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Abstract

We investigate the nonequilibrium transport properties of a coupled quan-
tum dot system connected in parallel to two leads, including electron-vibron
interaction. It is known that in the absence of interaction the system supports
a bound state in the continuum. This state is revealed as a Fano antires-
onance in the transmission when the energy levels of the dots are detuned.
Using the Keldysh nonequilibrium Green’s function formalism, we find that
the occurrence of the Fano antiresonance arises even if the electron-vibration
interaction is taken into account. We also examine the impact of the cou-
pling to the leads in the linear response of the system. We conclude that
the existence of bound states in the continuum in coupled quantum dot sys-
tems is a robust phenomenom, opening the possibility of its observation in
experiments.
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1. Introduction

Double quantum dot (DQD) systems are artificial ultra small structures
that share electronic properties with diatomic molecules [1, 2]. Due to the
advances in fabrication techniques, many aspects of the physics involved at
the quantum level of few-electron systems can by now be tested using DQDs.
For this reason, DQDs are emerging as versatile systems to explore a variety
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of fundamental physics phenomena, such as Kondo states [3, 4, 5, 6], quantum
interference [7, 8], Coulomb blockade [9, 10, 11], Fano effect [12, 13, 14] and
correlation-induced resonances [15, 16].

The similarity of artificial nanostructures, like semiconductor superlat-
tices and quantum dots, and atomic systems paved the way to experimen-
tally validate several theoretical predictions formulated much earlier than the
advent of nanotechnology. A remarkable example is the occurrence of bound
states in the continuum (BICs). Shortly after the formulation of quantum
mechanics, in 1929 von Neumann and Wigner constructed a spatially oscil-
lating attractive potential that supported a bound state (square integrable)
above the potential barrier [17]. These exotic states were regarded as a mere
theoretical curiosity until 1992, when Capasso et al. measured the absorption
spectrum at low temperature of a GaInAs quantum well with Bragg reflector
barriers produced by a AlInAs/GaInAs superlattice [18]. A well defined line
at 360 meV in the spectrum was attributed to electron excitations from the
ground state of the quantum well to a localized level well above the AlI-
nAs band edge. Nevertheless, Plotnik et al. claimed that this state is not a
true BIC but a defect mode residing in the gap [19]. More recently, Albo et
al. characterized III–V–N (diluted nitrides) quantum wells by intersubband
photocurrent spectroscopy. They stated the these samples exhibit signatures
of BICs resulting from the hybridization of nitrogen-related defect states and
the extended states of the conduction band [20].

Aiming to introduce a physical realizable system to reveal the existence
of BICs in transport experiments, we have recently studied a parallel DQD
system [21]. The coupling between the BIC and the continuum energy states
was controlled by detuning the energy levels of each quantum dot using
gate voltages. We showed that the transmission probability displays a Fano
antiresonance profile [22] at the energy of the BIC. More important, when the
gate voltages are modulated harmonically in time, the energy of the resonance
can be continuously shifted by varying the driving frequency. We predicted
that the conductance at low temperature presents a minimum when the BIC
crosses the Fermi level by varying the driving frequency. The notion of
BICs sustained by systems subjected to time periodic fields has been further
investigated in Refs. [23] and [24]. However, it is still an open question to
what extend interactions would mask the effect in a real experiment. Žtiko
et al. have shown that the so-called dark states in parallel DQD systems,
corresponding to BICs discussed in Ref. [21], are robust against electron-
electron interactions, at least in the Kondo regime [25].
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In this work we study the impact of electron-vibron interaction on trans-
port properties when the system supports a BIC, using the Keldysh nonequi-
librium Green’s function formalism [26]. Specifically, we consider a DQD con-
nected in parallel to two leads and assume that the electron interact with a
vibrational degree of freedom localized at each dot. We examine the spectral
function, the electric current through the DQD system and the differential
conductance. We study different configurations of the energy levels of the
dots as well as the role of the contacts between the dots and the leads. When
the symmetry of the system is broken (different energy levels of the dots or
asymmetric couplings to the leads), the spectral density and the differential
conductance reveal the occurrence of a BIC in the energy spectrum. This
result is not substantially affected by the electron-vibron coupling and we
conclude that transport experiments in DQD systems could uncover these
exotic states.

2. Model

We consider two quantum dots forming a DQD system, connected to left
and right leads by tunnel couplings, as shown schematically in figure 1. The
bias voltage between the leads, V , is given by eV = µL − µR, where µα is
the chemical potential of the lead α = L,R. Only one energy level in each
dot is assumed relevant and electron-electron interaction is neglected. The
energy of the local level can be tuned by gate voltages, Vg1 and Vg2, depicted
in figure 1. In addition, the dots are far apart and direct tunneling between
the dots is suppressed. The electron interacts with a local vibration mode
at each dot and, for simplicity, we assume the same frequency ω0 for both
modes.

The Hamiltonian describing the whole system can be written as H =
H0 +He−leads +He−vib. Here H0 describes the dynamics of the noninteracting
system (we set ~ = 1 hereafter)

H0 =
∑
i

(
εid
†
idi + ω0a

†
iai

)
+
∑
k,α

εα,kc
†
α,kcα,k , (1)

where the index i = 1, 2 runs over the quantum dots and α = L,R indicates
the lead. Here c†α,k (cα,k ) denotes the creation (annihilation) operator of
a conduction electron in the semi-infinite lead α with crystal momentum k
and energy εα,k. Similarly, d†i (di) is the creation (annihilation) operator of
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Figure 1: Schematic diagram of the DQD system coupled in parallel to left and right leads.
Two gate voltages, Vg1 and Vg2, control the energy of the local level of each dot.

an electron in the dot i with energy εi. Finally, the creation (annihilation)
operator of a local vibration mode in the dot i with frequency ω0 is denoted
by a†i (ai).

The dots are tunnel coupled to both leads, as shown schematically in
figure 1. Therefore, the corresponding Hamiltonian reads

He−leads =
∑
i,k,α

Vi,k,αc
†
α,kdi + H.c. , (2)

where H.c. stands for Hermitian conjugate. We assume a Holstein-type cou-
pling between the electron and the vibron [27]

He−ph = λ
∑
i

(
a†i + ai

)
d†idi . (3)

For simplicity we take the same coupling constant λ in both dots.
We now apply the Lang-Firsov nonperturbative canonical transforma-

tion H̃ = eSHe−S, where the operator S is defined as S = (λ/ω0)
∑

i(a
†
i −

ai)d
†
idi [28]. The transformed Hamiltonian takes the form H̃ = H̃0 + H̃int,

where the transformed noninteracting term is given as

H̃0 =
∑
i

ε̃id
†
idi +

∑
k,α

εα,kc
†
α,kcα,k , (4)

where ε̃i = εi − gω0 and g = λ2/ω2
0 is the Huang-Rhys factor. The resulting

interaction Hamiltonian H̃int is similar to He−leads given in Eq. (2), replacing
Vi,k,α by Vi,k,αX with X = exp

[
(λ/ω0)(a

†
i − ai)

]
. The canonical transforma-

tion is exact but it does not diagonalize the Hamiltonian. In other words,
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H̃int contains products of boson and fermion operators. Since we are dealing
with localized vibration modes, it is reasonable to replace the operator X
by its expectation value 〈X〉 = exp [−ξ(T )/2], where ξ(T ) = g (2Nvib + 1),

Nvib = 1/ [exp (βω0)− 1] and β = 1/kBT [29, 30]. Defining Ṽi,k,α = Vi,k,α〈X〉,
the transformed interaction Hamiltonian is approximately taken as

H̃int =
∑
i,k,α

Ṽi,k,αc
†
α,kdi + H.c. (5)

This approach is valid when the coupling between the DQD system and the
leads is weaker than the electron-vibron coupling, namely |Ṽi,k,α| � λ.

3. Spectral function and differential conductance

Nonequilibrium transport properties of an interaction region coupled to
two leads can be obtained with the help of the Keldysh Green’s function
technique [31]. The magnitudes of interest are the spectral matrix

A(ω) = i
[
Gr(ω)−Ga(ω)

]
, (6a)

along with the spectral function A(ω) = Tr [A(ω)] /2, the transmission coef-
ficient

T (ω) = Tr
[
Ga(ω)ΓRGr(ω)ΓL(ω)

]
, (6b)

and the electric current

I =
e

2h

∫
dωTr

{ [
fL(ω)ΓL − fR(ω)ΓR

]
A(ω) + i

(
ΓL − ΓR

)
G<(ω)

}
, (6c)

where fα(ω) = 1/ {exp [β(ω − µα)] + 1}−1 is the Fermi-Dirac distribution
function of the lead α. The tunnel coupling of the DQD system to both
leads is encoded in the matrices [32]

ΓL = Γ0

(
1
√
a√

a a

)
, ΓR = Γ0

(
a
√
a√

a 1

)
. (7)

Here Γ0 and a are phenomenological parameters describing the different cou-
pling of each dot to both leads. This coupling corresponds to the configura-
tion studied in Ref. [12]. Once the current is computed, one can obtain the di-
mensionless differential conductance as G = (dI/dV )/G0, where G0 = 2e2/h
is the quantum of conductance.
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The various Green’s functions in the above expressions have the usual
meaning in the nonequilibrium Keldysh formalism [26]. They can be cal-
culated using standard techniques and for brevity we only quote the main
results [30, 32]. The lesser and greater Green’s functions can be expressed as

G<(ω) =
∞∑

n=−∞

LnG̃
<(ω + nω0) ,

G>(ω) =
∞∑

n=−∞

LnG̃
>(ω − nω0) , (8a)

where at finite temperature

Ln = e−ξ(T )+nβω0/2In
(√

ξ2(T )− g2
)
, (8b)

In(z) being the modified Bessel function of integer order[33], and at zero
temperature

Ln =

{
e−ξ(0)gn/n! if n ≥ 0 ,

0 if n < 0 .
(8c)

The dressed lesser and greater Green’s functions can be calculated from
the Keldysh equation G̃<(>)(ω) = G̃r(ω)Σ̃<(>)(ω)G̃a(ω), where the self-energies
are given by

Σ̃<(ω) = i eξ(T )
[
f
(e)
L (ω)ΓL + f

(e)
R (ω)ΓR

]
,

Σ̃>(ω) = −i eξ(T )
[
f
(h)
L (ω)ΓL + f

(h)
R (ω)ΓR

]
, (9)

with f
(e)
α (ω) = fα(ω) and f

(h)
α (ω) = 1 − fα(ω). The dressed retarded and

advanced Green’s functions are obtained as

G̃r(ω) =
1

P (ω)

(
ω − ε̃2 − Σ̃22 Σ̃12

Σ̃21 ω − ε̃1 − Σ̃11

)
,

G̃a(ω) = G̃r(ω) + G̃<(ω)− G̃>(ω) . (10)

with P (ω) = (ω−ε̃2−Σ̃22)(ω−ε̃1−Σ̃11)−Σ̃12Σ̃21 and Σ̃ = (i/2) exp [−ξ(T )]
(
ΓL+

ΓR
)
. Finally, the retarded and advanced Keldysh Green’s functions can be
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calculated from

Gr(ω) =
∞∑

n=−∞

Ln

{
G̃r(ω − nω0)−

1

2
G̃<(ω + nω0)

+
1

2
G̃<(ω − nω0)

}
,

Ga(ω) =
∞∑

n=−∞

Ln

{
G̃r(ω − nω0) +

1

2
G̃<(ω + nω0)

+
1

2
G̃<(ω − nω0)− G̃>(ω − nω0)

}
. (11)

Once the various Green’s functions are calculated, the magnitudes of
interest (6) can be readily obtained.

4. Results

The main emphasis of our analysis is to evaluate the impact of the
electron-vibron coupling on the transport properties of the DQD system and
the role of the leads. To avoid the profusion of free parameters, we set µL = 0
hereafter. We take ω0 as the unit of energy in our numerical calculations.

4.1. Non-interacting DQD system

To gain insight into the occurrence of BICs in the DQD system, we con-
sider the non-interacting case by setting λ = 0 for the moment. In this
subsection we take ε1 = −ε2 ≡ ε to obtain simpler expressions, although
more general situations can be handled in the same way. A lengthy but
straightforward calculation yields the following expression for the transmis-
sion coefficient (6b)

T (ω) =
4aΓ2

0ω
2

D(ω)
, (12a)

with

D(ω) =
(
ω2 − ε2

)2
+

Γ2
0

2

[
ω2
(
1 + 6a+ a2

)
+ ε2(1− a)2

]
+

[
Γ0

2
(1− a)

]4
.

(12b)
The transmission coefficient vanishes at ω = 0 except if ε = 0 and the

coupling to the leads is symmetric (a = 1). In this particular case the
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transmission coefficient presents a Lorentzian shape

T (ω) =
4Γ2

0

ω2 + 4Γ2
0

, (12c)

of width 2Γ0. Therefore, unless the system is finely tuned (ε = 0 and a = 1),
in general the transmission coefficient shows a marked dip at ω = 0. For
instance, when the coupling to the leads is symmetric (a = 1) but the energy
levels of the dots are detuned (ε 6= 0) one obtains

T (ω) =
ω2

ω2 + ε4/4Γ2
0

(12d)

for |ω| < ε. We notice that the transmission coefficient displays a Fano
antiresonance profile of width ε2/2Γ0. Similarly, when the energy levels are
the same (ε = 0) but the coupling to the leads is asymmetric (a 6= 1), the
transmission shows again a Fano antiresonance around ω = 0, namely T (ω) ∼
ω2/ (ω2 + γ2) where now the width is given by γ = Γ0(1−a)2/

√
8 (1 + 6a+ a2).

The occurrence of a Fano antiresonance in the transmission also reflects
itself in the differential conductance. Figure 2 shows the results for tuned
levels (ε = 0) and symmetric or asymmetric couplings to the leads. If this
coupling is exactly the same for both quantum dots (a = 1), the differential
conductance displays a single peak around eV = 0. However, in a more
general situation when the coupling is not the same (a 6= 1), the differential
conductance displays a well defined dip at eV = 0, in perfect agreement with
the Fano antiresonance observed in the transmission coefficient.

Figure 2: Dimensionless differential conductance for symmetric (a = 1, red solid line) and
asymmetric (a = 0.5, blue solid line) couplings to the leads, at kBT = 0.01 and in absence
of electron-vibron coupling (λ = 0). The energy levels of the dots are the same (ε = 0)
and Γ0 = 0.2.
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In the non-interacting DQD system, the spectral function A(ω) can also
be calculated analytically

A(ω) =
(1 + a)Γ0

D(ω)

[
ω2 + ε2 +

1

4
(1− a)2Γ2

0

]
, (13a)

where D(ω) is given in (12b). It is then found that A(ω) presents Lorentzian
profiles close to ω = 0 in all cases. For instance, when ε = 0 and a 6= 1
one easily gets A(ω) ∼ γ/ (ω2 + γ2) if |ω| < Γ0, where γ was defined above.
More interesting results arise when the coupling to the leads is the same for
both quantum dots (a = 1). Taking |ω| < ε < Γ0, the spectral function is
approximately given as

A(ω) ' 2Γ0

ω2 + 4Γ2
0

+
ε2/2Γ0

ω2 + (ε2/2Γ0)2
. (13b)

The spectral function is the sum of two Lorentzian profiles, originated from
the superposition of two states. One of these states is strongly coupled to
the continuum, giving rise a wide peak of width 2Γ0. However, the other
state is only weakly coupled to the continuum since the corresponding level
broadening ε2/2Γ0 is small when ε < Γ0. When the energy levels of the
quantum dots are the same (ε→ 0), the spectral function becomes

A(ω) ' 2Γ0

ω2 + 4Γ2
0

+ πδ(ω) . (13c)

In this case the spectral function approaches a δ-function, indicating the
existence of a truly bound state with energy ω = 0 located at both quantum
dots [21]. In other words, the localizd state becomes effectively decoupled
from the continuum states but its energy lies within the band (BIC).

To conclude the analysis of the non-interacting DQD system, let us stress
that the system supports BICs that can be detected by studying its transport
properties. The transmission coefficient generally presents a Fano antireso-
nance profile except if the parameters are finely tuned, namely when ε = 0
and a = 1 it displays a Lorentzian shape. Correspondingly, the differential
conductance shows a marked dip when the Fermi level matches the energy
of the BIC.

4.2. Interacting DQD system

We now turn to our main goal, the effects of the electron-vibron coupling
on the BICs discussed in the previous section. We apply the methodology
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presented in Sec. 2 to symmetric and asymmetric configurations of the DQD
system when λ is finite. For concreteness we take λ = 0.5 in the numerical
calculations.

Inelastic scattering events due to excitation and de-excitation of phonons
are revealed as side peaks in both the transmission coefficient and the spectral
function. Figure 3 shows the results for different configurations of DQD
systems. In all cases the transmission coefficient (solid blue lines) and the
spectral function (dashed red lines) present the zero-phonon line and side
peaks due to emission or absorption of phonons. In the perfectly symmetric
configuration (a = 1 and ε1 = ε2), both the transmission coefficient and
the spectral function are similar, as seen in figure 3(a). These magnitudes
present a Lorentzian zero-phonon line whose width is roughly 2Γ0, as in the
noninteracting case given by equation (13b). According to equation (13c),
in the absence of electron-vibron interaction the spectral density displays an
aditional δ-function peak when |ε1 − ε2| goes to zero. This singularity can
not be observed in figure 3(a) due to the finite resolution of the numerics,
as expected. However, a small imaginary part added to the energy of the
quantum dots widens the BIC, which can be now detected as a narrow peak
in the spectral density (see inset of figure 3). This leads to the conclusion
that the electron-vibron interaction does not mask the main features of the
BICs in the spectral density.

When the DQD is asymmetric (a 6= 1 and/or different quantum dot
energies) the transmission coefficient vanishes at ω = (ε̃1 + ε̃2)/2 = (ε1 +
ε2)/2− λ2/ω0. If only the couplings to the leads are different but the energy
levels of the quantum dots are the same, both the transmission coefficient and
the spectral function present similar trends, except for the vanishing of the
latter at ω = 0, as seen in figure 3(b). On the contrary, if the energy levels of
the quantum dots are different (lower panels of figure 3), the spectral function
vanishes at ω = −λ2/ω0 while the transmission coefficient is maximum. This
behaviour is found to be independent of the symmetry of the coupling to the
leads.

Further insight into the behaviour of the BICs is obtained from the differ-
ential conductance. Figure 4 shows the results for different configurations of
the DQD system. We observe the occurrence of the expected side-bands dis-
cussed above and a small energy shift λ2/ω0 = 0.25 due the renormalization
of the electron energy. Close to the (renormalized) band centre the dimen-
sionless differential conductance presents a marked dip except if the system is
perfectly symmetric (a = 1 and ε = 0), as seen in figure 4(a). This behaviour
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Figure 3: Transmission coefficient (solid blue lines) and spectral function in arbitrary
units (dashed red lines) for symmetrically (left panels) and asymmetrically (right panels)
connected DQD systems. System parameters are Γ0 = 0.2, λ = 0.5, kBT = 0.01 and
ω0 = 1. In all cases ε1 = |ε2| = λ2/ω0. The inset shows an enlarged view of the spectral
density when a small imaginary part is added to the energy of the quantum dots.

is in perfect correspondence to what we found in noninteracting systems (see
figure 2) The dimensionless differential conductance exactly vanishes at the
renormalized band centre when the quantum dots are detuned (see lower
panels of figure 4). We have found numerically that the dip cannot be re-
solved above a threshold temperature of the order of Tth ' 0.06ω0/kB with
our chosen parameters. Taking ω0 = 5− 50 meV as typical values of phonon
energy in these DQD systems [34], the threshold temperature is found to be
Tth = 0.6− 6 K. Therefore, the signatures of BICs in the differential conduc-
tance should be observable even at temperatures slightly above the liquid
helium temperature.

In our study we have assumed that interdot tunneling is negligible. There-
fore, tunneling from one dot to the other is always an indirect process since
it can only take place through the leads. In the literature, however, direct
interdot tunneling is often taken into account. This amounts to include the
term t(d†1d2 + d†2d1) in the Hamiltonian (1), where t is the interdot hopping
energy [32]. Dashed lines in figures 4(b) and 4(d) show the dimensionless
differential conductance when the interdot tunneling is not negligible and
the hopping energy is t = 0.4. Notice that this hopping energy is also renor-
malized after the Lang-Firsov transformation, t̃ = t exp[−ξ(T )]. The rest
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Figure 4: Dimensionless differential conductance for symmetrically (left panels) and asym-
metrically (right panels) connected DQD systems. System parameters are ε1 = |ε2| = 0.25,
Γ0 = 0.2, λ = 0.5, kBT = 0.01 and ω0 = 1. Dashed lines of the right panels shows the
results when the interdot tunneling is not negligible (hopping energy is t = 0.4). The rest
of parameters are indicated in the legends.

of parameters correspond to symmetric coupling to the leads (a = 1) and
ε1 = ±ε2 = 0.25. We notice that the dip at the band centre that signals the
occurrence of a BIC is smeared out if t is finite. Therefore, we are led to
the conclusion that the interdot tunneling should be as small as possible to
detect to occurrence of BICs in nonequilibrium transport experiments.

5. Conclusions

In conclusion, we studied the nonequilibrium transport properties of a
DQD system connected in parallel to two leads. Electrons interact with a
local vibration mode of each quantum dot. In the absence of interaction, the
system supports a BIC, which reveals itself as a Fano antiresonance in the
transmission coefficient [21]. When the electron-vibron interaction is taken
into account, we found that the main features of the spectral function and
the transmission coefficient remain, besides th occurrence of well-defined side-
bands. In most cases the transmission coefficient vanishes at the band centre,
signaling the occurrence of a BIC. This feature is observed in the differential
conductance, which vanishes close to the Fermi level of the source lead if the
energy levels of the quantum dots are detuned.

Regarding the experimental validation of the effects of the BICs on the
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nonequilibrium transport in DQD systems, we found that temperature should
not exceed the liquid helium temperature for typical values of the parameters.
Above this temperature the dip in the differential conductance indicating the
occurrence of a BIC is smeared out. We also studied the effects of the interdot
tunneling and concluded that it should be small to reveal the BICs. This
implies that the dots should be far apart. Another important magnitude to
be considered in an experiment is the Huang-Rhys parameter. In our study
we set g = 0.25 and found that electron-vibron interaction does not mask
the effect. This value is an order of magnitude larger than the Huang-Rhys
parameter found in InP dots of radius 1.2 nm [35]. Therefore, we are confident
that transport experiments in DQD systems could help to understand the
nature of the BICs.
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