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Abstract

In this work we present a two-stage approach for designing rapid transit networks. It is based

on another approach that we described elsewhere. In the firststage, the stations and links to be

constructed are selected by solving an integer linear programming model that maximizes an

estimation of the number of trips through the rapid transit network. In the second stage, a set of

lines is generated by utilizing a greedy heuristic procedure that, taking into consideration the

transfers that should be made by the users to arrive at their destinations, attempts to maximize

a more accurate estimation for the number of trips. This new estimation is done by means

of a modification of the well-known Floyd-Warshall algorithm. The main contributions are

a novel way of computing the expected number of trips by making use of the results from a

survey amongst the potential users of the rapid transit network, as well as the contemplation

of the possibility of linking certain pairs of station locations by more than one line. Some

computational experiments on several randomly generated instances are also reported.

Keywords: Station and link location; Line designing; Shortest route;Transfer; Degree of a

node; Greedy heuristic procedure
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1 Introduction

As the population concentration increases in urban areas, it gets necessary to either develop new

transportation systems or to improve and/or expand the existing ones. There are so many factors to

be taken into consideration to tackle these problems, that the resulting mathematical programming

models would be too complex to be solved in an exact way. Consequently, it is required to resort

to simplifications and heuristic procedures.
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Several authors have dealt with these problems, focussing them mainly on two opposite aims:

to achieve a high service quality with affordable operatingcosts, or to reduce as much as possible

the operating costs while maintaining a certain service quality level. Herein we focus on the first

aim; some works focussing on the second aim are Claessens et al. (1998), Bussieck et al. (2004)

and Goossens et al. (2004).

In order to illustrate the great diversity of the approachesthat can be found in the literature,

some works are outlined below. A point in common for all of them is the consideration of a static

origin-destination (O-D) matrix which contains the demandfor each O-D pair of station locations.

Mandl (1980) proposes a heuristic algorithm for improving an existing public transportation

network of streets or rails in an urban area, in case of absence of capacity constraints for utilizing

the network. The algorithm starts with a feasible set of lines (i.e., a set of lines such that all station

locations belong to at least one line and all pairs of stationlocations are mutually reachable), and

iteratively searches for new feasible sets of lines which lead to a reduction of the total average

transportation cost of the passengers. The transportationcost is defined as a weighted sum of the

waiting, travel and transfer costs, which can be interpreted as time, and it is assumed that each

passenger utilizes a path that minimizes his or her average transportation cost. The total average

transportation cost is estimated from a given O-D matrix. The vehicle assignment problem is also

briefly discussed.

Given a set of potential bus station locations and a set of potential links between them, and given

a symmetric O-D matrix, Baaj and Mahmassani (1991) describes an Artificial Intelligence-based

approach for determining a set of lines and their associatedfrequencies attempting to reduce the

number of passengers that require any transfer to arrive at their destinations, so that both the

percentages of passengers that require no transfer and of those that require a maximum of two

transfers, are greater or equal to certain prespecified values. The approach consists of three major

components: a line generation design algorithm, an analysis procedure, and a line improvement

algorithm. It is assumed that each passenger utilizes a paththat involves the fewest possible number

of transfers.

Given a set of potential lines for a railway system, Bussiecket al. (1997) provides an integer

linear programming model for selecting a subset of these lines and determining their frequencies,

with the goal of maximizing the number of passengers that require no transfer to arrive at their

destinations. It assumes the symmetry of the O-D matrix as well as that each passenger utilizes a

shortest path (with respect to some measure) between his or her origin and destination.

Guan et al. (2006) proposes a 0-1 linear programming model for simultaneous optimization

of transit line configuration and passenger line assignment. Starting from a given set of station

locations and links between them, its aim is to select the lines to be constructed and to assign

a path in the resulting network to the passengers of each O-D pair of station locations, in such

a way that the union of the selected lines contains all the given links, and that a weighted sum
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of the total length of the lines, the total number of lines used by the passengers and the total

distance covered by the passengers is minimized. For this purpose, a pool of potential lines to

be selected and a pool of potential paths to be assigned to thepassengers of each O-D pair are

considered, and each one of these potential lines is assigned a prefixed frequency. Moreover, it is

assumed that the cost of operating any line is linearly proportional to the length of that line, that

each passenger utilizes a path that minimizes his or her expected travel time, and that finding the

smallest number of transfers for the path assigned to the passengers of each O-D pair is equivalent

to finding the smallest number of lines that those passengersshould use. Neither the waiting time

for the passengers nor the effect of passenger crowding are taken into consideration.

Marı́n (2007) states the extended rapid transit network design problem and provides a

0-1 linear programming model for solving it. Given a set of potential station locations and a set of

potential links between them, this problem basically consists in selecting which stations and links

to construct without exceeding the available budget, and determining an upper bounded number

of noncircular lines from them, to maximize the expected total number of trips through the rapid

transit network, which is computed from a given O-D matrix and a given private transportation

cost for each O-D pair of station locations. It is assumed that each user will utilize the rapid transit

network if and only if there is any path in this network between his or her origin and destination

such that its length is less or equal to the corresponding transportation cost in the private transit

network. Similar models are considered in Laporte et al. (2010a, 2010b).

Marı́n and Garcı́a-Ródenas (2009) presents a nonlinear programming model for locating the

infrastructure of a rapid transit network without exceeding the available budget. Two alternative

objective functions are proposed, namely, the expected total number of trips through the rapid

transit network (to be maximized), and the expected total transportation cost through an existing

private transit network (to be minimized). Both of them are defined from a given O-D matrix, a

given private transportation cost for each O-D pair of station locations, and the Logit function,

which is approximated by a piecewise linear function. As a consequence of this approximation,

the initial nonlinear model results in an integer linear programming model. Among the considered

assumptions to simplify the model are that there is no waiting time for the users and there are

no capacity constraints for utilizing the network. The model also includes some constraints that

avoid the definition of circular lines, and others that attempt to minimize the number of lines to be

constructed. The potential users’ behavior is modeled by means of the Logit function, instead of

considering the all-or-nothing model from Marı́n (2007).

Escudero and Muñoz (2009a) provides a two-stage approach for solving a modification of the

extended rapid transit network design problem to allow the definition of circular lines, and shows

that it outperforms the solving of a modification of the modelgiven in Marı́n (2007) to adapt it to

this new problem. In the first stage of the proposed approach,an integer linear programming model

is solved for selecting the stations and links to be constructed without exceeding the available
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budget, so that the expected total number of trips through the rapid transit network is maximized

(without loss of generality, it is assumed that whichever two station locations are linked by one

line at most). In the second stage the line design problem is solved by assigning each selected link

to exactly one line, in such a way that the number of lines thatgo to each selected station location

is as small as possible (no upper bound for the number of linesis required).

Escudero and Muñoz (2009b) proposes some improvements on the approach stated in Escudero

and Muñoz (2009a). On one side, it introduces several modifications in the model considered in the

first stage to obtain a connected rapid transit network. On other side, it presents a greedy heuristic

procedure which is a modification of the algorithm proposed for solving the line design problem

of the second stage. This new procedure attempts to minimizean estimation of the total number

of transfers that should be made by the users to arrive at their destinations, without increasing the

number of lines going to each selected station location.

In this work we tackle the problem of designing a rapid transit network, i.e., determining the

stations and links to be constructed, as well as the set of lines. The two-stage approach that we

present is based on the one given in Escudero and Muñoz (2009b), and it is structured in the same

manner.

In the first stage, an integer linear programming problem is solved for selecting the stations to

be constructed and the links between them, considering a budget for the total construction cost.

All of the station locations are assumed to be known, but we distinguish between key and non-key

stations: the key stations have to be compulsorily constructed and they may belong to more than

one line, whereas the non-key stations are always located onsome link joining two key stations,

and they are constructed if and only if that link is constructed.

Obviously, the solution obtained will strongly depend on the objective function considered;

thus, an appropriate choice of the objective function is crucial for getting a successful rapid transit

network. Among the different objective functions considered in the works outlined above, the one

more directly related to the service quality is the expectedtotal number of trips through the rapid

transit network, since the higher the service quality, the greater the total number of trips. Therefore,

we are considering it as the objective function (to be maximized).

This type of objective function has already been consideredin Marı́n (2007), Marı́n and

Garcı́a-Ródenas (2009), Escudero and Muñoz (2009a, 2009b) and Laporte et al. (2010a, 2010b),

and its value has been computed by considering a unique transportation cost for each O-D pair of

station locations in an alternative transit network. This way of computing the objective function

value is not very accurate, since the users of each O-D pair can actually utilize distinct means of

transportation and distinct routes for arriving at their destinations, hence it does not seem adequate

to consider the same alternative transportation cost for all of them. Instead, we propose to perform

a survey in order to collect certain data which will make it possible to consider each potential
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user’s behavior individually and, as a consequence, to compute the objective function value more

accurately.

In the second stage of the presented approach, the line design problem is solved by means of

a generalization of the greedy heuristic procedure given inEscudero and Muñoz (2009b) to allow

pairs of station locations linked by more than one line, attempting to maximize the total number

of trips through the rapid transit network. For this purpose, we introduce a modification of the

well-known Floyd-Warshall algorithm to determine the shortest routes for each O-D pair of key

station locations, and we define an expanded network that will make it possible to consider the

transfer times for the users.

We are not addressing the problem of determining the headways for the lines, since these

headways must vary over time, depending on different factors such as the available budget for the

operating costs, whether we are in a peak hour or in an off-peak hour, in a working day or in a

holiday, in a working week or in Christmas, Easter or summer holidays, whether a mass event

(e.g., a concert, a conference, a demonstration, a footballgame, . . . ) is going to be held, etc.

Consequently, the headways will have to be set in subsequentstages, by taking into consideration

the circumstances at those moments as well as the trade-off between service quality and operating

costs.

The remainder of the paper is organized as follows: Section 2states the basic notation

and assumptions that we consider. Section 3 proposes an integer linear programming model

for selecting the stations and links to be constructed. Section 4 presents a modification of the

Floyd-Warshall algorithm to determine a shortest chain between each pair of nodes of a graph

with nonnegative length edges. Section 5 shows how to calculate the maximum possible expected

number of trips taken on the rapid transit network between each pair of key station locations,

assuming that no transfers are required, as well as that the capacity of the rapid transit network

is enough to hold all those trips. Section 6 provides an algorithm for designing a set of lines for

the rapid transit network which generalizes the greedy heuristic algorithm given in Escudero and

Muñoz (2009b), to allow pairs of station locations linked by more than one line. Section 7 shows

how to calculate in a more accurate way the maximum possible expected number of trips obtained

in Section 5, by means of an expansion of the network considered therein that allows to take into

account the transfer times. Section 8 proposes a greedy heuristic procedure for determining a

line design for the rapid transit network, attempting to maximize the expected total number of

trips through the rapid transit network. Section 9 reports some computational experience on three

randomly generated example cases; the results show that theapproach presented in this paper

can significatively increase the expected total number of trips through the rapid transit network

obtained by utilizing the procedure proposed in Escudero and Muñoz (2009b). Finally, Section 10

draws some conclusions and future research from this work.
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2 Basic notation and assumptions

Let us consider two types of stations: key stations and non-key stations. The key stations will be

located on the busiest zones of the area covered by the rapid transit network, which are assumed to

be known (see in Laporte et al. (2007) a procedure for selecting such key station locations). We also

assume that the potential links between the key station locations are known, and that some other

stations, called non-key stations, can be located on those links, in such a way that each non-key

station will be constructed if and only if the link on which itlies is constructed.

The key station locations will be represented as the nodes ofa graph, and the potential links

between them as the edges of that graph (it is not necessary torepresent the non-key station

locations). Thus, we are implicitly assuming that, for eachpair of distinct key station locations

that can be linked, the route followed by the users for going from one of the locations to the other

one will be the same as for going from the second location to the first one, but in the opposite

direction. Although this assumption is usually satisfied for rail networks, it can be violated for

street networks containing one-way streets, but the approach presented below will remain valid for

this case by considering arcs instead of edges and by modifying it accordingly.

Let V = {1, . . . ,n} be the set of key station locations, letE be the set of (nonordered) pairs of

key station locations that can potentially be linked, i.e.,

E = {{i, j} ∈V ×V | i 6= j and it is possible to linki and j},

and letm= |E|.

Let us consider the simple graphG = (V,E). Without loss of generality, whenever we refer to

an edge{i, j} ∈ E it will be assumed thati < j. We also assume thatG is connected.

For eachi ∈ V, let ai be the cost of constructing a key station ati, and letΓ(i) be the set of

key station locations that can be linked toi (notice thatΓ(i) is the set of nodes adjacent toi in G

and|Γ(i)| is the degree ofi in G).

For each{i, j} ∈ E, let di j be the length of link{i, j} (expressed in kilometers), letsi j be

the number of non-key station locations on link{i, j}, and letci j be the cost of linkingi and j

(including the cost of constructing the corresponding non-key stations).

If there wereλ lines going to a key station locationi or linking two key station locationsi

and j, then the associated construction costs would beλai and λci j , respectively, since it is

assumed that we construct as many stations ati and as many links betweeni and j as the number

of lines involved. Although in the first stage of the proposedapproach we implicitly consider that

whichever two station locations are linked by one line at most (see Section 3), in the second stage

we shall allow pairs of station locations linked by more thanone line (see Sections 6, 7 and 8).

Let b be the available budget for constructing the rapid transit network, and letv be the average

velocity of the network’s vehicles (expressed in kilometers per hour).
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For eachi ∈V, let t(i) be the average time required for going between the entrance of the key

station located ati and its boarding and alighting platform (expressed in minutes).

Let ta be the average interarrival time (i.e., the time differencebetween two consecutive

arrivals) of the vehicles at each station (expressed in minutes), letts be the average dwell time

(i.e., the time spent for boarding and alighting of passengers) of the vehicles at each station

(expressed in minutes), and lettr be the average time for making a transfer (expressed in minutes).

Since in real-life rapid transit networks most of the time there are no vehicles at the stations, it

will be assumed thatts < ta
2 . If we had appropriate a priori information, instead of considering a

unique value fortr , we could make it depend on the key station locations, i.e., we could consider

the average time for making a transfer at eachi ∈V.

LetW = {(i, j) ∈V ×V | i < j}, and let us denotew = (ew,e′w) ∀w∈W (W is understood as

the set of all distinct pairs of key station locations).

In order to assess the behavior pattern of the potential users, we propose to survey a sample of

people who, a priori, are willing to utilize the rapid transit network. LetΘ be the set of surveyed

people.

For eachθ ∈ Θ and for eachw∈W, let αw(θ) be the number of trips in a working week that

the surveyeeθ plans to take betweenew ande′w (in any direction) during the hours of operation of

the rapid transit network.

Let Wθ = {w ∈ W | αw(θ) > 0} ∀θ ∈ Θ (notice thatWθ is the set of distinct pairs of key

station locations between which the surveyeeθ plans to travel, without taking into consideration

the direction of the related trips).

For eachθ ∈ Θ and for eachw ∈ Wθ , let τw(θ) be the maximum number of minutes that

the surveyeeθ is willing to spend for travelling betweenew ande′w (in any direction). We are

consideringt(ew)+ ta
2 + 60

v dewe′w +t(e′w) as the minimum possible average time that the trip between

ew ande′w will take on the rapid transit network, wheredewe′w is the Euclidean distance (expressed

in kilometers) betweenew ande′w if {ew,e′w} /∈ E (this minimum will be reached if{ew,e′w} ∈ E,

sewe′w = 0 and link{ew,e′w} is selected to be constructed). Therefore, without loss of generality it

will be assumed thatτw(θ)≥ t(ew)+ ta
2 + 60

v dewe′w + t(e′w) (if τw(θ) < t(ew)+ ta
2 + 60

v dewe′w + t(e′w),

then the surveyeeθ will not utilize the rapid transit network for travelling betweenew ande′w, and,

consequently, we shall setαw(θ) = 0, hencew /∈Wθ and the value ofτw(θ) will not be considered).

In order to determine an initial setting for the headways in asubsequent stage, the surveyees

could also be asked about the starting time and the directionof their trips.

Let W′ =
⋃

θ∈ΘWθ (notice thatW′ is the set of distinct pairs of key station locations between

which the surveyees plan to travel, without taking into consideration the direction of the related

trips). It is expected thatW′ = W, since the cardinality ofΘ should be large enough for the survey

results to be reliable.
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For eachw ∈ W′, let Θw = {θ ∈ Θ | αw(θ) > 0}, q(w) ∈ N, u1
w = min{τw(θ) | θ ∈ Θw},

u2
w, . . . ,uq(w)

w ∈R such thatu1
w < u2

w < .. . < uq(w)
w ≤ max{τw(θ) | θ ∈ Θw}, andgk

w = ∑θ∈Θk
w

αw(θ)

∀k ∈ {1, . . . ,q(w)}, whereΘk
w = {θ ∈ Θw | τw(θ) ≥ uk

w} (the value ofgk
w can be interpreted as

the expected number of weekly trips taken on the rapid transit network by the surveyees that plan

to travel betweenew ande′w, assuming that the fastest route for taking them takesuk
w minutes,

as well as that the capacity of the rapid transit network is enough to hold all those trips). It will

also be assumed that the values ofq(w) and{uk
w}k∈{2,...,q(w)} have been set in such a way that

g1
w > g2

w > .. . > gq(w)
w (notice thatgq(w)

w > 0). The idea behind the consideration of{uk
w}k∈{1,...,q(w)}

is to group the values{τw(θ)}θ∈Θw into the intervals[u1
w,u2

w), . . . , [uq(w)−1
w ,uq(w)

w ), [uq(w)
w ,+∞), and

to utilize these intervals for estimating the number of weekly trips that the surveyees inΘw will

take on the rapid transit network.

3 Station and link location

In this section we present an integer linear programming model for selecting the stations to be

constructed and the links between them, so that the resulting rapid transit network is connected

and its construction cost does not exceed the available budget. This model is based on the one

proposed in Escudero and Muñoz (2009b), for the particularcase where at least one key station

has to be constructed at each location; see also Escudero andMuñoz (2009a).

We attach more importance to linking two station locations by one line, than not linking them

in exchange of linking some two other station locations by more than one line. Thus, in this first

stage of the approach we implicitly assume that whichever two station locations are linked by one

line at most, whereas in the second stage we shall check whether, without eliminating the already

selected links, it is possible and advisable to have pairs ofstation locations linked by more than

one line (see Sections 6, 7 and 8).

Each feasible solution to the model will define a route for travelling between each pair of

key station locations. These routes are understood as preliminary routes for taking the trips on the

rapid transit network (it will be attempted to improve them in a subsequent phase of the approach;

see Section 5).

The optimization criterion is the maximization of an estimation of the number of weekly trips

that the surveyees will take on the rapid transit network, which is equivalent to maximizing an

estimation of the gross profits, assuming that the users haveto buy a ticket per trip and that there

is a unique fare for the tickets. In order to do this estimation, we consider the average time for

the preliminary routes for taking the trips demanded by the surveyees (since the lines have not

still been defined at this stage, these average times are calculated assuming that no transfers are

required).
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We define the following variables:

xi j =

{

1 if i and j are linked

0 otherwise
∀{i, j} ∈ E

γi =

{

1 if ∑ j∈Γ(i), j>i xi j +∑ j∈Γ(i), j<i x ji is odd

0 otherwise
∀i ∈V

∆i ∈ {0, . . . , r(i)} ∀i ∈V

f w
i j =











1 if the preliminary route for travelling between

ew ande′w utilizes edge{i, j}

0 otherwise

∀w∈W,∀{i, j} ∈ E

εw
i =











1 if the preliminary route for travelling between

ew ande′w passes throughi

0 otherwise

∀w∈W,∀i ∈V \{ew,e′w}

pk
w ∈ {0,1} ∀w∈W′,∀k∈ {1, . . . ,q(w)},

where r(i) =







|Γ(i)|
2 if |Γ(i)| is even

|Γ(i)|−1
2 if |Γ(i)| is odd

, ∆i =
∑ j∈Γ(i), j>i xi j +∑ j∈Γ(i), j<i x ji−γi

2 , and a necessary

condition for pk
w to take the value 1 is that the average time for travelling betweenew and e′w

by following the associated preliminary route is less or equal touk
w.

We propose the following model:

Maximize z= ∑
w∈W′

q(w)

∑
k=1

gk
wpk

w

subject to:

∑
j∈Γ(i), j>i

xi j + ∑
j∈Γ(i), j<i

x ji = 2∆i + γi ∀i ∈V (1)

∑
i∈V

ai (∆i + γi)+ ∑
{i, j}∈E

ci j xi j ≤ b (2)

f w
i j ≤ xi j ∀w∈W,∀{i, j} ∈ E (3)

∑
j∈Γ(i), j>i

f w
i j + ∑

j∈Γ(i), j<i

f w
ji =

{

1 if i ∈ {ew,e′w}

2εw
i otherwise

∀w∈W,∀i ∈V (4)
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q(w)

∑
k=1

pk
w ≤ 1 ∀w∈W′ (5)

t ′(w)+ ∑
{i, j}∈E

t ′i j f w
i j −uk

w ≤ Mk
w(1− pk

w) ∀w∈W′,∀k∈ {1, . . . ,q(w)} (6)

xi j ∈ {0,1} ∀{i, j} ∈ E

γi ∈ {0,1} ∀i ∈V

∆i ∈ {0, . . . , r(i)} ∀i ∈V

f w
i j ∈ {0,1} ∀w∈W,∀{i, j} ∈ E

εw
i ∈ {0,1} ∀w∈W,∀i ∈V \{ew,e′w}

pk
w ∈ {0,1} ∀w∈W′,∀k∈ {1, . . . ,q(w)},

wheret ′(w) = t(ew)+ ta
2 − ts+ t(e′w), t ′i j = 60

v di j + ts(si j + 1), andMk
w is an upper bound for the

value oft ′(w)+∑{i, j}∈E t ′i j f w
i j −uk

w over the feasible region of the above model relaxation resulting

from eliminating the constraints (5) and (6), and the variables{pk
w}w∈W′,k∈{1,...,q(w)}.

Constraints (1) and (2) impose the budget constraint. Constraints (3) and (4) define the

preliminary routes and guarantee that any feasible solution to this model will give rise to a

connected rapid transit network. Constraints (5) impose that, for eachw ∈ W′, at most one of

the variables{pk
w}k∈{1,...,q(w)} can be equal to 1. Constraints (6) impose that, for eachw ∈ W′

and for eachk ∈ {1, . . . ,q(w)}, if pk
w = 1 thent ′(w) + ∑{i, j}∈E t ′i j f w

i j ≤ uq
w (we are considering

t ′(w) + ∑{i, j}∈E t ′i j f w
i j as the average time for travelling betweenew and e′w by following the

associated preliminary route, since∑{i, j}∈E t ′i j f w
i j − ts is the average time for travelling between

the boarding and alighting platforms atew ande′w for this preliminary route, assuming that no

transfers are required).

For eachw∈W′, in the objective function we are considering∑q(w)
k=1 gk

wpk
w as the estimation for

the number of weekly trips taken on the rapid transit networkby the surveyees that plan to travel

betweenew ande′w. Since we are dealing with a maximization problem, each optimal solution to

the above model will satisfy the following properties (the first one will also be satisfied by any

feasible solution to the model):

(1) For eachw ∈ W′ such thatt ′(w) + ∑{i, j}∈E t ′i j f w
i j > uk

w ∀k ∈ {1, . . . ,q(w)}, it will be

pk
w = 0 ∀k∈ {1, . . . ,q(w)}.

(2) For eachw ∈ W′ such that∃k ∈ {1, . . . ,q(w)} with t ′(w) + ∑{i, j}∈E t ′i j f w
i j ≤ uk

w, it will be

pk∗
w = 1 and pk

w = 0 ∀k ∈ {1, . . . ,q(w)} \ {k∗}, where k∗ = min{k ∈ {1, . . . ,q(w)} |

t ′(w)+∑{i, j}∈E t ′i j f w
i j ≤ uk

w}.
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For the particular case whereq(w) = 1 ∀w∈W′, the above objective function is the same as

in the model from Escudero and Muñoz (2009b), i.e., the all-or-nothing model for the potential

users’ behavior from Marı́n (2007) is considered.

The greater the values of{q(w)}w∈W′ , the more accurate the estimation of the number of

weekly trips that the surveyees will take on the rapid transit network (assuming that no transfers

are required) but also the more variables and constraints inthe above model.

We have considered some other objective functions that do not require either the constraints (5)

and (6) or the variables{pk
w}w∈W′,k∈{1,...,q(w)}, but the global computational results came out worse

than for the above objective function.

In order to illustrate the application of the first stage of our proposed approach, a small-size

instance is provided in the following example:

Example 1. Consider the graph G= (V,E), where V= {1,2,3,4,5,6} and E= {{1,2},{1,4},

{1,5},{2,3},{2,6},{4,5},{5,6}} (see Figure 1). ThenΓ(1) = {2,4,5}, Γ(2) = {1,3,6},

Γ(3) = {2}, Γ(4) = {1,5}, Γ(5) = {1,4,6}, Γ(6) = {2,5} and W= {(1,2),(1,3),(1,4),(1,5),

(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}.

1 2 3

4 5 6

Figure 1: Graphic representation ofG = (V,E)

Let ai = 30 ∀i ∈V, d12 = 1.6, d14 = 2.1, d15 = 1, d23 = 1.1, d26 = 1.5, d45 = 1.2, d56 = 0.9,

si j = 0 ∀{i, j} ∈ E, ci j = 45di j ∀{i, j} ∈ E, b = 645, v = 60, t(i) = 2 ∀i ∈ V, ta = 4,

ts = 0.5 and tr = 3 ({ai}i∈V, {ci j}{i, j}∈E and b are expressed in millions of euros). Then

t ′i j = di j +0.5 ∀{i, j} ∈ E.

Let Θ = {θ1, . . . ,θ5}, Wθ1 = {(1, 2), (1, 6), (2, 4), (2, 6)}, Wθ2 = {(1, 4), (1, 5), (4, 5)},

Wθ3 = {(1,6), (2,5), (3,5)}, Wθ4 = {(1,3), (1,6), (2,3), (3,5), (3,6), (5,6)} and Wθ5 = {(1,6),

(2,4),(3,4),(3,6),(4,6)}. Therefore, we have W′ = W andt ′(w) = 5.5 ∀w∈W′.
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For eachθ ∈ Θ and for each w∈Wθ , Table 1 shows the values we have considered forαw(θ)

andτw(θ):

Table 1: Values of{αw(θ)}θ∈Θ,w∈Wθ and{τw(θ)}θ∈Θ,w∈Wθ

θ w αw(θ) τw(θ)

θ1 (1,2) 1 8

(1,6) 2 12

(2,4) 5 10

(2,6) 1 9

θ2 (1,4) 1 10

(1,5) 1 7

(4,5) 1 8

θ3 (1,6) 1 13

(2,5) 1 9

(3,5) 8 10

θ4 (1,3) 1 12

(1,6) 10 8

(2,3) 1 8

(3,5) 1 12

(3,6) 1 16

(5,6) 1 8

θ5 (1,6) 5 9

(2,4) 1 12

(3,4) 1 15

(3,6) 12 9

(4,6) 1 9

For each w∈ W′, Table 2 shows the values we have considered for q(w), {uk
w}k∈{1,...,q(w)},

{gk
w}k∈{1,...,q(w)} and{Mk

w}k∈{1,...,q(w)} (the procedure we have utilized for obtaining them will be

detailed in Section 9):
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Table 2: Values of {q(w)}w∈W′, {uk
w}w∈W′,k∈{1,...,q(w)}, {gk

w}w∈W′,k∈{1,...,q(w)} and

{Mk
w}w∈W′,k∈{1,...,q(w)}

w q(w) {uk
w}k∈{1,...,q(w)} {gk

w}k∈{1,...,q(w)} {Mk
w}k∈{1,...,q(w)}

(1,2) 1 8 1 7.5

(1,3) 1 12 1 3.5

(1,4) 1 10 1 5.5

(1,5) 1 7 1 8.5

(1,6) 2 8, 9 18, 8 7.5, 6.5

(2,3) 1 8 1 7.5

(2,4) 1 10 6 5.5

(2,5) 1 9 1 6.5

(2,6) 1 9 1 6.5

(3,4) 1 15 1 0.5

(3,5) 1 10 9 5.5

(3,6) 2 9, 16 13, 1 6.5,−0.5

(4,5) 1 8 1 7.5

(4,6) 1 9 1 6.5

(5,6) 1 8 1 7.5

Upon solving the above model for this particular instance, we obtain that all links except{1,4}

are constructed, the construction cost of the rapid transitnetwork is 568.5 million euros, and the

optimal value of the objective function is 20.

4 Modification of the Floyd-Warshall algorithm

Let G′ = (V ′,E′) be a simple graph, and letd′
i j ≥ 0 ∀{i, j} ∈ E′ andd′

i j = +∞ ∀i, j ∈V ′ such

that i 6= j and {i, j} /∈ E′ (for each{i, j} ∈ E′, d′
i j is understood as the length of edge{i, j}).

Without loss of generality, let us assume thatV ′ = {1, . . . ,n′}.

Below we present a modification of the well-known Floyd-Warshall algorithm (see e.g. Korte

and Vygen (2008)) to determine a shortest chain inG′ between each pair of nodes ofV ′. It takes

advantage of the undirectedness ofG′ as well as of the nonnegative lengths of the edges inE′, and

it will be utilized in subsequent phases of the approach (seeSections 5 and 7).
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Algorithm 1.

Step 1. Sethi j = d′
i j ,h ji = hi j , pi j = i andp ji = j ∀i, j ∈V ′ with i < j, and setk = 1.

Step 2. Sethi j = hik +hk j,h ji = hi j , pi j = pk j andp ji = pki ∀i, j ∈V ′ \{k} such thati < j and

hik +hk j < hi j .

Step 3. If k = n′, STOP; otherwise, setk = k+1 and go to Step 2.

5 Determination of the shortest routes without considering

transfers

We are interested in determining a route of minimum average time for each trip that will be taken

on the rapid transit network by the surveyees. However, since a line design for the rapid transit

network is not still available, we are forced to assume that no transfers will be required in those

routes (later, in Section 7, transfers will be taken into consideration).

Let (xi j ){i, j}∈E, (γ i)i∈V, (∆i)i∈V , ( f
w
i j )w∈W,{i, j}∈E, (εw

i )w∈W, i∈V\{ew,e′w}, (pk
w)w∈W′,k∈{1,...,q(w)}

be an optimal solution to the model stated in Section 3 (or an incumbent solution if the model has

not been solved to optimality), and letE = {{i, j} ∈ E | xi j = 1}.

The rest of the proposed approach would be valid for any subset E of E such that(V,E) is a

connected graph and the construction cost of its associatedrapid transit network does not exceed

the available budget. Consequently, it could also be employed for redesigning the lines of existing

rapid transit networks.

Let us consider the partial graphG = (V,E) of G. For eachi ∈V, let Γ(i) be the set of nodes

adjacent toi in G. Let s= ∑{i, j}∈E si j (notice thats is the total number of non-key station locations

in G).

It is worth noting that, for eachw ∈ W, the preliminary route defined by{ f
w
i j}{i, j}∈E is not

necessarily a chain of minimum length inG joining ew ande′w, consideringt ′i j as the length of each

edge{i, j} ∈ E. In order to determine such shortest chains, let us apply Algorithm 1 takingG′ = G

andd′
i j = t ′i j ∀{i, j} ∈ E.

Given the output{hi j}i, j∈V, i 6= j ,{pi j}i, j∈V, i 6= j of Algorithm 1, letλ w = t ′(w)+hewe′w ∀w∈W′

(notice thatλ w is the minimum average time that the trip betweenew and e′w will take on

the rapid transit network, assuming that no transfers are required), and let{ f̂ w
i j }w∈W′,{i, j}∈E

and {ε̂w
i }w∈W′, i∈V\{ew,e′w} be, respectively, the values of the variables{ f w

i j }w∈W′,{i, j}∈E and

{εw
i }w∈W′, i∈V\{ew,e′w} that define the routes identified by Algorithm 1, i.e.,
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f̂ w
i j =











1 if the shortest chain inG joining ew ande′w
determined by Algorithm 1 contains edge{i, j}

0 otherwise

∀w∈W′,∀{i, j} ∈ E

ε̂w
i =











1 if the shortest chain inG joining ew ande′w
determined by Algorithm 1 passes throughi

0 otherwise

∀w∈W′,∀i ∈V \{ew,e′w}

(these values can easily be obtained from{pi j}i, j∈V, i 6= j ; in particular, for eachw ∈ W′ such that

hewe′w = ∑{i, j}∈E t ′i j f
w
i j , we can set̂f w

i j = f
w
i j ∀{i, j} ∈ E andε̂w

i = εw
i ∀i ∈V \{ew,e′w}).

For eachw∈W′, letgw = ∑θ∈Θw
αw(θ), whereΘw = {θ ∈Θw | τw(θ)≥ λw} (notice thatgw is

the maximum possible expected number of weekly trips taken on the rapid transit network by the

surveyees that plan to travel betweenew ande′w, and it will be reached if the surveyees follow the

route defined by{ f̂ w
i j }{i, j}∈E, no transfers are required in that route and the capacity of the rapid

transit network is enough to hold all those trips). Letz= ∑w∈W′ gw.

Example 2. Let us continue solving the instance given in Example 1. We get that G = (V,E),

where E = {{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}} (see Figure 2). Thus,Γ(1) = {2,5},

Γ(2) = {1,3,6}, Γ(3) = {2}, Γ(4) = {5}, Γ(5) = {1,4,6} andΓ(6) = {2,5} (notice thats= 0).

1 2 3

4 5 6

2.1

1.5

1.6

2

1.7 1.4

Figure 2: Graphic representation ofG = (V,E) and values of{t ′i j}{i, j}∈E

For each w∈ W′, Table 3 shows the shortest chain inG joining ew and e′w determined by

Algorithm 1 and the values ofλ w andgw (notice thatz= 22):
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Table 3: Shortest chain betweenew ande′w ∀w∈W′ and values of{λ w}w∈W′ and{gw}w∈W′

w Shortest chain betweenew ande′w λ w gw

(1,2) {{1,2}} 7.6 1

(1,3) {{1,2},{2,3}} 9.2 1

(1,4) {{1,5},{5,4}} 8.7 1

(1,5) {{1,5}} 7 1

(1,6) {{1,5},{5,6}} 8.4 8

(2,3) {{2,3}} 7.1 1

(2,4) {{2,6},{6,5},{5,4}} 10.6 1

(2,5) {{2,6},{6,5}} 8.9 1

(2,6) {{2,6}} 7.5 1

(3,4) {{3,2},{2,6},{6,5},{5,4}} 12.2 1

(3,5) {{3,2},{2,6},{6,5}} 10.5 1

(3,6) {{3,2},{2,6}} 9.1 1

(4,5) {{4,5}} 7.2 1

(4,6) {{4,5},{5,6}} 8.6 1

(5,6) {{5,6}} 6.9 1

6 Greedy heuristic procedure for minimizing the number of

transfers given the set of links to be constructed

In this section we provide a generalization of the greedy heuristic algorithm for designing a set of

lines presented in Escudero and Muñoz (2009b), to allow pairs of station locations linked by more

than one line (the algorithm presented in Escudero and Muñoz (2009a) could also be generalized

analogously). Each link to be constructed will be assigned to exactly one line, attempting to

minimize an estimation of the number of weekly transfers that should be made by the surveyees

to arrive at their destinations. Although the new algorithmcan fail in designing a set of lines for

a nonsimple graph, it will be applied at least to graphG (see Section 8), hence obtaining a line

design for the rapid transit network will be guaranteed.

Let G
′
= (V,E

′
) be a graph such that the edges inE

′
are the same as inE, but their multiplicities

can be greater than one. When we refer to an edge{i, j} ∈ E
′
, it will can be eitheri < j or i > j.

For eachi ∈ V, let d(i) be the degree ofi in G
′
, and, for each{i, j} ∈ E

′
, let mi j be the

multiplicity of {i, j} in G
′
.
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The proposed approach can require designing a set of lines for different sets of edgesE
′
. We

shall impose that each one of these setsE
′, jointly with the set of lines obtained for it, satisfy the

two following conditions:

(1) For eachi ∈V, the number of lines that go toi is d(i)
2 if d(i) is even, ord(i)+1

2 if d(i) is odd.

(2) ∑i∈V,d(i) evenai
d(i)
2 +∑i∈V,d(i) oddai

d(i)+1
2 +∑{i, j}∈E ci j mi j ≤ b.

Condition (1) is imposed in order to reduce as much as possible the construction cost of the

rapid transit network defined byG
′
(notice that a necessary condition for (1) to be satisfied is that

min{d(i),d( j)} ≥ 2mi j −1 ∀{i, j} ∈ E). Condition (2) imposes that the construction cost of the

rapid transit network defined byG
′
does not exceed the available budget.

For obvious reasons, lines containing two or more equal links will not be allowed.

It will be assumed that the surveyees follow the routes defined by{ f̂ w
i j }w∈W′,{i, j}∈E.

LetW={w∈W′ | gw > 0}. For simplicity of notation, we definêf w
ji = f̂ w

i j ∀w∈W,∀{i, j}∈E.

LetWi = {w∈W | i /∈ {ew,e′w}, ε̂w
i = 1} ∀i ∈V, let t j(i) = ∑w∈Wi , f̂ w

i j =1gw ∀i ∈V,∀ j ∈ Γ(i),

and lettk(i, j) = ∑w∈W j , f̂ w
i j + f̂ w

jk=1gw ∀i ∈V,∀ j ∈ Γ(i),∀k∈ Γ( j)\{i} (notice thatWi is the set of

distinct pairs of key station locations such that the surveyees that plan to travel between them pass

through locationi, t j(i) is the maximum possible expected number of weekly transfersat locationi

made by the surveyees that utilize link{i, j}, provided thati is an endpoint of the lines that link

i and j, andtk(i, j) is the maximum possible expected number of weekly transfersat location j

made by the surveyees that utilize one and only one of the links {i, j} and{ j,k}, provided that

these links belong to the same line).

Algorithm 2 below is a greedy heuristic procedure for designing a set of lines forG
′
.

It generalizes Algorithm 2 in Escudero and Muñoz (2009b) and can be outlined as follows:

Starting from a node with odd degree, or, in its absence, withpositive even degree, other nodes are

chosen sequentially through edges inE
′ attending to certain criteria, until a node is reached which

either has previously been visited or has no incident edges (once an edge has been considered,

it is eliminated fromE
′
). In the first case, we define a circular line and check whetherit can still

be possible to design a set of lines such that condition (1) issatisfied; if so, the above procedure is

carried on from the last reached node which is an endpoint of an edge that has been eliminated

from E
′

but has not yet been assigned to a line, if such a node exists. In the second case,

we define a noncircular line. This approach is repeated untilwe either detect that it cannot be

possible to design a set of lines such that condition (1) is satisfied or getE
′
= /0 (see Escudero and

Muñoz (2009b, 2009a) for more details).

If E
′
= E, Algorithm 2 proceeds in the same way as Algorithm 2 in Escudero and Muñoz

(2009b); therefore, it will obtain a line design. Otherwise, Algorithm 2 can fail in obtaining a line

design.
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In order to store the sequence of nodes chosen at each iteration, a nonnegative integer value

p(i) is associated to each nodei ∈ V, in such a way that a positive valuep(i) means that nodei

has been reached from nodep(i) (for the starting nodei0 we definep(i0) = i0). A counterl for the

number of lines that are being defined is also considered. These lines are denoted byLl .

Algorithm 2.

Step 1. Setp(i) = 0 ∀i ∈V andl = 0.

Step 2. If E
′
= /0, STOP.

Step 3. If d(i) is even∀i∈V, choosei0∈V such thatd(i0) > 0, setj = argmax{mi0 j ′ | j ′∈Γ(i0)}

and go to Step 5.

Step 4. Choosei0 ∈ V such thatd(i0) is odd and setj = argmax{mi0 j ′ | j ′ ∈ Γ(i0)}. If

d(i0) > 2mi0 j , set j = argmin{t j ′(i0) | j ′ ∈ Γ(i0)}.

Step 5. Setl = l +1, Ll = /0, p(i0) = i0 andi = i0.

Step 6. SetE′
= E

′
\ {{i, j}}, d(i) = d(i)−1, d( j) = d( j)−1, mi j = mi j −1 andmji = mi j .

If mi j = 0, setΓ(i) = Γ(i)\{ j} andΓ( j) = Γ( j)\{i}.

Step 7. If p( j) > 0, set j0 = j and go to Step 11.

Step 8. If d( j) = 0, set j0 = i0 and go to Step 11.

Step 9. Setk = argmax{mjk′ | k′ ∈ Γ( j)\{i}}. If d( j) < 2mjk, setp( j) = i, i = j, j = k and go

to Step 6.

Step 10. Setk = argmin{tk′(i, j) | k′ ∈ Γ( j)\{i}}. If d( j) is even andtk(i, j) > ti( j), set j0 = i0;

otherwise, setp( j) = i, i = j, j = k and go to Step 6.

Step 11. SetLl = Ll ∪{{ j, i}}. If i 6= j0, set j = i, i = p(i), p( j) = 0 and repeat Step 11.

Step 12. If i = i0, setp(i0) = 0 and go to Step 2.

Step 13. If d(i) < 2mp(i),i, STOP (no line design has been obtained); otherwise, setl = l + 1,

Ll = /0, j = i, i = p(i), p( j) = 0 and go to Step 8.

REMARK 1. If d(i0) is even, then Step 8 can be skipped, since it will always be d( j) > 0.
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We have setj = argmax{mi0 j ′ | j ′ ∈ Γ(i0)} in Step 3, since, ifd(i0) ≤ 2mi0 j and a circular

line were defined containing two links of the form{i0, j1} and{ j2, i0}, where j1, j2 ∈ Γ(i0) \ { j}

and j1 6= j2, then condition (1) would not be satisfied.

We have initially setj = argmax{mi0 j ′ | j ′ ∈ Γ(i0)} in Step 4, since, ifd(i0) < 2mi0 j and a

line were defined containing a link of the form{i0, j1}, where j1 ∈ Γ(i0)\{ j}, and not containing

link {i0, j}, then condition (1) would not be satisfied.

We have initially setk = argmax{mjk′ | k′ ∈ Γ( j) \ {i}} in Step 9 (below it will be shown

that Γ( j) \ {i} 6= /0, hencek is correctly defined), since, ifd( j) < 2mjk and a line were defined

containing link{i, j} and not containing link{ j,k}, then condition (1) would not be satisfied.

Given that min{d(i),d( j)} ≥ 2mi j −1 ∀{i, j} ∈ E, it can easily be deduced from Steps 3, 4,

9 and 13 that each time a lineLl is set to the empty set, we have that min{dl (i),dl( j)} ≥

2ml
i j − 1 ∀{i, j} ∈ E, where dl (i) and dl ( j) are, respectively, the degree ofi and j in G

′
l ,

ml
i j is the multiplicity of{i, j} in G

′
l , andG

′
l = (V,E

′
\

⋃l−1
l ′=1Ll ′). As a consequence, it will always

beΓ( j)\{i} 6= /0 in Step 9.

Example 3. Let us continue solving the instance given in Example 1 (see also Example 2). We get

that W = W′, W1 = /0, W2 = {(1,3),(3,4),(3,5),(3,6)}, W3 = /0, W4 = /0, W5 = {(1,4),(1,6),

(2,4),(3,4),(4,6)} andW6 = {(2,4),(2,5),(3,4),(3,5)}.

Below Algorithm 2 is applied considering three different sets of edgesE
′
(these sets will also

be considered in Sections 7 and 8).

• Let E
′
= E. Then d(1) = 2, d(2) = 3, d(3) = 1, d(4) = 1, d(5) = 3, d(6) = 2 and

m12 = m21 = m15 = m51 = m23 = m32 = m26 = m62 = m45 = m54 = m56 = m65 = 1.

Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 0, l = 0

Step 4. i0 = 2, j = 1, t1(2) = 1, t3(2) = 4, t6(2) = 3, j = 1

Step 5. l = 1, L1 = /0, p(2) = 2, i = 2

Step 6. E
′
= {{1,5},{2,3},{2,6},{4,5},{5,6}}, d(2) = 2, d(1) = 1, m21 = 0, m12 = 0,

Γ(2) = {3,6}, Γ(1) = {5}

Step 9. k = 5, p(1) = 2, i = 1, j = 5

Step 6. E
′
= {{2,3},{2,6},{4,5},{5,6}}, d(1) = 0, d(5) = 2, m15 = 0, m51 = 0,

Γ(1) = /0, Γ(5) = {4,6}

Step 9. k = 4

19



Step 10. t4(1,5) = 11, t6(1,5) = 4, k = 6, t1(5) = 9, p(5) = 1, i = 5, j = 6

Step 6. E
′
= {{2,3},{2,6},{4,5}}, d(5) = 1, d(6) = 1, m56 = 0, m65 = 0, Γ(5) = {4},

Γ(6) = {2}

Step 9. k = 2, p(6) = 5, i = 6, j = 2

Step 6. E
′
= {{2,3},{4,5}}, d(6) = 0, d(2) = 1, m62 = 0, m26 = 0, Γ(6) = /0, Γ(2) = {3}

Step 7. j0 = 2

Step 11. L1 = {{2,6}}, j = 6, i = 5, p(6) = 0

Step 11. L1 = {{2,6},{6,5}}, j = 5, i = 1, p(5) = 0

Step 11. L1 = {{2,6},{6,5},{5,1}}, j = 1, i = 2, p(1) = 0

Step 11. L1 = {{2,6},{6,5},{5,1},{1,2}}

Step 12. p(2) = 0

Step 4. i0 = 2, j = 3

Step 5. l = 2, L2 = /0, p(2) = 2, i = 2

Step 6. E
′
= {{4,5}}, d(2) = 0, d(3) = 0, m23 = 0, m32 = 0, Γ(2) = /0, Γ(3) = /0

Step 8. j0 = 2

Step 11. L2 = {{3,2}}

Step 12. p(2) = 0

Step 4. i0 = 4, j = 5

Step 5. l = 3, L3 = /0, p(4) = 4, i = 4

Step 6. E
′
= /0, d(4) = 0, d(5) = 0, m45 = 0, m54 = 0, Γ(4) = /0, Γ(5) = /0

Step 8. j0 = 4

Step 11. L3 = {{5,4}}

Step 12. p(4) = 0

Thus, one circular line L1 = {{2,6},{6,5},{5,1},{1,2}}, and two noncircular lines

L2 = {{3,2}} and L3 = {{5,4}} have been defined.

• Let E
′
= E∪{{1,5}}. Then d(1) = 3, d(2) = 3, d(3) = 1, d(4) = 1, d(5) = 4, d(6) = 2,

m12 = m21 = m23 = m32 = m26 = m62 = m45 = m54 = m56 = m65 = 1 and m15 = m51 = 2

(notice that condition (2) is satisfied).
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Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 0, l = 0

Step 4. i0 = 1, j = 5

Step 5. l = 1, L1 = /0, p(1) = 1, i = 1

Step 6. E
′
={{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}}, d(1)=2, d(5)=3, m15=1, m51=1

Step 9. k = 4

Step 10. t4(1,5) = 11, t6(1,5) = 4, k = 6, p(5) = 1, i = 5, j = 6

Step 6. E
′
= {{1,2},{1,5},{2,3},{2,6},{4,5}}, d(5) = 2, d(6) = 1, m56 = 0, m65 = 0,

Γ(5) = {1,4}, Γ(6) = {2}

Step 9. k = 2, p(6) = 5, i = 6, j = 2

Step 6. E
′
= {{1,2},{1,5},{2,3},{4,5}}, d(6) = 0, d(2) = 2, m62 = 0, m26 = 0, Γ(6) = /0,

Γ(2) = {1,3}

Step 9. k = 1

Step 10. t1(6,2) = 4, t3(6,2) = 1, k = 3, t6(2) = 3, p(2) = 6, i = 2, j = 3

Step 6. E
′
= {{1,2},{1,5},{4,5}}, d(2) = 1, d(3) = 0, m23 = 0, m32 = 0, Γ(2) = {1},

Γ(3) = /0

Step 8. j0 = 1

Step 11. L1 = {{3,2}}, j = 2, i = 6, p(2) = 0

Step 11. L1 = {{3,2},{2,6}}, j = 6, i = 5, p(6) = 0

Step 11. L1 = {{3,2},{2,6},{6,5}}, j = 5, i = 1, p(5) = 0

Step 11. L1 = {{3,2},{2,6},{6,5},{5,1}}

Step 12. p(1) = 0

Step 4. i0 = 2, j = 1

Step 5. l = 2, L2 = /0, p(2) = 2, i = 2

Step 6. E
′
= {{1,5},{4,5}}, d(2) = 0, d(1) = 1, m21 = 0, m12 = 0, Γ(2) = /0, Γ(1) = {5}

Step 9. k = 5, p(1) = 2, i = 1, j = 5

Step 6. E
′
= {{4,5}}, d(1) = 0, d(5) = 1, m15 = 0, m51 = 0, Γ(1) = /0, Γ(5) = {4}

Step 9. k = 4, p(5) = 1, i = 5, j = 4

Step 6. E
′
= /0, d(5) = 0, d(4) = 0, m54 = 0, m45 = 0, Γ(5) = /0, Γ(4) = /0

Step 8. j0 = 2
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Step 11. L2 = {{4,5}}, j = 5, i = 1, p(5) = 0

Step 11. L2 = {{4,5},{5,1}}, j = 1, i = 2, p(1) = 0

Step 11. L2 = {{4,5},{5,1},{1,2}}

Step 12. p(2) = 0

Thus, two noncircular lines L1 = {{3,2},{2,6},{6,5},{5,1}} and L2={{4,5},{5,1},{1,2}}

have been defined.

• Let E
′
= E∪{{5,6}}. Then d(1) = 2, d(2) = 3, d(3) = 1, d(4) = 1, d(5) = 4, d(6) = 3,

m12 = m21 = m15 = m51 = m23 = m32 = m26 = m62 = m45 = m54 = 1 and m56 = m65 = 2

(notice that condition (2) is satisfied).

Algorithm 2 proceeds as follows:

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 0, l = 0

Step 4. i0 = 2, j = 1, t1(2) = 1, t3(2) = 4, t6(2) = 3, j = 1

Step 5. l = 1, L1 = /0, p(2) = 2, i = 2

Step 6. E
′
= {{1,5},{2,3},{2,6},{4,5},{5,6},{5,6}}, d(2) = 2, d(1) = 1, m21 = 0,

m12 = 0, Γ(2) = {3,6}, Γ(1) = {5}

Step 9. k = 5, p(1) = 2, i = 1, j = 5

Step 6. E
′
= {{2,3},{2,6},{4,5},{5,6},{5,6}}, d(1) = 0, d(5) = 3, m15 = 0, m51 = 0,

Γ(1) = /0, Γ(5) = {4,6}

Step 9. k = 6, p(5) = 1, i = 5, j = 6

Step 6. E
′
= {{2,3},{2,6},{4,5},{5,6}}, d(5) = 2, d(6) = 2, m56 = 1, m65 = 1

Step 9. k = 2

Step 10. t2(5,6) = 0, k = 2, t5(6) = 4, p(6) = 5, i = 6, j = 2

Step 6. E
′
= {{2,3},{4,5},{5,6}}, d(6) = 1, d(2) = 1, m62 = 0, m26 = 0, Γ(6) = {5},

Γ(2) = {3}

Step 7. j0 = 2

Step 11. L1 = {{2,6}}, j = 6, i = 5, p(6) = 0

Step 11. L1 = {{2,6},{6,5}}, j = 5, i = 1, p(5) = 0

Step 11. L1 = {{2,6},{6,5},{5,1}}, j = 1, i = 2, p(1) = 0

Step 11. L1 = {{2,6},{6,5},{5,1},{1,2}}

Step 12. p(2) = 0
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Step 4. i0 = 2, j = 3

Step 5. l = 2, L2 = /0, p(2) = 2, i = 2

Step 6. E
′
= {{4,5},{5,6}}, d(2) = 0, d(3) = 0, m23 = 0, m32 = 0, Γ(2) = /0, Γ(3) = /0

Step 8. j0 = 2

Step 11. L2 = {{3,2}}

Step 12. p(2) = 0

Step 4. i0 = 4, j = 5

Step 5. l = 3, L3 = /0, p(4) = 4, i = 4

Step 6. E
′
= {{5,6}}, d(4) = 0, d(5) = 1, m45 = 0, m54 = 0, Γ(4) = /0, Γ(5) = {6}

Step 9. k = 6, p(5) = 4, i = 5, j = 6

Step 6. E
′
= /0, d(5) = 0, d(6) = 0, m56 = 0, m65 = 0, Γ(5) = /0, Γ(6) = /0

Step 8. j0 = 4

Step 11. L3 = {{6,5}}, j = 5, i = 4, p(5) = 0

Step 11. L3 = {{6,5},{5,4}}

Step 12. p(4) = 0

Thus, one circular line L1 = {{2,6},{6,5},{5,1},{1,2}}, and two noncircular lines

L2 = {{3,2}} and L3 = {{6,5},{5,4}} have been defined.

7 Determination of the shortest routes considering transfers

The shortest chains determined in Section 5 allowed us to calculate the minimum average

time for each trip taken on the rapid transit network by the surveyees, as well as the maximum

possible expected number of weekly trips taken by the surveyees, assuming that no transfers were

required. However, once a line design for the rapid transit network is available, these values can

be recalculated in a more accurate way by taking into consideration the transfer times. For this

purpose, we require to expand the network considered in Section 5 (a similar expanded network

was defined in Mandl (1980)).

Let L1, . . . ,Ll̂ be a set of lines forG
′
(see Section 6), and, for eachi ∈V, let L(i) be the set of

indicesl ∈ {1, . . . , l̂} such that lineLl goes toi.

Let us consider the simple graph̃G = (Ṽ, Ẽ), whereṼ = {i-l | i ∈ V, l ∈ L(i)}, Ẽ = Ẽ′ ∪ Ẽ′′,

Ẽ′ = {{i-l , j-l} | l ∈ {1, . . . , l̂},{i, j} ∈ Ll} and Ẽ′′ = {{i-l , i-l ′} | i ∈ V, l ∈ L(i), l ′ ∈ L(i) \ {l}}

(the edges iñE′ are the same as inE
′
, but now the indicesl of their endpoints indicate the linesLl

to which they belong; each edge{i-l , i-l ′} ∈ Ẽ′′ indicates a transfer ati between linesLl andLl ′).
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Given two nodesi-l , j-l ′ ∈ Ṽ, we say thati-l < j-l ′ either if i < j or if i = j andl < l ′. Without

loss of generality, whenever we refer to an edge{i-l , j-l ′} ∈ Ẽ it will be assumed thati-l < j-l ′.

Let t̃i-l , j-l = t ′i j ∀{i-l , j-l} ∈ Ẽ′ and t̃i-l ,i-l ′ = tr + ta
2 − ts ∀{i-l , i-l ′} ∈ Ẽ′′ (notice that

tr + ta
2 − ts > 0, since it was assumed thatts < ta

2 ), and let us apply Algorithm 1 takingG′ = G̃

andd′
i-l , j-l ′ = t̃i-l , j-l ′ ∀{i-l , j-l ′} ∈ Ẽ.

Given the output {hi-l , j-l ′}i-l , j-l ′∈Ṽ, i-l 6= j-l ′, {pi-l , j-l ′}i-l , j-l ′∈Ṽ, i-l 6= j-l ′ of Algorithm 1, let

λ̃w = t ′(w)+hew-l̃w,e′w-l̃ ′w
∀w∈W′, wherel̃w ∈ L(ew), l̃ ′w ∈ L(e′w) andhew-l̃w,e′w-l̃ ′w

= min{hew-l ,e′w-l ′ |

l ∈ L(ew), l ′ ∈ L(e′w)} (notice that̃λw is the minimum average time that the trip betweenew ande′w
will take on the rapid transit network).

For eachw ∈ W′, let g̃w = ∑θ∈Θ̃w
αw(θ), whereΘ̃w = {θ ∈ Θw | τw(θ) ≥ λ̃w} (notice that

g̃w is the maximum possible expected number of weekly trips taken on the rapid transit network

by the surveyees that plan to travel betweenew ande′w, and it will be reached if the surveyees

follow a route that takes an average time ofλ̃w minutes, which can easily be obtained from

{pew-l̃w, j-l ′} j-l ′∈Ṽ,ew-l̃w 6= j-l ′, and the capacity of the rapid transit network is enough to hold all

those trips). Let ˜z= ∑w∈W′ g̃w.

Example 4. Let us continue solving the instance given in Example 1 (see also Examples 2 and 3).

We have thattr + ta
2 − ts = 4.5.

• Let E
′
= E. The lines defined by Algorithm 2 were L1 = {{2,6},{6,5},{5,1},{1,2}},

L2 = {{3,2}} and L3 = {{5,4}}. Consequently, we get that̃G = (Ṽ, Ẽ), whereṼ =

{1-1,2-1,2-2,3-2,4-3,5-1,5-3,6-1} and Ẽ = {{1-1,2-1},{1-1,5-1},{2-1,2-2},{2-1,6-1},

{2-2,3-2},{4-3,5-3},{5-1,5-3},{5-1,6-1}} (see Figure 3).

1-1 2-1 2-2 3-2

4-3 5-15-3 6-1

2.1

1.5

1.6

2

1.7 1.4

4.5

4.5

Figure 3: Graphic representation ofG̃ = (Ṽ, Ẽ) for E
′
= E, and values of{t̃i-l , j-l ′}{i-l , j-l ′}∈Ẽ

For each w∈W′, Table 4 shows the shortest chain inG̃ joining ew-l̃w and e′w-l̃ ′w determined

by Algorithm 1 and the values ofλ̃w andg̃w (notice thatz̃= 16):
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Table 4: Shortest chain betweenew-l̃w ande′w-l̃ ′w ∀w ∈ W′ for E
′
= E, and values of{λ̃w}w∈W′

and{g̃w}w∈W′

w Shortest chain betweenew-l̃w ande′w-l̃ ′w λ̃w g̃w

(1,2) {{1-1,2-1}} 7.6 1
(1,3) {{1-1,2-1},{2-1,2-2},{2-2,3-2}} 13.7 0
(1,4) {{1-1,5-1},{5-1,5-3},{5-3,4-3}} 13.2 0
(1,5) {{1-1,5-1}} 7 1
(1,6) {{1-1,5-1},{5-1,6-1}} 8.4 8
(2,3) {{2-2,3-2}} 7.1 1
(2,4) {{2-1,6-1},{6-1,5-1},{5-1,5-3},{5-3,4-3}} 15.1 0
(2,5) {{2-1,6-1},{6-1,5-1}} 8.9 1
(2,6) {{2-1,6-1}} 7.5 1
(3,4) {{3-2,2-2},{2-2,2-1},{2-1,6-1},{6-1,5-1},{5-1,5-3},{5-3,4-3}} 21.2 0
(3,5) {{3-2,2-2},{2-2,2-1},{2-1,6-1},{6-1,5-1}} 15 0
(3,6) {{3-2,2-2},{2-2,2-1},{2-1,6-1}} 13.6 1
(4,5) {{4-3,5-3}} 7.2 1
(4,6) {{4-3,5-3},{5-3,5-1},{5-1,6-1}} 13.1 0
(5,6) {{5-1,6-1}} 6.9 1

• Let E
′
= E∪{{1,5}}. The lines defined by Algorithm 2 were L1 = {{3,2},{2,6},{6,5},

{5,1}} and L2 = {{4,5},{5,1},{1,2}}. Consequently, we get that̃G = (Ṽ, Ẽ), where

Ṽ = {1-1,1-2,2-1,2-2,3-1,4-2,5-1,5-2,6-1} and Ẽ = {{1-1,1-2},{1-1,5-1},{1-2,2-2},

{1-2,5-2},{2-1,2-2},{2-1,3-1},{2-1,6-1},{4-2,5-2},{5-1,5-2},{5-1,6-1}} (see Figure 4).
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4.5 4.5
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Figure 4: Graphic representation of̃G = (Ṽ, Ẽ) for E
′

= E ∪ {{1,5}}, and values of

{t̃i-l , j-l ′}{i-l , j-l ′}∈Ẽ

For each w∈W′, Table 5 shows the shortest chain inG̃ joining ew-l̃w and e′w-l̃ ′w determined

by Algorithm 1 and the values ofλ̃w andg̃w (notice thatz̃= 20):
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Table 5: Shortest chain betweenew-l̃w ande′w-l̃ ′w ∀w∈ W′ for E
′
= E∪{{1,5}}, and values of

{λ̃w}w∈W′ and{g̃w}w∈W′

w Shortest chain betweenew-l̃w ande′w-l̃ ′w λ̃w g̃w

(1,2) {{1-2,2-2}} 7.6 1
(1,3) {{1-1,5-1},{5-1,6-1},{6-1,2-1},{2-1,3-1}} 12 1
(1,4) {{1-2,5-2},{5-2,4-2}} 8.7 1
(1,5) {{1-1,5-1}} 7 1
(1,6) {{1-1,5-1},{5-1,6-1}} 8.4 8
(2,3) {{2-1,3-1}} 7.1 1
(2,4) {{2-2,1-2},{1-2,5-2},{5-2,4-2}} 10.8 1
(2,5) {{2-1,6-1},{6-1,5-1}} 8.9 1
(2,6) {{2-1,6-1}} 7.5 1
(3,4) {{3-1,2-1},{2-1,6-1},{6-1,5-1},{5-1,5-2},{5-2,4-2}} 16.7 0
(3,5) {{3-1,2-1},{2-1,6-1},{6-1,5-1}} 10.5 1
(3,6) {{3-1,2-1},{2-1,6-1}} 9.1 1
(4,5) {{4-2,5-2}} 7.2 1
(4,6) {{4-2,5-2},{5-2,5-1},{5-1,6-1}} 13.1 0
(5,6) {{5-1,6-1}} 6.9 1

• Let E
′
= E∪{{5,6}}. The lines defined by Algorithm 2 were L1 = {{2,6},{6,5},{5,1},

{1,2}}, L2 = {{3,2}} and L3 = {{6,5},{5,4}}. Consequently, we get that̃G = (Ṽ, Ẽ),

whereṼ = {1-1, 2-1, 2-2, 3-2, 4-3, 5-1, 5-3, 6-1, 6-3} and Ẽ = {{1-1,2-1}, {1-1,5-1},

{2-1,2-2}, {2-1,6-1}, {2-2,3-2}, {4-3,5-3}, {5-1,5-3}, {5-1,6-1}, {5-3,6-3}, {6-1,6-3}}

(see Figure 5).
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Figure 5: Graphic representation of̃G = (Ṽ, Ẽ) for E
′

= E ∪ {{5,6}}, and values of

{t̃i-l , j-l ′}{i-l , j-l ′}∈Ẽ
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For each w∈W′, Table 6 shows the shortest chain inG̃ joining ew-l̃w and e′w-l̃ ′w determined

by Algorithm 1 and the values ofλ̃w andg̃w (notice thatz̃= 17):

Table 6: Shortest chain betweenew-l̃w ande′w-l̃ ′w ∀w∈ W′ for E
′
= E∪{{5,6}}, and values of

{λ̃w}w∈W′ and{g̃w}w∈W′

w Shortest chain betweenew-l̃w ande′w-l̃ ′w λ̃w g̃w

(1,2) {{1-1,2-1}} 7.6 1
(1,3) {{1-1,2-1},{2-1,2-2},{2-2,3-2}} 13.7 0
(1,4) {{1-1,5-1},{5-1,5-3},{5-3,4-3}} 13.2 0
(1,5) {{1-1,5-1}} 7 1
(1,6) {{1-1,5-1},{5-1,6-1}} 8.4 8
(2,3) {{2-2,3-2}} 7.1 1
(2,4) {{2-1,6-1},{6-1,5-1},{5-1,5-3},{5-3,4-3}} 15.1 0
(2,5) {{2-1,6-1},{6-1,5-1}} 8.9 1
(2,6) {{2-1,6-1}} 7.5 1
(3,4) {{3-2,2-2},{2-2,2-1},{2-1,6-1},{6-1,5-1},{5-1,5-3},{5-3,4-3}} 21.2 0
(3,5) {{3-2,2-2},{2-2,2-1},{2-1,6-1},{6-1,5-1}} 15 0
(3,6) {{3-2,2-2},{2-2,2-1},{2-1,6-1}} 13.6 1
(4,5) {{4-3,5-3}} 7.2 1
(4,6) {{4-3,5-3},{5-3,6-3}} 8.6 1
(5,6) {{5-1,6-1}} 6.9 1

8 Greedy heuristic procedure for maximizing the total number

of trips

In this section we propose a greedy heuristic algorithm for determining a line design for the rapid

transit network, allowing pairs of station locations linked by more than one line and attempting to

maximize an estimation of the maximum possible number of weekly trips taken on the rapid transit

network by the surveyees. Since it can be expected that the smaller the number of transfers that

should be made by the surveyees to arrive at their destinations, the higher the number of trips they

would take on the rapid transit network, the proposed algorithm will be based on Algorithm 2.

In Algorithm 3 below, the set of edges representing the linksof the rapid transit network to

be constructed is denoted byE∗, the best set of lines for the rapid transit network obtainedby

Algorithm 2 is denoted byL∗
1, . . . ,L

∗
l̂∗

, and the maximum possible expected number of weekly trips

taken on the rapid transit network by the surveyees is denoted by z̃∗ and defined as the value of ˜z

corresponding toL∗
1, . . . ,L

∗
l̂∗

(see Section 7).
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We initially setE∗ = E and iteratively add edges toE∗ in such a way that conditions (1) and (2)

stated in Section 6 are satisfied. Moreover, only the edges that are duplicated in an iteration will

be candidates to be subsequently triplicated; only the edges that are triplicated will be candidates

to be quadruplicated, and so forth.

At each iteration we consider the setÊ of edges that can potentially be added to the current

setE∗. Let G∗ = (V,E∗). In order to determinêE, we compute the degreed∗(i) in G∗ of each

nodei ∈ V, the multiplicitym∗
i j in G∗ of certain edges{i, j} ∈ E, the remainderb∗ of the budget

for constructing the rapid transit network defined byG∗, and the construction cost ˆci j of adding

to E∗ certain edges{i, j} ∈ E, whose value is given as follows:

ĉi j =



















ci j if d∗(i) andd∗( j) are odd

a j +ci j if d∗(i) is odd andd∗( j) is even

ai +ci j if d∗(i) is even andd∗( j) is odd

ai +a j +ci j if d∗(i) andd∗( j) are even

Algorithm 3.

Step 1. Apply Algorithm 2 takingE
′
= E, denote the obtained set of lines byL1, . . . ,Ll̂ , compute

the value of ˜z for L1, . . . ,Ll̂ , and setE∗ = E, l̂∗ = l̂ , L∗
l = Ll ∀l ∈ {1, . . . , l̂}, z̃∗ = z̃,

d∗(i) = |Γ(i)| ∀i ∈V andb∗ = b−∑i∈V ai
(

∆i + γ i

)

−∑{i, j}∈E ci j .

Step 2. Compute the value of ˆci j ∀{i, j} ∈ E such that min{d∗(i),d∗( j)} ≥ 2, and set

Ê = {{i, j} ∈ E | min{d∗(i),d∗( j)} ≥ 2, ĉi j ≤ b∗}. If Ê = /0, STOP; otherwise, set

m∗
i j = 1 ∀{i, j} ∈ Ê.

Step 3. SetE∗
0 = E∗.

Step 4. DenoteÊ by {{i1, j1}, . . . ,{im̂, jm̂}} and set ˆc0 = 0 andk = 1.

Step 5. Apply Algorithm 2 takingE
′
= E∗ ∪ {{ik, jk}}. If no line design is obtained, go to

Step 7. Denote the obtained set of lines byL1, . . . ,Ll̂ , and compute the value of ˜z for

L1, . . . ,Ll̂ .

Step 6. If z̃> z̃∗, set l̂∗ = l̂ , L∗
l = Ll ∀l ∈ {1, . . . , l̂}, z̃∗ = z̃, k∗ = k andĉ0 = ĉik jk; otherwise,

if z̃= z̃∗ andĉik jk < ĉ0, setl̂∗ = l̂ , L∗
l = Ll ∀l ∈ {1, . . . , l̂}, k∗ = k andĉ0 = ĉik jk.

Step 7. If k < m̂, setk = k+1 and go to Step 5. If ˆc0 = 0, go to Step 10.

Step 8. SetE∗=E∗∪{{ik∗, jk∗}}, d∗(ik∗)= d∗(ik∗)+1,d∗( jk∗)= d∗( jk∗)+1,m∗
ik∗ jk∗

= m∗
ik∗ jk∗

+1

andb∗ = b∗− ĉ0.

Step 9. Compute the value of ˆci j ∀{i, j}∈ Ê\{{ik∗, jk∗}} and setÊ = {{i, j}∈ Ê\{{ik∗, jk∗}} |

ĉi j ≤ b∗}. If Ê 6= /0, go to Step 4.
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Step 10. Compute the value of ˆci j ∀{i, j} ∈ E∗ \E∗
0 such that min{d∗(i),d∗( j)} ≥ 2m∗

i j , and set

Ê = {{i, j} ∈ E∗ \E∗
0 | min{d∗(i),d∗( j)} ≥ 2m∗

i j , ĉi j ≤ b∗}. If Ê = /0, STOP; otherwise,

go to Step 3.

REMARK 2. In Step 9 it suffices to compute the value ofĉi j if i = ik∗ or i = jk∗ or j = ik∗ or

j = jk∗ , since, otherwise, it remains the same as for the previous considered set E∗; furthermore,

min{d∗(i),d∗( j)} ≥ 2m∗
i j ∀{i, j} ∈ Ê \{{ik∗, jk∗}}.

Although it is not likely, the final line design obtained by Algorithm 3 could comprise some

lines which are contained in other lines, i.e., there could exist l , l ′ ∈ {1, . . . , l̂∗} such thatL∗
l ⊆L∗

l ′ . In

that case, eliminating lineL∗
l would not modify the value of ˜z∗ and would increase the value ofb∗;

nevertheless, if the capacity of the resulting rapid transit network were not enough to hold all the

demanded trips between the endpoints ofL∗
l , it could be preferable not to eliminate it.

Given that we have utilized a heuristic procedure, the final line design obtained by Algorithm 3

could be improved. Therefore, it should be analyzed in detail, searching for potential slight

modifications which could result in an increase on the maximum possible expected number of

weekly trips taken on the rapid transit network by the surveyees.

Example 5. Let us continue solving the instance given in Example 1 (see also Examples 2, 3

and 4).

Algorithm 3 proceeds as follows:

Step 1. E
′
= E, L1 = {{2,6},{6,5},{5,1},{1,2}}, L2 = {{3,2}}, L3 = {{5,4}}, z̃ = 16,

E∗ = {{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}}, l̂∗ = 3, L∗1 = {{2,6},{6,5},{5,1},{1,2}},

L∗
2 = {{3,2}}, L∗3 = {{5,4}}, z̃∗ = 16, d∗(1) = 2, d∗(2) = 3, d∗(3) = 1, d∗(4) = 1, d∗(5) = 3,

d∗(6) = 2, b∗ = 76.5

Step 2. ĉ12 = 102, ĉ15 = 75, ĉ26 = 97.5, ĉ56 = 70.5, Ê = {{1,5},{5,6}}, m∗
15 = 1, m∗

56 = 1

Step 3. E∗
0 = {{1,2},{1,5},{2,3},{2,6},{4,5},{5,6}}

Step 4. m̂= 2, {i1, j1} = {1,5}, {i2, j2} = {5,6}, ĉ0 = 0, k = 1

Step 5. E
′
= E ∪ {{1,5}}, L1 = {{3,2},{2,6},{6,5},{5,1}}, L2 = {{4,5},{5,1},{1,2}},

z̃= 20

Step 6. l̂∗ = 2, L∗1 = {{3,2},{2,6},{6,5},{5,1}}, L∗2 = {{4,5},{5,1},{1,2}}, z̃∗ = 20, k∗ = 1,

ĉ0 = 75

Step 7. k = 2

Step 5. E
′
= E∪ {{5,6}}, L1 = {{2,6},{6,5},{5,1},{1,2}}, L2 = {{3,2}}, L3 = {{6,5},

{5,4}}, z̃= 17

Step 8. E∗ = {{1,2},{1,5},{1,5},{2,3},{2,6},{4,5},{5,6}}, d∗(1) = 3, d∗(5) = 4,

m∗
15 = 2, b∗ = 1.5

Step 9. ĉ56 = 100.5, Ê = /0

Step 10. Ê = /0
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Thus, the rapid transit network to be constructed is defined by the graph G∗ = (V,E∗),

where E∗ = {{1,2},{1,5},{1,5},{2,3},{2,6},{4,5},{5,6}}, there are two noncircular lines

L∗
1 = {{3,2},{2,6},{6,5},{5,1}} and L∗2 = {{4,5},{5,1},{1,2}}, the construction cost of the

rapid transit network is 643.5 million euros, and the maximum possible expected number of weekly

trips taken on the rapid transit network by the surveyees is 20.

9 Computational experience

We have randomly generated three example casesC1,C2 andC3 by using the following procedure

(see Section 2):

The n key station locations have been randomly generated from a continuous uniform

distribution on a square of given side lengthρ (expressed in kilometers), in such a way that

whichever two of them are at least two kilometers apart (considering the Euclidean distance).

The pairs of key station locations that can potentially be linked are the ones with them shortest

Euclidean distances between them.

We have set the parameter values having a metro system in mind. ForC1 we have takenρ = 10,

n= 15,m= 35,b= 6000 and|Θ|= 1500, forC2 we have takenρ = 10,n= 20,m= 45,b= 8000

and |Θ| = 2000, and forC3 we have takenρ = 15, n = 25, m= 60, b = 13000 and|Θ| = 3000

(b is expressed in millions of euros). For all the example caseswe have set the values for the rest

of the parameters as follows:ai = 30 ∀i ∈V (expressed in millions of euros),di j is the Euclidean

distance betweeni and j ∀(i, j) ∈ W (expressed in kilometers),si j =
[

di j
]

− 1 ∀{i, j} ∈ E,

ci j = 45di j +30si j ∀{i, j} ∈ E (expressed in millions of euros),v = 55,t(i) = 3 ∀i ∈V, ta = 5,

ts = 0.6 andtr = 4.

Figures 6, 7 and 8 show the underlying graphs ofC1,C2 andC3, respectively.

1
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9 1011
12

1314
15

Figure 6: Graphic representation of the underlying graph ofC1
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Figure 7: Graphic representation of the underlying graph ofC2

The survey answers for eachθ ∈ Θ have been generated as follows:

Let βθ be the number of distinct trips that the surveyeeθ plans to take on the rapid transit

network, without taking into consideration their direction. We generate the value ofβθ in such a

way thatP(βθ = k) = 0.3 ∀k∈ {1,2}, P(βθ = 3) = 0.2 andP(βθ = k) = 0.1 ∀k∈ {4,5}.

Let us denoteW = {w1, . . . ,wn(n−1)
2

} andWθ = {w1(θ), . . . ,wβθ (θ)}. For eachk∈ {1, . . . ,βθ},

we randomly generate a valueϕk from a discrete uniform distribution on{1, . . . ,n(n−1)
2 }\

⋃k−1
k′=1{ϕk′}

and we setwk(θ) = wϕk.

Let ηθ be the number of weekly trips that the surveyeeθ plans to take on the rapid transit

network. We generate the value ofηθ in such a way thatP(ηθ = k) = 1
2(17−βθ ) ∀k∈ {βθ , . . . ,9}∪

{15, . . . ,21} andP(ηθ = k) = 0.1 ∀k∈ {10, . . . ,14}.

For eachk∈{1, . . . ,βθ−1}, we generate the value ofαwk(θ)(θ) from a discrete uniform distribution

on {1, . . . ,ηθ −∑k−1
k′=1 αwk′(θ )(θ)− βθ + k} and we setαwβθ (θ )(θ) = ηθ −∑βθ−1

k′=1 αwk′(θ )(θ) and

αw(θ) = 0 ∀w∈W \Wθ .

For eachw ∈ Wθ , we generate the value ofτw(θ) from a discrete uniform distribution on
{

⌈

t(ew)+ ta
2 + 60

v dewe′w + t(e′w)
⌉

, . . . ,

⌈

(

t(ew)+ ta
2 + 60

v dewe′w + t(e′w)
)

(

1+ 3
2

√

d
dewe′w

)⌉}

, where

d = max{dewe′w | w∈W}.

For all the example cases it has been obtained thatW′ = W.
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Figure 8: Graphic representation of the underlying graph ofC3

Let us consider an upper boundq∈ N for the values of{q(w)}w∈W′, and letµ =
max{g1

w|w∈W′}
q

(notice thatg1
w = ∑θ∈Θw

αw(θ) ∀w ∈ W′). In the computational results reported below each

example case will be solved considering several values forq.

For eachw∈W′, the procedure we utilize for computing the values ofq(w), {uk
w}k∈{2,...,q(w)}

and{gk
w}k∈{2,...,q(w)} is given by Algorithm 4; for simplicity of notation, withoutloss of generality

we assume thatΘw = {θ1, . . . ,θow} andτw(θ1) ≤ . . . ≤ τw(θow) (notice thatu1
w = τw(θ1)).

Algorithm 4.

Step 1. Seti = 1 andk = 1.

Step 2. If gk
w ≤ µ, setq(w) = k and STOP; otherwise, setj = i.

Step 3. Set j = max{ j ′ ∈ { j, . . . ,ow} | τw(θ j ′) = τw(θ j)}.

Step 4. If j = ow, setq(w) = k and STOP.

Step 5. If
j

∑
j ′=i

αw(θ j ′) ≥ µ, setk = k+1, uk
w = τw(θ j+1), gk

w = gk−1
w −

j

∑
j ′=i

αw(θ j ′), i = j +1 and

go to Step 2; otherwise, setj = j +1 and go to Step 3.
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Given that any preliminary route for travelling between twokey station locations will utilize

at mostn− 1 edges inE (see Section 3), we have takenMk
w = t ′(w) + t ′n−1 − uk

w ∀w ∈ W′,

∀k ∈ {1, . . . ,q(w)}, wheret ′n−1 is the sum of then− 1 greatest values in{t ′i j}{i, j}∈E (we have

considered some other settings for the values of{Mk
w}w∈W′,k∈{1,...,q(w)}, but the best general

computational results have been obtained with these ones).

In Steps 1 and 5 of Algorithm 3 we have taken as the set of linesL1, . . . ,Ll̂ the one with the

greatest value of ˜z obtained by repeatedly applying Algorithm 2 for two minutes, choosing the

nodesi0, j andk in its Steps 3, 4, 9 and 10 randomly and uniformly distributedover the set of all

of their possible values.

For all the example cases Algorithm 3 has duplicated some links, but it has not managed to

triplicate any of them.

The implementation platform has been Microsoft Visual C++ 2005, CPLEX v12.1 and

Pentium 4, 3.00 GHz, 1.00 Gb RAM.

In order to solve the model stated in Section 3, we have run theCPLEX mixed integer

optimizer by using the default rules except that the relative and absolute optimality tolerances

have been set to zero and, in the branching process, the priorities for the variables{xi j}{i, j}∈E

and{pk
w}w∈W′,k∈{1,...,q(w)} have been set to 1 and 2, respectively (we have considered many other

settings for the priority values, but the best general computational results have been obtained with

these ones).

Tables 7, 8 and 9 show, respectively, the computational results obtained forC1,C2 andC3 by

considering several values forq.

The columns headed “z∗ ”, “ Nodes”, “ M. time”, “ s” and “ z” give, respectively, the optimal

value of the objective function of the model stated in Section 3, the number of branch-and-cut

nodes evaluated for solving that model, the related CPU timeexpressed in seconds, and the values

of s andz for the optimal solution obtained (the CPU time required forcomputing the value ofz

by using Algorithm 1 has been less than 0.04 seconds for all the considered instances).

The columns headed “ ˜z∗0 ”, “ z̃∗ ”, “ Dup.”, “ b∗ ” and “T. time” give, respectively, the greatest

value of z̃ obtained in Step 1 of Algorithm 3 (i.e., without allowing pairs of station locations

linked by more than one line), the value of ˜z∗, the number of duplicated links in the best line

design obtained, the related value ofb∗ expressed in millions of euros, and the total required

CPU time expressed in seconds (including the time for solving the model stated in Section 3 and

for computing the value ofz).
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Table 7: Computational results forC1

q z∗ Nodes M. time s z z̃∗0 z̃∗ Dup. b∗ T. time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

4094

6810

10047

11947

12891

13604

14106

14456

14556

14725

14927

15071

15123

15183

15253

15407

15418

15418

15555

15603

8

110

289

254

310

352

188

710

794

1671

2919

1221

1986

698

1596

2525

1511

1511

2869

2717

13

11

11

9

10

12

8

50

43

183

250

81

173

64

141

200

127

127

195

198

41

41

40

41

41

40

40

42

42

41

40

41

41

42

42

41

41

41

42

42

16357

16302

16343

16299

16302

16284

16327

16407

16362

16357

16345

16347

16347

16395

16395

16347

16347

16347

16439

16439

14809

14891

15025

14738

14891

14946

14570

14692

14651

14809

14990

14873

14873

14780

14780

14873

14873

14873

15036

15036

14872

15037

15172

14738

15037

15042

14685

14692

14651

14872

15180

14873

14873

14780

14780

14873

14873

14873

15036

15036

1

1

1

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

27.4728

12.8641

21.2142

112.198

12.8641

27.9963

9.01539

62.2447

73.8903

27.4728

8.07191

113.373

113.373

69.6482

69.6482

113.373

113.373

113.373

5.47454

5.47454

373

2052

1211

129

2050

1692

1328

170

163

543

2290

201

293

184

261

320

247

247

315

318

For C1, the greatest value of ˜z∗ is 15180, and it is reached forq = 11. Links{3,4}, {4,9},

{5,11}, {6,7}, {9,15}, {12,13} and{12,14} are not constructed, and link{5,8} is duplicated.

There are 55 distinct station locations, and the best set of lines obtained isL∗
1 = {{8,3},{3,6},

{6,9},{9,13}}, L∗
2 = {{3,5},{5,6}}, L∗

3 = {{1,6},{6,8},{8,11},{11,14}},L∗
4 = {{5,8},{8,9},

{9,10}}, L∗
5 = {{7,9},{9,12},{12,11}}, L∗

6 = {{4,6},{6,12}} andL∗
7 = {{1,3},{3,2},{2,5},

{5,8},{8,12},{12,15},{15,13},{13,10},{10,7},{7,4},{4,1}}.

For C2, the greatest value of ˜z∗ is 19296, and it is reached forq ∈ {9,10,11,12,13,16}.

Links {1,2}, {1,3}, {9,11} and{16,20} are not constructed, and no link is duplicated. There are

75 distinct station locations, and the best set of lines obtained isL∗
1 = {{1,6},{6,10},{10,15},

{15,20}}, L∗
2 = {{3,5}, {5,6}, {6,7}, {7,11}, {11,16}, {16,19}, {19,20}, {20,18}, {18,17},

{17,13}, {13,10}, {10,8}, {8,3}}, L∗
3 = {{4,2}, {2,7}, {7,10}, {10,14}, {14,18}, {18,15},

{15,16},{16,12},{12,19}}, L∗
4 = {{10,11}}, L∗

5 = {{2,6},{6,8}}, L∗
6 = {{1,5},{5,8},{8,13},

{13,14},{14,15},{15,11},{11,12},{12,9},{9,4},{4,7},{7,1}} andL∗
7 = {{14,17}}.
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Table 8: Computational results forC2

q z∗ Nodes M. time s z z̃∗0 z̃∗ Dup. b∗ T. time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

4283

6929

11294

13846

15581

16713

17461

18009

18326

18530

18938

19178

19362

19447

19565

19681

19734

19734

19910

19910

715

1421

1464

552

1024

1272

684

574

1781

862

887

1336

813

1547

2279

5202

2156

2156

3900

3900

248

178

204

124

177

213

125

97

312

138

133

154

115

316

319

1458

593

591

1991

1985

55

54

55

55

55

55

55

54

55

55

55

55

55

55

55

55

55

55

55

55

20912

21090

21093

21187

21164

21180

21168

21135

21175

21175

21175

21175

21175

21172

21189

21175

21189

21189

21189

21189

19050

19093

18890

18835

18743

18889

18835

18841

19296

19296

19296

19296

19296

19253

19256

19296

19256

19256

19256

19256

19106

19228

18890

18835

18743

18889

18866

19074

19296

19296

19296

19296

19296

19253

19256

19296

19256

19256

19256

19256

1

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0.496186

8.73638

74.2944

54.7169

95.5954

22.5063

2.93431

11.5397

2.98694

2.98694

2.98694

2.98694

2.98694

12.398

33.036

2.98694

33.036

33.036

33.036

33.036

728

2458

324

244

297

334

605

3097

432

258

253

274

235

436

439

1578

713

711

2111

2105

For C3, the greatest value of ˜z∗ is 28870, and it is reached forq = 3. Links {3,9}, {6,8},

{9,12}, {10,19}, {12,13}, {13,21}, {16,17} and{21,24} are not constructed, and links{3,4},

{6,9}, {8,10}, {12,18}, {13,14} and {13,19} are duplicated. There are 111 distinct station

locations, and the best set of lines obtained isL∗
1={{2,8},{8,9}}, L∗

2={{19,25}}, L∗
3={{13,19},

{19,24}}, L∗
4 = {{15,16}, {16,20}, {20,15}}, L∗

5 = {{1,3}, {3,8}, {8,10}, {10,16}, {16,22},

{22,24},{24,25},{25,21},{21,14},{14,9},{9,6},{6,1}}, L∗
6 = {{2,4},{4,3},{3,6},{6,12},

{12,18}, {18,25}, {25,23}, {23,21}, {21,19}, {19,16}, {16,11}, {11,5}, {5,2}}, L∗
7 = {{3,4},

{4,8},{8,13},{13,14},{14,18},{18,23}},L∗
8 = {{8,10},{10,5},{5,7},{7,11}}, L∗

9 = {{6,9},

{9,13}, {13,19}, {19,22}} andL∗
10 = {{10,11}, {11,15}, {15,17}, {17,20}, {20,22}, {22,21},

{21,18},{18,12},{12,14},{14,13},{13,10}}.
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Table 9: Computational results forC3

q z∗ Nodes M. time s z z̃∗0 z̃∗ Dup. b∗ T. time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

5370

9108

15669

19872

22507

24399

25464

26260

26790

27332

27618

28172

28575

28692

28919

29106

29308

29308

29458

29458

941

1547

3979

3966

2549

1551

1412

1706

1071

2507

757

1222

1450

1836

10320

1448

846

846

1610

1610

605

651

1090

700

529

552

465

861

529

613

492

422

848

469

5048

456

301

298

461

461

96

97

86

96

97

96

96

97

97

95

95

95

97

95

95

95

97

97

96

96

31514

31407

31330

31457

31542

31480

31527

31550

31490

31495

31519

31488

31548

31534

31550

31550

31545

31545

31545

31545

28586

28272

28266

28250

28291

28507

28427

28273

28621

28585

28581

28286

28665

28605

28617

28617

28562

28562

28783

28783

28715

28272

28870

28627

28291

28507

28427

28273

28621

28706

28717

28674

28665

28825

28770

28770

28562

28562

28783

28783

1

0

6

1

0

0

0

0

0

1

1

1

0

1

1

1

0

0

0

0

28.2064

105.962

53.718

8.48011

31.001

127.765

136.933

4.28986

33.6817

64.9178

110.181

92.4354

78.1124

12.9417

91.2356

91.2356

54.1833

54.1833

116.128

116.128

2645

771

36850

2620

650

792

705

981

649

5773

5652

5942

968

4069

9608

5016

421

418

581

582

The shape of the part of lineL∗
6 joining locations 18 and 21 is not usual in real-life rapid transit

networks. In order to avoid it, we can consider the followingmodifications toL∗
1, . . . ,L

∗
10 (notice

that these modifications do not affect the construction costof the rapid transit network):

• Let L j = L∗
j ∀ j ∈ {1,2,3,4,7,8,9,10}, L5 = {{1,3},{3,8},{8,10},{10,16},{16,22},

{22,24}, {24,25}, {25,23}, {23,21}, {21,14}, {14,9}, {9,6}, {6,1}} andL6 = {{2,4},

{4,3},{3,6},{6,12},{12,18},{18,25},{25,21},{21,19},{19,16},{16,11},{11,5},{5,2}}.

Then the value of ˜z corresponding toL1, . . . ,L10 is 28677, which is less than 28870, hence

this set of lines is worse thanL∗
1, . . . ,L

∗
10.

• Let L j = L∗
j ∀ j ∈ {1,2,3,4,5,8,9,10}, L6 = {{2,4}, {4,3}, {3,6}, {6,12}, {12,18},

{18,23}, {23,21}, {21,19}, {19,16}, {16,11}, {11,5}, {5,2}} andL7 = {{3,4}, {4,8},

{8, 13}, {13, 14}, {14, 18}, {18, 25}, {25, 23}}. Then the value of ˜z corresponding to

L1, . . . ,L10 is 28830, which is less than 28870, hence this set of lines is worse thanL∗
1, . . . ,L

∗
10.
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• Let L j = L∗
j ∀ j ∈ {1,3,4,5,8,9,10}, L2 = {{19,25}, {25,23}}, L6 = {{2,4}, {4,3},

{3,6},{6,12},{12,18},{18,23},{23,21},{21,19},{19,16},{16,11},{11,5},{5,2}} and

L7 = {{3,4},{4,8},{8,13},{13,14},{14,18},{18,25}}. Then the value of ˜z corresponding

to L1, . . . ,L10 is 28830, which is less than 28870, hence this set of lines is worse than

L∗
1, . . . ,L

∗
10.

• Let L j = L∗
j ∀ j ∈ {1,2,3,4,7,8,9}, L5 = {{1,3}, {3,8}, {8,10}, {10,16}, {16,22},

{22, 24}, {24, 25}, {25, 23}, {23, 21}, {21, 14}, {14, 9}, {9, 6}, {6, 1}}, L6 = {{2, 4},

{4,3}, {3,6}, {6,12}, {12,18}, {18,21}, {21,19}, {19,16}, {16,11}, {11,5}, {5,2}} and

L10= {{10,11},{11,15},{15,17},{17,20},{20,22},{22,21},{21,25},{25,18},{18,12},

{12,14},{14,13},{13,10}}. Then the value of ˜z corresponding toL1, . . . ,L10 is 28553,

which is less than 28870, hence this set of lines is worse thanL∗
1, . . . ,L

∗
10.

• Let L j = L∗
j ∀ j ∈ {1,2,3,4,5,8,9}, L6 = {{2,4},{4,3},{3,6},{6,12},{12,18},{18,21},

{21,19},{19,16},{16,11},{11,5},{5,2}},L7 = {{3,4},{4,8},{8,13},{13,14},{14,18},

{18,25}, {25,23}} and L10 = {{10,11}, {11,15}, {15,17}, {17,20}, {20,22}, {22,21},

{21,23},{23,18},{18,12},{12,14},{14,13},{13,10}}. Then the value of ˜zcorresponding

to L1, . . . ,L10 is 28667, which is less than 28870, hence this set of lines is worse than

L∗
1, . . . ,L

∗
10.

• Let L j = L∗
j ∀ j ∈ {1,3,4,5,8,9}, L2 = {{19,25},{25,23}}, L6 = {{2,4},{4,3},{3,6},

{6,12},{12,18},{18,21},{21,19},{19,16},{16,11},{11,5},{5,2}},L7 = {{3,4},{4,8},

{8,13}, {13,14}, {14,18}, {18,25}} and L10 = {{10,11}, {11,15}, {15,17}, {17,20},

{20,22},{22,21},{21,23},{23,18},{18,12},{12,14},{14,13},{13,10}}. Then the value

of z̃ corresponding toL1, . . . ,L10 is 28684, which is less than 28870, hence this set of lines

is worse thanL∗
1, . . . ,L

∗
10.

If we had considered the all-or-nothing model for the potential users’ behavior from

Marı́n (2007) and we had assumed that whichever two station locations are linked by one line

at most, as proposed in Escudero and Muñoz (2009b), then themaximum possible expected

number of weekly trips taken on the rapid transit network by the surveyees would have been given

by the value of ˜z∗0 for q = 1. Consequently, the line designs forC1, C2 andC3 obtained by the

approach presented in this paper have produced, respectively, an increase of 371, 246 and 284 trips

over the line designs that would have been obtained by means of the procedure proposed in

Escudero and Muñoz (2009b) (notice that these increases refer to the number of weekly trips taken

on the rapid transit network by the surveyees; therefore, the increases corresponding to the number

of annual trips taken on the rapid transit network by all the users are expected to be much higher).
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It is worth noting that, despite the tested instances being of considerably larger size than

the ones tested in other works in the literature (see e.g. Guan et al. (2006), Marı́n (2007) and

Laporte et al. (2007, 2010a, 2010b)), we have managed to dealwith all of them within a reasonable

computational effort.

Obviously, the ideal situation would be to be able to know a priori the value ofq that will give

rise to the best rapid transit network, but this is not possible. Thus, we propose to impose a limit for

the overall CPU time for designing the rapid transit network, and apply successively our approach

considering different values forq until reaching this time limit. If the values ofzands for a certain

value ofq are the same as for some other value ofq previously considered, then it is very likely to

obtain the same line design as that of the previous value ofq; consequently, in this case we propose

not to apply Algorithm 3, but to go on to another value ofq. The amount of time for repeatedly

applying Algorithm 2 in Steps 1 and 5 of Algorithm 3 will be setdepending on the instance size.

10 Conclusions and future research

We have presented a two-stage approach for designing rapid transit networks which is based on

another approach that we described elsewhere.

Whereas most of the procedures that can be found in the literature compute their objective

function values by means of a given static O-D matrix, we haveproposed to perform a survey

amongst the potential users of the rapid transit network. The survey results make it possible to

consider each potential user’s behavior individually, which allows to compute our objective

function value (i.e., the expected number of trips through the rapid transit network) in a more

accurate way.

The model to be solved in the first stage for selecting the stations and links to be constructed

without exceeding the available budget does not take into account the transfer times for the users,

since no line design is available at this stage. These transfer times are considered in the second

stage, where a greedy heuristic procedure is applied for generating a set of lines for the rapid transit

network, allowing pairs of station locations linked by morethan one line. This procedure could

also be used for redesigning the lines of existing rapid transit networks.

The computational results have shown that, in a relatively small time, our approach can handle

instances of larger size than other procedures taken from the literature, as well as obtain better line

designs than the approach that we described elsewhere.

In order to deal with large-size instances, we are working onpreprocessing techniques for

solving the model proposed for the first stage of the approach. We are also working on the problem

of determining the headways for the lines.
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