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Abstract

In this work we present a two-stage approach for designipgl taansit networks. It is based

on another approach that we described elsewhere. In thethgt, the stations and links to be
constructed are selected by solving an integer linear progring model that maximizes an

estimation of the number of trips through the rapid transitvork. In the second stage, a set of
lines is generated by utilizing a greedy heuristic procedhat, taking into consideration the
transfers that should be made by the users to arrive at thsifindtions, attempts to maximize
a more accurate estimation for the number of trips. This nstimation is done by means

of a modification of the well-known Floyd-Warshall algorith The main contributions are

a novel way of computing the expected number of trips by nwakise of the results from a

survey amongst the potential users of the rapid transit ortvas well as the contemplation

of the possibility of linking certain pairs of station loaais by more than one line. Some
computational experiments on several randomly generastdrices are also reported.
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1 Introduction

As the population concentration increases in urban aregsefs necessary to either develop new
transportation systems or to improve and/or expand théiegisnes. There are so many factors to
be taken into consideration to tackle these problems, ieatgtsulting mathematical programming
models would be too complex to be solved in an exact way. Quresdly, it is required to resort
to simplifications and heuristic procedures.
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Several authors have dealt with these problems, focusiserg tmainly on two opposite aims:
to achieve a high service quality with affordable operatingts, or to reduce as much as possible
the operating costs while maintaining a certain servicdityuavel. Herein we focus on the first
aim; some works focussing on the second aim are ClaessehgE228), Bussieck et al. (2004)
and Goossens et al. (2004).

In order to illustrate the great diversity of the approactieg can be found in the literature,
some works are outlined below. A point in common for all ofrthis the consideration of a static
origin-destination (O-D) matrix which contains the dem#&mdeach O-D pair of station locations.

Mandl (1980) proposes a heuristic algorithm for improvimgexisting public transportation
network of streets or rails in an urban area, in case of aleseihcapacity constraints for utilizing
the network. The algorithm starts with a feasible set ofdiiee., a set of lines such that all station
locations belong to at least one line and all pairs of stdtieations are mutually reachable), and
iteratively searches for new feasible sets of lines whiad o a reduction of the total average
transportation cost of the passengers. The transportedisinis defined as a weighted sum of the
waiting, travel and transfer costs, which can be intergret® time, and it is assumed that each
passenger utilizes a path that minimizes his or her averagegortation cost. The total average
transportation cost is estimated from a given O-D matrixe Vehicle assignment problem is also
briefly discussed.

Given a set of potential bus station locations and a set efiat links between them, and given
a symmetric O-D matrix, Baaj and Mahmassani (1991) dess@peArtificial Intelligence-based
approach for determining a set of lines and their associa¢egiencies attempting to reduce the
number of passengers that require any transfer to arriveeat destinations, so that both the
percentages of passengers that require no transfer an@s# that require a maximum of two
transfers, are greater or equal to certain prespecifie@sallhe approach consists of three major
components: a line generation design algorithm, an arsjysicedure, and a line improvement
algorithm. Itis assumed that each passenger utilizes &lpattimvolves the fewest possible number
of transfers.

Given a set of potential lines for a railway system, Bussieichl. (1997) provides an integer
linear programming model for selecting a subset of thessland determining their frequencies,
with the goal of maximizing the number of passengers thatireqno transfer to arrive at their
destinations. It assumes the symmetry of the O-D matrix disasehat each passenger utilizes a
shortest path (with respect to some measure) between hes origin and destination.

Guan et al. (2006) proposes a 0-1 linear programming moddifoultaneous optimization
of transit line configuration and passenger line assignm8tdrting from a given set of station
locations and links between them, its aim is to select theslito be constructed and to assign
a path in the resulting network to the passengers of each @uDop station locations, in such
a way that the union of the selected lines contains all therglinks, and that a weighted sum



of the total length of the lines, the total number of linesdubg the passengers and the total
distance covered by the passengers is minimized. For thgopa, a pool of potential lines to
be selected and a pool of potential paths to be assigned tpattsengers of each O-D pair are
considered, and each one of these potential lines is assaypeefixed frequency. Moreover, it is
assumed that the cost of operating any line is linearly pitapwal to the length of that line, that
each passenger utilizes a path that minimizes his or herceeghéravel time, and that finding the
smallest number of transfers for the path assigned to treepgsrs of each O-D pair is equivalent
to finding the smallest number of lines that those passes@pendd use. Neither the waiting time
for the passengers nor the effect of passenger crowdingleea into consideration.

Marin (2007) states the extended rapid transit networkigdeproblem and provides a
0-1 linear programming model for solving it. Given a set ofgutial station locations and a set of
potential links between them, this problem basically cstissn selecting which stations and links
to construct without exceeding the available budget, andraening an upper bounded number
of noncircular lines from them, to maximize the expectedltaumber of trips through the rapid
transit network, which is computed from a given O-D matrixiangiven private transportation
cost for each O-D pair of station locations. It is assumeti@hah user will utilize the rapid transit
network if and only if there is any path in this network betwéwgs or her origin and destination
such that its length is less or equal to the correspondinggp@rtation cost in the private transit
network. Similar models are considered in Laporte et all(20 2010b).

Marin and Garcia-Rbédenas (2009) presents a nonlinegrgmming model for locating the
infrastructure of a rapid transit network without exceedihe available budget. Two alternative
objective functions are proposed, namely, the expected tatmber of trips through the rapid
transit network (to be maximized), and the expected totaigportation cost through an existing
private transit network (to be minimized). Both of them agdiled from a given O-D matrix, a
given private transportation cost for each O-D pair of stalocations, and the Logit function,
which is approximated by a piecewise linear function. As aseguence of this approximation,
the initial nonlinear model results in an integer linearggeanming model. Among the considered
assumptions to simplify the model are that there is no wgitime for the users and there are
no capacity constraints for utilizing the network. The miaalso includes some constraints that
avoid the definition of circular lines, and others that apeto minimize the number of lines to be
constructed. The potential users’ behavior is modeled byrmmef the Logit function, instead of
considering the all-or-nothing model from Marin (2007).

Escudero and Mufioz (2009a) provides a two-stage approadolving a modification of the
extended rapid transit network design problem to allow thiEndion of circular lines, and shows
that it outperforms the solving of a modification of the mogeken in Marin (2007) to adapt it to
this new problem. In the first stage of the proposed appraacimteger linear programming model
is solved for selecting the stations and links to be con&tugvithout exceeding the available



budget, so that the expected total number of trips throughahid transit network is maximized

(without loss of generality, it is assumed that whicheven station locations are linked by one
line at most). In the second stage the line design problewived by assigning each selected link
to exactly one line, in such a way that the number of linesdioab each selected station location
is as small as possible (no upper bound for the number of isnegjuired).

Escudero and Mufioz (2009b) proposes some improvemertte @pproach stated in Escudero
and Mufioz (2009a). On one side, it introduces several noadiiéins in the model considered in the
first stage to obtain a connected rapid transit network. @araide, it presents a greedy heuristic
procedure which is a modification of the algorithm proposadsblving the line design problem
of the second stage. This new procedure attempts to miniamzsstimation of the total number
of transfers that should be made by the users to arrive atdbstinations, without increasing the
number of lines going to each selected station location.

In this work we tackle the problem of designing a rapid transtwork, i.e., determining the
stations and links to be constructed, as well as the set e$.lifhe two-stage approach that we
present is based on the one given in Escudero and Muioz§200® it is structured in the same
manner.

In the first stage, an integer linear programming problenoiges! for selecting the stations to
be constructed and the links between them, considering gelbddr the total construction cost.
All of the station locations are assumed to be known, but s8rajuish between key and non-key
stations: the key stations have to be compulsorily constcland they may belong to more than
one line, whereas the non-key stations are always locatexime link joining two key stations,
and they are constructed if and only if that link is constedct

Obviously, the solution obtained will strongly depend or thbjective function considered;
thus, an appropriate choice of the objective function igialfor getting a successful rapid transit
network. Among the different objective functions consetein the works outlined above, the one
more directly related to the service quality is the expettéal number of trips through the rapid
transit network, since the higher the service quality, tfleater the total number of trips. Therefore,
we are considering it as the objective function (to be mazed).

This type of objective function has already been considéneMarin (2007), Marin and
Garcia-Rodenas (2009), Escudero and Mufioz (2009a,02@0®i Laporte et al. (2010a, 2010b),
and its value has been computed by considering a uniqugtetaion cost for each O-D pair of
station locations in an alternative transit network. Thaywf computing the objective function
value is not very accurate, since the users of each O-D paiactually utilize distinct means of
transportation and distinct routes for arriving at thestd®ations, hence it does not seem adequate
to consider the same alternative transportation cost forf #hem. Instead, we propose to perform
a survey in order to collect certain data which will make ispible to consider each potential



user’s behavior individually and, as a consequence, to aterhe objective function value more
accurately.

In the second stage of the presented approach, the linendesiglem is solved by means of
a generalization of the greedy heuristic procedure givdesicudero and Muhoz (2009b) to allow
pairs of station locations linked by more than one line,mfitng to maximize the total number
of trips through the rapid transit network. For this purpose introduce a modification of the
well-known Floyd-Warshall algorithm to determine the gket routes for each O-D pair of key
station locations, and we define an expanded network th&nvaike it possible to consider the
transfer times for the users.

We are not addressing the problem of determining the heaglfeaythe lines, since these
headways must vary over time, depending on different faggach as the available budget for the
operating costs, whether we are in a peak hour or in an off-pear, in a working day or in a
holiday, in a working week or in Christmas, Easter or sumn@idays, whether a mass event
(e.g., a concert, a conference, a demonstration, a foajbatle, ...) is going to be held, etc.
Consequently, the headways will have to be set in subsegteges, by taking into consideration
the circumstances at those moments as well as the tradetefébn service quality and operating
costs.

The remainder of the paper is organized as follows: Secti®tages the basic notation
and assumptions that we consider. Section 3 proposes ageinfieear programming model
for selecting the stations and links to be constructed. i@eet presents a modification of the
Floyd-Warshall algorithm to determine a shortest chairwbken each pair of nodes of a graph
with nonnegative length edges. Section 5 shows how to cketihe maximum possible expected
number of trips taken on the rapid transit network betweerh geair of key station locations,
assuming that no transfers are required, as well as thatajpecity of the rapid transit network
is enough to hold all those trips. Section 6 provides an #lyorfor designing a set of lines for
the rapid transit network which generalizes the greedyikgcialgorithm given in Escudero and
Mufioz (2009b), to allow pairs of station locations linkedrhore than one line. Section 7 shows
how to calculate in a more accurate way the maximum possiplected number of trips obtained
in Section 5, by means of an expansion of the network coreibigrerein that allows to take into
account the transfer times. Section 8 proposes a greedystieygrocedure for determining a
line design for the rapid transit network, attempting to maxe the expected total number of
trips through the rapid transit network. Section 9 repoostss computational experience on three
randomly generated example cases; the results show thaipgireach presented in this paper
can significatively increase the expected total numberip$ tthrough the rapid transit network
obtained by utilizing the procedure proposed in EscudedoiNdniioz (2009b). Finally, Section 10
draws some conclusions and future research from this work.



2 Basic notation and assumptions

Let us consider two types of stations: key stations and reynskations. The key stations will be
located on the busiest zones of the area covered by the rapglttnetwork, which are assumed to
be known (see in Laporte et al. (2007) a procedure for selgstich key station locations). We also
assume that the potential links between the key stationitotaare known, and that some other
stations, called non-key stations, can be located on thiokg, lin such a way that each non-key
station will be constructed if and only if the link on whicHigs is constructed.

The key station locations will be represented as the nodesgoéph, and the potential links
between them as the edges of that graph (it is not necessagptesent the non-key station
locations). Thus, we are implicitly assuming that, for egelir of distinct key station locations
that can be linked, the route followed by the users for goingifone of the locations to the other
one will be the same as for going from the second location edfitist one, but in the opposite
direction. Although this assumption is usually satisfied rl networks, it can be violated for
street networks containing one-way streets, but the appnogesented below will remain valid for
this case by considering arcs instead of edges and by modiftyaccordingly.

LetV = {1,...,n} be the set of key station locations, Eetbe the set of (nonordered) pairs of
key station locations that can potentially be linked, i.e.,

E={{i,j} eVxV |i#janditis possible to linkandj},

and letm= |E|.

Let us consider the simple gra@= (V,E). Without loss of generality, whenever we refer to
an edg€(i, j} € E it will be assumed that< j. We also assume th@tis connected.

For eachi € V, let g be the cost of constructing a key stationi,aaind letl (i) be the set of
key station locations that can be linkedit(notice that (i) is the set of nodes adjacentittn G
and|l (i)| is the degree afin G).

For each{i, j} € E, let dij be the length of link{i, j} (expressed in kilometers), le be
the number of non-key station locations on lifikj}, and letcij be the cost of linking and |
(including the cost of constructing the corresponding kep-stations).

If there wereA lines going to a key station locatianor linking two key station locations
and j, then the associated construction costs wouldAbeand Acjj, respectively, since it is
assumed that we construct as many statiomsaatl as many links betweerand j as the number
of lines involved. Although in the first stage of the propoasggroach we implicitly consider that
whichever two station locations are linked by one line ating®@se Section 3), in the second stage
we shall allow pairs of station locations linked by more tiozue line (see Sections 6, 7 and 8).

Let b be the available budget for constructing the rapid trareivork, and lev be the average
velocity of the network’s vehicles (expressed in kilomsteer hour).



For each €V, leti(i) be the average time required for going between the entrdrbe éey
station located dtand its boarding and alighting platform (expressed in na@gut

Let ty be the average interarrival time (i.e., the time differehetween two consecutive
arrivals) of the vehicles at each station (expressed in reg)uletts be the average dwell time
(i.e., the time spent for boarding and alighting of passesjgef the vehicles at each station
(expressed in minutes), and tebe the average time for making a transfer (expressed in Bshut
Since in real-life rapid transit networks most of the timerthare no vehicles at the stations, it
will be assumed thdt < %‘ If we had appropriate a priori information, instead of ddesing a
unique value fof;, we could make it depend on the key station locations, i.e.could consider
the average time for making a transfer at eaehV .

LetW ={(i,j) eV xV |i < j}, and let us denote = (ey,€,) VweW (W is understood as
the set of all distinct pairs of key station locations).

In order to assess the behavior pattern of the potentiasuaerpropose to survey a sample of
people who, a priori, are willing to utilize the rapid transetwork. Let® be the set of surveyed
people.

For eachf € © and for eactw € W, let a(8) be the number of trips in a working week that
the surveyed plans to take betweesy, and€, (in any direction) during the hours of operation of
the rapid transit network.

LetWp = {we W | aw(8) >0} VO € O (notice thatWp is the set of distinct pairs of key
station locations between which the surveyeplans to travel, without taking into consideration
the direction of the related trips).

For eachf € © and for eachw € Wy, let 1,(6) be the maximum number of minutes that
the surveyed is willing to spend for travelling betwees, and €, (in any direction). We are
considerind(ey) + %‘ + GT\PdaNecv +1(€,) as the minimum possible average time that the trip between
ew ande), will take on the rapid transit network, whedg, ¢ is the Euclidean distance (expressed
in kilometers) between,, and€, if {ey, €} ¢ E (this minimum will be reached ifey,€,} € E,
Sawe, = 0 and link{ey, €} is selected to be constructed). Therefore, without lossakglity it
will be assumed that,(0) > T(ew) + 5 + $dg,¢, +T(€)) (if Tw(6) <T(ew) + % + Ldg,e, +T(€)),
then the surveye@ will not utilize the rapid transit network for travelling beeene,, ande),, and,
consequently, we shall sef,(6) = 0, hencev ¢ Wp and the value of,(0) will not be considered).

In order to determine an initial setting for the headways subsequent stage, the surveyees
could also be asked about the starting time and the direofitreir trips.

LetW' = JgecoWs (notice thatW' is the set of distinct pairs of key station locations between
which the surveyees plan to travel, without taking into ¢desation the direction of the related
trips). It is expected tha/’ = W, since the cardinality o® should be large enough for the survey
results to be reliable.



For eachw ¢ W, let © = {0 € © | aw(8) > 0}, qw) € N, u}, = min{ty(0) | 8 € B},
w2, ..., ud"™ ¢ R such thatd, < 2 < ... < ul™ < max{t,(8) | 6 € Oy}, andgk, = S ol Aw(6)
vk € {1,...,q(w)}, where@f, = {8 € O | Tw(0) > UK} (the value ofgf, can be interpreted as
the expected number of weekly trips taken on the rapid trawesivork by the surveyees that plan
to travel betweere, and€|,, assuming that the fastest route for taking them takgsninutes,
as well as that the capacity of the rapid transit network mugh to hold all those trips). It will

-----

gt > 2> ...> g™ (notice thagd™ > 0). The idea behind the consideration{af }ic (1. quw))
is to group the valuesty(8) }oco, into the intervalgud, u2), ..., [ud™ ™ ud™)y [WI™) +o0), and
to utilize these intervals for estimating the number of weelps that the surveyees @®,, will

take on the rapid transit network.

3 Station and link location

In this section we present an integer linear programmingehtm selecting the stations to be
constructed and the links between them, so that the regultipid transit network is connected
and its construction cost does not exceed the availablediuddis model is based on the one
proposed in Escudero and Mufioz (2009b), for the partiatdae where at least one key station
has to be constructed at each location; see also Escudeidudiai (2009a).

We attach more importance to linking two station locatiop®be line, than not linking them
in exchange of linking some two other station locations byertban one line. Thus, in this first
stage of the approach we implicitly assume that whicheverdtation locations are linked by one
line at most, whereas in the second stage we shall check ameitithout eliminating the already
selected links, it is possible and advisable to have paistaifon locations linked by more than
one line (see Sections 6, 7 and 8).

Each feasible solution to the model will define a route fowetling between each pair of
key station locations. These routes are understood asrneliy routes for taking the trips on the
rapid transit network (it will be attempted to improve themai subsequent phase of the approach;
see Section 5).

The optimization criterion is the maximization of an estiroa of the number of weekly trips
that the surveyees will take on the rapid transit networkictviis equivalent to maximizing an
estimation of the gross profits, assuming that the userstodwvay a ticket per trip and that there
is a unique fare for the tickets. In order to do this estinratiwe consider the average time for
the preliminary routes for taking the trips demanded by tn&es/ees (since the lines have not
still been defined at this stage, these average times anglai@d assuming that no transfers are
required).



We define the following variables:

1 ifiandj are linked .
ij:{ J vi{i,j} €E

0 otherwise

v Lot S jer.j=i%i T 2jeri.j<iXiisodd .\,
0 otherwise

Aie{O,...,r(i)} VieVv

1 if the preliminary route for travelling between

fii’ = ew ande), utilizes edg€{i, j} YweW,¥{i,j} €E
0 otherwise
(1 if the preliminary route for travelling between
gV = ew ande), passes through YweW,Vi e V\ {ew,€,}
0 otherwise

Pk e {0,1} vYweW vke{l,....qw)},

FOLif |1 (i) is even

FOIZL - if |1 (i) is odd

where r(l) _ { LN = Yjer(i),j>iXij %Jel’(|)~,1<| ji Vl, and a necessary

condition for p, to take the value 1 is that the average time for travellingveene, and €,

by following the associated preliminary route is less oradoiuy..

We propose the following model:

q(w)
Maximize z= % % diipl,
weW’ k=1

subject to:

Xij + Z Xji=20i+Yy VieV
jerfyjsi jerfyi<i

;aa(Aa+w)+ z cijXij <b
ic {i,j}€E

fil <xj YweW,V{i,j} €E

> i ijiVZ{ 1W Ifle{%’d"’} Yw e W, Vi € V
jer(.j>i jerm.j<i 2g)" otherwise

1)

(2)

3)

(4)



W
Z <1 YweWw (5)
T (w) + Z B —uls <MiS(L—pf) vweW vke {1,...,qw)} (6)
{i,]}€E

xj €{0,1} V{i,j}€E
¥ €4{0,1} VieV
N €{0,...,r(i)} VieV
fil €{0,1} YweW,¥{i,j} €E
g'c{0,1} YweW,VieV\ {ew€,}
pk € {0,1} vYweW vke {1,....qw)},

wheret'(w) =T(ey) + 2 ts+t(dN) ti; = Qdij +Ts(sj + 1), andM{ is an upper bound for the
value oft’ (w) + > 1, j}EEtlj f,VJ" uk over the feasible region of the above model relaxation tiesul
from eliminating the constraints (5) and (6), and the vdeial@p\'fv}W€W/7ke{lw_?q(w)}.

Constraints (1) and (2) impose the budget constraint. Caing$ (3) and (4) define the
preliminary routes and guarantee that any feasible selutiothis model will give rise to a
connected rapid transit network. Constraints (5) imposg, ttor eachw € W/, at most one of
the variables{ pw}ke{l w)} can be equal to 1. Constraints (6) |mpose that, for emehW’
and for eactk € {1,...,q ( w)}, if p& =1 thent'(w) + >, ,}eEf,] fi < Uy (we are considering
t'(w) + 21, J}eEf,] fii as the average time for travelling betweep and €, by following the
associated preliminary route, singe; J}GEtlj fii' —1s is the average time for travelling between
the boarding and alighting platforms @} and €, for this preliminary route, assuming that no
transfers are required).

For eachw € W/, in the objective function we are considerig&_"‘f 0% pk; as the estimation for
the number of weekly trips taken on the rapid transit netvayrkhe surveyees that plan to travel
betweers, and€),. Since we are dealing with a maximization problem, eachnugitsolution to
the above model will satisfy the following properties (thestfione will also be satisfied by any

feasible solution to the model):

(1) For eachw € W’ such thatt'(w) + i jeei; fi’ > uk vk e {1,...,qw)}, it will be
k=0 vke{1,...,qw)}.
(2) For eachw € W’ such thatk € {1,...,q(w)} with T'(w) + 3 g j1eefi; fii < uk, it will be
pK =1 andpl, =0 Vvke {1,....,qw)}\ {k*}, wherek* = min{k € {1,...,q(w)} |
( )+Z{| ]}GEfIJ fu < uw}-

10



For the particular case wheggw) =1 Vw € W/, the above objective function is the same as
in the model from Escudero and Muiioz (2009b), i.e., theoatothing model for the potential
users’ behavior from Marin (2007) is considered.

The greater the values dig(w) }wew, the more accurate the estimation of the number of
weekly trips that the surveyees will take on the rapid ttanstwork (assuming that no transfers
are required) but also the more variables and constrainkteiabove model.

We have considered some other objective functions that tieeqaire either the constraints (5)

-----

than for the above objective function.

In order to illustrate the application of the first stage of ptoposed approach, a small-size
instance is provided in the following example:

Example 1. Consider the graph G= (V,E), where V= {1,2,3,/4,5,6} and E= {{1,2},{1,4},
{1,5},{2,3},{2,6},{4,5},{5,6}} (see Figure 1). Ther (1) = {2,4,5}, '(2) = {1,3,6},
r(3)={2}, r4) ={15} (5 ={1,4,6},1(6) ={2,5 and W= {(1,2),(1,3),(1,4),(1,5),
(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6) }.

1 O, ®

4 (5) 6
Figure 1: Graphic representation®@f= (V,E)

Letg =30 VieV,th»=16,d14=21,di5=1,dp3=1.1,dog=15,dss=1.2, dsg= 0.9,
sj =0 Wi,j} €E, gj =45 WV{i,j} €E, b=645Vv=060, {(i)=2 VieV, ta=4
ts=05andf =3 ({a}iev, {Cij}{iyj}EE and b are expressed in millions of euros). Then
fij =dj+05 W{i,j}€E.

Let ® = {64,...,65}, Wy, = {(1, 2), (1, 6), (2, 4), (2,6)}, W, = {(1, 4), (1,5), (4,5)},
We; = {(1,6), (2,5), (3,5)}, Wg, = {(1,3), (1,6), (2,3), (3,5), (3,6), (5,6)} and W, = {(1,6),
(2,4),(3,4),(3,6),(4,6)}. Therefore, we have W=W andf’(w) =55 YwecW’,

11



For each6 € © and for each we Wy, Table 1 shows the values we have considered§gB)
and 1y (0):

Table 1: Values of aw(0) } gcowew, and{Tw(0)}oco wew,

8 w  aw(8) Tw(O)
6. (1,2) 1 8
(1,6) 2 12
(2,4) 5 10
2,6) 1 9
6 (1,4 1 10
1,50 1 7
45 1 8
6; (1,6) 1 13
2,5 1 9
(355 8 10
6, (1,3) 1 12
(1,6) 10 8
2,3 1 8
(3,5) 1 12
36) 1 16
(5,6) 1 8
6s (1,6) 5 9
2,4 1 12
(3,4 1 15
(3,6) 12 9
46) 1 9

.....

{0 ke (1. qw)} and {M{}ke (1. qw)) (the procedure we have utilized for obtaining them will be
detailed in Section 9):

12



W oW {UW ke qwy {9 kern qwy  AMEke(r. qw)
1,2) 1 8 1 75
(1,3) 1 12 1 35
(1,4) 1 10 1 5.5
(1,5) 1 7 1 8.5
(1,6) 2 8,9 18,8 7.5,6.5
2,3) 1 8 1 75
2,4) 1 10 6 5.5
(2,5) 1 9 1 6.5
(2,6) 1 9 1 6.5
3,4) 1 15 1 05
(3,55 1 10 9 55
(3,6) 2 9,16 13,1 6.5,0.5
4,5 1 8 1 7.5
(4,6) 1 9 1 6.5
(5,6) 1 8 1 75

Upon solving the above model for this particular instance abtain that all links excefdtl, 4}
are constructed, the construction cost of the rapid transttwvork is 568.5 million euros, and the
optimal value of the objective function is 20.

4 Modification of the Floyd-Warshall algorithm

LetG' = (V',E’) be a simple graph, and ldf; > 0 V{i,j} € E' andd]; = +e Vi, j € V'such
thati # j and {i,j} ¢ E’ (for each{i,j} € E’, dj; is understood as the length of edgej}).
Without loss of generality, let us assume tWat= {1,...,n'}.

Below we present a modification of the well-known Floyd-Weai$ algorithm (see e.g. Korte
and Vygen (2008)) to determine a shortest chai@/ifetween each pair of nodesf. It takes
advantage of the undirectednessEfas well as of the nonnegative lengths of the edgés iand
it will be utilized in subsequent phases of the approach &&tions 5 and 7).
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Algorithm 1.

Step 1. Sethy; :di/j,hji =hjj,pj=iandpjj =] Vi,jeV withi< j, and sek=1.

Step 2. Sethjj = hy+ hyj, hji = hij, pij = pj andpji = pxi Vi, j € V'\ {k} such thai < j and
hik—i-hkj < hij.

Step 3. If k=n', STOP; otherwise, sé&t= k+ 1 and go to Step 2.

5 Determination of the shortest routes without considering
transfers

We are interested in determining a route of minimum average for each trip that will be taken
on the rapid transit network by the surveyees. Howeveresatine design for the rapid transit
network is not still available, we are forced to assume tloatransfers will be required in those
routes (later, in Section 7, transfers will be taken intosideration).

Let (Xij){ijyee: (Wievs @iev, (T wew i e (E)wew.iov (et (P)wew keft....qw)
be an optimal solution to the model stated in Section 3 (onanmbent solution if the model has
not been solved to optimality), and [Bt= {{i, j} € E | X;; = 1}.

The rest of the proposed approach would be valid for any $ubsé E such thatV,E) is a
connected graph and the construction cost of its assodiaped transit network does not exceed
the available budget. Consequently, it could also be enaoldgr redesigning the lines of existing
rapid transit networks.

Let us consider the partial gragh= (V,E) of G. For each €V, letT (i) be the set of nodes
adjacent td in G. Lets= 2 i.jyce Sj (notice thasis the total number of non-key station locations
in G).

It is worth noting that, for eaclv € W, the preliminary route defined b&TiV}'}{Lj}eE is not
necessarily a chain of minimum length@joining e,y ande,, considerindi’j as the length of each
edge({i, j} € E. In order to determine such shortest chains, let us applgmitgm 1 takingG' = G
andd; =; V{i,j} €E.

Given the outputhij }i jev.izj, {Bij }i,jev,i<j Of Algorithm 1, letAy =F'(W) + hg,q, YWEW
(notice thatAy, is the minimum average time that the trip betwegpand €, will take on
the rapid transit network, assuming that no transfers ageimed), and let{ ﬂ‘j"}wew,v{m}eg
and {&"}wew,iev\{en.g,) D€, respectively, the values of the variable&'}t,c\ i j1ee @nd
{&"wew iev\ aw.g,} that define the routes identified by Algorithm 1, i.e.,
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1 if the shortest chain i joining e, and€,
fw = determined by Algorithm 1 contains ed§iej} YweW' V{i,j} €E
0 otherwise

1 if the shortest chain i joining e, and€,,
= determined by Algorithm 1 passes throligh Ywe W' Vi e V\ {ey, €}

0 otherwise

(these values can easily be obtained frppg }i jcv.ij; in particular, for eaclw € W' such that
he,e, = Z{Lj}egfi’jﬂ’jv, we can seﬂ‘}" = T}’}’ v{i,j} e Eandg" =¢" VieV\{ew€,}).

For eachw € W', letg,, = ¥ 5.5, dw(0), whereOy = {6 € Oy | Tw(0) > Aw} (notice thawg,, is
the maximum possible expected number of weekly trips takethe rapid transit network by the
surveyees that plan to travel betwesgnande),, and it will be reached if the surveyees follow the
route defined by ﬂVJ"} {i.jyee: NO transfers are required in that route and the capacitgeofapid

transit network is enough to hold all those trips). zet e\ Ow-

Example 2. Let us continue solving the instance given in Example 1. WehgeG = (V,E),
where E = {{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}} (see Figure 2). Thus[ (1) = {2,5},
F(2)={1,3,6},T(3)={2},T(4) ={5},T(5) = {1,4,6} andl (6) = {2,5} (notice thats = 0).

1 2.1 @ 1.6 @

15 2

4 5 6
@ 1.7 ~ 14
Figure 2: Graphic representation@f= (V,E) and values offj; } ; ;g

For each we W/, Table 3 shows the shortest chain@joining &, and €, determined by
Algorithm 1 and the values @f,, andg,, (notice thatz = 22):
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Table 3: Shortest chain betweepande,, Yw € W’ and values of Ay }wew and{g,, hwew’

w  Shortest chain betwees), and€), Aw Ow
(1,2) {{1,2}} 76 1
(1.3) {{1,2},{2,3}} 9.2 1
(1,4) {{1,5},{5,4}} 87 1
(1,5 {{1,5}} 7 1
(1,6) {{1,5},{5,6}} 84 8
(2.3) {{23}} 71 1
(2,4) {{2,6},{6,5},{54}} 106 1
(2,5) {{2,6},{6,5}} 89 1
(2,6) {{2,6}} 75 1
(3,4) {{3,2},{2,6},{6,5},{5,4}} 122 1
(3,5) {{3.2},{2,6},{6,5}} 105 1
(3.6) {{3.2},{2,6}} 9.1 1
(4.5) {{4.5}} 72 1
(4.6) {{4.5}.{5.6}} 86 1
(5.6) {{56}} 69 1

6 Greedy heuristic procedure for minimizing the number of
transfers given the set of links to be constructed

In this section we provide a generalization of the greedyibga algorithm for designing a set of
lines presented in Escudero and Mufioz (2009b), to allovs distation locations linked by more
than one line (the algorithm presented in Escudero and I{@@09a) could also be generalized
analogously). Each link to be constructed will be assigreeéxactly one line, attempting to
minimize an estimation of the number of weekly transfers gieuld be made by the surveyees
to arrive at their destinations. Although the new algorittan fail in designing a set of lines for
a nonsimple graph, it will be applied at least to gr&plisee Section 8), hence obtaining a line
design for the rapid transit network will be guaranteed.

LetG = (V,E') be a graph such that the edge&irare the same as B, but their multiplicities
can be greater than one. When we refer to an dige < E', it will can be eitheii < jori>j.

For eachi €V, let d(i) be the degree of in G, and, for each{i, |} € E, let mj be the
multiplicity of {i, |} in G .
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The proposed approach can require designing a set of limeklfferent sets of edgeE’. We
shall impose that each one of these ﬁtq’ointly with the set of lines obtained for it, satisfy the
two following conditions:

(1) Foreach €V, the number of lines that go tas () if d(i) is even, orM;rl if d(i) is odd.

(2) Yiev,d(i) evend TI + 2ieV,d(i) oddi d(l S +24i,jyeECGj Mij < b.

Condition (1) is imposed in order to reduce as much as pasHile construction cost of the
rapid transit network defined tI_B/ (notice that a necessary condition for (1) to be satisfiedas t
min{d(i),d(j)} > 2mj—1 V({i,j} € E). Condition (2) imposes that the construction cost of the
rapid transit network defined li_y' does not exceed the available budget.

For obvious reasons, lines containing two or more equaslimit not be allowed.

It will be assumed that the surveyees follow the routes defioye( ﬂ‘}"}wew,7{i7j}eg.
LetW={weW'|g, > 0}. For simplicity of notation, we definé/=f¥ vweW,v{i,j}cE.

LetWi={weW |i¢ {ew €}, &"=1} VieV,lettj(i)= 3 wew,, fv=1 9w VieV,Vjel(i),
and letty(i, j) = > wew;, fW+f]V|V(:19W VieV,Vjel(i),vkeT(j)\{i }(notlce thatv; is the set of
distinct pairs of key station locations such that the sueesythat plan to travel between them pass
through location, t; (i) is the maximum possible expected number of weekly transtdation
made by the surveyees that utilize lifk j}, provided thai is an endpoint of the lines that link
i and j, andt(i, j) is the maximum possible expected number of weekly transfiehscation |
made by the surveyees that utilize one and only one of the fink} and{j,k}, provided that
these links belong to the same line).

Algorithm 2 below is a greedy heuristic procedure for designa set of lines forG .
It generalizes Algorithm 2 in Escudero and Muioz (2009b) aan be outlined as follows:
Starting from a node with odd degree, or, in its absence, patitive even degree, other nodes are
chosen sequentially through edgeE’rattending to certain criteria, until a node is reached which
either has previously been visited or has no incident edgese(an edge has been considered,
it is eliminated fromE'). In the first case, we define a circular line and check whathem still
be possible to design a set of lines such that condition (datisfied; if so, the above procedure is
carried on from the last reached node which is an endpoinh@dge that has been eliminated
from E but has not yet been assigned to a line, if such a node exisighel second case,
we define a noncircular line. This approach is repeated wumikither detect that it cannot be
possible to design a set of lines such that condition (1)tisfsad or geE’ = 0 (see Escudero and
Mufoz (2009b, 2009a) for more details).

If E' = E, Algorithm 2 proceeds in the same way as Algorithm 2 in Esoudsd Mufioz
(2009b); therefore, it will obtain a line design. Otherwiségorithm 2 can fail in obtaining a line
design.
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In order to store the sequence of nodes chosen at eachdterathonnegative integer value
p(i) is associated to each node V, in such a way that a positive valygi) means that nodie
has been reached from nog@) (for the starting nod& we definep(ig) = ig). A counterl for the
number of lines that are being defined is also consideredsellges are denoted lby.

Algorithm 2.

Stepl. Setp(i)=0 VieVandl =
Step2. IfE =0, STOP.

Step 3. If d(i) isevenvieV, chooség €V such thatl(ip) > 0, setj =argmaxmy,j/ | j'e T (io) }
and go to Step 5.

Step 4. Chooseig € V such thatd(ip) is odd and setj = argmax{mj: | j € T(ig)}. If
d(io) > 2my;, setj = argmin{t; (ig) | j’ € T (io)}.

Step5. Setl=14+1,L, =0, p(ip) =ipandi =

Step6. SetE =FE '\ {{i,j}},d(i)=d(i)—1,d(j) =d(j) — 1, mj = mj — 1 andmj = my;.
If mj =0, setl (i) = ()\{J}andr( )=T()\{i}.

Step 7. If p(j) >0, setjo=j and go to Step 11.

Step 8. If d(j) =0, setjo=ipand go to Step 11.

Step 9. Setk=argmaxmye | K eT(j)\{i}}. If d(j) <2mj, setp(j) =i,i=j, j=kand go
to Step 6.

Step 10. Setk=argmin{te(i,j) | K e T(j)\{i}}. If d(j)is even andy(i, j) > ti(j), setjo = io;
otherwise, sep(j) =i,i=j, j =kand go to Step 6.

Step 11. SetL =L U{{j,i}}. If i # jo, setj=i,i=p(i), p(j) =0 and repeat Step 11.

Step 12. If i =i, setp(io) = 0 and go to Step 2.

Step 13. If d(i) < 2my;, STOP (no line design has been obtained); otherwise, sdt+ 1,
L =0,j=i,i=p(i), p(j) =0and go to Step 8.

REMARK 1. Ifd(ip) is even, then Step 8 can be skipped, since it will always e 0.
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We have seff = argmaX{mj | j € T(io)} in Step 3, since, ifi(ip) < 2my,; and a circular
line were defined containing two links of the forfiy, j1} and{jz,io}, wherej, j» € T'(io) \ {j}
and 1 # J2, then condition (1) would not be satisfied.

We have initially setj = argmaxXmy,j: | j € T(io)} in Step 4, since, ifi(ip) < 2m,; and a
line were defined containing a link of the forfiy, j1}, wherej; € T (i) \ {j}, and not containing
link {ip, j}, then condition (1) would not be satisfied.

We have initially sek = argmaX{mje | k' € T(j)\{i}} in Step 9 (below it will be shown
thatT (j)\ {i} # 0, hencek is correctly defined), since, d(j) < 2mjx and a line were defined
containing link{i, j} and not containing linK j,k}, then condition (1) would not be satisfied.

Given that miqd(i),d(j)} > 2mj —1 V({i, j} € E, it can easily be deduced from Steps 3, 4,
9 and 13 that each time a lirlg is set to the empty set, we have that fuh(i),d'(j)} >
2m; —1 W¥{i,j} € E, whered!(i) and d'(j) are, respectively, the degree bfand j in G,
n’{j is the multiplicity of {i, j} in G, andG, = (V,E’\U:;ll L/). As a consequence, it will always
bel(j)\{i} #0in Step 9.

Example 3. Let us continue solving the instance given in Example 1 (seeExample 2). We get
thatW =W, W = 0, W, = {(1,3),(3,4),(3,5),(3,6)}, W3 = 0, Wg = 0, W5 = {(1,4),(1,6),
(2,4),(3,4),(4,6)} andWg = {(2,4),(2,5),(3,4),(3,5)}.

Below Algorithm 2 is applied considering three differentssaf edgeE’ (these sets will also
be considered in Sections 7 and 8).

e LetE =E. Then dl) =2, d(2) =3, d(38) =1, d(4) =1, d(5) =3, d(6) =2 and
M2 = Mp1 = My5 = Ms1 = Mp3 = Mg2 = Mg = M2 = My5 = Mg = Mg = Mg5 = 1.
Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) =0,1 =0
Stepd.ip=2,]=11(2)=113(2) =4,1%6(2) =3, j =1
Step5.1=1,L,=0,p(2) =2,i =2

Step 6. E' = {{1,5},{2,3}.{2,6},{4.,5},{5,6}},d(2) = 2, d(1) = 1, mp1 = 0, m» = 0,
F(2)={3,6},T(1) = {5}

Step 9. k=5,p(1)=2,i=1,j=5

Step 6. E = {{2,3},{2,6},{4,5},{5,6}}, d(1) = 0, d(5) = 2, my5 = 0, mg; = O,
F(1)=0,T(5 ={4,6}

Step 9. k=4
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Step 10. t4(1,5) =11, t5(1,5) =4, k=6,t1(5) =9, p(5) =1,i =5, =6

Step 6. E' = {{2,3},{2,6},{4,5}},d(5) = 1,d(6) = 1, msg = 0, mes = 0, T(5) = {4},
r(6)={2}

Step9. k=2, p(6)=5,i=6,j=2

Step 6. E = {{2,3},{4,5}},d(6) =0,d(2) = 1, mgp = 0, mpg = 0, T(6) = 0, T(2) = {3}
Step 7. jo=2

Step 11. Ly = {{2,6}}, j=6,i =5, p(6) =0

Step 11. Ly = {{2,6},{6,5}}, j=5,i=1,p(5) =0

Step 11. Ly = {{2,6},{6,5},{5,1}},j=1,i=2, p(1) =0

Step 11. Ly = {{2,6},{6,5},{5,1},{1,2}}

Step 12. p(2) =0

Step4d.ip=2,j=3

Step5.1=2,L,=0,p(2) =2,i =2

Step 6. E' = {{4,5}},d(2) =0,d(3) =0, mp3=0,mg;=0,T(2) = 0,T(3) =0

Step 8. jo=2

Step 11. L, = {{3,2}}

Step 12. p(2) =0

Step4.ig=4,j=5

Step5.1=3,L3=0,p(4) =4,i=4

Step 6. E = 0,d(4) =0,d(5) =0, my5 =0, ms, = 0,T(4) =0, T(5) =0

Step 8. jo=4

Step 11. L3 = {{5,4}}

Step 12. p(4) =0

Thus, one circular line L = {{2,6},{6,5},{5,1},{1,2}}, and two noncircular lines
Lo ={{3,2}} and Ls = {{5,4}} have been defined.

LetE' = EU{{1,5}}. Thend1) =3, d(2) =3, d(3) =1, d(4) =1, d(5) = 4, d(6) = 2,

M2 = Mp1 = Mg = Mgz = Mpg = Mgz = My5 = M4 = Mg = M5 = 1 and M5 = Mg = 2
(notice that condition (2) is satisfied).
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Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 0,1 =0

Step4d.ig=1,j=5

Step5.1=1,L;=0,p(1)=1,i=1

Step 6. E'={{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}},d(1)=2, d(5) =3, mys=1, ms; =1
Step 9. k=4

Step 10. t4(1,5) = 11,t5(1,5) =4, k=6, p(5) =1,i =5, ] =6

Step 6. E/ = {{172}7{175}7{273}7{276}7{475}}7 d<5) =2, d<6) =1, mgg =0, mg5 = 0,
r(5)={14},T(6)={2}

Step 9. k=2, p(6) =5,i=6, j =2

Step 6. E' = {{1,2},{1,5},{2,3},{4,5}},d(6) = 0, d(2) = 2, Mg = 0, My = 0, T(6) = 0,
r(2)={13}

Step 9. k=1
Step 10. t1(67 2) =4, t3(67 2) =1k=3, t6(2) =3, p(2) =6,i=2, J =3

Step 6. E = {{1,2},{1,5},{4,5}},d(2) = 1,d(3) = 0, mpz = 0, mg; = 0, [ (2) = {1},
T(3)=0

Step 8. jo=1
Step11. Ly ={{3,2}},j=2,i=6,p(2) =0

Step 11. Ly = {{3,2},{2,6}},j=6,i =5, p(6) =0

Step 11. Ly = {{3,2},{2,6},{6,5}},j=5,i=1, p(5) =0

Step 11. Ly = {{3,2},{2,6},{6,5},{5,1}}

Step 12. p(1) =0

Stepd.ig=2,j=1

Step5.1=2,1,=0,p(2)=2,i=2

Step 6. E = {{1,5},{4,5}},d(2) =0,d(1) =1, mp; =0, m»=0,T(2) =0, T (1) = {5}
Step9. k=5,p(1)=2,i=1,j=5

Step 6. E' = {{4,5}},d(1) =0,d(5) =1, ms =0, ms; =0, T (1) = 0, T (5) = {4}
Step9. k=4,p(5)=1,i=5j=4

Step6. E =0, d(5)=0,d(4) =0, mss=0,mys=0,T(5) =0, T(4) =0

Step 8. jo =2

21



Step 11. L, = {{4,5}}, j=5,i=1, p(b) =

Step 11. L, = {{4,5},{5,1}},j=1,i=2,p(1) =

Step 11. L, = {{4,5},{5,1},{1,2}}

Step 12. p(2) =

Thus, two noncircular lines1= {{3,2},{2,6},{6,5},{5,1} } and L, ={{4,5},{5,1},{1,2} }
have been defined.

LetE' =EU{{5,6}}. Thend1) =2, d(2) =3, d(3) =1, d(4) = 1, d(5) = 4, d(6) =

M2 = Mp1 = My5 = Mg = Mz = Mgz = Mpg = Mg = My5 = M4 = 1 and Ng = Mg5 = 2
(notice that condition (2) is satisfied).

Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4> =p(5)=p(6)=0,1=0

Stepd.ip=2, j = 1t1(2) () 4,t5(2)=3,j=1

Step5.1=1,L1 =0, p(2 ):

Step 6. E —{{15} {2,3},{2,6},{4,5},{5,6},{5,6}},d(2) = 2,d(1) = 1, mp1 = 0,
mi2=0,T(2) = {3,6},T(1) = {5}

Step9. k=5,p(1)=2,i=1,j=5

Step 6. E = {{2,3},{2,6},{4,5},{5,6},{5,6}},d(1) = 0, d(5) = 3, my5 = 0, ms3 = O,
T(1)=0,T(5) ={4,6}

Step 9. k=6,p(5)=1i=5j=6

Step 6. E' = {{2,3},{2,6},{4,5},{5,6}},d(5) =2,d(6) =2, mgg = 1, mg5 = 1
Step 9. k=2

Step 10. t5(5,6) = 0, k=2, t5(6) = 4, p(6) =5,i =6, j =2

Step 6. E' = {{2.3},{4,5},{5.6}},d(6) = 1, d(2) = 1, mez = 0, mps = 0, T(6) = {5},
r2)={3}

Step 7. jo=2

Step 11. Ly = {{2,6}}, j =6,i =5, p(6) =

Step 11. Ly = {{2,6},{6,5}},j=5,i =1, p(5) =

Step 11. L1 = {{2,6},{6,5},{5,1}},j=1,i =2, p(1) =

Step 11. Ly = {{2,6},{6,5},{5,1},{1,2}}

Step 12. p(2) =0
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Step 4. ig=2,j =3
Step5.1=2,L,=0,p(2) =2,i =2
Step 6. E' = {{4,5},{5,6}},d(2) =0, d(3) =0, mpz =0, mgp =0, T(2) =0, T(3) =0

Step 8. jo=2
Step 11. Lo = {{3,2}}
Step 12. p(2) =0

Step4.ip=4,j=5

Step5.1=3,L3=0,p(4)=4,i=4

Step 6. E = {{5,6}},d(4) =0, d(5) =1, mys = 0, mg4 = 0, T (4) = 0, T(5) = {6}
Step 9. k=6, p(5)=4,i=5,j=6

Step 6. E' =0, d(5)=0,d(6) =0, msg =0, mgs =0, T(5) =0, T(6) =0

Step 8. jo=4

Step 11. L3 = {{6,5}}, j=5,i=4, p(5) =0

Step 11. L3 = {{6,5},{5,4}}

Step 12. p(4) =0

Thus, one circular line L = {{2,6},{6,5},{5,1},{1,2}}, and two noncircular lines
Lo ={{3,2}} and Ls = {{6,5},{5,4}} have been defined.

7 Determination of the shortest routes considering transfies

The shortest chains determined in Section 5 allowed us touleaé the minimum average
time for each trip taken on the rapid transit network by theveyees, as well as the maximum
possible expected number of weekly trips taken by the seegyassuming that no transfers were
required. However, once a line design for the rapid transitvork is available, these values can
be recalculated in a more accurate way by taking into coraiide the transfer times. For this
purpose, we require to expand the network considered inddest(a similar expanded network
was defined in Mandl (1980)).

LetLy,...,L; be a set of lines fo6 (see Section 6), and, for eack V, letL(i) be the set of
indicesl € {1,...,I} such that lind; goes ta.

Let us consider the simple gragh= (V,E), whereV = {i-l |i e V,l e L(i)}, E = E'UE”,

E = {{i-l,j-1} [l e {1,....1},{i,j} e L} andE” = {{i-,i-I"} |i e V,}l € L(i),I" e L(i)\ {I}}
(the edges ift’ are the same as &, but now the indices of their endpoints indicate the lingés
to which they belong; each eddel,i-l’} € E” indicates a transfer abetween lineg; andL).
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Given two nodes-, j-I’ € V, we say thai-l < j-I’ either ifi < j orif i = j andl < I’. Without
loss of generality, whenever we refer to an edigk j-1'} € E it will be assumed that! < j-I'.

Let §i, ju = fi’j V{i-l,j-1} € E' and fi ;=& + %a —ts V{i-l,i-I"} € E” (notice that

tr + %‘ —1ts> 0, since it was assumed that< %‘), and let us apply Algorithm 1 taking’ = G
anddi’_u_l, = fi_|7j_|/ V{H, j-|/} S E.
_ Given the output {hi jirtiy jreq ingjan AP b jrev, iazjer Of Algorithm 1, let
A =T (W) +hg [ YWE W', wherely € L(ew), i, € L(€}y) andhg, i o 7 =min{he, 1 ¢ |
| € L(ew),l’ € L(€,)} (notice thatA, is the minimum average time that the trip betwegrande,,
will take on the rapid transit network).

For eachw € W', let Gy = Y g, Qw(0), where®,, = {6 € Oy | Tw(6) > Ay} (notice that
dw is the maximum possible expected number of weekly tripsrtakethe rapid transit network
by the surveyees that plan to travel betwegnand €,,, and it will be reached if the surveyees
follow a route that takes an average timeig;f minutes, which can easily be obtained from
{Pey-iiy. 474 j-17e7 eyiyzj-1» @Nd the capacity of the rapid transit network is enough tiol fadi
those trips). Lez= 3 e Ow-

Example 4. Let us continue solving the instance given in Example 1 (seeExamples 2 and 3).
We have that; + % —fs = 4.5.

e LetE =E. The lines defined by Algorithm 2 were + {{2,6},{6,5},{5,1},{1,2}},
L, = {{3,2}} and L3 = {{5,4}}. Consequently, we get th& = (V,E), whereV =
{1-1,2-1,2-2,3-2,4-3,5-1,5-3,6-1} and E = {{1-1,2-1},{1-1,5-1},{2-1,2-2},{2-1,6-1},
(2-2,3-2},{4-3,5-3},{5-1,5-3}, {5-1,6-1} } (see Figure 3).

Figure 3: Graphic representation@f= (V,E) for E' = E, and values Of it jur} i jrye

For each we W/, Table 4 shows the shortest chainGnjoining &y-ly and eév-r\jv determined
by Algorithm 1 and the values @af, and§,, (notice thatz = 16):
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Table 4: Shortest chain betweeg-iy and€, -7, vYw e W’ for E' = E, and values of Ay }wew
and{gw}wew’

R

w  Shortest chain betwees-l, ande, I/, Aw  Ow
(1,2) {{1-12-1}} 76 1
(1,3) {{1-1,2-1},{2-1,2-2},{2-2,3-2}} 137 0
(1,4) {{1-15-1},{5-15-3},{5-3 4-3}} 132 0
(1,5) {{1-15-1}} 7 1
(1,6) {{1-15-1},{5-16-1}} 84 8
(2,3) {{2-2,3-2}} 71 1
(2,4) {{2-1,6-1},{6-1,5-1}, {5-1,5-3},{5-3 4-3}} 151 0
(2,5) {{2-1,6-1},{6-1,5-1}} 89 1
(2.6) {{2-16-1}} 75 1
(3.4) {{3-22-2},{2-22-1},{2-1,6-1}, {6-1.5-1}, {5-1.5-3}, {5-34-3}} 21.2 O
(3,5) {{3-2,2-2},{2-2,2-1},{2-16-1},{6-1 5-1}} 15 0
(3,6) {{3-2,2-2},{2-2,2-1},{2-1,6-1}} 136 1
(4,5) {{4-35-3}} 72 1
(4,6) {{4-35-3},{5-35-1},{5-1,6-1}} 131 0
(5.6) {{5-16-1}} 69 1

e LetE =EU{{1,5}}. The lines defined by Algorithm 2 were £ {{3,2},{2,6},{6,5},
{5,1}} and b = {{4,5},{5,1},{1,2}}. Consequently, we get th& = (V,E), where
V = {1-1,1-2,2-1,2-2,3-1,4-2,5-1,5-2,6-1} and E = {{1-1,1-2},{1-1,5-1},{1-2,2-2},
{1-2,5-2}, {2-1,2-2}, {2-1,3-1}, {2-1,6-1}, {4-2,5-2}, {5-1,5-2}, {5-1,6-1} } (see Figure 4).

Figure 4: Graphic representation & = (V,E) for E = EU {{1,5}}, and values of
(B0} i jary e

For each we W/, Table 5 shows the shortest chainGnjoining &y-ly and eé\,-f(,\, determined
by Algorithm 1 and the values @af, and§,, (notice thatz = 20):
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Table 5: Shortest chain betweeg-iy ande -/, vwe W’ for E' = EU{{1,5}}, and values of
{Awwew and{Gw fwew

R

w  Shortest chain betweex-iy, andé, I/, A G
(1,2) {{1-222}} 76 1
(1,3) {{1-15-1},{5-1.6-1},{6-1,2-1},{2-1,3-1}} 12 1
(L4) {{1-25-2},{5-2,4-2}} 87 1
(1,5) {{1-15-1}} 7 1
(1,6) {{1-15-1},{5-16-1}} 8.4 8
(2,3) {{2-13-1}} 71 1
(2,4) {{2-2,1-2},{1-2.5-2},{5-2,4-2}} 108 1
(2,5) {{2-16-1},{6-1,5-1}} 89 1
(2.6) {{2-16-1}} 75 1
(3,4) {{3-12-1},{2-16-1},{6-1,5-1},{5-1,5-2},{5-24-2}} 16.7 O
(3,5) {{3-12-1},{2-16-1},{6-1,5-1}} 105 1
(3,6) {{3-12-1},{2-16-1}} 01 1
(4,5) {{4-2,5-2}} 72 1
(4,6) {{4-2,5-2},{5-2,5-1},{5-1,6-1}} 131 0
(5.6) {{5-16-1}} 69 1

e LetE =EU{{5,6}}. The lines defined by Algorithm 2 were £ {{2,6},{6,5},{5,1},
{1,2}}, Ly = {{3,2}} and L3 = {{6,5},{5,4}}. Consequently, we get th& = (V,E),
whereV = {1-1, 2-1, 2-2, 3-2, 4-3 51, 53, 6-1, 6-3} and E = {{1-1,2-1}, {1-1,5-1},
(2-1,2-2}, {2-1,6-1}, {2-2,3-2}, {4-3,5-3}, {5-1,5-3}, {5-1,6-1}, {5-3,6-3}, {6-1,6-3}}
(see Figure 5).

4-3 5-3
17 \_ 14

Figure 5: Graphic representation & = (

<a
M

) for E' = EU{{5,6}}, and values of
(B0} i jary e
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For each we W/, Table 6 shows the shortest chainGnjoining &y-ly and eé\,-f(,\, determined
by Algorithm 1 and the values af, and Gw (notice thatz = 17):

Table 6: Shortest chain betweeg-iy ande,-i?, vwe W' for E' = EU{{5,6}}, and values of
{Awfwews and{Gw }wew

R

w  Shortest chain betweeas-iy andé, I/, Aw  Gw
(L2) {{1-12-1}} 76 1
(1,3) {{1-1,2-1},{2-1,2-2},{2-2,3-2}} 137 0
(1,4) {{1-15-1},{5-1,5-3},{5-3,4-3}} 132 0
(1,5) {{1-15-1}} 7 1
(1,6) {{1-15-1},{5-16-1}} 84 8
(2.3) {{2-23-2}} 71 1
(2,4) {{2-16-1},{6-15-1}, {5-1,5-3}, {5-3,4-3}} 151 0
(2,5) {{2-1,6-1},{6-1,5-1}} 89 1
(2,6) {{2-1,6-1}} 75 1
(3,4) {{3-2,2-2),{2-2,2-1},{2-1,6-1},{6-1,5-1}, {5-1,5-3}, {5-3,4-3}} 21.2 O
(3,5) {{3-2,2-2},{2-2,2-1},{2-16-1},{6-1 5-1}} 15 0
(3,6) {{3-22:2},{2-2.2-1},{2-1.6-1}} 136 1
(4,5) {{4-35-3}} 72 1
(4,6) {{4-35-3},{5-36-3}} 86 1
(5.6) {{5-16-1}} 69 1

8 Greedy heuristic procedure for maximizing the total numbe
of trips

In this section we propose a greedy heuristic algorithm &ednining a line design for the rapid
transit network, allowing pairs of station locations linkiey more than one line and attempting to
maximize an estimation of the maximum possible number okiyeeps taken on the rapid transit
network by the surveyees. Since it can be expected that taflesrthe number of transfers that
should be made by the surveyees to arrive at their destirgtibe higher the number of trips they
would take on the rapid transit network, the proposed allgoriwill be based on Algorithm 2.

In Algorithm 3 below, the set of edges representing the liokthe rapid transit network to
be constructed is denoted I&/, the best set of lines for the rapid transit network obtaibed
Algorithm 2 is denoted by, ..., Ll* and the maximum possible expected number of weekly trips
taken on the rapid transit network by the surveyees is ddrnte* and defined as the value of ~
corresponding thj, ..., Lli; (see Section 7).
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We initially setE* = E and iteratively add edges B in such a way that conditions (1) and (2)
stated in Section 6 are satisfied. Moreover, only the edgesatie duplicated in an iteration will
be candidates to be subsequently triplicated; only thestlgd are triplicated will be candidates
to be quadruplicated, and so forth.

At each iteration we consider the $etof edges that can potentially be added to the current
setE*. Let G* = (V,E*). In order to determin&, we compute the degrek (i) in G* of each
nodei € V, the multiplicity mf; in G* of certain edgegi, j} € E, the remaindeb* of the budget
for constructing the rapid transit network defined®}y, and the construction cos{j ‘of adding
to E* certain edgesi, j} € E, whose value is given as follows:

Cij if d*(i) andd*(j) are odd
- aj + Gjj if d*(i) is odd andd*(j) is even
v a + Gij if d*(i) is even andl*(j) is odd
a+aj+¢j if d*(i) andd*(j) are even
Algorithm 3.
Step 1. Apply Algorithm 2 takingE' = E, denote the obtained set of lineslby.. . ., Ly, compute

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

the value ofZfor Ly,...,L;, and seE* = E, * =1, Li=L Vle {1,...., =%
d*(i)=Ir(i)] VieVandb*=b-yYia (Ai+V)— 3 {ij1eEGij -

Compute the value ofi;” V{i,j} € E such that mifd*(i),d*(j)} > 2, and set
E = {{i,j} € E | min{d*(i),d*(j)} > 2,6 < b*}. If E =0, STOP; otherwise, set
m, =1 V{i,j} €E.

SetE} = E*.

DenoteE by {{i1, j1},...,{im, jm}} and sets = 0 andk = 1.

Apply Algorithm 2 takingE' = E* U {{ik, Jx}}- If no line design is obtained, go to
Step 7. Denote the obtained set of lineslhy...,L;, and compute the value affor

Ifz2>7,setl =1, =L ¥l e{1,...,0},2 =2k =kandg = &,j,; otherwise,
if z=27"andd,j, < €, seti* =, Ly =L, W e{1,...,0},k =kandc = €,j,.

If kK<, setk=k+1 and go to Step 5. fg’= 0, go to Step 10.

SetE*:E*U{{lk*,]k*}},d*(lk*>:d*(lk*)+1,d*(]k*> d* (]k*>+l mk*Jk*—m*k*jk*-i-l
andb* = b* — €.

Compute the value af” V{i, } € E\ {{ik, ji-}} and se€E = {{i, j} € E\ {{ike, Jic }} |
&j <b*}. If E#0, goto Step 4.
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Step 10. Compute the value afj” V{i, j} € E*\ Eg such that mitd*(i),d"(j)} > 2m;, and set
E={{i,j} € E*\ E§ | min{d*(i),d*(j)} > 2m;,&; < b*}. If E=0, STOP; otherwise,
go to Step 3.

REMARK 2. In Step 9 it suffices to compute the valueG@fif i =iy or i = ji= or j =iy or
| = jk:, since, otherwise, it remains the same as for the previonsidered set E furthermore,
min{d"(i).d*(j)} > 2mj v{i,j} € E\ {{ik, jie 1}

Although it is not likely, the final line design obtained bygdrithm 3 could comprise some
lines which are contained in other lines, i.e., there couisté |’ € {1,.. ., f*} suchthat CLy. In
that case, eliminating link" would not modify the value af"and would increase the value lof,
nevertheless, if the capacity of the resulting rapid ttamsiwork were not enough to hold all the
demanded trips between the endpointkofit could be preferable not to eliminate it.

Given that we have utilized a heuristic procedure, the final dlesign obtained by Algorithm 3
could be improved. Therefore, it should be analyzed in Jesaarching for potential slight
modifications which could result in an increase on the maxrinpossible expected number of
weekly trips taken on the rapid transit network by the sueesy

Example 5. Let us continue solving the instance given in Example 1 ($&e@ EBExamples 2, 3
and 4).
Algorithm 3 proceeds as follows:

Step 1. E'=E, L1 = {{2,6},{6,5},{5,1},{1,2}}, Lo = {{3,2}}, Ls = {{5,4}}, 2= 16,
E* = {{1,2},{1,5},{2,3},{2.6}, {45}, {5,6}}, [" = 3, L — {{2.6},{6,5},{5,1},{L,2}},
Ly ={{3,2}}, Ls = {{5,4}},% =16, d"(1) =2, d"(2) = 3, d*(3) = 1, d*(4) = 1, d*(5) = 3,
d*(6) = 2, b* = 765

Step 2. &2 = 102, &5 = 75, G = 97.5, Gsg = 705, E = {{1,5},{5,6}}, mig =1, mig =1
Step 3. Bg = {{1,2},{1,5},{2,3},{2,6},{4,5}, {5,6}}

Step 4. m=2, {ia, j1} ={1,5}, {i2, j2} = {56}, Co=0,k=1

Step 5. E/ =EU {{175}}1 L1 = {{37 2}7{27 6}7{67 5}7{57 1}}’ Lo = {{475}7{57 1}7{172}}'
=20

Step6. * =2, L = {{3,2},{2,6},{6.5}, {5,1}}, Ly = {{4,5},{5,1},{1,2}},# =20,k = 1,
C=175

Step7. k=2

Step 5. E/ =EU {{57 6}}’ L1 = {{276}7{675}7{57 1}7{172}}' L = {{37 2}}’ Ls = {{675}7
(5,4}},2=17

Step 8. E* = {{1,2},{1,5},{1,5},{2,3},{2,6},{4,5),{5,6}}, d*(1) = 3, d*(5) = 4,
Mig=2,b" =15

Step 9. €56 = 1005,E = 0

Step10. E=10
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Thus, the rapid transit network to be constructed is defingdhe graph G = (V,E*),
where E = {{1,2},{1,5},{1,5},{2,3},{2,6},{4,5},{5,6}}, there are two noncircular lines
L; = {{3,2},{2,6},{6,5},{5,1}} and L = {{4,5},{5,1},{1,2}}, the construction cost of the
rapid transit network is 643.5 million euros, and the maxmpossible expected number of weekly
trips taken on the rapid transit network by the surveyee®is 2

9 Computational experience

We have randomly generated three example da$eS2 andC3 by using the following procedure
(see Section 2):

The n key station locations have been randomly generated from ndincmus uniform
distribution on a square of given side length(expressed in kilometers), in such a way that
whichever two of them are at least two kilometers apart (clmmgg the Euclidean distance).
The pairs of key station locations that can potentially b&dd are the ones with thra shortest
Euclidean distances between them.

We have set the parameter values having a metro system in Fon@1 we have takep = 10,
n=15,m=35,b=6000 and®| = 1500, forC2 we have takep = 10,n = 20,m= 45,b = 8000
and|®| = 2000, and folC3 we have takep = 15, n = 25, m= 60, b = 13000 and®| = 3000
(b is expressed in millions of euros). For all the example casehave set the values for the rest
of the parameters as followa; =30 Vi €V (expressed in millions of eurogy; is the Euclidean
distance betweenand j V(i,j) € W (expressed in kilometers}; = [dij] —1 V{i,j} € E,

Cij =45dij +30sj V{i, ]} € E (expressed in millions of euros)=55,i(i) =3 VieV,ta=5,
ts= 0.6 andi, = 4.
Figures 6, 7 and 8 show the underlying graph€bdfC2 andC3, respectively.

Figure 6: Graphic representation of the underlying grap@lof
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Figure 7. Graphic representation of the underlying grapGaf

The survey answers for eaéhe © have been generated as follows:

Let Bg be the number of distinct trips that the surveyelans to take on the rapid transit
network, without taking into consideration their directioMe generate the value gf in such a
way thatP(Bg = k) =0.3 Vvke {1,2},P(Bg =3)=0.2andP(By =k) =0.1 Vke {4,5}.

Let us denot&V = {wy,...,Wnn-1) } andWg = {w1(6),...,Wg,(6)}. Foreactke {1,...,Bg},

2

we randomly generate a valgg from a discrete uniform distribution ofd, . . ., ”(”51) }\Ut;ll{d)k,}
and we sew(6) = wy,.

Let ng be the number of weekly trips that the surveyeplans to take on the rapid transit
network. We generate the valuemf in such away tha®(ng =k) = Z(Tlfﬁe) vke {Be,...,9}U
{15,...,21} andP(ng =k) = 0.1 Vke {10,...,14}.

Foreaclkedl,.. ., Be—1}, we generate the value af, g (6) from a discrete uniform distribution
on {1,...,Nne — Y51 O, (0)(6) — By + Kk} and we setiy, (6)(6) = e — sho 1 Qw, (6)(6) and
ow(0) =0 YweW\Wp.

For eachw € Wp, we generate the value af,(0) from a discrete uniform distribution on
{ [f(em +lay %OdaNdN-l—f(dNﬂ Rf(a,v) +% 4 9, o +f(egv)) <1+ 3, /ﬁ ﬂ } where
d =max{dg,q, | WeW}.

For all the example cases it has been obtainedvitiat W.
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Figure 8: Graphic representation of the underlying grap83f

Let us consider an upper bound: N for the values of q(w) }wew, and lety = w

(notice thatgy, = Ygco, Qw(0) Yw e W'). In the computational results reported below each
example case will be solved considering several valueg.for
For eachw € W/, the procedure we utilize for computing the values)of/), {U5v}ke{2,... qw)}

7777

we assume tha@,, = {01,...,6,,} andty(61) < ... < Tw(6y,) (Notice thatsl, = 1(61)).
Algorithm 4.

Step 1. Seti=1andk=1.

Step 2. If g& < u, setq(w) = k and STOP; otherwise, s¢t=i.

Step 3. Setj=max{j’ € {j,...,ow} | Tw(6y) = Tw(6))}.

Step 4. If j = oy, setq(w) =k and STOP.

i j
Step 5. If S aw(6y) > p, setk=k+1,uf = tw(6j+1), g =0 ' = Y aw(6y),i=j+1and
=i =i

go to Step 2; otherwise, s¢t= j + 1 and go to Step 3.
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Given that any preliminary route for travelling between tkey station locations will utilize
at mostn— 1 edges inE (see Section 3), we have takéff, = t'(w) +T, ; — UK Ywe W,
vk € {1,...,q(w)}, wheref;,_; is the sum of then — 1 greatest values irﬁfi’j}{ivj}eE (we have
considered some other settings for the vaIues{Mf;,}WE\N/’ke{17,..7q(w)}, but the best general
computational results have been obtained with these ones).

In Steps 1 and 5 of Algorithm 3 we have taken as the set of lires ., L; the one with the
greatest value ot Obtained by repeatedly applying Algorithm 2 for two minytesBoosing the
nodesip, j andk in its Steps 3, 4, 9 and 10 randomly and uniformly distribudedr the set of all
of their possible values.

For all the example cases Algorithm 3 has duplicated sonkes libut it has not managed to
triplicate any of them.

The implementation platform has been Microsoft Visual C+302, CPLEX v12.1 and
Pentium 4, 3.00 GHz, 1.00 Gb RAM.

In order to solve the model stated in Section 3, we have runCREEX mixed integer
optimizer by using the default rules except that the retatind absolute optimality tolerances
have been set to zero and, in the branching process, thetipador the variablegXj } 4 j1ce
and{p\‘f\,}wewgke{lmq(w)} have been set to 1 and 2, respectively (we have considereyg otiaer
settings for the priority values, but the best general caatmnal results have been obtained with
these ones).

Tables 7, 8 and 9 show, respectively, the computationalteeshtained foiC1, C2 andC3 by
considering several values fqr

The columns headedz* ", “Node§, “ M. timé’, “ 3" and “z” give, respectively, the optimal
value of the objective function of the model stated in Sec®o the number of branch-and-cut
nodes evaluated for solving that model, the related CPU ¢ixpeessed in seconds, and the values
of sandz for the optimal solution obtained (the CPU time requireddomputing the value ot
by using Algorithm 1 has been less than 0.04 seconds foratanhsidered instances).

The columns headedz,”, “Z*”, “Dup., “ b* " and “T. tim€’ give, respectively, the greatest
value of Z obtained in Step 1 of Algorithm 3 (i.e., without allowing paiof station locations
linked by more than one line), the value Bf, the number of duplicated links in the best line
design obtained, the related value wf expressed in millions of euros, and the total required
CPU time expressed in seconds (including the time for sgltive model stated in Section 3 and
for computing the value df).

33



Table 7: Computational results fGxl

q Z  Nodes M.time s z Z Z Dup. b T.time
1 4094 8 13 41 16357 14809 14872 1 27.4728 373
2 6810 110 11 41 16302 14891 15037 1 12.8641 2052
3 10047 289 11 40 16343 15025 15172 1 21.2142 1211
4 11947 254 9 41 16299 14738 14738 0 112.198 129
5 12891 310 10 41 16302 14891 15037 1 12.8641 2050
6 13604 352 12 40 16284 14946 15042 1 27.9963 1692
7 14106 188 8 40 16327 14570 14685 1 9.01539 1328
8 14456 710 50 42 16407 14692 14692 0 62.2447 170
9 14556 794 43 42 16362 14651 14651 O 73.8903 163
10 14725 1671 183 41 16357 14809 14872 1 27.4728 543
11 14927 2919 250 40 16345 14990 15180 1 8.07191 2290
12 15071 1221 81 41 16347 14873 14873 0 113.373 201
13 15123 1986 173 41 16347 14873 14873 0 113.373 293
14 15183 698 64 42 16395 14780 14780 0O 69.6482 184
15 15253 1596 141 42 16395 14780 14780 0 69.6482 261
16 15407 2525 200 41 16347 14873 14873 0 113.373 320
17 15418 1511 127 41 16347 14873 14873 0 113.373 247
18 15418 1511 127 41 16347 14873 14873 0 113.373 247
19 15555 2869 195 42 16439 15036 15036 O 5.47454 315
20 15603 2717 198 42 16439 15036 15036 0 5.47454 318

For C1, the greatest value af is 15180, and it is reached for= 11. Links{3,4}, {4,9},
{5,11}, {6,7}, {9,15}, {12 13} and{12 14} are not constructed, and lin5, 8} is duplicated.
There are 55 distinct station locations, and the best sehe$ lobtained i4; = {{8,3},{3,6},
{6,9},{9,13}}, L5 ={{3,5},{5,6}}, L3={{1,6},{6,8},{8,11},{11, 14} }, L; = {{5,8},{8,9},
{9,10}}, L = {{7,9},{9,12},{12 11} }, L§ = {{4,6},{6,12} } andL} = {{1,3},{3,2},{2,5},
{5,8},{8,12},{12,15},{15,13},{13,10}, {10, 7}, {7,4},{4,1}}.

For C2, the greatest value of is 19296, and it is reached f@y € {9,10,11,12,13 16}.
Links {1,2}, {1,3}, {9,11} and{16,20} are not constructed, and no link is duplicated. There are
75 distinct station locations, and the best set of linesinbthisL; = {{1,6},{6,10},{10,15},
{15,20}}, L5 = {{3,5}, {5,6}, {6,7}, {7,11}, {11,16}, {16,19}, {19,20}, {20,18}, {1817},
(17,13}, {13,10}, {10,8}, {8,3}}, L5 = {{4,2}, {2,7}, {7,10}, {10,14}, {14,18}, {1815},
{15,16},{16,12},{12,19}}, L; = {{10,11}}, L; = {{2,6},{6,8} }, Lt = {{1,5},{5,8},{8,13},

{13 14},{14,15},{15,11},{11,12},{12,9},{9,4},{4,7},{7,1} } andL3 = {{14,17} }.
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Table 8: Computational results fG2

q Z  Nodes M.time s z Z Z*  Dup. 9 T. time
1 4283 715 248 55 20912 19050 19106 1 0.496186 728
2 6929 1421 178 54 21090 19093 19228 1  8.73638 2458
3 11294 1464 204 55 21093 18890 18890 0  74.2944 324
4 13846 552 124 55 21187 18835 18835 0  54.7169 244
5 15581 1024 177 55 21164 18743 18743 0  95.5954 297
6 16713 1272 213 55 21180 18889 18889 0  22.5063 334
7 17461 684 125 55 21168 18835 18866 1  2.93431 605
8 18009 574 97 54 21135 18841 19074 1  11.5397 3097
9 18326 1781 312 55 21175 19296 19296 0  2.98694 432
10 18530 862 138 55 21175 19296 19296 O  2.98694 258
11 18938 887 133 55 21175 19296 19296 O  2.98694 253
12 19178 1336 154 55 21175 19296 19296 O  2.98694 274
13 19362 813 115 55 21175 19296 19296 O  2.98694 235
14 19447 1547 316 55 21172 19253 19253 O 12.398 436
15 19565 2279 319 55 21189 19256 19256 O 33.036 439
16 19681 5202 1458 55 21175 19296 19296 O  2.98694 1578
17 19734 2156 593 55 21189 19256 19256 O 33.036 713
18 19734 2156 591 55 21189 19256 19256 O 33.036 711
19 19910 3900 1991 55 21189 19256 19256 O 33.036 2111
20 19910 3900 1985 55 21189 19256 19256 O 33.036 2105

For C3, the greatest value af is 28870, and it is reached for= 3. Links {3,9}, {6,8},
{9,12}, {10,19}, {12 13}, {13,21}, {16,17} and{21,24} are not constructed, and link8,4},
{6,9}, {8,10}, {1218}, {13,14} and {13,19} are duplicated. There are 111 distinct station
locations, and the best set of lines obtainddiis: {{2,8},{8,9} }, L5={{19,25} }, L;={{13,19},
{19,24}}, L; = {{15,16}, {16,20}, {20,15}}, L = {{1,3}, {3,8}, {8,10}, {10,16}, {16,22},
{22,24},{24,25},{25,21},{21,14},{14,9},{9,6},{6,1}}, L§ = {{2,4},{4,3},{3,6},{6,12},
{12,18}, {1825}, {25,23}, {23,21}, {21,19}, {19,16}, {16,111}, {11,5}, {5,2}}, L5 = {{3,4},
{4,8},{8,13},{13,14},{14,18},{18 23} }, L = {{8,10},{10,5},{5,7},{7,11} },L§ = {{6, 9},
{9,13}, {13 19}, {19,22} } andLj,= {{10,11}, {11,15}, {15,17}, {17,20}, {20,22}, {22, 21},
{21,18},{18,12},{12,14},{14,13},{13 10} }.
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Table 9: Computational results f63

q Z  Nodes M.time s z Z Z Dup. b T. time
1 5370 941 605 96 31514 28586 28715 1 28.2064 2645
2 9108 1547 651 97 31407 28272 28272 0 105.962 771
3 15669 3979 1090 86 31330 28266 28870 6  53.718 36850
4 19872 3966 700 96 31457 28250 28627 1 8.48011 2620
5 22507 2549 529 97 31542 28291 28291 0  31.001 650
6 24399 1551 552 96 31480 28507 28507 0O 127.765 792
7 25464 1412 465 96 31527 28427 28427 0 136.933 705
8 26260 1706 861 97 31550 28273 28273 0 4.28986 981
9 26790 1071 529 97 31490 28621 28621 O 33.6817 649
10 27332 2507 613 95 31495 28585 28706 1 64.9178 5773
11 27618 757 492 95 31519 28581 28717 1 110.181 5652
12 28172 1222 422 95 31488 28286 28674 1 92.4354 15942
13 28575 1450 848 97 31548 28665 28665 0 78.1124 968
14 28692 1836 469 95 31534 28605 28825 1 12.9417 4069
15 28919 10320 5048 95 31550 28617 28770 1 91.2356 9608
16 29106 1448 456 95 31550 28617 28770 1 91.2356 5016
17 29308 846 301 97 31545 28562 28562 0 54.1833 421
18 29308 846 298 97 31545 28562 28562 0 54.1833 418
19 29458 1610 461 96 31545 28783 28783 0 116.128 581
20 29458 1610 461 96 31545 28783 28783 0 116.128 582

The shape of the part of lirg; joining locations 18 and 21 is not usual in real-life rap@sit
networks. In order to avoid it, we can consider the followmgdifications taLj, ..., L], (notice
that these modifications do not affect the construction cb#te rapid transit network):

e LetLj=Lj Vje {1,2,3,4,7,8,9,10}, Ls = {{1,3},{3,8},{8,10},{10,16}, {16,22},
{22,24}, {24,25}, {25,23}, {23 21}, {21,14}, {14,9}, {9,6}, {6,1}} andLe = {{2,4},
{4,3},{3,6},{6,12},{12 18}, {18,25},{25,21},{21,19},{19,16},{16,11}, {11 5},{5,2} }.
Then the value o Corresponding td.1,...,L10is 28677, which is less than 28870, hence
this set of lines is worse thdr, ..., L.

e LetLj =L] Vje€{1,234580910} Ls = {{2,4}, {43}, {3,6}, {6,12}, {1218},
{1823}, {2321}, {21,19}, {19,16}, {16,11}, {11 5}, {5,2}} andL; = {{3,4}, {4,8},
{8, 13}, {13 14}, {14, 18}, {18, 25}, { 25, 23}}. Then the value of Corresponding to
L1,...,L10is 28830, whichis less than 28870, hence this set of linesisemthari. ], ..., L],
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o LetlLj =L} Vje{1,3458910}, Lo = {{19,25}, {2523}}, Le = {{2,4}, {4,3},
{3,6},{6,12},{12,18},{18,23},{23,21},{21,19},{19,16},{16,11},{11 5},{5,2}} and
L7 = {{3,4},{4,8},{8,13},{13,14}, {14,18},{18,25} }. Then the value ot Corresponding
to Ly,...,L10 is 28830, which is less than 28870, hence this set of linesoisavthan

* *
Ll,..., 10.

e LetLj =L} Vje{1234789} Ls={{13},{3,8}, {810}, {10,16}, {16,22},
{2224}, {24,25},{25,23}, {23 21}, { 21,14}, {14,9},{9,6},{6,1}},Le = {{ 2, 4},
{4,3}, {3,6}, {6,12}, {12,18}, {18,21}, {21,19}, {19,16}, {16,11}, {11,5}, {5,2}} and
Lio={{10,11},{11,15},{15,17},{17,20},{20,22},{22,21},{21,25},{25,18},{18 12},
{12,14},{14,13},{1310}}. Then the value of Torresponding td.1,...,L10 is 28553,
which is less than 28870, hence this set of lines is worselthan., L],.

o Letlj=L% Vje{1,234,589} Ls={{24}{4,3},{3.6},{6,12},{12 18},{18,21},
{21,19},{19,16},{16,11},{11,5},{5,2}}, L7 = {{3,4},{4,8},{8,13},{13,14},{14,18},
{1825}, {25,23}} and Lo = {{10,11}, {11,15}, {15,17}, {17,20}, {20,22}, {2221},
{21,23},{2318},{18 12},{12 14},{14,13},{13 10} }. Then the value af Corresponding
to Lg,...,L10 is 28667, which is less than 28870, hence this set of linesoisavthan
Li,..., L

e LetLj=Lj Vj €{1,3,4,5,8,9}, Lo = {{19,25},{25,23}}, Lg = {{2,4},{4,3},{3,6},
{6,12},{12,18},{18,21},{21,19},{19,16},{16,11},{11 5},{5,2}},L7 ={{3,4},{4,8},
{8,13}, {13 14}, {14,18}, {18 25}} and Lip = {{10,11}, {11 15}, {1517}, {17,20},
{20,22},{22 21},{21,23},{23,18},{18,12},{12 14},{14,13},{13 10} }. Then the value
of Z corresponding td.1,...,L1g is 28684, which is less than 28870, hence this set of lines
is worse tharL 7, ..., LJ,.

If we had considered the all-or-nothing model for the patdntisers’ behavior from
Marin (2007) and we had assumed that whichever two statioations are linked by one line
at most, as proposed in Escudero and Mufioz (2009b), them#hémum possible expected
number of weekly trips taken on the rapid transit networkh®ysurveyees would have been given
by the value ofzj for g = 1. Consequently, the line designs fot, C2 andC3 obtained by the
approach presented in this paper have produced, respggciinencrease of 371, 246 and 284 trips
over the line designs that would have been obtained by mefattsegorocedure proposed in
Escudero and Muiioz (2009b) (notice that these increatasoedhe number of weekly trips taken
on the rapid transit network by the surveyees; therefoeeiritreases corresponding to the number
of annual trips taken on the rapid transit network by all teera are expected to be much higher).
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It is worth noting that, despite the tested instances beingoasiderably larger size than
the ones tested in other works in the literature (see e.gn@uial. (2006), Marin (2007) and
Laporte et al. (2007, 2010a, 2010b)), we have managed toldsedll of them within a reasonable
computational effort.

Obviously, the ideal situation would be to be able to knowiarpthe value ofg that will give
rise to the best rapid transit network, but this is not pdesibhus, we propose to impose a limit for
the overall CPU time for designing the rapid transit netwairkd apply successively our approach
considering different values f@yuntil reaching this time limit. If the values afandsfor a certain
value ofg are the same as for some other valug pfeviously considered, then it is very likely to
obtain the same line design as that of the previous valgeafnsequently, in this case we propose
not to apply Algorithm 3, but to go on to another valueqpfThe amount of time for repeatedly
applying Algorithm 2 in Steps 1 and 5 of Algorithm 3 will be skgpending on the instance size.

10 Conclusions and future research

We have presented a two-stage approach for designing napislitt networks which is based on
another approach that we described elsewhere.

Whereas most of the procedures that can be found in thetliteraompute their objective
function values by means of a given static O-D matrix, we hanmposed to perform a survey
amongst the potential users of the rapid transit networke Jirvey results make it possible to
consider each potential user’'s behavior individually, ahhallows to compute our objective
function value (i.e., the expected number of trips through tapid transit network) in a more
accurate way.

The model to be solved in the first stage for selecting theostsitand links to be constructed
without exceeding the available budget does not take intowatt the transfer times for the users,
since no line design is available at this stage. These &aftisfies are considered in the second
stage, where a greedy heuristic procedure is applied fargéing a set of lines for the rapid transit
network, allowing pairs of station locations linked by mdn@n one line. This procedure could
also be used for redesigning the lines of existing rapidsitaretworks.

The computational results have shown that, in a relativelglstime, our approach can handle
instances of larger size than other procedures taken freriténature, as well as obtain better line
designs than the approach that we described elsewhere.

In order to deal with large-size instances, we are workingpm@processing techniques for
solving the model proposed for the first stage of the approa&hare also working on the problem
of determining the headways for the lines.
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