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Abstract. We prove that there is a natural injective correspondence between
the maximal ideals of the ring of analytic functions on a real analytic set X and
those of its subring of bounded analytic functions. By describing the maximal
ideals in terms of ultrafilters we see that this correspondence is surjective if
and only if X is compact. This approach is also useful to study the orderings
of the field of meromorphic functions on X.
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Introduction

Given a global analytic set X of RN we consider the ring of analytic functions,
O(X), and the ring of bounded analytic functions, Ob(X). In this note we investigate
the relations between the maximal ideals of these two rings describing them by
ultrafilters.

In [AB90] it is shown that in the case of a global analytic set of dimension 1 there
is a natural injective correspondence between Specmax O(X) and Specmax Ob(X)
and it is asked whether or not this correspondence is surjective. In section 1 we
see that this natural correspondence can be extended to arbitrary dimension, cf.
proposition 1.2, and that it is surjective if and only if X is compact, cf. corollary
1.4.

In section 2 we attach to each ordering of the field of meromorphic functions on
X a maximal ideal of Ob(X) and then an ultrafilter. This attachment has proved
to be very useful, cf. [AB90], [ABR96] chapter VIII, [Cas91], [Cas94a], [DA01] and
[Jaw91]. However, to the best of our knowledge, it was not known whether or not
there are orderings with attached ultrafilter of dimension greater than zero. We
prove that, in fact, such orderings exist at least if the part of maximal dimension of
X is unbounded, cf. theorem 2.1.

∗Partially supported by DGES PB98-0756-C02-01 and EC contract HPRN-CT-2001-00271.
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1 Ultrafilters and maximal ideals

Let X be a global analytic subset of RN , that is, X is the zero set of a finite
number of analytic functions on RN . The ideal of analytic functions vanishing on X
is I(X) := {f ∈ O(RN) | f = 0 on X } and generates the coherent sheaf of ideals IX

whose stalk at x is IX,x = I(X)O(RN
x ). The analytic functions on X are the global

sections of the coherent sheaf OX :=
ORN

IX

and they form the ring O(X) =
O(RN)

I(X)
.

For describing maximal ideals of O(X) in terms of ultrafilters we will follow
[GJ60]. The lattice on X whose elements are zero sets of functions of O(X) will
be denoted by ∆. Given an ideal I ⊂ O(X) the family Z(I) := {Z(f) | f ∈ I} is
a ∆-filter called the filter of zeros of I. Conversely, given a ∆-filter F its ideal is
defined as I(F) := {f ∈ O(X) |Z(f) ∈ F} and is a proper ideal of O(X).

It can be checked that I(Z(I)) ⊃ I and Z(I(F)) = F and both maps are order
preserving for the inclusion relation. This implies that the map Z : Specmax O(X) →
∆̃, where ∆̃ is the set of all ∆-ultrafilters, is a bijection whose inverse is I.

The ∆-ultrafilter F and its corresponding maximal ideal I(F) are called free
if

⋂
V ∈F V = ∅ and fixed otherwise. Note that a fixed ultrafilter is the principal

∆-ultrafilter attached to the unique limit point of F . An important result is the
following, cf. [Cas94b], Chapter 2.

Theorem 1.1. Let F be a ∆-ultrafilter. Then F contains some discrete subset
D ⊂ X.

Proof : Let Y be a non-discrete element of F and let Y =
⋃

Yi be its decomposition
into irreducible components. We will see that there is an element Y ′ ∈ F such that
dim Y ′ < dim Y , whence the result follows.

We pick one point xi ∈ Yi \
⋃

j 6=i Yi in each component and put D :=
⋃
{xi}. Let

Z(f) ∈ F . If dimZ(f) ∩ Y < dim Y then we take Y ′ = Z(f) ∩ Y ∈ F .

Suppose now that dimZ(f)∩ Y = dim Y for all Z(f) ∈ F . Then for every such
f at least one component Yk of Y verifies dim Yk = dimZ(f) ∩ Yk, which implies
Yk ⊂ Z(f) since Yk is irreducible. In particular, xk ∈ Z(f). Thus Z(f)∩D 6= ∅ for
all Z(f) ∈ F . But F is an ultrafilter so D ∈ F . 2

We will relate the maximal ideals of the subring Ob(X) of bounded analytic
functions on X to another kind of ultrafilters. To precise, the global semianalytic
subsets of X are those which can be written as

p⋃
i=1

{x ∈ X|fi(x) = 0, gi1(x) > 0, . . . , giji
(x) > 0}

where fi, gij ∈ O(X). We will denote by C the family of global semianalytic subsets
of X which are closed in the usual topology. This family is closed under finite unions
and intersections so it makes sense to consider filters of subsets of C.
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For any maximal ideal m ⊂ Ob(X) the family

Um := {Y ∈ C |Y ∩ f−1([−δ, δ]) 6= ∅, ∀f ∈ m and ∀δ > 0}

is a C-ultrafilter, cf. [Cas94a]. Conversely, given a C-ultrafilter U the subset of
Ob(X) defined as

MU := {f ∈ Ob(X) | f−1([−δ, δ]) ∈ U , ∀δ > 0}

is a maximal ideal of Ob(X): let f ∈ Ob(X) and denote by f(U) the collection
{f(A)}A∈U . Then f(U) is a filter basis of R with a unique limit point which will
be denoted as λU(f). In fact, λU : Ob(X) → R defines a surjective homomorphism
whose kernel is precisely MU . Thereby, MU is a maximal ideal of Ob(X).

Given m ∈ Specmax Ob(X) we have m = MUm , since f ∈ m implies that
f−1([−δ, δ]) ∩ Y 6= ∅, ∀δ > 0, ∀Y ∈ Um. In particular, f−1([−δ, δ]) ∈ Um, ∀δ > 0,
so f ∈ MUm . In a similar way it can be proved that U = UMU . Therefore these two
correspondences are inverses each other so they define a bijection between C̃, the
set of all C-ultrafilters of X, and Specmax Ob(X).

There is a natural correspondence between ∆ and C-ultrafilters. Namely, if F
is a ∆-ultrafilter we define F∗ := {S ∈ C |S ⊃ Z for some Z ∈ F}. As can be
checked F∗ is a C-ultrafilter: let T ∈ C be such that T ∩ S 6= ∅ for all S ∈ F∗. In
particular, if D ∈ F is a discrete set, which exists by theorem 1.1, then T ∩ D is
also a discrete set and for all S ∈ F we have (T ∩ D) ∩ S = T ∩ (D ∩ S) 6= ∅ so
that T ∩D ∈ F and then T ∈ F∗. We will consider now the relation between the
maximal ideals of the rings O(X) and Ob(X).

Proposition 1.2. a) Let m be a maximal ideal of O(X), then there is a unique
maximal ideal m∗ of Ob(X) such that m ∩ Ob(X) ⊂ m∗. Moreover, the equality
m ∩ Ob(X) = m∗ holds if and only if m is fixed.

b) The correspondence Specmax O(X) → Specmax Ob(X) : m → m∗ is injec-
tive.

Proof : a) The ∆-ultrafilter Z(m) can be extended to a discrete C-ultrafilter which
we will call U . We put m∗ = MU . It is clear that m ∩ Ob(X) ⊂ m∗ since f ∈
m ∩ Ob(X) implies Z(f) ∈ Z(m) and then Z(f) ∈ U . Thus f−1([−δ, δ]) ∈ U ,
∀δ > 0, so f ∈ m∗.

To prove uniqueness suppose there is m′ ∈ Specmax Ob(X) such that m ∩
Ob(X) ⊂ m′ and m∗ 6= m′. Then Um′ 6= Um∗ , that is, there are C1 ∈ Um′ and
C2 ∈ Um∗ such that C1 ∩ C2 = ∅. By theorem 1.1 we can suppose C2 is a discrete
set.

Let f ∈ O(X) be an analytic function whose zero set is Z(f) = C2. We can
take such a function bounded by 1 and non-negative (if needded, we can replace
f by f 2/(1 + f 2)) so that f ∈ m ∩ Ob(X). Now, by Tietze’s theorem there is a
non-negative continuous function G on X whose restriction to C1 coincides with
1/f (which is continuous on C1). Take an analytic approximation p ∈ O(X) of G
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such that G(x) < p(x) < G(x) + 1, ∀x ∈ X, cf. [Hir76], and put h =
fp

1 + fp
. Then

h ∈ m∩Ob(X) ⊂ m′ and C1 ∩h−1([−1/3, 1/3]) = ∅, as a direct computation shows.
But this implies C1 /∈ Um′ , a contradiction.

If m is fixed then it is the ideal of some point p ∈ X. But f−1([−δ, δ]) ∈ U ,
∀δ > 0, in this case implies f(p) = 0 so m ∩ Ob(X) = m∗.

If m is not fixed we consider f =
1

1+ ‖ x ‖2
∈ Ob(X). It is clear that f /∈ m

since it is a unit in O(X). But f ∈ m∗ as can be easily checked.

b) If m1 6= m2 are maximal ideals of O(X) then there are discrete sets D1 ∈
Z(m1) and D2 ∈ Z(m2) such that D1 ∩D2 = ∅. Then D1 ∈ Z(m1)

∗, D2 ∈ Z(m2)
∗

and so the C-ultrafilters U1 := Z(m1)
∗ and U2 := Z(m2)

∗ are not equal and then
neither the ideals m∗

1 = MU1 and m∗
2 = MU2 . 2

By what have been seen above we have the following commutative square

∆̃ −→ C̃
Z
xyI U

xyM

Specmax O(X) −→ Specmax Ob(X)

The map at the top is F → F∗ and at the bottom is m → m∗, cf. proposition 1.2.
These maps are clearly injective. The ideals of Ob(X) which are the image of some
maximal ideal of O(X) under this map are called discrete since their corresponding
C-ultrafilters contain a discrete set. The question asked in [AB90] is whether or not
these horizontal maps are surjective. We will see that the answer is positive if and
only if X is compact.

The dimension of an ultrafilter is defined as the minimum of the dimensions
of the sets in that ultrafilter. Thus, theorem 1.1 says that every ∆-ultrafilter has
dimension zero. Therefore the image of the mapping F → F∗ are the C-ultrafilters
of dimension 0. What we are going to see now is that in case X is non-compact
there are C-ultrafilters of dimension strictly greater than zero.

Without loss of generality we will suppose X to be irreducible of dimension
n ≥ 1. We decompose X as X = X(1) ∪ . . . ∪X(n) where X(j) is the closure of the
set {x ∈ X | dim Xx = j}. At least one of these components, say X(k), is unbounded.
We take a non-compact discrete set

D ⊂ Reg X(k) := {x ∈ X(k) |O(Xx) is a regular ring}
and for every p ∈ D we choose a regular system of parameters x1,p, . . . , xN,p ∈ O(RN

p )
such that Xp = {xk+1,p = . . . = xN,p = 0} and the restrictions of x1,p, . . . , xk,p to
Xp form a regular system of parameters of O(Xp). By Cartan’s Theorem B there
are global analytic functions H1, . . . , Hk ∈ O(RN) such that for all p ∈ D we have
Hi,p ≡ xi,p mod m2

p, where mp is the maximal ideal of O(RN
p ). But then denoting

by primes the restriction to Xp we also have H ′
i,p ≡ x′i,p mod m′2

p. For the sake of
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convenience, in the following the restriction of Hi to X will be denoted again by Hi

instead of H ′
i.

Now, for every p ∈ D we take a neighborhood U(p, εp) of arbitrarily small radius
εp and a global analytic function hε ∈ O(X) such that⋃

p∈D

U(p, εp/2) ⊂ {hε > 0} and X \
⋃
p∈D

U(p, εp) ⊂ {hε < 0}.

Such a hε can be constructed by approximating a C∞(X) function with the same
property, cf. [Hir76], Chapter 2.

Thus Uε := {hε > 0} and U ′
ε := {hε ≥ 0} are open and closed, respectively, small

neighborhoods of the discrete set D. By taking small enough εp’s we can suppose
that the germ of {Hi+1 = . . . = Hk = 0} is a regular analytic set germ of dimension
i at every x ∈ U ′

ε.

We define Yi as the Zariski closure of {Hi+1 = . . . = Hk = 0} ∩ Uε. In this way,
Yi is a global analytic set of dimension i whose germ at every x ∈ Uε coincide with
the germ of {Hi+1 = . . . = Hk = 0}. In particular, RegYi is not bounded.

Given any closed global semianalytic set E ⊂ Yi of dimension ≤ i − 1 we take
an open global semianalytic set UE ⊂ Yi containing an open neighborhood (in Yi)
of E ∩ Uε such that

voli(UE ∩ Up)

voli(Yi ∩ Up)

‖p‖→∞−→ 0 (∗)

where Up := U(p, εp)∩Uε (so that Uε =
⋃

p∈D Up) and voli denotes the i-dimensional
volume, see [KR89]. This can be done as follows. Let D =

⋃∞
m=1 pm and let

H ∈ O(X) be a positive equation of the Zariski closure of E. As voli({H < δ} ∩
Upm ∩ Yi)

δ→0−→ 0 we can choose δm such that

voli({H < δm} ∩ Upm ∩ Yi)

voli(Upm ∩ Yi)
<

1

m
.

Now, take a global non-negative analytic function f ∈ O(X) such that f < 1
2
δm on

Upm . Then UE := {H < f} does the job.

By (*), the family of closed sets AE := (U ′
ε \ UE) ∩ Yi is a filter basis, so they

generate a C-filter Fi. We take one ultrafilter refining Fi and call it Ui. It is easy to
see that the dimension of this ultrafilter is i. First of all, by definition of the C-filter
Fi we have Yi ∈ Fi and so also Yi ∈ Ui. Suppose now there is some E ⊂ Yi such
that dim E ≤ i− 1 and E ∈ Ui. Then AE ∩E = ∅, which would imply AE /∈ Ui, but
this is a contradiction. Hence we have proved the following

Theorem 1.3. Let X ⊂ RN be a non-compact global analytic set of dimension
n ≥ 1. Then there are C-ultrafilters which are not discrete.

More precisely, if X has a decomposition X = X(1) ∪ . . . ∪ X(n), where X(j) is
the closure of the set {x ∈ X | dim Xx = j}, and X(k) is unbounded then there are
C-ultrafilters of dimensions 0, 1, . . . , k.
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And as a consequence we have the

Corollary 1.4. If X ⊂ RN is a non-compact global analytic set of dimension n ≥ 1
then the correspondences

∆̃ −→ C̃
F −→ F∗

and

Specmax O(X) −→ Specmax Ob(X)
m −→ m∗

are not surjectives.

2 Orderings and ultrafilters

Let X ⊂ RN be an irreducible global analytic set of dimension n. The field of
fractions of the domain O(X) is the field of meromorphic functions on X and is
denoted as M(X). In this section we will be interested in orderings of this field.
For background on the real spectrum of a field we refer to [ABR96] and [BCR98].

Given an ordering β of M(X) the convex hull of R in M(X) is the valuation
ring, cf. [Jaw91] and [Cas94a],

Wβ = {f ∈M(X) | f 2 <β r2 for some r ∈ R}
whose maximal ideal is the set of all infinitely small elements of M(X)

nβ = {f ∈M(X) | f 2 <β r for all r ∈ R}.

All bounded analytic functions belong to Wβ and the center of Wβ in Ob(X), defined
as mβ = nβ ∩ Ob(X), is a maximal ideal of Ob(X). We will attach to each ordering
of β of M(X) the C-ultrafilter Uβ := Umβ

, see section 1. One open question is to
determine wheter or not there are orderings attached to ultrafilters of dimension
greater than zero. The following theorem assures the existence of such orderings if
the part of maximal dimension is unbounded.

Theorem 2.1. Let X ⊂ RN be an irreducible global analytic set of dimension n
whose part of maximal dimension X(n) is not compact. Then for every k = 0, . . . , n
there are orderings βk of M(X) with attached ultrafilters Uβk

of dimension k.

Proof : The idea of the proof is quite similar to that of theorem 1.3. We will closely
follow the notation in that proof.

We take a non-compact discrete set D ⊂ Reg X(n) and for every p ∈ D we choose
a regular system of parameters x1,p, . . . , xn,p ∈ O(Xp) and global analytic functions
H1, . . . , Hn ∈ O(X) such that for all p ∈ D we have Hi,p ≡ xi,p mod m2

p, where mp

is the maximal ideal of O(Xp).
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The set Uε := {hε > 0} is a neighborhood of the discrete set D small enough to
suppose that the germ of {Hi+1 = . . . = Hn = 0} is a regular analytic set germ of
dimension i at every x ∈ Uε.

We define Yi as the Zariski closure of {Hi+1 = . . . = Hn = 0} ∩ Uε. In this way,
Yi is a global analytic set of dimension i whose germ at every x ∈ Uε coincide with
the germ of {Hi+1 = . . . = Hn = 0}.

For every Yk we will define an ordering αk ∈ Specr O(Yk). Given any closed global
semianalytic set E ⊂ Yk of dimension ≤ k − 1 we take a closed global semianalytic
set VE ⊂ Yk containing an open neighborhood (in Yk) of E ∩ Uε such that

volk(VE ∩ Up)

volk(Yk ∩ Up)

‖p‖→∞−→ 0.

The family of open sets AE := (Uε \ VE) ∩ Yk is a filter basis that generates a
filter of open global semianalytic sets Fk. We take one ultrafilter (of open global
semianalytic sets) refining Fk and call it νk. This ultrafilter νk defines in the usual
way an ordering αk of O(Yk), namely, given f ∈ O(Yk) we say that f is positive in
the ordering αk if and only if {f > 0} ∈ νk.

The ultrafilter νk can be lifted to an ultrafilter ν ′k (of open subsets of X) as

follows: an open subset A ⊂ X belongs to ν ′k iff A ∩ {Hk+1 > 0, . . . , Hn > 0} ∩ Yk

contains an element of νk. The corresponding ordering of O(X) will be denoted as
βk. It is easy to check that βk is a total ordering of O(X) so it can be extended to
an ordering of M(X).

Now, we will see that the dimension of the C-ultrafilter Uβk
attached to βk is k.

First of all, we have Yk ∈ Uβk
. Otherwise there is a closed semianalytic set Ck ∈ Uβk

such that Ck ∩ Yk = ∅. Then there will be h ∈ O(X) such that Ck ⊂ {h > 0} and
Yk ⊂ {h < 0} and so, by [Cas94a] lemma 2.5, h >βk

0, but this contradicts the
definition of βk.

Suppose there is some E ⊂ Yk such that dim E ≤ k−1 and E ∈ Uβk
. Then we can

find f ∈ O(X) such that E ⊂ {f > 0} and {f < 0}∩Yk ∈ νk, but this is a contradic-
tion since the first assertion implies that f >βk

0 while the second means f <βk
0.
2

In the case of a compact global analytic set X we have that all orderings are
centered in a point, that is, the C-ultrafilters corresponding to orderings of M(X)
are fixed. But if X is non-compact and X(n) is bounded we do not know in general.
We conjecture that if X(n) is bounded then there are only orderings whose attached
ultrafilters are fixed and, in particular, they have dimension 0, as happens in the
following example.

Example 2.2 Let X ⊂ R3 be the analytic surface of equation x2(1−z2) = x4 +y4.
Its part of maximal dimension is bounded although X is not since it contains the
whole z-axis, see figure 1.
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With regard to maximal ideals of Ob(X), as only X(1) is unbounded they corre-
spond to C-ultrafilters of dimension 0 and 1 but not of dimension 2.

In this case is possible to prove that all orderings of M(X) are fixed and, in
particular, their attached C-ultrafilters have dimension 0.

Figure 1: X : x2(1− z2) = x4 + y4

Suppose β ∈ SpecrM(X) is not fixed. Then the corresponding C-ultrafilter, Uβ

has no compact subsets. Thus V := X ∩ ({z > 2} ∪ {z < −2}) must intersect any

subset of Uβ and then V ∈ Uβ. We define f :=
z2 − 1

z2 + 1
∈ Ob(X) so that f > 0 on V .

This implies that f is positive in the ordering β, cf. [Cas94a] lemma 2.5 or [ABR96]

proposition VIII.4.7. But this is a contradiction since −f =
x4 + y4

x2(z2 + 1)
, that is, −f

is a sum of squares of meromorphic functions and so −f is positive in every ordering
of M(X).

In fact, it is possible to prove the conjecture if X ⊂ RN is algebraic: suppose
X is unbounded of dimension n but X(n) is bounded. For some positive constant
A the restriction of the polynomial f := A −

∑N
1 x2

i to X is positive on X(n).
Then by the positive solution of Hilbert’s 17th problem in the algebraic case, cf.
[BCR98], f is a sum of squares of rational functions on X and, in particular, is a
sum of squares in M(X). On the other hand, if β ∈ SpecrM(X) is not fixed then
V := X ∩{f ≤ −1} ∈ Uβ and f is strictly negative on V . Therefore, by cf. [Cas94a]
lemma 2.5, f is negative in β, a contradiction since f is a sum of squares.
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