberg, 2010.

[54] T. Junttila. New canonical representative marking algorithms for

place/transition-nets. In J. Cortadella and W. Reisig, editors, Applications

and Theory of Petri Nets 2004, volume 3099 of Lecture Notes in Computer

Science, pages 258–277. Springer Berlin Heidelberg, 2004.

[55] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Com-

puter and System Sciences, 3(2):147–195, 1969.

[56] J. Kleijn and M. Koutny. Localities in systems with a/sync communication.

Theoretical Computer Science, 429(0):185 – 192, 2012.

[57] M. Knapik, W. Penczek, M. Szreter, and A. Pólrola. Bounded paramet-

ric verification for distributed time Petri nets with discrete-time semantics.

Fundam. Inf., 101(1-2):9–27, Jan. 2010.

[58] S. R. Kosaraju. Decidability of reachability in vector addition systems (pre-

liminary version). In Proceedings of the Fourteenth Annual ACM Symposium

on Theory of Computing, STOC ’82, pages 267–281, New York, NY, USA,

1982. ACM.

[59] L. Kristensen and T. Mailund. A generalised sweep-line method for safety

properties. In L.-H. Eriksson and P. Lindsay, editors, FME 2002:Formal

MethodsGetting IT Right, volume 2391 of Lecture Notes in Computer Sci-

ence, pages 549–567. Springer Berlin Heidelberg, 2002.

[60] J. Lambert. A structure to decide reachability in Petri nets. Theoretical

Computer Science, 99(1):79–104, 1992.

[61] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification

of real-time systems: compact data structure and state-space reduction. In

Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS ’97),

December 3-5, 1997, San Francisco, CA, USA, pages 14–24. IEEE Computer

Society, 1997.

[62] R. Lazic, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets

with tokens which carry data. Fundam. Inform., 88(3):251–274, 2008.

BIBLIOGRAPHY 199

[63] J. Leroux. Vector addition system reachability problem: A short self-

contained proof. SIGPLAN Not., 46(1):307–316, Jan. 2011.

[64] J. A. Mateo, J. Srba, and M. Sø rensen. Soundness of timed-arc workflow

nets. In G. Ciardo and E. Kindler, editors, Application and Theory of Petri

Nets and Concurrency, volume 8489 of Lecture Notes in Computer Science,

pages 51–70. Springer International Publishing, 2014.

[65] E. W. Mayr. An algorithm for the general Petri net reachability problem.

In Proceedings of the Thirteenth Annual ACM Symposium on Theory of

Computing, STOC ’81, pages 238–246, New York, NY, USA, 1981. ACM.

[66] J. Mccarthy. A basis for a mathematical theory of computation. In Computer

Programming and Formal Systems, pages 33–70. North-Holland, 1963.

[67] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1967.

[68] E. P. Moore. Gedanken experiments on sequential machines. Automata

Studies. Princeton University Press, 1956.

[69] R. D. Nicola and M. Hennessy. Testing equivalences for processes. Theoret-

ical Computer Science, 34(1-2):83–133, 1984.

[70] D. Peled. All from one, one for all: on model checking using representatives.

In C. Courcoubetis, editor, Computer Aided Verification, 5th International

Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings,

volume 697 of Lecture Notes in Computer Science, pages 409–423. Springer,

1993.

[71] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, Sept. 1977.

[72] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur In-

strumentelle Mathematik, Bonn, 1962.

[73] C. Rackoff. The covering and boundedness problems for vector addition

systems. Theoretical Computer Science, 6(2):223–231, 1978.

[74] C. Ramchandani. Analysis of asynchronous concurrent systems by timed

Petri nets. PhD thesis, Massachusetts Institute of Tenchnology, Cambridge.,

1974.

200 BIBLIOGRAPHY

[75] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S.

Stissing, M. Westergaard, S. Christensen, and K. Jensen. CPN tools for edit-

ing, simulating, and analysing coloured Petri nets. In W. M. P. van der Aalst

and E. Best, editors, Applications and Theory of Petri Nets 2003, 24th In-

ternational Conference, ICATPN 2003, Eindhoven, The Netherlands, June

23-27, 2003, Proceedings, volume 2679 of Lecture Notes in Computer Sci-

ence, pages 450–462. Springer, 2003.

[76] W. Reisig. Primer in Petri Net Design. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1st edition, 1992.

[77] M. Riesz, M. Seckár, and G. Juhás. Petriflow: A Petri net based framework

for modelling and control of workflow processes. In S. Donatelli, J. Kleijn,

R. J. Machado, and J. M. Fernandes, editors, Proceedings of the Workshops

of the 31st International Conference on Application and Theory of Petri

Nets and Other Models of Concurrency (PETRI NETS 2010) and of the

10th International Conference on Application of Concurrency to System

Design (ACSD 2010), Braga, Portugal, June, 2010, volume 827 of CEUR

Workshop Proceedings, pages 191–205. CEUR-WS.org, 2010.

[78] F. Rosa-Velardo. Redes de Petri móviles para la especificación y verificación

de propiedades de seguridad en sistemas ubicuos. PhD thesis, Facultad de

Ciencias Matemáticas, Universidad Complutense de Madrid, 2007.

[79] F. Rosa-Velardo and D. de Frutos-Escrig. Name creation vs. replication in

Petri net systems. Fundam. Inform., 88(3):329–356, 2008.

[80] F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and complex-

ity of Petri nets with unordered data. Theoretical Computer Science,

412(34):4439–4451, 2011.

[81] L. E. Rosier and H.-C. Yen. A multiparameter analysis of the bounded-

ness problem for vector addition systems. Journal of Computer and System

Sciences, 32(1):105–135, 1986.

[82] G. Rozenberg, editor. Advances in Petri Nets 1990 [10th International

Conference on Applications and Theory of Petri Nets, Bonn, Germany,

June 1989, Proceedings], volume 483 of Lecture Notes in Computer Science.

Springer, 1991.

BIBLIOGRAPHY 201

[83] V. V. Ruiz, D. de Frutos Escrig, and F. C. Gomez. On non-decidability of

reachability for timed-arc Petri nets. In Proc. 8th. International Workshop

on Petri Nets and Performance Models, pages 188–196, 1999.

[84] D. Schmidt. Well-partial orderings and their maximal order types, 1979.

Habilitationsscrift.

[85] K. Schmidt. How to calculate symmetries of Petri nets. Acta Informatica,

pages 545–590, 1997.

[86] K. Schmidt. Integrating low level symmetries into reachability analysis. In

S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems, volume 1785 of Lecture Notes in Com-

puter Science, pages 315–330. Springer Berlin Heidelberg, 2000.

[87] D. Scott. Toward a mathematical semantics for computer languages. Tech-

nical Report PRG06, OUCL, August 1971.

[88] J. Sifakis. Use of Petri nets for performance evaluation. Acta Cybern.,

4(2):185–202, 1979.

[89] R. Valk and M. Jantzen. The residue of vector sets with applications to

decidability problems in Petri nets. Acta Inf., 21:643–674, 1985.

[90] A. Valmari. Stubborn sets for reduced state space generation. In Rozenberg

[82], pages 491–515.

[91] W. van der Aalst and A. ter Hofstede. Yawl: yet another workflow language.

Information Systems, 30(4):245–275, 2005.

[92] W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek,

M. Voorhoeve, and M. Wynn. Soundness of workflow nets: classification,

decidability, and analysis. Formal Aspects of Computing, 23(3):333–363,

2011.

[93] W. M. P. van der Aalst. Three good reasons for using a Petri-net-based

workflow management system, 1996.

[94] W. M. P. van der Aalst. Verification of workflow nets. In P. Azéma and

G. Balbo, editors, Application and Theory of Petri Nets 1997, 18th Inter-

national Conference, ICATPN ’97, Toulouse, France, June 23-27, 1997,

202 BIBLIOGRAPHY

Proceedings, volume 1248 of Lecture Notes in Computer Science, pages 407–

426. Springer, 1997.

[95] W. M. P. van der Aalst. The application of Petri nets to workflow manage-

ment. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[96] W. M. P. van der Aalst, D. Hauschildt, and H. M. W. Verbeek. A Petri-

net-based tool to analyze workflows. In Proceedings of Petri Nets in System

Engineering (PNSE97), pages 78–90. University of Hamburg, 1997. FBI-

HH-B-205/97.

[97] W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models,

Methods, and Systems. MIT Press, 2002.

[98] K. van Hee, N. Sidorova, and M. Voorhoeve. Generalised soundness of work-

flow nets is decidable. In J. Cortadella and W. Reisig, editors, Applications

and Theory of Petri Nets 2004, volume 3099 of Lecture Notes in Computer

Science, pages 197–215. Springer Berlin Heidelberg, 2004.

[99] K. M. van Hee and N. Sidorova. The right timing: Reflections on the mod-

eling and analysis of time. In J. M. Colom and J. Desel, editors, Application

and Theory of Petri Nets and Concurrency - 34th International Conference,

PETRI NETS 2013, Milan, Italy, June 24-28, 2013. Proceedings, volume

7927 of Lecture Notes in Computer Science, pages 1–20. Springer, 2013.

[100] K. M. van Hee, L. J. Somers, and M. Voorhoeve. Executable specifications

for distributed information systems. pages 139–156, 1989.

[101] F. R. Velardo and D. de Frutos Escrig. Decidability problems in Petri

nets with names and replication. Fundamenta informaticae, 105(3):291–

317, 2010.

[102] H. M. W. Verbeek and W. M. P. van der Aalst. Woflan 2.0: A Petri-net-

based workflow diagnosis tool. In Application and Theory of Petri Nets

2000, volume 1825, pages 475–484. Springer, Berlin, Verlag, 2000.

[103] A. Weiermann. A computation of the maximal order type of the term

ordering on finite multisets. In K. Ambos-Spies, B. Löwe, and W. Merkle,

editors, CiE, volume 5635 of Lecture Notes in Computer Science, pages

488–498. Springer, 2009.

BIBLIOGRAPHY 203

[104] K. Wolf. Generating Petri net state spaces. In J. Kleijn and A. Yakovlev, ed-

itors, Petri Nets and Other Models of Concurrency - ICATPN 2007, volume

4546 of Lecture Notes in Computer Science, pages 29–42. Springer Berlin

Heidelberg, 2007.

	Tesis María Rosa Martos Salgado
	Portada
	Agradecimientos
	Abstract
	Resumen
	Contents
	Introduction
	State of the art
	Petri nets and extensions
	Workflows

	Motivation and objectives
	Our contribution
	Contents
	Publications

	Preliminaries
	Multisets, words and quasiorders
	Transition systems
	Well-structured transition systems

	Petri nets and extensions
	-Petri nets
	Timed Petri nets

	Timed Nets
	Timed -Petri nets
	Undecidability of safety properties for -TPN

	Locally synchronous -Petri nets
	Decidability of control-state reachability for -lsPN

	Expressiveness
	Bounded -lsPN
	Expressiveness of general -lsPN

	Priced-Timed Nets
	Priced-timed -Petri nets
	Abstract -PTdPN
	Correctness of the simulation
	Coverability for -aPTdPN is decidable

	Resource Constrained Workflow Nets
	Asynchronous -Petri nets
	Resource-constrained workflow nets
	Undecidability result
	Step 1: getting ready
	Step 2: setting the initial marking
	Step 3: simulating N
	Step 4: reducing reachability to dynamic soundness
	Undecidability

	Decidability of dynamic soundness

	Rcwf-nets with Time and Prices
	Priced resource-constrained workflow nets
	Priced workflow-nets
	Priced resource-constrained workflow-nets
	Selected price predicates
	Complexity
	Relating price predicates

	Priced-timed resource-constrained workflow nets
	Priced rcwf-nets in practice

	Conclusions
	Summary and contributions
	Future lines of work

	Appendix A
	Appendix B
	Bibliography

