UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS Departamento de Química Orgánica DESLOCALIZACIÓN ELECTRÓNICA NO CONVENCIONAL: ESTUDIO EXPERIMENTAL Y TEÓRICO DE LA HOMOCONJUGACIÓN AROMÁTICA Y SUS APLICACIONES MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Noelia Herrero García Bajo la dirección del doctor José Osío Barcina Madrid, 2013 ©Noelia Herrero García, 2012 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS Departamento de Química Orgánica I DESLOCALIZACIÓN ELECTRÓNICA NO CONVENCIONAL: ESTUDIO EXPERIMENTAL Y TEÓRICO DE LA HOMOCONJUGACIÓN AROMÁTICA Y SUS APLICACIONES TESIS DOCTORAL Noelia Herrero García Madrid, 2012 DESLOCALIZACIÓN ELECTRÓNICA NO CONVENCIONAL: ESTUDIO EXPERIMENTAL Y TEÓRICO DE LA HOMOCONJUGACIÓN AROMÁTICA Y SUS APLICACIONES Director: José Osío Barcina Memoria que para optar al grado de DOCTOR EN CIENCIAS QUÍMICAS presenta Noelia Herrero García Madrid, 2012 D. José Osío Barcina, Profesor Titular de Química Orgánica de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, CERTIFICA: Que la presente Memoria, titulada: DESLOCALIZACIÓN ELECTRÓNICA NO CONVENCIONAL: ESTUDIO EXPERIMENTAL Y TEÓRICO DE LA HOMOCONJUGACIÓN AROMÁTICA Y SUS APLICACIONES, se ha realizado bajo su dirección en el Departamento de Química Orgánica I de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid por la licenciada en Química Dña. Noelia Herrero García, y autoriza su presentación para ser calificada como Tesis Doctoral. Madrid, -- de 2012 Fdo. D. José Osío Barcina A mi madrina Los resultados descritos en la presente Tesis Doctoral se han publicado en los siguientes artículos: “ Electron Delocalization in Homoconjugated 7,7-Diarylnorbornane Systems: A Computational and Experimental Study “ Chem. Eur. J. 2011, 17, 7327-7335. “ Efficient Electron Delocalization Mediated by Aromatic Homoconjugation in 7,7-Diphenylnorbornane Derivatives “ J. Org. Chem. 2009, 74¸7148-7156. “ A Joint Experimental and Computational Investigation on Homoconjugated Push-Pull Chromophores Derived from 7,7- Diphenylnorbornane “ Eur. J. Org. Chem. 2012, 2643-2655. “Efficient Photoinduced Energy Transfer Mediated by Aromatic Homoconjugated Bridges “ Chem. Eur. J. 2010, 16, 6033-6040. “Rational Design of a non-Basic Molecular Receptor for Selective NH4 + /K + Complexation in the Gas-Phase” Chem. Eur. J. 2012, 18, DOI: 10.1002/chem.201201642 La presente memoria del trabajo de tesis Doctoral se ha escrito siguiendo el formato de publicaciones. Incluye, además de una introducción general sobre el estado actual del área de investigación en la que se enmarca el trabajo, una discusión integradora de los resultados obtenidos. Los dos capítulos principales se han subdividido según las distintas publicaciones, mientras que en el capítulo de las discusiones generales se han incluido resultados no publicados en el momento de redacción de la Memoria. Los capítulos publicados conservan su formato original en inglés, sin embargo, la introducción, discusión, objetivos y conclusiones se han escrito en castellano de acuerdo a la normativa para este formato de tesis. La Memoria adjunta un CD en el que se han incluido todas las coordenadas cartesianas y energías totales de todos los puntos estacionarios mencionados obtenidos mediante cálculos computacionales. El CD incluye también un archivo .pdf con la Memoria completa. Abreviaturas utilizadas en esta Memoria: anh Anhidro Ar Argón CT Transferencia de carga d Doblete dd Doblete de dobletes DFT Teoría del funcional de la densidad DMF Dimetilformamida DPM Difenilmetano DPN Difenilnorbornano Eox Potencial de oxidación eq Equivalente químico Ered Potencial de reducción ESI Ionización por electroespray ESI-MS Espectroscopía de masas por ESI EtOH Etanol Fc Ferroceno FTIR Espectroscopía infrarroja con transformada de Fourier gap Salto de energía HOMO Orbital molecular ocupado de mayor energía Hz Hertzios L Ligando LF Campo del ligando K Kelvin LUMO Orbital molecular desocupado de menor energía m Multiplete m/z Relación masa/carga MeCN Acetonitrilo MeOH Metanol MLCT Transferencia de carga metal-ligando NLO Óptica no lineal nm Nanómetros P.f. Punto de fusión Ph Fenilo ppm Partes por millón rDA Distancia dador-aceptor RMN Resonancia Magnética Nuclear r.t. Temperatura ambiente s Singlete t Triplete TD-DFT Teoría del funcional de la densidad dependiente del tiempo THF Tetrahidrofurano TMS Trimetilsililo UV-vis Ultravioleta-visible  Desplazimiento  Longitud de onda ÍNDICE I. INTRODUCCIÓN GENERAL Y OBJETIVOS 1 I.1 Deslocalización electrónica en moléculas orgánicas 3 I.2 Deslocalización electrónica no convencional 7 I.2.1 Homoconjugación 11 I.2.2 Homoconjugación aromática 13 I.3 El 7,7-difenilnorbornano como subunidad estructural en Química Supramolecular 20 II. CAPÍTULO I 23 1.1 Electron Delocalization in Homoconjugated 7,7-Diarylnorbornane Systems: A Computational and Experimental Study 25 1.1.2 Computational details 29 1.1.3 Results and Discussion 30 1.1.4 Conclusion 44 1.1.5 Experimental Section 46 1.2 Efficient Electron Delocalization Mediated by Aromatic Homoconjugation in 7,7-Diphenylnorbornane Derivatives 51 1.2.1 Introduction 52 1.2.2 Results and Discussion 57 1.2.3 Conclusion 67 1.2.4 Experimental Section 69 1.3 A Joint Experimental and Computational Investigation on Homoconjugated Push-Pull Chromophores Derived from 7,7- Diphenylnorbornane 73 1.3.1 Introduction 74 1.3.2 Computational details 77 1.3.3 Results and Discussion 79 1.3.4 Conclusion 99 1.3.5 Experimental Section 101 III. CAPÍTULO 2 123 2.1 Efficient Photoinduced Energy Transfer Mediated by Aromatic homoconjugated bridges 125 2.2.1 Introduction 126 2.2.2 Results and Discussion 130 1.1.2.1 Photophysical properties 131 1.1.2.1.1 Absorption and emission spectroscopy 131 1.1.2.1.2 Transient absorption spectroscopy 135 2.2.3 Conclusion 140 2.2.4 Experimental Section 141 2.2 Rational Design of a non-Basic Molecular Receptor for Selective NH4 +/K+ Complexation. 149 2.2.1 Introduction 150 2.2.2 Results and Discussion 151 2.2.3 Conclusion 161 2.2.4 Experimental Section 162 IV. DISCUSIÓN GENERAL 167 IV.1 Capítulo 1 169 IV.1.1 Estudio de la deslocalización electrónica por homoconjugación en compuestos aromáticos y sistemas poliméricos. 169 IV.1.2 Estudio de la deslocalización electrónica por homoconjugación en compuestos con sustituyentes. Sistemas push-pull. 181 IV.2 Capíulo 2 190 IV.2.1 Aplicaciones de sistemas homoconjugados en el diseño de cables moleculares y OLEDs 190 IV.2.2 Diseño de receptores moleculares para la complejación selectiva NH4 +/K+ 199 V. CONCLUSIONES 207 I. INTRODUCCIÓN GENERAL Y OBJETIVOS Introducción general y objetivos 3 I.1 Deslocalización electrónica en moléculas orgánicas Uno de los conceptos más importantes en Química es el de deslocalización electrónica.1,2,3,4,5Este concepto es omnipresente en todas las áreas de la Química, pero de manera muy especial en Química Orgánica, en la que aparece fundamentalmente en moléculas -conjugadas y aromáticas. De acuerdo con la definición establecida por la IUPAC en 1994, “la deslocalización electrónica es un concepto mecano-cuántico empleado principalmente en Química Orgánica para describir los enlaces  en sistemas conjugados. Estos enlaces no están localizados entre dos átomos, sino que en lugar de ello cada unión presenta un carácter parcial de doble enlace o de orden de enlace”.6a Otra definición, también dada por la IUPAC, define este fenómeno como “la redistribución de la densidad de los electrones de valencia a lo largo de una entidad molecular en comparación con un modelo localizado”.6b Una idea de la importancia de la deslocalización electrónica la da el hecho de que durante el periodo comprendido entre los años 1990-2004, aparecen 2500 entradas con este término en la Web of Science. Este número aumenta hasta las 8200 entradas durante los años 2005-2011. El interés por los compuestos orgánicos con deslocalización electrónica derivada de la conjugación no es solo teórico. Desde el descubrimiento por Heeger, MacDiarmid y Shirakawa (galardonados con el premio Nobel el año 2000) de las propiedades conductoras de los polímeros conjugados,7 la 1 a) M. J. S. Dewar, en Modern Models of Bonding and Delocalization, (Eds.: J. F. Liebman, A. Greenberg) Verlag Chemie, Weinheim, 1988; b) L. Pauling, en The Nature of the Chemical Bond, Cornell University Press, 1960. 2 Curr. Org. Chem. 2011, 15(20): número especial sobre deslocalización electrónica en Química Orgánica. 3 Phys. Chem. Chem. Phys. 2011, 13(46): número especial sobre deslocalización electronica, aromaticidad y propiedades moleculares relacionadas. 4 Chem. Rev. 2005, 105(10): número especial sobre deslocalización σ y . 5 Chem. Rev. 2001, 105(5): número especial sobre aromaticidad y deslocalización. 6 a) P. Muller, Pure Appl. Chem. 1994, 66, 1077; b) V. I. Minkin, Glossary of Terms Used in Theoretical Organic Chemistry, Pure Appl. Chem. 1999, 71, 1919-1981. 7 a) C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, H. Shirakawa, J. Am. Chem. Soc. 1978, 100, 1013; b) C. K. Chiang, C. R., Jr. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098; c) H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 579; Introducción general y objetivos 4 importancia de estos compuestos no ha cesado de crecer y actualmente constituyen la base de áreas tan importantes como la electrónica molecular, los materiales orgánicos y la nanotecnología.8,9 Las características de los compuestos orgánicos conjugados basadas en sus propiedades eléctricas y ópticas permiten que estos sistemas estén presentes en multitud de aplicaciones tales como semiconductores orgánicos,10 OLEDs,11 transistores orgánicos (OFETs),12 circuitos integrados,13 células solares,14 cables moleculares,15 d) H. Shirakawa, Angew. Chem. Int. Ed. 2001, 40, 2574-2580; e) A. G. MacDiarmid, Angew. Chem. Int. Ed. 2001, 40, 2581-2590. 8 a) Electronic Materials: The Oligomer Approach, (Eds: K. Müllen, G. Wegner), Wiley-VCH, New York, 1998; b) Introduction to Molecular Electronics, (Eds: M. C. Petty, M. R. Bryce, D. Bloor), Oxford University Press, New York, 1995. 9 a) V. Balzani, A. Credi, M. Venturi, Molecular Devices. Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim, 2008; b) Dekker Encyclopedia of Nanoscience and Nanotechnology, Schwarz, J. A., Contescu, C. I., Putyera, K., Eds.; Marcel Dekker, New York, 2004; c) Gómez, R.; Segura, J. L. In Materials for Organic Solar Cells, in Handbook of Organic Electronics and Photonics, Vol. 3, Nalwa H. S., Ed.; American Scientific Publishers, Valencia, California, 2007; d) -Electron Magnetism: From Molecules to Magnetic Materials, (Ed.: J. Veciana), Structure & Bonding 2001, 100, 1-207; e) Tomorrow’s Chemistry Today: Concepts in Nanoscience, Organic Materials and Environmental Chemistry, (Ed.: B. Pignataro), Wiley-VCH, Weinheim, 2009; f) Functional Organic Materials: Syntheses, Strategies and Applications, (Eds.: T. J. J. Müller, U. H. F. Bunz), Wiley-VCH, Weinheim, 2007. 10 Handbook of Conducting Polymers, (Eds: T. A. Skotheim, J. R. Reynolds), CRC Press, Taylor & Francis Group, London, 2007; a) James, D. K.; Tour, J. M. Chem. Mater. 2004, 16, 4423; b) Klauk, H. Chem. Soc. Rev. 2010, 39, 2643; c) Perepichka, D. F.; Meng, H.; Wuld, F. Adv. Mater. 2005, 17, 2281; d) Allard, S.; Foster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem. Int. Ed. 2008, 47, 4070; e) Melzer, C.; Von Seggern, H. Nat. Mater. 2010, 9, 470. 11 a) Yersin, H. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, Germany, 2008; b) Organic Light-Emitting Devices. Synthesis, Properties and Applications, (Eds: K. Müllen, U. Scherf), Wiley-VCH, Weinheim, 2006; c) Chiu, C.-W.; Chow, T. J.; Chuen, C.-H.; Lin, H.-M.; Tao, Y.-T. Chem. Mater. 2003, 15, 4527; d) Organic Electroluminescence, Kafafi Z. H., Ed.; Taylor Francis, Boca Raton, 2005; e) J. Liu, Q. Pei, Curr. Org. Chem. 2010, 14, 2133-2144; f) Z. Ma, P. Sonar, Z.- K. Chen, Curr. Org. Chem. 2010, 14, 2034-2069; g) A. C. Grimsdale, Curr. Org. Chem. 2010, 14, 2196-2217; h) C. Li, Z. Bo, Polymer 2010, 51, 4273-4292. 12 a) Stutzmann, N.; Friend, R. H.; Sirringhaus, H. Science 2003, 299, 1881; b) J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296; c) C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99-117; d) H. Sirringhaus, Adv. Mater. 2005, 17, 2411-2425; e) A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066-1096. 13 a) D. R. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed Organic and Molecular Electronics; Kluwer Academic Publishers: New York, NY, U.S., 2004; b) M. J. Xu, Synth. Met. 2000, 115, 1; c) H. Sirringhaus, T. Kawase, R. H. Friend, T. Introducción general y objetivos 5 sensores químicos y biológicos16 y láseres poliméricos,17 entre otros.18 Los materiales orgánicos -conjugados presentan en muchos casos propiedades similares o mejores que las de los análogos inorgánicos, con las ventajas adicionales de ser con frecuencia más baratos, fáciles de fabricar y más flexibles y ligeros. Desde un punto de vista cualitativo, cuando los químicos emplean el término “deslocalización electrónica”, es relativamente fácil hacerse una idea o crear una imagen mental de lo que significa este concepto. En este sentido, la teoría de la resonancia resulta muy útil ya que permite representar sistemas Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123; d) Z. Bao, Adv. Mater. 2000, 12, 227; e) B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521; f) T. B. Singh, N. S. Sariciftci, Annu. Rev. Mater. Res. 2006, 36, 199. 14 a) H. Hoppe, N. S. Sariciftci, Polymer Solar Cells; Springer: Heidelberg, Berlin, 2008; Vol. 214; b) C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15-26; c) J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66-71; d) J. Li, F. Dierschke, J. Wu, A. C. Grimsdale, K. Müllen, J. Mater. Chem. 2006, 16, 96-100; e) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324-1338; f) P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009- 20029. 15 Molecular Wires. From design to Properties, (Ed.: L. de Cola); Thematic issue, Top. Curr. Chem. 2005, 257, 1-170. 16 a) L. Torsi, M. C. Tanese, N. Cioffi, M. C. Gallazzi, L. Sabbatici, P. G. Zambonin, G. Raos, S. V. Meille, M. M. Giangregorio, J. Phys. Chem. B 2003, 107, 7589-7564; b) C. Bartic, G. Borghs, Anal. Bioanal. Chem. 2006, 384, 354-365; c) S. W. Thomas III, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339-1386. 17 a) F. Hide, M. A. Díaz-García, B. J. Schwartz, A. J. Heeger, Acc. Chem. Res. 1997, 30, 430-436; b) M. D. McGehee, A. J. Heeger, Adv. Mater. 2000, 12, 1655-1668; c) G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, H. H. Hörhold, Appl. Phys. Lett. 2002, 80, 716-718; d) I. W. D. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272-1295. 18 a) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Lögdlund, W. R. Salaneck, Nature 1999, 397, 121; b) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171; c) H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741; d) A. C. Huebler, F. Doetz, H. Kempa, H. E. Katz, M. Bartzsch, N. Brandt, I. Hennig, U. Fuegmann, S. Vaidyanathan, J. Granstrom, S. Liu, A. Sydorenko, T. Zillger, G. Schmidt, K. Preissler, E. Reichmanis, P. Eckerle, F. Richter, T. Fischer, U. Hahn, Organic Electronics 2007, 8, 480; e) J. A. Rogers, Z. Bao, J. Polym. Sci. A 2002, 40, 3327; f) S. Lois, J.-C. Flores, J.-P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, K. Miqueu, J.-M. Sotiropoulos, P. Baylere, M. Tillard, C. Belin, Eur. J. Org. Chem. 2007, 4019. Introducción general y objetivos 6 deslocalizados mediante varias estructuras de Lewis (estructuras resonantes o formas canónicas) cuya superposición proporciona una descripción de la molécula. Cuantas más estructuras resonantes contribuyan a la descripción, mayor es la deslocalización electrónica del sistema estudiado. La diferencia entre la energía del sistema deslocalizado y la energía de una estructura hipotética con enlaces  y  localizados, es la energía de deslocalización de la molécula. Sin embargo, cuando se quiere hacer una descripción cuantitativa de la deslocalización electrónica, la situación es mucho más complicada, ya que la deslocalización no es un observable y por tanto no existe una propiedad que permita medirla directamente. Esta circunstancia ha estimulado el desarrollo de una serie de aproximaciones teóricas que intentan definir y proporcionar una evaluación cuantitativa de la deslocalización ( y ) en sistemas conjugados, tanto aromáticos como no aromáticos.2,3,4,5 Cabe destacar a este respecto, como herramientas muy útiles para el estudio teórico de la deslocalización, la ELF (Electron Localization Function), que proporciona una imagen de las regiones donde la localización de los electrones de una molécula es elevada,19 la QTAIM (Quantum Theory of Atoms in Molecules) que da información sobre la estructura electrónica de sistemas orgánicos,20 NICS (Nucleus Independent Chemical Shift),21 y ACID (Anisotropy of Induced Current Density).22 A pesar de que la deslocalización electrónica no es un observable y por tanto no puede medirse directamente, además de las aproximaciones teóricas mencionadas anteriormente, es posible estudiar este fenómeno de manera indirecta ya que hay una serie de propiedades moleculares, observables, que están directamente relacionadas con el grado de deslocalización presente en las moléculas. 19 a) P. Fuentealba, J. C. Santos, Curr. Org. Chem. 2011, 15, 3619-3626; b) B. Silvi, P. Reinhardt, Curr. Org. Chem. 2011, 15, 3555-3565; c) S. N. Steinmann, Y. Mo, C. Corminboeuf, Phys. Chem. Chem. Phys. 2011, 13, 20584-20592. 20 a) C. Silva López, A. R. de Lera, Curr. Org. Chem. 2011, 15, 3576-3593; b) P. Bultinck, M. Rafat, R. Ponec, B. Van Gheluwe, R. Carbó-Dorca, P. Popelier, J. Phys. Chem. A 2006, 110, 7642-7648. 21 a) T. Heine, R. Islas, G. Merino, J. Comput. Chem. 2007, 28, 302-309; b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888. 22 D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758-3772. Introducción general y objetivos 7 Algunas de las evidencias experimentales de la deslocalización electrónica, cuyo estudio permite extrapolar conclusiones acerca de la misma, son la alternancia en las longitudes de enlace en moléculas orgánicas conjugadas, la respuesta de sistemas conjugados a un campo eléctrico externo (polarizabilidad), las espectroscopias UV-vis y fotoelectrónica, la transmisión de los efectos ejercidos por los sustituyentes en compuestos conjugados23 los tiempos de vida de estados excitados o la reactividad de las moléculas con deslocalización electrónica.22 De todas estas propiedades, quizás la más accesible y probablemente la que más se ha utilizado, sea el estudio de los espectros UV-vis.24 Aunque esta técnica espectroscópica presenta ciertas limitaciones,25 en términos generales existe una relación directa entre el grado de deslocalización electrónica y la longitud de onda de la correspondiente banda en el espectro, cuando se comparan familias de moléculas en las que se van introduciendo variaciones estructurales pequeñas, de tal forma que, cuanto mayor es la deslocalización, mayor es el desplazamiento batocrómico de la banda en el espectro. I.2 Deslocalización electrónica no convencional La movilidad de los electrones a lo largo de la estructura de una molécula orgánica no solo puede ser debida a las conjugaciones  y  mencionadas anteriormente.26 En los últimos años se han descrito una serie de mecanismos, diferentes de la conjugación, que permiten la deslocalización de los electrones de un sistema molecular. Todos ellos tienen en común que están basados en diferentes topologías moleculares que permiten la comunicación o 23 T. M. Krygowski, B. T. Stepien, Chem. Rev. 2005, 105, 3482-3512. 24 a) H.-H. Perkampus, UV-Vis Atlas of Organic Compounds, VCH, Weinheim, 1992; b) P. Klán, J. Wirz, Photochemistry of Organic Compounds. From Concepts to Practice,Wiley, Chichester, 2009; c) M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, VCH, Weinheim, 1995. 25 C. A. van Walree, J. H. van Lenthe, B. C. van der Wiel, Chem. Phys. Lett. 2012, 528, 29-33. 26 Ejemplos de sistemas con deslocalización σ se describen en: a) R. M. Williams, M. Koeberg, J. M. Lawson, Y.-Z. An, Y. Rubin, M. N. Paddon-Row, J. W. Verhoeven, J. Org. Chem. 1996, 61, 5055-5062; b) H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 1987, 109, 3258-3269. Introducción general y objetivos 8 solapamiento de orbitales y, por tanto, la deslocalización electrónica en mayor o menor grado. Los ejemplos más importantes de deslocalización electrónica no convencional son la spiroconjugación,27,28,29 la conjugación cruzada,25,30,31,32,33,34,35 la conjugación toroidal36,37,38,39,40 y la deslocalización electrónica a lo largo de sistemas con apilamientos  (- 27 T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, Chem. Rev. 2007, 107, 1011-1065. 28 a) L.-H. Xie, J. Liang, J. Song, C.-R. Yin, W. Huang, Curr. Org. Chem. 2010, 14, 2169-2195; b) D. Heredia, L. Fernández, L. Otero, M. Ichikawa, C.-Y. Lin, Y.-L. Liao, S.-A. Wang, K.-T. Wong, F. Fungo, J. Phys. Chem C 2011, 115, 21907-21914; c) D. Vak, J. Jo, J. Ghim, C. Chun, B. Lim, A. J. Heeger, D.-Y. Kim, Macromolecules 2006, 39, 6433-6439; d) Y. J. Cho, O. Y. Kim, J. Y. Lee, Org. Electron. 2012, 13, 351-355; e) C. Fan, Y. Chen, P. Gan, C. Yang, C. Zhong, J. Qin, D. Ma, Org. Lett. 2010, 12, 5648-5651. 29 a) J. Abe, Y. Shirai, N. Nemoto, Y. Nagase, J. Phys. Chem. A 1997, 101, 1-4; b) Y. Luo, P. Norman, H. Agren, Chem. Phys. Lett. 1999, 303, 616-620. 30 P. A. Limacher, H. P. Lüthi, Wires Comput. Chem. Sci. 2011, 1, 477-486. 31 a) D. Q. Andrews, G. C. Solomon, R. P. Van Duyne, M. A. Ratner, J. Am. Chem. Soc. 2008, 130, 17309-17319; b) G. C. Solomon, D. Q. Andrews, R. H. Goldsmith, T. Hansen, M. R. Wasielewski, R. P. Van Duyne, M. A. Ratner, J. Am. Chem. Soc. 2008, 130, 17301-17308; c) A. B. Ricks, G. C. Solomon, M. T. Colvin, A. M. Scott, K. Chen, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 2010, 132, 15427-15434. 32 a) S. Smolarek, A. Vdovin, A. Rijs, C. A. van Walree, M. Z. Zgierski, W. J. Buma, J. Phys. Chem. A 2011, 115, 9399-9410; b) B. C. van der Wiel, R. M. Williams, C. A. van Walree, Org. Biomol. Chem. 2004, 2, 3432-3433; c) M. Klokkenburg, M. Lutz, A. L. Spek, J. H. van der Maas, C. A. van Walree, Chem. Eur. J. 2003, 9, 3544-3554; d) C. A. van Walree, V. E. M. Kaats-Richters, S. J. Veen, B. Wieczorek, J. H. Van der Wiel, B. C. Van der Wiel, B. C. Eur. J. Org. Chem. 2004, 3046-3056. 33 a) M. Gholami, R. R. Tykwinski, Chem. Rev. 2006, 106, 4997-5027; b) R. R. Tykwinski, Y. Zhao, Synlett 2002, 1939-1953. 34 R. Ponce Ortíz, R. Malavé Osuna, V. Hernández, J. T. López Navarrete, B. Vercelli, G. Zotti, V. V. Sumerin, E. S. Balenkova, V. G. Nenajdenko, J. Phys. Chem. A 2007, 111, 841-851. 35 C. Lepetit, M. B. Nielsen, F. Diederich, R. Chauvin, Chem. Eur. J. 2003, 9, 5056- 5066. 36 C. Lambert, Angew. Chem. Int Ed. 2005, 44, 7337-7339. 37 Y. Tanaka, T. Koike, M. Akita, Chem. Commun. 2010, 46, 4529-4531. 38 a) S. V. Rosokha, I. S. Neretin, D. Sun, J. K. Kochi, J. Am. Chem. Soc. 2006, 128, 9394-9407; b) D. Sun, S. V. Rosokha, J. K. Kochi, Angew. Chem. Int. Ed. 2005, 44, 5133-5136. 39 a) V. J. Chebny, R. Shukla, R. Rathore, J. Phys. Chem. A 2006, 110, 13003-13006; b) R. Shukla, S. V. Lindeman, R. Rathore, Org. Lett. 2007, 9, 1291-1294. 40 A. Wakamiya, T. Ide, S. Yamaguchi, J. Am. Chem. Soc. 2005, 127, 14859-14866. Introducción general y objetivos 9 stacking).41,42,43,44,45,46,47,48,49,50,51,52,53,54 Ejemplos representativos de moléculas que presentan estos tipos de deslocalización electrónica no convencional pueden verse en la Figura1. También cabe mencionar, aunque tienen menos 41 S. P. Jagtap, S. Mukhopadhyay, V. Coropceanu, G. L. Brizius, J.-L. Brédas, D. M. Collard, J. Am. Chem. Soc. 2012, 134, DOI: 10.1021/ja3019065. 42 S. T. Schneebeli, M. Kamenetska, Z. Cheng, R. Skouta, R. A. Friesner, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2011, 133, 2136-2139. 43 G. C. Solomon, C. Herrmann, J. Vura-Weis, M. R. Wasielewski, M. A. Ratner, J. Am. Chem. Soc. 2010, 132, 7887-7889. 44 M. Supur, Y. Yamada, M. E. El-Khouly, T. Honda, S. Fukuzumi, J. Phys. Chem. C 2011, 115, 15040-15047. 45 Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao, L. Zang, J. Am. Chem. Soc. 2007, 129, 6354-6355. 46 a) Y. Morisaki, T. Murakami, Y. Chujo, Macromolecules 2008, 41, 5960-5963; b) Y. Morisaki, T. Murakami, T. Sawamura, Y. Chujo, Macromolecules 2009, 42, 3656- 3660. 47 a) J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P. Bartholomew, G. C. Bazan, J. Am. Chem. Soc. 2000, 122, 11956-11962; b) G. P. Bartholomew, G. C. Bazan, Acc. Chem. Res. 2001, 34, 30-39; c) D. S. Seferos, S. A. Trammell, G. C. Bazan, J. G. Kushmerick, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8821-8825; d) J. W. Hong, H. Y. Woo, B. Liu, G. C. Bazan, J. Am. Chem. Soc. 2005, 127, 7435-7443. 48 a) W. Wang, J. Xu, Y.-H. Lai, F. Wang, Macromolecules 2004, 37, 3546-3553; b) W. Wang, J. Xu, Z. Sun, X. Zhang, Y. Lu, Y.-H. Lai, Macromolecules 2006, 39, 7277- 7285. 49 a) R. Rathore, S. H. Abdelwahed, I. A. Guzei, J. Am. Chem. Soc. 2003, 125, 8712- 8713; b) R. Rathore, S. H. Abdelwahed, M. K. Kiesewetter, R. C. Reiter, C. D. Stevenson, J. Phys Chem. B 2006, 110, 1536-1540. 50 a) Y. K. Kang, I. V. Rubtsov, P. M. Iovine, J. Chen, M. J. Therien, J. Am. Chem. Soc. 2002, 124, 8275-8279; b) J. Zheng, Y. K. Kang, M. J. Therien, D. N. Beratan, J. Am. Chem. Soc. 2005, 127, 11303-11310. 51 a) T. Nakano, T. Yade, J. Am. Chem. Soc. 2003, 125, 15474-15484; b) V. Coropceanu, T. Nakano, N. E. Gruhn, O. Kwon, T. Yade, K. Katsukawa, J.-L. Brédas, J. Phys. Chem. B 2006, 110, 9482-9487. 52 a) T. A. Zeidan, Q. Wang, T. Fiebig, F. D. Lewis J. Am. Chem. Soc. 2007, 129, 9848-9849; b) M. Smeu, R. A. Wolkow, H. Guo J. Am. Chem. Soc. 2009, 131, 11019- 11029; c) S. Mataka, T. Thiemann, M. Taniguchi, T. Sawada, Synlett 2000, 1211-1227; d) M. Shibahara, M. Watanabe, T. Iwanaga, T. Matsumoto, K. Ideta, T. Shinmyozu, J. Org. Chem. 2008, 73, 4433-4442. 53 a) Modern Cyclophane Chemistry (Eds.: R. Gleiter, H. Hopf), Wiley-VCH, Weinheim, 2004; b) F. Diederich, Cyclophanes, Royal Society of Chemistry, Cambridge, 1991; c) Cyclophanes (Ed.: F. Vögtle), Springer, Heidelberg, 1983. 54 a) F. D. Lewis, J. Liu, W. Weigel, W. Rettig, I. V. Kurnikov, D. N. Beratan, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12536-12541; b) C. R. Treadway, M. G. Hill, J. K. Barton, Chem. Phys. 2002, 281, 409-428 y referencias incluidas en la publicación. Introducción general y objetivos 10 relación con el presente trabajo, la conjugación curva,55 presente por ejemplo en fullerenos, nanotubos y cintas moleculares, así como también la conjugación meta.56 Figura 1. Ejemplos de sistemas con spiro-conjugación (1a), conjugación cruzada (1b), conjugación toroidal (1c) y apilamiento- (-stacking) (1d). En los ejemplos expuestos en la Figura 1, la disposición de los orbitales pz de los dobles enlaces y de los anillos aromáticos, es tal que posibilita su solapamiento y la deslocalización electrónica. Esta comunicación es muy eficaz en el caso de los derivados del hexafenilbenceno (1c) y análogos con 55 a) J. Xia, R. Jasti, Angew. Chem. Int. Ed. 2012, 51, 2474-2476; b) M. Iyoda, J. Yamakawa, M. J. Rahman, Angew. Chem. Int. Ed. 2011, 50, 10522-10553; c) H. Omachi, S. Matsuura, Y. Segawa, K. Itami, Angew. Chem. Int. Ed. 2010, 49, 10202- 10205; d) D. Eisenberg, R. Shenhar, M. Rabinovitz, Chem. Soc. Rev. 2010, 39, 2879- 2890; X. Lu, Z. Chen, Chem. Rev. 2005, 105, 3643-3696; e) K. Tahara, Y. Tobe, Chem. Rev. 2006, 106, 5274-5290; f) Z. Chen, R. B. King, Chem. Rev. 2005, 105, 3613-3642; g) S. Taubert, D. Sundholm, F. Pichierri, J. Org. Chem. 2010, 75, 5867- 5874; h) P. W. Fowler, A. Soncini, Phys. Chem. Chem. Phys. 2011, 13, 20637-20643. 56 a) A. L. Thompson, T.-S. Ahn, K. R. J. Thomas, S. Thayumanaban, T. J. Martinez, C. J. Bardeen, J. Am. Chem. Soc. 2005, 127, 16348-16349; b) Y.-S. Yang, K.-L- Liau, C.-Y. Li, M.-Y. Chen, J. Am. Chem. Soc. 2007, 129, 13183-13192; c) C. Song, T. M. Swager, Macromolecules 2005, 38, 4569-4576; d) M. Moreno Oliva, J. Casado, G. Hennrich, J. T. López Navarrete, J. Phys. Chem. B 2006, 110, 19198-19206. Introducción general y objetivos 11 anillos heterocíclicos,37 en los que solapan los orbitales de los anillos situados en conformación perpendicular respecto al fenilo central, dando lugar a sistemas con una deslocalización en forma de toroide. En el caso de los spirocompuestos del tipo 1a, es posible la comunicación entre los dos fragmentos unidos mediante el carbono sp3 central, por el solapamiento de los orbitales  que, aunque están situados ortogonalmente uno del otro, se sitúan suficientemente próximos en el espacio. Este tipo de deslocalización es muy importante en el caso de los spirofluorenos, de los que se han descrito en los últimos años un gran número de ejemplos con aplicaciones en diferentes dispositivos orgánicos.27,28 En los compuestos con conjugación cruzada también es posible el solapamiento entre todos los orbitales  (1b). Aunque el grado de deslocalización electrónica parece ser menor que en derivados con spiroconjugación y conjugación toroidal, muy recientemente se ha demostrado que este tipo de moléculas pueden emplearse como materiales orgánicos.30,31 Por lo que respecta a derivados que presentan deslocalización por apilamiento de sistemas aromáticos (-stacking) (1d), la comunicación entre los anillos aromáticos es similar a la descrita para la deslocalización toroidal (1c). El número de ejemplos de este tipo de sistemas es muy elevado, sobre todo teniendo en cuenta el caso de los ciclofanos.53 En publicaciones recientes se ha demostrado que en los sistemas con apilamiento- pueden darse tanto la transferencia electrónica fotoinducida como la conductividad eléctrica a través de los anillos aromáticos cofaciales.41- 45 Este fenómeno tiene especial relevancia en los procesos de transferencia electrónica en las moléculas de DNA.50,54 I.2.1 Homoconjugación Además de la spiroconjugación, la conjugación cruzada, la conjugación toroidal y la deslocalización en sistemas con apilamiento-, existe otro posible mecanismo no convencional por el cual los electrones pueden deslocalizarse a lo largo de la estructura de una molécula: la homoconjugación. De acuerdo con la IUPAC, se entiende por homoconjugación el solapamiento de orbitales  Introducción general y objetivos 12 separados por un grupo no conjugativo, como un CH2. 57,58,59,60,61,62,63 En la Figura 2 se muestran algunos ejemplos de moléculas con dobles y triples enlaces homoconjugados. Hasta ahora la deslocalización por homoconjugación se ha estudiado sobre todo en sistemas cíclicos con dobles y triples enlaces. La deslocalización en estos compuestos ha sido objeto de controversia, ya que el grado de deslocalización en estos sistemas depende en gran medida de las características estructurales de cada molécula. Así, por ejemplo, se ha podido comprobar que la deslocalización electrónica por homoconjugación es muy eficaz en sistemas homoaromáticos cíclicos cargados positivamente, como el catión homotropilio (2a).57 En estos derivados la carga positiva hace posible una fuerte deslocalización. 57 Una revisión sobre homoaromaticidad puede verse en: R. V. Williams, Chem. Rev. 2001, 101, 1185-1204. 58 Estudios recientes sobre el homobenceno: a) Z. Chen, H. Jiao, J. I. Wu, R. Herges, S. B. Zhang, P. von R. Schleyer, J. Phys. Chem. A 2008, 112, 10586-10594; b) F. Stahl, P. von R. Schleyer, H. Jiao, H. F. Schaefer III, K.-H. Chen, N. Allinger, J. Org. Chem. 2002, 67, 6599-6611. 59 a) P. W. Fowler, M. Lillington, L. P. Olson, Pure Appl. Chem. 2007, 79, 969-979. Ver también, b) P. K. Freeman, J. Org. Chem. 2005, 70, 1998-2001; c) T. Bajorek, N. H. Werstiuk, Can. J. Chem. 2005, 83, 1352-1359. 60 Moléculas inorgánicas con homoconjugación/homoaromaticidad se describen en: Q. Zhang, S. Yue, X. Lu, Z. Chen, R. Huang, L. Zheng, P. von R. Schleyer, J. Am. Chem. Soc. 2009, 131, 9789-9799. 61 a) V. Maraval, R. Chauvin, Chem. Rev. 2006, 106, 5317-5343; b) C. Lepetit, B. Silvi, R. Chauvin, J. Phys. Chem. A 2003, 107, 464-473; c) A. de Meijere, S. I. Kozhushkov, R. Boese, T. Haumann, D. S. Yufit, J. A. K. Howard, L. S. Khaikin, M. Trætteberg, Eur. J. Org. Chem. 2002, 485-492; d) A. de Meijere, S. I. Kozhushkov, Top. Curr. Chem. 1999, 201, 1-42; e) B. Leibrock, O. Vostrowsky, A. Hirsch, Eur. J. Org. Chem. 2001, 4401-4409; f) H. Jiao, N. J. R. van Eikema Hommes, P. v. R. Schleyer, A. de Meijere, J. Org. Chem. 1996, 61, 2826-2828. 62 Estudios recientes sobre homoconjugación en metano[10]anulenos se describen en: a) G. F. Caramori, K. T. De Oliveira, S. E. Galembeck, P. Bultinck, M. G. Constantino, J. Org. Chem. 2007, 72, 76-85; b) Y. Zhang, E. Hisano, R. Ohta, R. Miyatake, Y. Horino, M. Oda, S. Kuroda, Tetrahedron Lett. 2008, 49, 888-892. Un estudio teórico sobre moléculas deslocalizadas con interacciones homoconjugativas se describe en: c) D. J. Tantillo, R. Hoffmann, K. N. Houk, P. M. Warner, E. C. Brown, D. K. Henze, J. Am. Chem. Soc. 2004, 126, 4256-4263. 63 Interacciones homoconjugativas estabilizantes entre dobles y triples enlaces se describen en: R. Gleiter, R. Merger, H. Irngartinger, J. Am. Chem. Soc. 1992, 114, 8927-8932. Introducción general y objetivos 13 Figura 2. Ejemplos de moléculas homoconjugadas. Sin embargo, la situación descrita para sistemas cíclicos neutros, y más aún en sus análogos de cadena abierta, es más compleja y continúa siendo objeto de debate. Así, se ha descrito la existencia de interacciones homoconjugativas, aunque débiles, en los casos del cicloheptatrieno (2b) y de varios sistemas trishomoaromáticos, como el trishomobenceno (2c).58-60 Sin embargo, en el caso de sistemas cíclicos con triples enlaces como los periciclenos 2d y 2e, en los que tiene lugar un solapamiento “en el plano”, no se detecta deslocalización electrónica por interacciones homoconjugativas entre los orbitales  de los alquinos.61-63 Tan sólo en el caso de alquinos cíclicos muy tensos parece haber deslocalización por homoconjugación.61b,64 I.2.2 Homoconjugación aromática Si bien los sistemas homoconjugados formados por dobles y triples enlaces se han estudiado en profundidad durante los últimos años, no ha ocurrido lo 64 I. Fernández, G. Frenking, Faraday Discuss. 2007, 135, 403-422. Introducción general y objetivos 14 mismo con la deslocalización electrónica debida a homoconjugación aromática, de la que apenas hay precedentes en la bibliografía.65,66,67 El caso más investigado es el del tripticeno y compuestos análogos (ipticenos) (Figura 3). Figura 3. Estructura del tripticeno. La molécula de tripticeno es un ejemplo de homoconjugación aromática lateral, ya que los anillos aromáticos se encuentran separados por carbonos con hibridación sp3 y la deslocalización electrónica en este caso tendría lugar a través del solapamiento de los orbitales de un lado de cada uno de los anillos aromáticos. Hasta la fecha, se han llevado a cabo numerosos estudios basados en este tipo de derivados y de sus aplicaciones.65-66 Sin embargo, mientras que 65 Revisiones recientes sobre el tripticeno y derivados análogos se describen en: a) L. Zhao, Z. Li, T. Wirth, Chem. Lett. 2010, 39, 658-667; b) J. H. Chong, M. J. MacLachlan, Chem. Soc. Rev. 2009, 38, 3301-3315; c) T. M. Swager, Acc. Chem. Res. 2008, 41, 1181-1189; d) J.-S. Yang, J.-L. Yan, Chem. Commun. 2008, 1501-1512. Ver también: e) V. R. Skvarchenko, V. K. Shalaev, E. I. Klabunovskii, Russ. Chem. Rev. 1974, 43, 951-966. 66 a) G. Jansen, B. Kahlert, F.-G. Klämer, R. Boese, D. Bläser, J. Am. Chem. Soc. 2010, 132, 8581-8592; b) T. Kobayashi, S. Kobayashi, Eur. J. Org. Chem. 2002, 2066-2073; c) M. Kamieth, F.-G. Klärner, F. Diederich, Angew. Chem. Int. Ed. 1998, 37, 3303- 3306; d) T. Doerner, R. Gleiter, F. A. Neugebauer, Eur. J. Org. Chem. 1998, 1615- 1623; e) T. Nakazawa, I. Murata, J. Am. Chem. Soc. 1977, 99, 1996-1997; f) K. Yamamura, T. Nakazawa, I. Murata, Angew. Chem. Int. Ed. 1980, 19, 543-546; g) K. Yamamura, K. Nakasuji, H. Yamochi, Chem. Let. 1983, 627-630. 67 Las interacciones homoconjugativas laterales en ipticenos no están establecidas de manera concluyente y son objeto de controversia: a) X. Gu, Y.-H. Lai, Org. Lett. 2010, 12, 5200-5203. b) V. J. Chebny, T. S. Navale, R. Shukla, S. V. Lindeman, R. Rathore, Org. Lett. 2009, 11, 2253-2256; c) L. Zhao, Z. Li, T. Wirth, Chem. Lett. 2010, 658- 667; d) H.-D. Martin, B. Mayer, Angew. Chem. Int. Ed. 1983, 22, 283-314. e) V. R. Skvarchenko, V. K. Shalaev, E. I. Klabunovskii, Russian Chem. Rev. 1974, 43, 951- 966; f) W. Theilacker, K. Albrecht, H. Uffmann, Chem. Ber. 1965, 98, 428-432. La estructura cristalina del tripticeno se describe en: g) R. G. Hazell, G. S. Pawley, C. E. Lund Petersen, J. Cryst. Mol. Struct. 1971, 1, 319-324. Introducción general y objetivos 15 algunas investigaciones consideran que existe deslocalización electrónica por interacción entre los orbitales de los anillos aromáticos, trabajos más recientes ponen en duda que tal deslocalización se produzca, al menos de forma importante, por lo que este aspecto es actualmente objeto de controversia.67 La razón puede ser la geometría del sistema biciclo[2.2.2]octano, que obliga a que el ángulo entre los planos de dos anillos aromáticos sea bastante elevado (120o), y como consecuencia, la orientación de los orbitales de los mismos no sea la más adecuada para que tenga lugar un solapamiento efectivo entre dichos orbitales, a pesar de que la distancia mínima entre dos fenilos (2.41 Å) es bastante corta.67g Esto podría explicar que en el tripticeno se diera una homoconjugación muy limitada, variando el grado de deslocalización electrónica de unos derivados a otros. En principio, el candidato más sencillo para estudiar la deslocalización electrónica en sistemas con homoconjugación aromática, es el difenilmetano (Figura 4). Sin embargo, esta molécula presenta algunas características que hacen que no sea un buen modelo para el estudio de la deslocalización mediante homoconjugación. Aunque de acuerdo con la estructura de rayos-x, tanto el ángulo Cipso-CH2-Cipso’ (112.4o) como la distancia Cipso-Cipso’ (2.52 Å, algo mayor que en el tripticeno)68 son adecuados para que exista homoconjugación entre los fenilos, hay otra razón, más importante, que impide el solapamiento de los orbitales aromáticos y la deslocalización electrónica entre los anillos aromáticos del difenilmetano: su libertad conformacional (Figura 4). Figura 4. Conformaciones más representativas del difenilmetano. En la Figura 4 se representan las conformaciones más representativas del difenilmetano. La menos estable, debido al impedimento estérico de los átomos 68 J. C. Barnes, J. D. Paton, J. R. Damewood, K. Mislow, J. Org. Chem. 1981, 46, 4975-4979. Introducción general y objetivos 16 de hidrógeno en posición orto, es la conformación plana, y la más estable la disposición helicoidal. Sin embargo, la diferencia de energías entre las tres conformaciones más estables es pequeña, lo que hace que el difenilmetano se comporte como un rotor, en el que la conformación en la cual la homoconjugación estaría favorecida (la cofacial), no es la más estable.69 De hecho, en estado sólido el difenilmetano cristaliza en la conformación helicoidal, con valores de los ángulos torsionales Corto-Cipso-CH2-Cipso’ y Cipso- CH2-Cipso’-Corto’ de 71.8º y 63.5º, respectivamente.68 Un factor muy importante que influye en la estabilidad de la conformación cofacial, son las interacciones aromáticas entre los fenilos. En el difenilmetano y derivados pueden darse, en principio, tres tipos de interacciones importantes diferentes: a) las interacciones homoconjugativas, que serían estabilizantes debido al aumento de deslocalización electrónica; b) la transferencia de carga entre los anillos cuando en ellos haya sustituyentes dadores y aceptores, también estabilizante; y c) repulsión electrostática entre las nubes electrónicas de los anillos aromáticos, interacción esta desestabilizante. En trabajos anteriores hemos estudiado la importancia relativa de estas interacciones, concluyendo que la predominante es la repulsión electrostática entre los anillos aromáticos, lo cual explicaría la menor estabilidad de la conformación cofacial frente a la helicoidal en el difenilmetano y, por tanto, la dificultad para que se produzcan interacciones hommoconjugativas.69,70,71 De hecho, en compuestos en los que se encuentra el difenilmetano como subunidad estructural, éste se comporta como un interruptor, impidiendo la deslocalización electrónica entre las dos regiones unidas a los anillos aromáticos.72 69 A. García Martínez, J. Osío Barcina, The Diphenylmethane Moiety in Encyclopedia of Supramolecular Chemistry, (Eds.: J. L. Atwood, J. W. Steed), Marcel Dekker, New York, 2004, 452-456. 70 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. 71 Para estudios relacionados, ver: a) F. Cozzi, F. Ponzini, R. Annunziata, M. Cinquini, J. S. Siegel, Angew. Chem., Int. Ed. Engl. 1995, 34, 1019-1020; b) C. A. Hunter, K. Lawson, J. Perkins and C. Urch, J. Chem. Soc. Perkin Trans. 2 2001, 651-669. 72 a) D. K. James, J. M. Tour, Top. Curr. Chem. 2005, 257, 33-62. Ejemplos de copolímeros en los que el difenilmetano actúa como interruptor de la conjugación se describen en: b) K.-Y. Peng, S.-A. Chen, W.-S. Fann, J. Am. Chem. Soc. 2001, 123, 11388-11397; c) P. G. Del Rosso, M. F. Almassio, S. S. Antollini, R. O. Garay, Opt. Mater. 2007, 30, 478-485; d) M. Beinhoff, L. D. Bozano, J. C. Scott, K. R. Carter, Introducción general y objetivos 17 La situación descrita anteriormente para el difenilmetano, según la cual no existen interacciones homoconjugativas ni por tanto deslocalización electrónica entre los anillos aromáticos, puede alterarse si se obliga de alguna manera a que los fenilos se dispongan cofacialmente, lo que favorecería el solapamiento entre los orbitales  . Para ello es necesario idear un sistema que compense la repulsión electrostática haciendo posible la deslocalización electrónica mediante homoconjugación aromática. Nosotros hemos comprobado que estas condiciones se dan en el 7,7-difenilnorbornano (DPN) (3) y sus derivados (Figura 5). Figura 5. Estructura del 7,7-difenilnorbornano. En el DPN el giro de los anillos aromáticos se encuentra dificultado por el impedimento estérico entre los átomos de hidrógeno situados en posición exo del norbornano, y los situados en posición orto en los fenilos. La barrera de giro de los anillos es de 12.5 kcal.mol-1, muy superior a la descrita para el difenilmetano.69,73 Este hecho, junto con la simetría que presenta el sistema bicíclico del norbornano, hacen que en el DPN los fenilos se dispongan en conformación cofacial, con lo que la interacción homoconjugativa de los orbitales  es máxima en este hidrocarburo y en sus derivados, constituyendo ejemplos de homoconjugación aromática apical. La estructura de rayos-X del DPN confirma esta situación, siendo el ángulo Cipso-C7-Cipso’ 107.0o y la distancia Cipso-Cipso’ 2.46 Å,73 muy por debajo de la suma de los radios de van der Waals de dos fenilos (3.4 Å).74 Por otra parte, estos valores son inferiores a los descritos para el difenilmetano (112.4o y 2.52 Å, respectivamente). Estas características estructurales, hacen que el DPN Macromolecules 2005, 38, 4147-4156; e) P. G. Del Rosso, M. F. Almassio, P. Aramendia, S. S. Antollini, R. O. Garay, Eur. Polym. J. 2007, 43, 2584-2593. 73 A. García Martínez, J. Osío Barcina, A. Albert, F. H. Cano, Tetrahedron Lett. 1993, 34, 6736–6753. 74 L. Yu, H.-J. Schneider, Eur. J. Org. Chem. 1999, 1619–1625. Introducción general y objetivos 18 presente analogías importantes, y también diferencias, con los compuestos conjugados y los sistemas con apilamiento . De hecho, puede considerarse que esta molécula, por su topología, se encuentra en una posición intermedia entre los sistemas conjugados (como el bifenilo) y los compuestos con “- stacking” (como el [2,2]paraciclofano) (Figura 6). Figura 6. Estructuras del bifenilo (4), DPN (3) y [2,2]paraciclofano (5). En el bifenilo (4), los dos anillos aromáticos se encuentran alineados y, aunque no son coplanares debido al impedimento estérico de los átomos de hidrógenos en posición orto, la deslocalización electrónica (conjugación) se produce por el solapamiento de los orbitales  a ambos lados del plano medio horizontal de la molécula. En cambio, en el DPN la disposición relativa en ángulo de los orbitales  aromáticos hace que estos se aproximen por la parte superior cóncava de la molécula, mientras que se separan por la parte inferior. Esto se traduce en una fuerte interacción entre los orbitales, pero a diferencia de lo que ocurre en los compuestos conjugados, solamente por un lado de los anillos aromáticos. Por lo que respecta a las similitudes y diferencias entre el DPN y el [2,2]paraciclofano (5), en ambos casos se trata de moléculas con anillos aromáticos cofaciales, pero mientras que en 5 los fenilos se disponen paralelamente, con lo que el área de contacto y la interacción entre los orbitales  es máxima, en el DPN los anillos forman un ángulo de 107o. Esto se traduce en que en el DPN los fenilos están mucho más próximos (2.43 Å) que en 5 (2.99 Å) en la región cercana al norbornano, mientras que se alejan considerablemente hacia el exterior de la molécula. Teniendo en cuenta todos estos factores, el DPN es un modelo idóneo para el estudio de las interacciones homoconjugativas en sistemas aromáticos, y para evaluar si en este tipo de derivados la deslocalización electrónica es importante o si, como ocurre con los dobles y triples enlaces homoconjugados Introducción general y objetivos 19 en moléculas neutras, e incluso en los ipticenos, esta deslocalización es pequeña o incluso inapreciable. En nuestro grupo de investigación se han llevado a cabo estudios previos sobre la homoconjugación aromática en DPN’s. Estos estudios muestran que existe una fuerte interacción entre los orbitales de los anillos aromáticos cofaciales, lo que se traduce en la aparición de una banda nueva en el espectro UV-vis del DPN a 228 nm (banda de homoconjugación), que no se observa en el difenilmetano.69,70,75 Esta banda es consecuencia de la deslocalización electrónica homoconjugativa, como prueba el hecho de que experimente un desplazamiento batocrómico en oligómeros del DPN (Figura 7), de manera análoga a lo observado en sistemas conjugados.75 Figura 7. Estructura del trímero del DPN y espectros UV-vis del DPN (rojo, max = 228 nm) y del trímero (azul, max = 248 nm). La deslocalización electrónica en DPN’s también se ha puesto de manifiesto en estudios de polímeros deslocalizados que alternan homoconjugación y conjugación76 y de las propiedades ópticas no lineales en derivados del DPN77 llevadas a cabo en nuestro laboratorio. El principal objetivo del presente trabajo, es profundizar en el estudio de la deslocalización electrónica debida a homoconjugación aromática. Para ello, se 75N. Caraballo-Martínez, M. R. Colorado Heras, M. M. Blázquez, J. Osío Barcina, A. García Martínez, M. R. Torres Salvador, Org. Lett. 2007, 9, 2943-2946. 76 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31. 77 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, G. Rojo, F. Agulló-López, J. Phys Chem. B 2000, 104, 43-47. 220 230 240 250 260 270 280 290 300 0 5000 10000 15000 20000 25000   (nm) Introducción general y objetivos 20 sintetizarán una serie de derivados del DPN así como de sistemas análogos no homoconjugados que servirán como referencias. El estudio de las propiedades químicas y espectroscópicas de estos compuestos, se completará con información obtenida mediante cálculos computacionales DFT. El conjunto de estas investigaciones aportará datos acerca del grado de deslocalización electrónica en estos sistemas y sobre las características de este fenómeno. También se estudia la aplicación de derivados homoconjugados en la construcción de materiales orgánicos. En concreto, los objetivos de esta parte de la Tesis Doctoral pueden resumirse en los siguientes puntos:  Estudio teórico-experimental de la homoconjugación aromática en hidrocarburos derivados del DPN.  Estudio teórico-experimental de la homoconjugación aromática en derivados sustituidos del DPN, con especial énfasis en sistemas push- pull.  Síntesis y propiedades de polímeros homoconjugados.  Diseño y propiedades de cables moleculares homoconjugados.  Aplicaciones de sistemas homoconjugados en la preparación de OLED’s. I.3 El 7,7-difenilnorbornano como subunidad estructural en Química Supramolecular Una de las subunidades más utilizadas en el diseño de estructuras supramoleculares es el difenilmetano.69,78,79,80,81 La principal razón por la que 78 Comprehensive Supramolecular Chemistry, (Eds.: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle), Vol. 1, Molecular Recognition: Receptors for Cationic Guests, Pergamon, 1996. 79 Encyclopedia of Supramolecular Chemistry (Eds.: J. L. Atwood, J. W. Steed), Marcel Dekker, New York, 2004. 80 J. W. Steed, J. L. Atwood, Supramolecular Chemistry, John Wiley & Sons, Chichester, 2009. Introducción general y objetivos 21 aparece con gran frecuencia como parte de la estructura de receptores moleculares de muy diversa índole, es que el difenilmetano proporciona una región de geometría cóncava y rica en electrones que favorece la formación de complejos con huéspedes catiónicos o neutros mediante interacciones no- covalentes de tipo catión···, ···, X-H···, etc. Sin embargo, esta subunidad presenta una limitación importante a la hora de formar complejos estables receptor-huésped: su falta de preorganización. Tal y como se comentó anteriormente, el difenilmetano no presenta una conformación preferente, comportándose como un rotor. Es más, la conformación cofacial, que es la que presenta una geometría más adecuada para el establecimiento de interacciones complementarias con diferentes huéspedes, no es la más estable, por lo que el receptor debe experimentar una modificación estructural adoptando una conformación que, aunque no sea la más estable, favorece la complejación receptor-huésped. Esto supone un gasto energético considerable, que se ve reflejado en la estabilidad del correspondiente complejo, de acuerdo con el principio de que cuanto más preorganizado sea el receptor y mayor grado de complemetaridad presenten el receptor y el huésped, mayor es la estabilidad del complejo supramolecular. En sistemas supramoleculares en los que están involucradas interacciones no covalentes débiles, los factores entrópicos pueden resultar determinantes en la formación y estabilidad de los correspondientes complejos, por lo que el grado de preorganización del receptor resulta ser fundamental.69,82 Aunque en principio este factor puede parecer de poca importancia, no resulta ser así en absoluto. En efecto, en nuestro grupo de investigación hemos demostrado que la utilización de subunidades más preorganizadas que el difenilmetano, como el 7,7-difenilnorbornano, presenta ventajas muy importantes a la hora de diseñar sistemas que permitan estudiar interacciones supramoleculares y formar complejos estables receptor-huésped. La elevada estabilidad de la conformación cofacial del DPN ha permitido emplear esta 81 T. Schrader, M. Maue, in Functional Synthetic Receptors, (Eds.: T. Schrader, A. D. Hamilton), WILEY-VCH, Weinheim, 2005. 82 a) M. S. Searle, D. H. Williams, J. Am. Chem. Soc. 1992, 114, 10690-10697; b) C. T. Calderone, D. H. Williams, J. Am. Chem. Soc. 2001, 123, 6262-6267; c) H.-J. Scheneider, Angew. Chem. Int Ed. 2009, 48, 3924-3977. Introducción general y objetivos 22 subunidad en el estudio de interacciones aromáticas cara-cara70 y lado-cara (Figura 8a),83 así como también interacciones C-H··· y O-H···.84 Figura 8. Estructuras de complejos supramoleculares formados por subunidades de DPN. El ejemplo más significativo de la importancia de la utilización del DPN en complejos supramoleculares lo constituye el sistema ciclofano·Ag+ representado en la Figura 8. Este complejo entre el catión Ag+ y un receptor aromático es el más estable descrito hasta la fecha. Su estabilidad es muy superior a la del sistema análogo con un receptor con subunidades de difenilmetano. 85 Otro de los objetivos de la presente Tesis Doctoral es la utilización del DPN como subunidad estructural en el diseño de estructuras supramoleculares que formen complejos estables con huéspedes catiónicos, en concreto con el ión amonio. 83 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, Chem. Eur. J. 2001, 7, 1171-1175. 84 J. Osío Barcina, I. Fernández, M. R. Colorado Heras, Eur. J. Org. Chem. 2012, 940- 947. 85 A. García Martínez, J. Osío Barcina, M. R. Colorado Heras, A. de Fresno Cerezo, M. R. Torres Salvador, Chem. Eur. J. 2003, 9, 1157-1165.7 II. CAPÍTULO 1 Capítulo 1.1 25 1.1 Electron Delocalization in Homoconjugated 7,7-Diarylnorbornane Systems: A Computational and Experimental Study A joint computational-experimental study has been carried out to analyze the homoconjugative interactions in 7,7-diarylnorbornane (DPN) derivatives. The experimentally observed new bands in their UV/Vis have been accurately assigned by means of TD-DFT calculations. Both experimental data and computations show that aromatic homoconjugation in acyclic systems is an effective mechanism for electron delocalization that resembles the situation described for polyphenylenes and polyenes. The effective homoconjugation length in homoconjugated oligomers is in the range of 6-7 aryl rings. The effect of substituents directly attached to the para carbon atom of the DPN moiety have been also studied. We found that HOMO-LUMO can indeed be modified by the nature of the aromatic substituents in order to provoke dramatic changes in the electronic properties (i.e. in the absorption spectra) of the studied species. (Chem. Eur. J. 2011, 17, 7327 – 7335) Capítulo 1.1 26 1.1.1 Introduction Electron delocalization in molecules is one of the most important phenomena in chemistry.1 Many properties and applications of conjugated compounds are controlled by the way that electrons delocalize between the atoms along the structure of the molecules.2 Besides classical - and - delocalization,3 in recent years alternative modes of electronic interaction have led to a large variety of systems with interesting electronic properties: cross- conjugation,4 spiro-conjugation,5 toroidal conjugation,6 and -stacking.7 A different alternative for electron delocalization is found in homoconjugated systems. 1 a) M. J. S. Dewar, in Modern Models of Bonding and Delocalization, (Eds.: J. F. Liebman, A. Greenberg), Verlag Chemie, Weinheim, 1988; b) D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758-3772. 2 a) Handbook of Conducting Polymers, (Eds: T. A. Skotheim, J. R. Reynolds), CRC Press, Taylor & Francis Group, London, 2007; b) Organic Light-Emitting Devices. Synthesis, Properties and Applications, (Eds: K. Müllen, U. Scherf), Wiley-VCH, Weinheim, 2006; c) Electronic Materials: The Oligomer Approach, (Eds: K. Müllen, G. Wegner), Wiley-VCH, New York, 1998; d) Introduction to Molecular Electronics, (Eds: M. C. Petty, M. R. Bryce, D. Bloor), Oxford University Press, New York, 1995. 3 Chem. Rev. 2005, 105, number 10: special issue on delocalization-pi and sigma. 4 a) M. Gholami, R. R. Tykwinski, Chem. Rev. 2006, 106, 4997-5027; b) R. R. Tykwinski, Y. Zhao, Synlett 2002, 1939-1953; c) M. Klokkenburg, M. Lutz, A. L. Spek, J. H. van der Maas, C. A. van Walree, Chem. Eur. J. 2003, 9, 3544-3554; d) C. A. van Walree, V. E. M. Kaats-Richters, S. J. Veen, B. Wieczorek, J. H. Van der Wiel, B. C. Van der Wiel, B. C. Eur. J. Org. Chem. 2004, 3046-3056; e) R. Ponce Ortíz, R. Malavé Osuna, V. Hernández, J. T. López Navarrete, B. Vercelli, G. Zotti, V. V. Sumerin, E. S. Balenkova, V. G. Nenajdenko, J. Phys. Chem. A 2007, 111, 841-851. 5 a) T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, Chem. Rev. 2007, 107, 1011-1065; b) J. Abe, Y. Shirai, N. Nemoto, Y. Nagase, J. Phys. Chem. A 1997, 101, 1-4; c) Y. Luo, P. Norman, H. Agren, Chem. Phys. Lett. 1999, 303, 616- 620. 6 a) C. Lambert, Angew. Chem. Int. Ed. 2005, 44, 7337-7339; b) V. J. Chebny, R. Shukla, R. Rathore, J. Phys. Chem. A 2006, 110, 13003-13006; c) R. Shukla, S. V. Lindeman, R. Rathore, Org. Lett. 2007, 9, 1291-1294; d) D. Sun, S. V. Rosokha, J. K. Kochi, Angew. Chem. Int. Ed. 2005, 44, 5133-5136; e) S. V. Rosokha, I. S. Neretin, D. Sun, J. K. Kochi, J. Am. Chem. Soc. 2006, 128, 9394-9407; f) A. Wakamiya, T. Ide, S. Yamaguchi, J. Am. Chem. Soc. 2005, 127, 14859-14866. 7 a) T. A. Zeidan, Q. Wang, T. Fiebig, F. D. Lewis J. Am. Chem. Soc. 2007, 129, 9848- 9849; b) M. Smeu, R. A. Wolkow, H. Guo J. Am. Chem. Soc. 2009, 131, 11019-11029; c) Y. Morisaki, Y. Chujo, Angew. Chem. Int. Ed. 2006, 45, 6430-6437; d) S. Mataka, T. Thiemann, M. Taniguchi, T. Sawada, Synlett 2000, 1211-1227; e) J. W. Hong, H. Y. Woo, B. Liu, G. C. Bazan, J. Am. Chem. Soc. 2005, 127, 7435-7443. Capítulo 1.1 27 Homoconjugation can be defined as the orbital overlap of two -systems separated by a non-conjugated group, such as CH2 (IUPAC). However, the degree of electron delocalization in homoconjugated systems strongly depends on the structure of the corresponding compounds. Thus, in cyclic charged homoaromatic8 compounds (e.g. homotropylium cation 1, Figure 1) in which the positive charge is the driving force, electron delocalization is well established. Figure 1. Examples of homoconjugated alkenes and alkynes. However, the situation in neutral analogous is still controversial and remains the subject of an interesting debate. In the case of cycloheptatriene (2, Figure 1) and several model tris-homoaromatics such as “in plane” trishomobenzene 3 (Figure 1), weak stabilization by through-space homoconjugative interactions has been described.9 8 R. V. Williams, Chem. Rev. 2001, 101, 1185-1204. 9 a) Z. Chen, H. Jiao, J. I. Wu, R. Herges, S. B. Zhang, P. v. R. Schleyer, J. Phys. Chem. A 2008, 112, 10586-10594; b) F. Stahl, P. v. R. Schleyer, H. Jiao, H. F. Schaefrer III, K.-H. Chen, N. L. Allinger, J. Org. Chem. 2002, 67, 6599-6611; c) P. W. Fowler, M. Lillington, L. P. Olson, Pure Appl. Chem. 2007, 79, 969-979. See also, d) Q. Zhang, S. Yue, X. Lu, Z. Chen, R. Huang, L. Zheng, P. v. R. Schleyer, J. Am. Chem. Soc. 2009, 131, 9789-9799; e) P. K. Freeman, J. Org. Chem. 2005, 70, 1998- 2001; f) T. Bajorek, N. H. Werstiuk, Can. J. Chem. 2005, 83, 1352-1359. For recent studies on homoconjugation in methano[10]annulenes, see: g) G. F. Caramori, K. T. Capítulo 1.1 28 This situation differs from that found in macrocyclic oligoacetylenes and oligodiacetylenes (e.g. pericyclene 4 and 5, Figure 1),10 compounds which are not homoaromatic and no electron delocalization by homoconjugative interactions between the triple bonds is detected. Only in highly strained cyclic alkynes homoconjugative interactions seem to be appreciable.10b In this respect, it should be pointed out that a CH2 group in planar cyclic systems such as cyclopropene and cyclobutene has two  electrons. This means that, as instance, cyclopropene is formally a homoantiaromatic molecule because it has four  electrons while cyclobutene is a six  electrons homoaromatic compound.11 Despite the large amount of research carried out on homoconjugated alkenes and alkynes, aromatic homoconjugated systems have received less attention. In this chapter, a systematic theoretical and experimental study of homoconjugative interactions between aromatic rings is reported. As a measure of electron delocalization in our systems we have chosen the corresponding absorption spectra since it is well established that increased electron delocalization reduces the HOMO-LUMO energy gap causing a bathochromic shift in the UV absorption if a set of related molecules is considered.12 De Oliveira, S. E. Galembeck, P. Bultinck, M. G. Constantino, J. Org. Chem. 2007, 72, 76-85; h) Y. Zhang, E. Hisano, R. Ohta, R. Miyatake, Y. Horino, M. Oda, S. Kuroda, Tetrahedron Lett. 2008, 49, 888-892. An interesting (theoretical) class of delocalized molecules with homoconjugative interactions between polyenyl chains is described in: i) D. J. Tantillo, R. Hoffmann, K. N. Houk, P. M. Warner, E. C. Brown, D. K. Henze, J. Am. Chem. Soc. 2004, 126, 4256-4263. 10 a) V. Maraval, R. Chauvin, Chem. Rev. 2006, 106, 5317-5343; b) C. Lepetit, B. Silvi, R. Chauvin, J. Phys. Chem. A 2003, 107, 464-473; c) A. de Meijere, S. I. Kozhushkov, R. Boese, T. Haumann, D. S. Yufit, J. A. K. Howard, L. S. Khaikin, M. Trætteberg, Eur. J. Org. Chem. 2002, 485-492; d) A. de Meijere, S. I. Kozhushkov, Top. Curr. Chem. 1999, 201, 1-42; e) B. Leibrock, O. Vostrowsky, A. Hirsch, Eur. J. Org. Chem. 2001, 4401-4409; f) H. Jiao, N. J. R. van Eikema Hommes, P. v. R. Schleyer, A. de Meijere, J. Org. Chem. 1996, 61, 2826-2828. See also: g) R. Gleiter, R. Merger, H. Irngartinger, J. Am. Chem. Soc. 1992, 114, 8927-8932. 11 I. Fernández, G. Frenking, Faraday Discuss. 2007,135, 403-422. 12 a) P. Klán, J. Wirz, Photochemistry of Organic Compounds. From Concepts to Practice,Wiley, Chichester, 2009; b) M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, VCH, Weinheim, 1995. Capítulo 1.1 29 1.1.2 Computational details Geometry optimizations without symmetry constraints were carried out using the Gaussian03 optimizer13 together with TurboMole514 energies and gradients at the BP8615/def-SVP16 level of theory using the resolution-of- identity (RI)17 method. This level is denoted as RI-BP86/def2-SVP. Stationary points were characterized as minima by calculating the Hessian matrix analytically at this level. Calculations of absorption spectra were accomplished by using the time-dependent density functional theory (TD-DFT)18 method at the same level. The assignment of the excitation energies to the experimental bands was performed on the basis of the energy values and oscillator strengths. The B3LYP19 Hamiltonian was chosen because it was proven to provide reasonable UV/Vis spectra for a variety of chromophores20 including 13 Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al- Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford, CT, 2003. 14 Turbomole v. 5.10. R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 1989, 162, 165-169. 15 a) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824. 16 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. 17 K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660. 18 a) M. E. Casida, Recent Developments and Applications of Modern Density Functional Theory, Vol. 4, Elsevier, Amsterdam, 1996; b) M. E. Casida, D. P. Chong, Recent Advances in Density Functional Methods, Vol. 1, World Scientific, Singapore, 1995, p. 155. 19 a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789. 20 For a review, see: A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009-4037. Capítulo 1.1 30 organometallic species.21 Donor–acceptor interactions were computed by using the natural bond orbital (NBO) method.22 The energies associated with these two-electron interactions were computed according to the following equation: Equation 1 1.1.3 Results and Discussion The simplest example of apical23 aromatic homoconjugated compound should be diphenylmethane (DPM, 16, Figure 2).24 However, aryl-aryl interactions in diarylmethanes are governed by repulsive electrostatic forces25 and, therefore, the most stable conformation of 16 is the helical disposition, in which the homoconjugative interaction between the phenyl rings is not possible. 21 Some recent examples: a) V. N. Nemykin, E. A. Makarova, J. O. Grosland, R. G. Hadt, A. Y. Koposov, Inorg. Chem. 2007, 46, 9591-9601; b) M. L. Lage, I. Fernández, M. J. Mancheño, M. A. Sierra, Inorg. Chem. 2008, 47, 5253-5258; c) M. L. Lage, I. Fernández, M. J. Mancheño, M. A. Sierra, Chem. Eur. J. 2010, 16, 6616-6624. 22 a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218; b) A. E. Reed, F. J. Weinhold, J. Chem. Phys. 1985, 83, 1736-1740; c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746; d) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926. 23 Lateral homoconjugative interactions in iptycenes such as trypticene are not clear and remains controversial: a) X. Gu, Y.-H. Lai, Org. Lett. 2010, 12, 5200-5203. b) V. J. Chebny, T. S. Navale, R. Shukla, S. V. Lindeman, R. Rathore, Org. Lett. 2009, 11, 2253-2256; c) L. Zhao, Z. Li, T. Wirth, Chem. Lett. 2010, 658-667; d) H.-D. Martin, B. Mayer, Angew. Chem. Int. Ed. 1983, 22, 283-314. e) V. R. Skvarchenko, V. K. Shalaev, E. I. Klabunovskii, Russian Chem. Rev. 1974, 43, 951-966; f) W. Theilacker, K. Albrecht, H. Uffmann, Chem. Ber. 1965, 98, 428-432. 24 “The Diphenylmethane Moiety”: A. García Martínez, J. Osío Barcina in Encyclopedia of Supramolecular Chemistry (Eds.: J. L. Atwood, J. W. Steed), Marcel Dekker, New York, 2004, pp. 452-456. 25 A. García Martínez, J. Osío Barcina, A. De Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. 2 2 * ˆ* )( *      F nE Capítulo 1.1 31 Figure 2. Structures of homoconjugated systems 6-15 and non- homoconjugated reference compounds 16-19. 6 12 13 7 8 9 14 15 16 17 18 19 10 11 Capítulo 1.1 32 This situation can be modified substantially if the aromatic rings are forced to adopt a cofacial conformation as it happens in 7,7-diphenylnorbornane (DPN, 6, Figure 2) due to the steric hindrance of the H-exo of the bicycle. This is clearly shown in the fully optimized (RI-BP86/def2-SVP level) geometries of both compounds (Figure 3a). As a consequence, homoconjugative interaction between the aromatic rings is now possible and a new homoconjugation band at 228 nm is observed in the UV spectrum of DPN.24,25 The second-order perturbation theory of the NBO-method agrees with this description. In fact, stabilizing two-electrons delocalizations from the  molecular orbital of a phenyl ring to the *-molecular orbital of the adjacent phenyl group were found (associated second-order energies of ΔE(2) = -0.91 kcal.mol-1). Moreover, the HOMO-3 and the LUMO of 6 clearly show the electronic communication between both phenyl groups (Figure 3b). Figure 3. a) Fully optimized geometries (RI-BP86/def2-SVP level) of compounds 6 and 16. b) HOMO-3 and LUMO of compound 6 (isosurface value of 0.035 a.u.). It should be noted that the NBO-method was not able to find a similar  -* interaction in the DPM analogue and no similar molecular orbitals connecting both aryl moieties were found either. We also used the Truhlar's meta hybrid exchange-correlation functional M06-2X developed to account for dispersive corrections for the parent homoconjugated compound 6 and found that there are no significant Capítulo 1.1 33 differences between the optimized geometries with M06-2X and RI-BP86 methods. In fact, the relevant Cipso-Cipso (phenyl groups) bond length is practically the same (2.459 and 2.466 Å, respectively). Table 1. Comparison of main UV/Vis excitation energies max and the corresponding oscillator strengths (in parentheses) for compound 6-19. Compound exp/nm [a] calc/nm[b] Transition[c] r (BLA)[d] 6 228 237 (0.18) HOMO-LUMO (5.75) 0.0039 7 242[e] 255 (0.42) HOMO-LUMO (5.38) 0.0077 222 220 (0.02) HOMO-5-LUMO 0.0068 8 248[e] 265 (0.63) HOMO-LUMO (5.21) 0.0076 232 232 (0.01) (combination band) 0.0077 9 250[e] 272 (0.84) HOMO-LUMO (5.12) 231 240 HOMO-1-LUMO+1 10 --- 273 (1.07) HOMO-LUMO (5.06) 11 218 234 (0.08) HOMO-1-LUMO (46%)[f] HOMO-LUMO (29%) 12 259 274 (0.67) HOMO-LUMO (4.94) 13 268 292 (0.70) HOMO-LUMO (4.70) 14 272 288 (0.98) HOMO-LUMO (4.74) 15 295 316 (1.51) HOMO-LUMO (4.34) 17 251 265 (0.65) HOMO-LUMO (5.06) 18 257 276 (0.67) HOMO-LUMO (4.94) 19 --- 246 (0.13) (combination band) [a] Experimental data, recorded at room temperature in MeOH. [b] Computed TD- B3LYP/def2-SVP gas-phase vertical excitation energies. [c] HOMO-LUMO gap energies (in eV) are given in parentheses. [d] Computed bond length alternation (BLA). [e] In hexane. [f] Transition contribution. Therefore, we think that the dispersion effects are not important in our molecules. We can therefore conclude that this electronic communication between the cofacial aryl groups, which is enforced by the imposed geometry Capítulo 1.1 34 of the DPN moiety, is responsible for the electronic delocalization (and therefore, for the special electronic properties) of the studied homoconjugated species. In the present work we have also studied computationally systems with extended homoconjugation (DPN olygomers 7-10), several homoconjugated 7,7-diarylnorbornanes (aryl = phenyl and biphenyl) (11-13), and compounds with alternating homoconjugation-conjugation-homoconjugation (14 and 15) (Figure 2). The results of these calculations have been compared with experimental data obtained from the corresponding absorption spectra. For comparison, a series of non-homoconjugated DPM derivatives (17-19) were also synthesized and studied. The synthesis of compounds 6-9,25,26 12-13,27 and 14-1528 was carried out according to the general procedure described in Scheme 1. For the preparation of the reference compounds 17-19 we used a synthetic route described in the literature for DPM derivatives,29 also depicted in Scheme 1. Table 1 gathers the wavelengths of the absorption maxima together with the corresponding computed gas-phase TD-DFT vertical transitions and associated oscillator strengths. 26 N. Caraballo-Martínez, M. R. Colorado Heras, M. M. Blázquez, J. Osío Barcina, A. García Martínez, M. R. Torres Salvador, Org. Lett. 2007, 9, 2943-2946. 27 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31. 28 J. Osío Barcina, M. R. Colorado Heras, M. Mba, R. Gómez Aspe, N. Herrero García, J. Org. Chem. 2009, 74, 7148-7156. 29 a) J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W. Price, M. A. Reed, C.-W. Zhou, J. Chen, W. Wang, I. Campbell, Chem. Eur. J. 2001, 7, 5118-5134; b) J. M. Tour, M. Kozaki, J. M. Seminario, J. Am. Chem. Soc. 1998, 120, 8486-8493. Capítulo 1.1 35 Scheme 1. General synthetic methods for the preparation of homoconjugated systems 6-15 and diphenylmethane derivates 17-19. 1.1.3.1 DPN oligomers In the case of systems with extended homoconjugation (DPN oligomers) 7- 10, two intriguing questions are of interest. On the one hand, it is important to study the relative enegies of the different cofacial conformations that can be adopted by these compounds. Secondly, it is important to know how electrons delocalize along the structure of the oligomers and the effect of the chain length on this delocalization (effective homoconjugation length).26 With regard to the first question, in the case of the DPN dimer 7, two stable cofacial conformations (U and Z or zig-zag) are possible (Scheme 2).30 Obviously, as the chain of the oligomers becomes longer, the number of these conformers increases. As an example, the conformations of trimer 8 are depicted schematically in Scheme 2. The crystal structure of dimer 7 has been elucidated and, in the solid state, the zig-zag conformation is observed (Figure 4).26 Whether this is an effect of crystal packing forces or the result of energy differences between the conformers is one of the aspects than we have studied in this chapter. 30 For a review on molecular zig-zag rods, see: P. F. H. Schwab, J. R. Smith, J. Michl, Chem. Rev. 2005, 105, 1197-1279. Capítulo 1.1 36 Scheme 2. Stable cofacial conformations of dimer 7 and trimer 8. Our calculations indicate that the 7-Z conformer is only 0.7 kcal.mol-1 more stable than the 7-U isomer. This practically negligible total energy difference between both conformers points to the crystal packing forces as the main factor responsible for the structure adopted by compound 7 in the solid state. In fact, the crystal packing of 7-Z is stabilized by CH- interactions between the para hydrogen atom of one molecule and the central aryl ring of the neighbouring dimer.26 Figure 4. Crystal packing of dimer 7 showing the preferred zig-zag conformation in the solid state. Capítulo 1.1 37 The UV/Vis spectra of oligomers 7-9 show two important features. Firstly, the homoconjugation band of DPN (228 nm) is bathochromically shifted on going from the dimer (242 nm) to the trimer (248 nm) and the tetramer (250 nm) as a consequence of extended homoconjugation. The electron delocalization shows a limit (effective homoconjugation length)31 around the pentamer or hexamer.26 Interestingly, both the experimental wavelengths of the absorption maxima and the corresponding calculated wavelengths of the vertical transition show a clear exponential behaviour (correlation coefficient R2 of 0.9998 and 0.998, respectively) with an asymptotical maximum reached at five or six DPN units (Figure 5). We want to point out that this behaviour is also found in  conjugated polyenes and polyphenylenes, although the effect in the homoconjugated systems described is obviously less pronounced. In conjugated systems properties such as absorption or the total  conjugation increases with the number of conjugated C=C units or aryl rings exhibiting a maximum around 12 to 16 carbon atoms in the case of polyenes.2,11b,31 The value obtained by us for homoconjugated aryl rings is almost the same than the described recently for ortho-phenylenes in which the effective conjugation length is approximately eight repeated units.31a This clear analogy shows that homoconjugation is an effective mechanism for the delocalization of electrons within the molecule. On the other hand, the absorption spectra of the DPM trimer (reference compound 19), resembles that of DPM. In this case, only forbidden transitions with low  values in the region 260-275 nm are observed (244-269 nm,  = 265-490 for DPM). No trace of homoconjugation band at 248 nm was detected. 31 For studies on effective conjugation length, see: a) J. He, L. C. Jason, S. H. Wadumethrige, K. Thakur, L. Dai, S. Zou, R. Rathore, S. Hartley, J. Am. Chem. Soc. 2010, 132, 13848-13857; b) M. Banerjee, R. Shukla, R. Rathore, J. Am. Chem. Soc. 2009, 131, 1780-1786; c) J. Rissler, Chem. Phys. Lett. 2004, 395, 92-96; d) H. Meier, U. Stalmach, H. Kolshorn, Acta Polym. 1997, 48, 379-384; e) R. E. Martin, U. Gubler, J. Cornil, M. Balakina, C. Boudon, C. Bosshard, J.-P. Gisselbrecht, F. Diederich, P. Günter, M. Gross, J.-L. Brédas, Chem. Eur. J. 2000, 6, 3622-3635; f) R. E. Martin, T. Mäder, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 817-821; g) J. Grimme, M. Kreyenschmidt, F. Uckert, K. Müllen, U. Scherf, Adv. Mater. 1995, 7, 292-295. Capítulo 1.1 38 Figure 5. Plot of the experimental and computed max versus the number of DPN units. To further support this finding, we also computed the bond alternation parameter r of the aryl group in the considered oligomers: Equation 2 The r parameter has been traditionally used as indicator of the strength of  conjugation in typical push-pull systems (i.e. the amount of charge-transfer from the donor to the acceptor moiety).32 In benzene, the r value equals 0, whereas values between 0.08 and 0.10 are found in fully quinoid rings. The computed r values using the fully optimized geometries of compounds 6-10 are low (in the range of 0.003 to 0.008) in comparison to  conjugated systems. This is of course not surprising if we take into account the homoconjugated nature of these oligomers. However, the calculated numbers clearly indicate 32 a) C. Dehu, F. Meyers, J.-L. Brédas, J. Am. Chem. Soc. 1993, 115, 6198-6206; b) A. Hilger, J.-P. Gisselbrecht, R. R. Tykwinski, C. Boudon, M. Schreiber, R. E. Martin, H. P. Lüthi, M. Gross, F. Diederich, J. Am. Chem. Soc. 1997, 119, 2069-2078; c) I. Fernández, G. Frenking, Chem. Comm. 2006, 5030-5032. Capítulo 1.1 39 that the r (that is, the electronic delocalization) increases with the number of DPN units in the oligomer33 reaching again a maximum around the pentamer or hexamer (see Table 1). TD-DFT calculations assign the experimentally observed absorptions to the HOMO-LUMO vertical transition. From the data in Table 1, the oscillator strength of the vertical transition steadily increases with the length of the oligomer, thus indicating stronger transitions for the higher members of the series. As readily seen in Figure 6, both the HOMO and LUMO can be viewed as delocalized molecular orbitals which involve the  systems of the aryl groups. Interestingly, in the LUMO there exists a clear electronic communication between the * molecular orbitals of each aryl groups. This * extended molecular orbitals also resemble the * molecular orbitals of conjugated polyenes. Similarly, the HOMO-LUMO gap of the considered homoconjugated oligomers steadily decreases with the number of DPN units. Figure 6. Frontier orbitals of compounds 6 (top) and 8 (bottom). Besides this, new absorptions at shorter wavelengths are observed in the spectra of the oligomers: 10 (222 nm), 11 (232 nm) and 12 (228 and 231 nm). TD-DFT calculations also reproduce these high-energy absorptions well. As seen in Table 1, the nature of these vertical transitions depends on the 33 Compound 7 possesses a surprisingly high δr value. The reasons for this anomalous behaviour are not fully understood so far. Capítulo 1.1 40 considered system. Moreover, their corresponding oscillator strength is quite low, indicating weak electronic transitions. 1.1.3.2 7,7-Diarylnorbornanes 11-13 As mentioned previously, the absorption spectrum of DPN shows a new homoconjugation band centered at 228 nm (ε = 103400) that is not observed in DPM. This absorption is due to the cofacial conformation of DPN. Small deviations from cofaciallity should affect the orbital overlap between the aryl rings and diminish the homoconjugation. Thus, the homoconjugation band in DPN derivative 11 is hypso- and hypochromically shifted (max = 218 nm, ε = 10900). In this case, the steric hindrance between the methyl group at the orto position and the bridgehead hydrogen atom forces the rotation of the aryl ring resulting in a computed torsional angle Corto-Cipso-C7-Cipso of 77.40 (88.30 in DPN). Figure 7. Variation of energy (∆E) (black line) and calc (dotted line) with the torsional angle in 6. In order to gain information about the influence of the torsional angle on the homoconjugation between the aryl rings of DPN’s, we have computed the variation of the energy and calc of the different conformations of the parent Capítulo 1.1 41 homoconjugated compound 6 from the cofacial disposition to the orthogonal conformation (Figure 7). As readily seen, the homoconjugation band is blue shifted as the torsional angle increases from -800 to 1800 as a consequence of the decrease in the orbital overlap. According to these calculations, the energy difference between the cofacial and orthogonal conformations, which is a transition state, is 9.1 kcal.mol-1. From this value, the G at 25 0C (G298), that is the rotational barrier in DPN, was estimated to be 11.2 kcal.mol-1. This result seems to be quite reliable since a value of 16.7 kcal.mol-1 is obtained for 7-(2- fluorophenyl)-7-phenylnorbornane following the same methodology. The librational barrier obtained by D-NMR in this case is 17.0 kcal.mol-1.25 On the other hand, the spectra of 12 and 13 show broad absorption bands in the region 228-300 nm with max at 259 nm and 268 nm respectively, bathochromically shifted by 12 nm and 21 nm in comparison to the absorption of biphenyl (247 nm) due to homoconjugative interaction.25,27 On the contrary, the spectra of reference compounds 17 and 18 show max at 251 nm and 257 nm respectively. The observed red-shifts can be ascribed to the higher electronic delocalization in 12 and 13 due to homoconjugation compared to the parent compounds 17 and 18, respectively, as reflected in the high computed second-order perturbation energies for the -* donations. As instance, a value of ΔE(2) = -1.63 kcal.mol-1 is found for compound 13 whereas no similar donation was found for compound 18. Moreover, the absorption maxima of 12 and 13 are also red-shifted respect to the parent homoconjugated compound 6. As expected, the donation from the biphenyl group to the adjacent phenyl group in 12 is ΔΔE(2) = -0.66 kcal.mol-1 higher than the donation from the phenyl group in the parent homoconjugated 6 species in good agreement with the higher -donation ability of the biphenyl substitutent. Similarly, the -acceptor ability of the biphenyl group is also higher (ΔΔE(2) = - 0.67 kcal.mol-1). Analogously to the above discussed oligomers, TD-DFT calculations also assign the observed UV/Vis absorptions to the HOMO-LUMO vertical transitions whose oscillator strengths are comparable to compounds 7-10. Again, the HOMO can be considered as a -molecular orbital involving the Capítulo 1.1 42 aromatic rings while the LUMO is the *-extended molecular orbital similar to those depicted in Figure 6. 1.1.3.3 Systems with alternating homoconjugation conjugation The UV/Vis spectra of compounds 14 and 15 show absortion maxima at 272 nm and 295 nm respectively.28 Comparison of these data with the max of biphenyl (247 nm), p-terphenyl (274 nm) and p-quaterphenyl clearly demonstrates the effect of electron delocalization by homoconjugation. Thus, the max of biphenyl is red shifted by 25 nm when two homoconjugated subunits are attached at the para positions (compound 14). A similar effect is observed for p-terphenyl and compound 15 (a red shift of 21 nm). According to these data, the effect of two homoconjugated phenyl rings on the HOMO- LUMO energy gap is similar to that caused by one conjugated phenyl ring since the max of 14 and p-terphenyl (272 vs. 274 nm) and 15 and p- quaterphenyl (295 nm vs. 292 nm) are very similar.28 In this occasion, TD-DFT calculations assign the observed UV/Vis absorptions to the HOMO-LUMO vertical transitions as well, that is a -* transition. The shape of the molecular orbitals is similar to those of the previously discussed systems with the remarkable difference that the HOMO is practically localized in the biphenyl or p-terphenyl fragment with negligible coefficients in the adjacent phenyl groups (Figure 8). Figure 8. Frontier orbitals of compounds 14 (top) and 15 (bottom). Capítulo 1.1 43 From the above findings, it can be concluded that the DPN moiety permits the electronic communication/delocalization between the homoconjugated aryl groups directly attached to the C7 carbon atom of norbornane. Therefore, adequate modifications of the electronic structure of these aromatic substituents should effectively alter the electronic properties of the systems. To check this hypothesis and to provide further support to our study on electron delocalization in homoconjugated systems, we decided to computationally study push-pull systems based on the parent homoconjugated compound 6. Thus, a nitro group was introduced as -acceptor group in para position of one of the phenyl rings, while different -donor and -acceptors groups were added in the para position of the adjacent phenyl ring. The calculated TD-DFT wavelengths (again ascribed to the HOMO-LUMO vertical transitions) nicely correlate with the corresponding Taft-R substituent constants34 as clearly seen from the excellent linear relationship found when plotting both parameters (correlation coefficient of 0.999 and standard deviation of 0.009, see Figure 9). This latter result confirms the ability of the homoconjugation to provoke the delocation of electrons between both arylic substituents. Furthermore, the calculations also predict that the different chemical modifications in the substituents attached to the DPN fragment can indeed induce dramatic changes in their absorption spectra by modifying the electronic structure of the system. 34 C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195. Capítulo 1.1 44 Figure 9. Plot of the computed λmax versus the σR-Taft constants for compounds 6a-e. 1.1.4 Conclusion Neutral homoconjugation is quite an elusive phenomenon that has been described only in cyclic systems such as cycloheptatriene and some tris- homoaromatics (homobenzenes). On the contrary, in macrocyclic oligoacetylenes no electron delocalization mediated by homoconjugative interactions is observed. The situation in open chain aromatic homoconjugated molecules described in this work seems to be completely different. Thus, from the joint computational-experimental study reported in this paper, the following conclusions can be drawn: i. The DPN moiety effectively allows the electronic communication/delocalization between the homoconjugated aryl groups directly attached to the C7 carbon atom. This is mainly due to the enforced cofacial conformation imposed by the norbornane fragment. Capítulo 1.1 45 ii. The observed new bands in the corresponding UV/Vis spectra can be ascribed to the HOMO-LUMO transition. Both orbitals possess a remarkable -character and thus, the transition can be considered as - *. iii. Aromatic homoconjugated compounds, mainly in the case of systems with extended homoconjugation, behave similarly to analogous polyphenylenes and polyenes. The effective homoconjugatuion length has been estimated in the range of 6-7 aromatic rings. Consequently, DPN derivatives can be successfully used in the synthesis of chromophores with NLO properties35 or as efficient bridges in D-B-A systems for Dexter type photoinduced energy transfer.36 iv. The homoconjugative interaction between the aromatic rings can be clearly demonstrated in substituted systems. Adequate chemical modifications in the aromatic substituents attached to the DPN fragment can indeed induce dramatic changes in their absorption spectra by modifying the electronic structure of the system. 35 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, G. Rojo, F. Agulló-López, J. Phys Chem. B 2000, 104, 43-47. 36 J. Osío Barcina, N. Herrero-García, F. Cucinotta, L. De Cola, P. Contreras- Carballada, R. M. Williams, A. Guerrero-Martínez, Chem. Eur. J. 2010, 16, 6033- 6040. Capítulo 1.1 46 1.1.5 Experimental Section Scheme 3. Synthetic route for the preparation of 11, 17, 18 and 19. General Information: 1H and 13C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are given in ppm relative to TMS (1H, 0.0 ppm) and CDCl3 ( 13C, 77.0 ppm). Coupling constants are given in Hertz. All experiments involving organometallic reagents were carried out under argon atmosphere using standard Schlenk techniques. Anhydrous Capítulo 1.1 47 solvents were distilled under argon following standard procedures. Flash chromatography was performed over silica gel 60 (230-400 mesh). All commercially available compounds were purchased from commercial suppliers and used without further purification. The preparation of 20,26 23 and 2429 have been described previously. Experimental procedures: Compound 11: 1.20 mL (13.65 mmol) of TfOH were slowly added to a solution of 2.57 g (13.56 mmol) of 20 in 25 mL of p-xilene, vigorously stirred at 0º C. After 1 h, the reaction mixture was poured on 25 mL of water and washed with saturated NaHCO3 solution (2 x 25mL) and water (1 x 25mL). After drying the organic solution over MgSO4 the solvent was evaporated and the residue purified by flash chromatography (silica gel/hexane) to give 2.45 g (65%) of 11. 1H NMR (300 MHz, CDCl3):  = 7.50-7.41 (m, 3H), 7.23 (t, J = 7.8 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 6.88- 6.85 (m, 2H), 3.18-3.10 (m, 1H), 2.96-2.90 (m, 1H), 2.29 (s, 3H), 2.22 (s, 3H), 2.15- 1.86 (m, 2H), 1.50-1.00 ppm (m, 6H); 13C NMR (CDCl3, 75 MHz): δ = 143.7, 142.9, 134.7, 133.2, 131.9, 129.4, 128.2, 127.6, 126.5, 125.0, 65.7, 45.3, 39.6, 29.0, 28.7, 27.9, 27.5, 21.7, 21.2 ppm; IR (neat): ῦ= 3010 (m), 2980 (s), 2880 (m), 1600 (w), 1500 (m), 1475 (m), 1455 (m), 810 (m), 710 cm-1 (m); MS (EI, 70 eV) m/z (%): 276 (87) [M+], 262 (17), 261 (74), 247 (25), 233 (15), 221 (16), 219 (32), 207 (22), 205 (22), 203 (17), 202 (15), 195 (56), 193 (57), 192 (17), 191 (24), 180 (19), 179 (29), 178 (41), 171 (66), 170 (22), 165 (41), 157 (24), 143 (46), 142 (22), 141 (30), 129 (59), 128 (47), 119 (25), 118 (17), 117 (29), 116 (18), 115 (76), 105 (75), 103 (18), 91 (100), 79 (25), 77 (39), 67 (22), 55 (27), 53 (18), 51 (19); Elemental analysis (%) calc for C21H24 (276.42): C 91.25, H 8.75; found: C 91.28, H 8.71. General procedure for the synthesis of alcohols 21, 22 and 25: In a dry Schlenk flask placed under argon n-BuLi (1.4 mL, 2.2 mmol, 1.6M in hexane) was added dropwise to a solution of the corresponding bromide (2.2 mmol) in 5 mL of THF at -78 ºC. After stirring 15 min, a solution of 2.2 mmol of the aldehyde in 5 mL of THF was added to the slurry. The reaction mixture was allowed to warm to room temperature, stirred for 2 h, poured into water (50 mL) and extracted with dichloromethane (3 x 15 mL). The organic solution was washed with water (40 mL) and dried over MgSO4. After removal of the solvent under reduced pressure, the resulting crude product was purified by flash chromatography (silica gel, hexane/Et2O 9:1). Alcohol 21:37 Yield: 63%; 1H NMR (300 MHz, CDCl3):  = 7.67-7.55 (m, 4H), 7.53- 7.29 (m, 14H), 5.88 (s, 1H), 2.52 ppm (bs, 1H, OH); 13C NMR (CDCl3, 75 MHz): δ = 143.8, 142.9, 140.8, 140.5, 128.9, 128.6, 127.7, 127.4, 127.3, 127.2, 127.1, 126.7, 76.1 ppm. 37 A. F. Trindade, P. M. P. Gois, L. F. Veiros, V. André, M. T. Duarte, C. A. M. Afonso, S. Caddick, F. G. N. Cloke, J. Org. Chem. 2008, 73, 4076-4086. Capítulo 1.1 48 Alcohol 22:38 Yield: 61%; 1H NMR (300 MHz, CDCl3):  = 7.61 (m, 8H), 7.59-7.42 (m, 8H), 7.37 (t, J = 7.2 Hz, 2H), 5.94 (s, 1H), 2.32 ppm (bs, 1H, OH); 13C NMR (CDCl3, 75 MHz): δ = 142.9, 140.9, 140.7, 128.9, 127.4, 127.2, 127.1, 75.9 ppm. Alcohol 25:39 Yield: 67%; 1H NMR (300 MHz, CDCl3):  = 7.42-7.22 (m, 10H), 7.18- 7.07 (m, 4H), 5.81 (s, 2H), 3.93 (s, 2H), 2.18 ppm (bs, 2H); 13C NMR (CDCl3, 75 MHz): δ = 143.9, 141.8, 140.5, 129.2, 128.6, 127.7, 126.9, 126.6, 76.2, 41.4 ppm. General procedure for the synthesis of aromatic hydrocarbons 17, 18 and 19: The alcohol (0.8 mmol) was dissolved in 10 mL of TFA and 302 mg (0.8 mmol) of sodium borohydride were added in small portions during 5 min. The reaction mixture was stirred for 40 min and poured into 50 ml of water. The suspension was made alkaline by addition of sodium hydroxide solution (10%) and extracted with Et2O (3 x 20 mL). The organic solution was washed with water (2 x 20 mL) and brine (20 mL) and dried over MgSO4. After removal of the solvent under reduced pressure the crude product was purified by flash chromatography (silica gel, hexane). Compound 17: 40 Yield: 77%; 1H NMR (300 MHz, CDCl3):  = 7.66 (d, J = 7.9 Hz, 2H), 7.61 (d, 8.1 Hz, 2H), 7.50 (t, J = 7.2 Hz), 7.45-7.32 (m, 8H), 4.10 ppm (s, 2H); 13C NMR (CDCl3, 75 MHz): δ = 141.1, 141.1, 140.4, 139.1, 129.4, 129.1, 128.8, 128.6, 127.3, 127.2, 127.1, 126.3, 41.7 ppm. Compound 18: 41 Yield: 75%; 1H NMR (300 MHz, CDCl3):  = 7.69-7.61 (m, 8H), 7.50 (t, J = 7.2 Hz, 4H), 7.43-7.33 (m, 6H), 4.12 ppm (s, 2H); 13C NMR (CDCl3, 75 MHz): δ = 141.1, 140.3, 139.2, 129.5, 128.9, 127.4, 127.2, 127.1, 41.3 ppm. Compound 19: 42 Yield: 84%; 1H NMR (300 MHz, CDCl3):  = 7.41-7.33 (m, 4H), 7.32-7.24 (m, 6H), 7.19 (s, 8H), 4.03 (s, 4H), 4.00 ppm (s, 2H); 13C NMR (CDCl3, 75 MHz): δ = 141.3, 139.0, 138.9, 129.1, 129.0, 128.5, 126.1, 41.6, 41.2 ppm. 38 E. Weber, W. Seichter, I. Goldberg, Chem. Ber. 1990, 123, 811-820. 39 a) D. Braun, H. Maid, Angew. Makromol. Chem. 1993, 212, 93-102; b) F. C. De Schryver, T. Van Thien, G. Smets, J. Polymer Sci.,Polymer Chem Ed. 1975, 13, 227- 252. 40 J. R. Schmink, N. E. Leadbeater, Org. Lett. 2009, 11, 2575-2578. 41 S. E. Asher, S. E. Browne, E. H. Cornwall, J. K. Frisoli, E. A. Salot, E. A. Sauter, M. A. Trecoske, P. S. Veale, Jr., J. Am. Chem. Soc. 1984, 106, 1432-1440. 42 A. R. Katritzky, M. Balasubramanian, M. Siskin, Energy & Fuels 1990, 4, 499-505. Capítulo 1.1 49 12-HOMO 13-HOMO 12-LUMO 13-LUMO HOMO-LUMO gap /eV 4.94 4.70 Figure 10. Frontier orbitals of compounds 12 and 13. Capítulo 1.1 50 Capítulo 1.2 51 1.2 Efficient Electron Delocalization Mediated by Aromatic Homoconjugation in 7,7-Diphenylnorbornane Derivatives Efficient electron delocalization by aromatic homoconjugated 7,7- diphenylnorbornane (DPN) in alternated homoconjugated-conjugated block copolymers and reference compounds is revealed by photophysical and electrochemical measurements. The synthesis of the polymers was achieved by Suzuki polycondensation reaction. Effective electron delocalization by DPN is demonstrated by the significant red shifts observed in the absorption and emission spectra and the variation of the energy band gap of the polymers and monomeric model compounds in comparison to a series of oligophenylenes used as references (p-quaterphenyl, p-terphenyl and biphenyl). The electron delocalization is also clearly demonstrated by the lower oxidation potential measured for homoconjugated model compound in comparison to p-terphenyl. The results show that the electron delocalization caused by two homoconjugated aryl rings is comparable to the effect produced by one conjugated aryl ring. (J. Org. Chem. 2009, 47, 7148-7156) Capítulo 1.2 52 1.2.1 Introduction Electron delocalization in covalently linked molecules is one of the most important and widely studied phenomena in organic chemistry.1 During the last decades, conjugated polymers2 and oligomers3 have attracted great interest in material science due to their fascinating semiconducting and NLO properties, among others. Orbital overlap in these systems is the basis of their potential applications in the emerging areas of molecular electronics and nanotechnology,4 as organic semiconductors,5 light-emitting diodes (OLEDs),6 organic field effect transistors (OFEDs),7 polymer lasers,8 organic photovoltaic and solar cells9 and biological and chemical sensors.10 It is well-known that the 1 Chem. Rev. 2005, 105, number 10: special issue on delocalization-pi and sigma. 2 Handbook of Conducting Polymers, Skotheim, T. A., Reynolds, J. R., Eds.; CRC Press, Taylor & Francis Group, London, 2007. 3 Electronic Materials: The Oligomer Approach, Müllen K., Wegner, G., Eds.; Wiley- VCH, New York, 1998. 4 a) Introduction to Molecular Electronics, Petty, M. C., Bryce, M. R., Bloor, D., Eds.; Oxford University Press, New York, 1995. b) Tour, J. M. Acc. Chem. Res. 2000, 33, 791-804. c) Wassel, R. A.; Gorman, C. B. Angew. Chem. Int. Ed. 2004, 43, 5120-5123. d) Dekker Encyclopedia of Nanoscience and Nanotechnology, Schwarz, J. A., Contescu, C. I., Putyera, K., Eds.; Marcel Dekker, New York, 2004. e) Organic Light- Emitting Devices. Synthesis, Properties and Applications, Müllen, K., Scherf U., Eds.; Wiley-VCH, Weinheim, 2006. f) Gómez, R.; Segura, J. L. In Materials for Organic Solar Cells, in Handbook of Organic Electronics and Photonics, Vol. 3, Nalwa H. S., Ed.; American Scientific Publishers, Valencia, California, 2007. 5 a) Shirakawa, H. Angew. Chem. Int. Ed. 2001, 40, 2574-2580. b) MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581-2590. 6 a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402- 428. b) Mitschke, U.; Baüerle, P. J. Mater. Chem. 2000, 10, 1471-1507. c) Heeger, A.; Angew. Chem. Int. Ed. 2001, 40, 2591-2611. d) Veinot, J. G. C.; Marks, T. J. Acc. Chem. Res. 2005, 38, 632-643. e) Organic Electroluminescence, Kafafi Z. H., Ed.; Taylor Francis, Boca Raton, 2005. 7 a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99-117. b) Sirringhaus, H. Adv. Mater. 2005, 17, 2411-2425. c) Murphy, A. R.; Fréchet, J. M. J. Chem. Rev. 2007, 107, 1066-1096. 8 a) Hide, F.; Díaz-García, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430-436. b) McGehee, M. D.; Heeger, A. J. Adv. Mater. 2000, 12, 1655-1668. c) Kranzelbinder, G.; Toussaere, E.; Zyss, J.; Pogantsch, A.; List, E. W. J.; Tillmann, H.; Hörhold, H. H. Appl. Phys. Lett. 2002, 80, 716-718. d) Samuel, I. W. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272-1295. 9 a) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15- 26. b) Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. Adv. Mater. 2005, 17, 66-71. c) Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A. C.; Müllen, K. J. Mater. Chem. 2006, 16, Capítulo 1.2 53 nature of the interactions between the  systems in these oligomers and polymers govern their properties and that small variations in their structures can modify the characteristics and, as a result, the applications of these materials. Therefore, the study of structure/properties relationships to develop new applications is of great importance.2-4,11 A very interesting way to achieve structure/properties studies is incorporating non-conventional ways of electronic communication in electron delocalized molecules. In that respect, the search of alternative modes of interaction between organic  systems has recently led to a variety of new structures with promising electronic features: aromatic derivatives with toroidal delocalization,12,13,14,15 spiro-compounds,16,17,18 cross-conjugated molecules19,20,21 and -stacked systems.22,23,24,25,26,27,28,29 In particular, -stacked 96-100. d) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324- 1338. 10 a) Torsi, L.; Tanese, M. C.; Cioffi, N.; Gallazzi, M. C.; Sabbatici, L.; Zambonin, P. G.; Raos, G.; Meille, S. V.; Giangregorio, M. M. J. Phys. Chem. B 2003, 107, 7589- 7564. b) Bartic, C.; Borghs, G. Anal. Bioanal. Chem. 2006, 384, 354-365. 11 a) Roncali, J. Chem. Rev. 1997, 97, 173-205. b) Horowitz, G. J. Mater. Chem. 1999, 9, 2021-2026. 12 Lambert, C. Angew. Chem. Int. Ed. 2005, 44, 7337-7339. 13 a) Chebny, V. J.; Shukla, R.; Rathore, R. J. Phys. Chem. A 2006, 110, 13003-13006. b) Shukla, R.; Lindeman, S. V.; Rathore, R. Org. Lett. 2007, 9, 1291-1294. 14 a) Sun, D.; Rosokha, S. V.; Kochi, J. K. Angew. Chem. Int. Ed. 2005, 44, 5133-5136. b) Rosokha, S. V.; Neretin, I. S.; Sun, D.; Kochi, J. K. J. Am. Chem. Soc. 2006, 128, 9394-9407. 15 Wakamiya, A.; Ide, T.; Yamaguchi, S. J. Am. Chem. Soc. 2005, 127, 14859-14866. 16 Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011-1065. 17 Abe, J.; Shirai, Y.; Nemoto, N.; Nagase, Y. J. Phys. Chem. A 1997, 101, 1-4. 18 Luo, Y.; Norman, P.; Agren, H. Chem. Phys. Lett. 1999, 303, 616-620. 19 a) Tykwinski, R. R.; Zhao, Y. Synlett 2002, 1939-1953. b) Gholami, M.; Tykwinski, R. R. Chem. Rev. 2006, 106, 4997-5027. 20 a) Klokkenburg, M.; Lutz, M.; Spek, A. L.; van der Maas, J. H.; van Walree, C. A. Chem. Eur. J. 2003, 9, 3544-3554. b) van Walree, C. A.; Kaats-Richters, V. E. M.; Veen, S. J.; Wieczorek, B.; Van der Wiel, J. H.; Van der Wiel, B. C. Eur. J. Org. Chem. 2004, 3046-3056. 21 Ponce Ortíz, R.; Malavé Osuna, R.; Hernández, V.; López Navarrete, J. T.; Vercelli, B.; Zotti, G.; Sumerin, V. V.; Balenkova, E. S.; Nenajdenko, V. G. J. Phys. Chem. A 2007, 111, 841-851. 22 a) Morisaki, Y.; Chujo, Y. Angew. Chem. Int. Ed. 2006, 45, 6430-6437. b) Morisaki, Y.; Murakami, T.; Chujo, Y. Macromolecules 2008, 41, 5960-5963. c) Morisaki, Y.; Murakami, T.; Sawamura, T.; Chujo, Y. Macromolecules 2009, 42, 3656-3660. Capítulo 1.2 54 systems are very interesting as model compounds in the study of electron transfer processes mediated by DNA oligonucleotides.27,30,31 In recent years we have focused our attention on aromatic homoconjugated systems derived from 7,7-diphenylnorbornane (1, DPN, Figure 1).32 DPN is an easily accessible homoconjugated and preorganized system that can be considered as an example of open-chain cyclophane (protophane, according to the definition by Vögtle)33,34 since the H-exo atoms of the norbornane skeleton hinders the rotation of the aryl rings, resulting in a cofacial aromatic -system 23 Mataka, S.; Thiemann, T.; Taniguchi, M.; Sawada, T. Synlett 2000, 1211-1227. 24 a) Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 11956-11962. b) Bartholomew, G. P.; Bazan, G. C. Acc. Chem. Res. 2001, 34, 30-39. c) Seferos, D. S.; Trammell, S. A.; Bazan, G. C.; Kushmerick, J. G. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8821-8825. d) Hong, J. W.; Woo, H. Y.; Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 7435- 7443. 25 a) Wang, W.; Xu, J.; Lai, Y.-H.; Wang, F. Macromolecules 2004, 37, 3546-3553. b) Wang, W.-L.; Xu, J.; Sun, Z.; Zhang, X.; Lu, Y.; Lai, Y.-H. Macromolecules 2006, 39, 7277-7285. 26 a) Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. J. Am. Chem. Soc. 2003, 125, 8712- 8713. b) Rathore, R.; Abdelwahed, S. H.; Kiesewetter, M. K.; Reiter, R. C.; Stevenson, C. D. J. Phys Chem. B 2006, 110, 1536-1540. 27 a) Kang, Y. K.; Rubtsov, I. V.; Iovine, P. M.; Chen, J.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 8275-8279. b) Zheng, J.; Kang, Y. K.; Therien, M. J.; Beratan, D. N. J. Am. Chem. Soc. 2005, 127, 11303-11310. 28 Shibahara, M.; Watanabe, M.; Iwanaga, T.; Matsumoto, T.; Ideta, K.; Shinmyozu, T. J. Org. Chem. 2008, 73, 4433-4442. 29 a) Nakano, T.; Yade, T. J. Am. Chem. Soc. 2003, 125, 15474-15484. b) Coropceanu, V.; Nakano, T.; Gruhn, N. E.; Kwon, O.; Yade, T.; Katsukawa, K.; Brédas, J.-L. J. Phys. Chem. B 2006, 110, 9482-9487. 30 Lewis, F. D.; Liu, J.; Weigel, W.; Rettig, W.; Kurnikov, I. V.; Beratan, D. N. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12536-12541. 31 Treadway, C. R.; Hill, M. G.; Barton, J. K. Chem. Phys. 2002, 281, 409-428 and references therein. 32 a) García Martínez, A.; Osío Barcina, J. The Diphenylmethane Moiety In Encyclopedia of Supramolecular Chemistry, Atwood, J. L., Steed J. W., Eds.; Marcel Dekker, New York, 2004. b) García Martínez, A.; Osío Barcina, J.; Albert, A.; Cano, F. H.; Subramanian, L. R. Tetrahedron Lett. 1993, 34, 6753-6756. 33 Vögtle, F. In Cyclophane Chemistry, Wiley, New York, 1993. Chap. 9, p. 405. 34 For recent examples of π-stacked protophanes, see: a) Kurth, T. L.; Lewis, F. D. J. Am. Chem. Soc. 2003, 125, 13760-13767. b) Lewis, F. D.; Daublain, P.; Delos Santos, G. B.; Liu, W.; Asatryan, A. M.; Markarian, S. A.; Fiebig, T.; Raytchev, M.; Wang, Q. J. Am. Chem. Soc. 2006, 128, 4792-4801. c) Zeidan, T. A.; Wang, Q.; Fiebig, T.; Lewis, F. D. J. Am. Chem. Soc. 2007, 129, 9848-9849. Capítulo 1.2 55 bridged by a sp3-hybridized spacer (homoconjugated), with barriers to rotation of the aryl rings in DPN´s in the range of 12.5-17.5 kcal.mol-1.32,35 On the basis of these characteristics, DPN has shown to be a good model system for the study of aromatic face-to-face35 and edge to face36 interactions, the design of homoconjugated NLO-active chromophores37 and the synthesis of preorganized macrocycles able to act as molecular clocks.38 Figure 1. Structures of 7,7-diphenylnorbornane (1) (DPN) and polymer 2. On the other hand, organic oligomers and polymers in which electron delocalization takes place through aromatic homoconjugation remain almost unexplored, despite their potential interest due to the similar properties that these non-conventional delocalized systems could exhibit in comparison to conjugated oligomers and polymers. In previous works we have described the first examples of a soluble polymer with alternating conjugation- homoconjugation39 as well as homoconjugated oligomers40 based on DPN. In 35 García Martínez, A.; Osío Barcina, J.; de Fresno Cerezo, A.; Gutiérrez Rivas, R. J. Am. Chem. Soc. 1998, 120, 673-679. 36 García Martínez, A.; Osío Barcina, J.; de Fresno Cerezo, A. Chem. Eur. J. 2001, 7, 1171-1175. 37 García Martínez, A.; Osío Barcina, J.; de Fresno Cerezo, A.; Rojo, G.; Agulló- López, F. J. Phys Chem. B 2000, 104, 43-47. 38 García Martínez, A.; Osío Barcina, J.; Colorado Heras, M. R.; de Fresno Cerezo, A.; Torres Salvador, M. R. Chem. Eur. J. 2003, 9, 1157-1165. For a description of stereorigid ansa-titanocenes derived from 7,7-bisindenylnorbornane, see: Lobón-Poo, M.; Osío Barcina, J.; García Martínez, A.; Expósito, M. T.; Vega, J. F.; Martínez- Salazar, J. Reyes, M. L. Macromolecules 2006, 39, 7479-7482. 39 García Martínez, A.; Osío Barcina, J.; de Fresno Cerezo, A.; Schlüter, A.-D.; Frahn, J. Adv. Mater. 1999, 11, 27-31. Capítulo 1.2 56 both cases, the cofacial DPN subunits contribute effectively to the electronic delocalization along the structures of the molecules. In the case of homoconjugated oligomers derived from DPN we have shown that the effective length of homoconjugation is in the range 5-6 phenyl rings.40 Some examples of systems that include diphenylmethane (DPM) subunits in their structure have been described, but in these cases, non-cofacial DPM acts mainly as conjugation interrupter or barrier.4b,41,42,43,44 In conjugated polymeric systems, block copolymers are obtained by the introduction of non-conjugative interrupters in the main chain. The strategy of including conjugated sequences separated by non-conjugated spacers or fragments is an important tool in order to tailor the morphology, processability, stability as well as optical and electrical properties of the corresponding materials since such polymers are expected to retain the electronic and optical properties of the conjugated oligomeric chromophores.2,4,45 In the present work we gain further insight into the synthesis and properties of a new class of fluorescent polymers with alternated homoconjugated- conjugated backbone structure. Unlike similar block copolymers, cofacial DPN´s contribute efficiently to electron delocalization along the polymer chain. 40 Caraballo-Martínez, N.; Colorado Heras, M. R.; Mba Blázquez, M.; Osío Barcina, J.; García Martínez, A.; Torres Salvador, M. R. Org. Lett. 2007, 9, 2943-2946. 41 Tour, J. M.; Rawlett, A. M.; Kozaki, M.; Yao, Y.; Jagessar, R. C.; Dirk, S. M.; Price, D. W.; Reed, M. A.; Zhou, C.-W.; Chen, J.; Wang, W.; Campbell, I. Chem. Eur. J. 2001, 7, 5118-5134. 42 Peng, K.-Y.; Chen, S.-A.; Fann, W.-S. J. Am. Chem. Soc. 2001, 123, 11388-11397. 43 For examples of systems with alternating conjugation-π-stacking, see references 22, 24 and 25. 44 Cofacial π-stacked fluorenes with methylene bridges are described in reference 26. 45 Handbook of Polymer Synthesis, Kricheldorf, H. R., Nuyken, O., Swift G., Eds.; Marcel Dekker, New York, 2005. Capítulo 1.2 57 1.2.2 Results and Discussion 1.2.2.1 Synthesis of polymers and reference compounds In a previous paper39 we have described the synthesis of the alternating homoconjugated-conjugated polymer 2 (Figure 1) by Suzuki polycondensation reaction.46 Hexyl alkyl chains were introduced in the p-terphenyl segment in order to increase the solubility of the polymer. However, the steric hindrance caused by these chains increases the torsional angle between the aryl rings and, as a consequence, the conjugation in the p-terphenyl subunit and the electronic delocalization in the polymer decreased. Now we report the syntheses of two new block-copolymers with alternating homoconjugation-conjugation, 8 and 11 (Scheme 1) and compare their electronic properties with those found in polymer 2. Alkyl chains (n-C8H17), necessary to ensure the solubility of the polymers, are now introduced as substituents in the norbornane skeleton with the idea of increasing the conjugation in the p-terphenyl and biphenyl subunits. As can be seen, the main difference between 8 and 11 is the relative contribution of homoconjugation vs. conjugation to the backbone structure of the polymers, since 8 can be described as a series of DPN subunits bridged by p-phenylene rings, while in the case of 11, the DPN´s are linked together, yielding a polymer with a higher degree of homoconjugation than 8. 46 For reviews on synthesis of conjugated polymers by organometallic polycondensation reactions, see: a) Yamamoto, T. Macromol. Rapid Commun. 2002, 23, 583-606. b) Babudri, F.; Farinda, G. M.; Naso, F. J. Mater. Chem. 2004, 14, 11-34. For some recent examples of Suzuki polycondensation reactions, see: c) Kandre, R.; Feldman, K.; Meijer, H. E. H.; Schlüter, A. D. Angew. Chem. Int. Ed. 2007, 46, 4956- 4959. d) Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. J. Am. Chem. Soc. 2007, 129, 7236-7237. e) Brookins, R. N.; Schanze, K. S.; Reynolds, J. R. Macromolecules 2007, 40, 3524-3526. f) Kowitz, C.; Wegner, G. Tetrahedron 1996, 53, 15553-15574. g) Goodson, F. E.; Novak, B. M. Macromolecules 1997, 30, 6047-6055. Capítulo 1.2 58 Scheme 1. Synthetic route for the preparation of polymers 8 and 11. Capítulo 1.2 59 Polymers 8 and 11 were prepared starting from 2-endo-octyl-7- norbornanone (3)40 according to the synthetic procedure described in Scheme 1 employing the Suzuki polycondensation methodology followed previously by us in the case of 2.39 In order to facilitate the elucidation of the structures of polymers 8 and 11 as well as the study of their properties, we have also synthesized the corresponding monomeric reference compounds 13 and 15 by Suzuki coupling reactions of iodide 12 and boronates 7 or 14 (Scheme 2). Although boronic acids have been often directly used as reagents in poly- Suzuki couplings, boronic esters like 9, 10, or 14 have proven to be more advantageous in this kind of reactions, since the presence of the 1,1,2,2- tetramethylethylene glycol units has a protective effect on the labile boronic acid precursor. Simultaneously to the polymerization, a hydroxylation deprotection process takes place, in which the removal of such protecting groups as ethylene glycol does not affect the couplings.46f,g Polymer 8 is obtained in almost quantitative yield by Pd(0) catalyzed reaction of diiodide 6 with diboronate 7 (Scheme 1). If benzene-1,4-diboronic acid is used instead of 7, the yield of polymer 8 diminishes considerably. As it can be seen in Scheme 1, two different protocols were followed for the synthesis of polymer 11: (i) condensation of two different monomers 9 and 6 (AA-type monomer + BB-type monomer) and (ii) condensation of bifunctional monomer 10 (AB-type monomer). The best results (97%) were obtained by polycondensation reaction of iodoboronate 10 catalyzed by [Pd(PPh3)4]. Both polymers were obtained as white solids, soluble in common organic solvents (toluene, THF, CHCl3) and show the expected spectroscopic (1H- and 13C- NMR) signals. We have shown that one of the main advantages of Suzuki polycondensation reactions is the high regioselectivity of the catalytic process that allows the synthesis of structurally well defined polymers.39,46 The structures of 8 and 11 were confirmed by comparison of their NMR spectra with those of reference compounds 13 and 15. Gel permeation chromatography (GPC) revealed the following degrees of polymerization and polydispersities (PDI): 8: Mw = 3470, Mn = 2600, PDI = 1.3; 11: Mw = 6440, Mw = 4650, PDI = 1.4 (Table 1). The degrees of polymerization of 8 and 11 are lower than the obtained previously for the analogous polymer 2 under the same reaction conditions. The reason is Capítulo 1.2 60 probably their lower solubility due to the fact that only one alkyl chain has been introduced in the structure of norbornane. Scheme 2. Synthetic route for the preparation of reference compounds 13 and 15. 1.2.2.2 Optical and Electrochemical Properties The most relevant information from polymers 8 and 11 in relation to the extension of electron delocalization is obtained from their absorption spectra (Table 1) and the electrochemical behaviour of reference compound 13 (Table 2). It is well established that a convenient way to study electron delocalization in polymers is by means of absorption spectroscopy, comparing the spectra of the polymers and monomeric model compounds.47 Extension of -conjugation causes bathochromic shifts of the -* bands of the polymers relative to the 47 a) Morisaki, Y.; Chujo, Y. Macromolecules 2002, 35, 587-589. b) Morisaki, Y.; Ishida, T.; Chujo, Y. Macromolecules 2002, 35, 782-7877. c) Morisaki, Y.; Chujo, Y. Macromolecules 2003, 36, 9319-9324. d) Morisaki, Y.; Chujo, Y. Bull. Chem. Soc. Jpn. 2005, 78, 288-293. Capítulo 1.2 61 absorption of the reference compounds. The max values of 8 and 11 as well as of polymer 2 are shown in Table 1. Table 1. Properties of Polymers 8, 11 and 2. [a] Determined by GPC in THF by using a calibration curve of polystyrene standards. [b] In nm. The max values of reference compounds 13 and 15 as well as those of p- quaterphenyl, p-terphenyl and biphenyl are also included in Table 2 for comparison. The corresponding absorption spectra are displayed in Figure 2. Table 2. Properties of reference compounds 13 and 15, and p-quaterphenyl, p- terphenyl and biphenyl. Compound λabs [a,b] λem [a,b] Stokes shift[b] λonset [b] Eg opt /eV Eoxd 1/2 /V E HOMO /eV E LUMO /eV 13 295 361 66 335 3.70 1.11[c] 1.18,1. 43[d] -5.37 -1.67 15 272 325 53 310 4.00 - - - p- quaterphenyl 292 364 72 334 3.71 1.09[c] -5.41 -1.70 p-terphenyl 274 338 64 312 3.97 1.44[d] (1.5[e]) -5.56 -1.59 biphenyl 247 315 68 278 4.46 - - - [a] In CH2Cl2. [b] In nm. [c] In CH2Cl2 containing 0.1M nBu4NClO4 as supporting electrolyte; potentials were recorded using Ag/AgCl as reference electrode and values are given vs. Fc/Fc+. [d] In CH3CN containing 0.1M nBu4NClO4 as supporting electrolyte; potentials were recorded vs. Ag/AgCl and calibrated with Fc/Fc+. [e] See ref. [50b]. Comp. Yield (%) Mw [a] Mn [a] PDI[a] λabs /nm λem /nm Stokes shift[b] λonset /nm Eg opt /eV 8 94 3470 2600 1.3 298 366 68 342 3.62 11 97 6440 4650 1.4 283 337 54 319 3.89 2 94 21600 8820 2.4 268 348 80 308 4.02 Capítulo 1.2 62 Figure 2. a) Absorption spectra of polymer 8, 7,7-diphenylnorbornane (DPN) and p-terphenyl; b) Absorption spectra of polymer 11, DPN and biphenyl; c) Absorption spectra of polymers 8, 11, and 2. In previous works we shown that, as a result of aromatic homoconjugation, the absorption spectrum of cofacial DPN shows an additional band centred at 228 nm (Figure 2).32,35,40 In DPN oligomers, this band shows a red shift on going from the monomer to the tetramer (250 nm), pointing to effective electron delocalization in aromatic homoconjugated systems. When DPN subunits are attached at the end of p-terphenyl (reference compound 13) or biphenyl (reference compound 15), the characteristics absorption bands of these hydrocarbons48 are bathochromically shifted from 274 nm to 295 nm in the case of p-terphenyl (Δλ = 21 nm) and from 247 nm to 272 nm in the case of biphenyl (Δλ = 25 nm) (Table 2), showing the effect that the addition of 48 For a study on absorption spectra and effective conjugation length of oligo-p- phenylenes, see: Grimme, J.; Kreyenschmidt, M.; Uckert, F.; Müllen, K. Adv. Mater. 1995, 7, 292-295. Capítulo 1.2 63 homoconjugated subunits exerts on the electronic properties of the corresponding systems. On the other hand, the corresponding spectra of polymers 8 and 11 are red shifted in comparison to reference compounds 13 and 15, which further evidences the effect of homoconjugation on the electronic properties of these materials. Figure 2a shows the spectra of DPN, 8 and p-terphenyl and, as can be seen, the spectrum of 8 shows a broad absorption between 235-350 nm, centred at 298 nm and red shifted in comparison to p-terphenyl (24 nm). Polymer 11 (Figure 2b) shows also a broad band, centred at 283 nm and bathochromically shifted in comparison to biphenyl (36 nm) and 15 (11 nm). Finally, Figure 2c shows the spectra of polymers 8, 11 and 2. The higher value of λmax is observed for the polymer containing the longest conjugated subunit (polymer 8, p-terphenyl). As expected, introduction of alkyl chains, needed to ensure the solubility of the materials, in the structure of norbornane instead of in the p-terphenyl subunit (polymers 8 and 2) increases the conjugation and, as a consequence, a bathochromic shift (30 nm) of the corresponding absorption band is observed (Table 1). It should be noted that the λmax of polymer 11, with biphenyl instead of p-terphenyl subunits, is red shifted in comparison to polymer 2, also because of the distorting influence of the alkyl chains in the case of 2. The optical band gap (Eg opt) of polymers 8, 11, and 2 (Table 1) and reference compounds 13 and 15 (Table 2) can be obtained from the edge of the absorption spectra (λonset) using the equation Eg opt = 1240 / λonset. The smaller band gap is obtained for polymer 8 (3.62 eV), which shows higher electron delocalization than polymers 11 (3.89 eV) and 2 (4.02 eV). Comparison of the band gaps of compounds 13 (3.70) and 15 (4.00 eV) with those of p-terphenyl (3.97 eV) and biphenyl (4.46 eV) respectively indicates again an extension of the electron delocalization via homoconjugation with the DPN subunits. Therefore, the band gap of 13 (3.70 eV) is almost the same than the obtained for p-quaterphenyl (3.71 eV) and the corresponding band gap obtained for 15 (4.00 eV) very similar to the value measured for p-terphenyl (3.97 eV). These results, as well as the data obtained from the emission spectra (vide supra), suggest that the homoconjugative effect of two DPN´s is comparable to the delocalization caused by an additional conjugated phenyl ring. Capítulo 1.2 64 In summary, the results obtained from the absorption spectra of all the compounds described in this work clearly show that the homoconjugated subunits of DPN contribute significantly to electron delocalization and, hence, to the electronic properties of the polymers. This situation differs from the described for other poly(biphenylmethylene)s in which the methylene group interrupts the conjugation between the aromatic groups.49 We have also used cyclic voltammetry to prove the electronic delocalization caused by the homoconjugated DPN subunits. The compounds described in this work are relatively difficult to oxidize and reduce and, for this reason, we have limited the study to model compound 13 as well as p-terphenyl and p- quaterphenyl.50 We have determined the oxidation potentials both in CH2Cl2 and acetonitrile due to the different solubility of p-terphenyl and p- quaterphenyl. The results are summarized in Table 2. In CH2Cl2, 13 exhibited one reversible oxidation potential at 1.11 V (Figure 3) (two irreversible oxidation processes at 1.18 and 1.43 V were recorded in acetonitrile). As can be seen, the oxidation potential of 13 (1.11 V, CH2Cl2) is almost the same than the oxidation potential of p-quaterphenyl (1.09 V, CH2Cl2), but considerably lower than the oxidation potential of p-terphenyl (1.18 vs. 1.44 V, both measured in acetonitrile), which further supports the previously mentioned similar effect of two DPN’s and one phenyl ring on electron delocalization. On the other hand, the difference between the first and the second oxidation potentials in 13 (0.25 V, acetonitrile) points to efficient radical cation delocalization along the homoconjugated backbone. The corresponding HOMO energy values (Table 2) have been calculated from the onset of the oxidation potentials (13: 1.03 eV; p-quaterphenyl: 1.07 eV; p-terphenyl: 1.22 eV) using the equation -EHOMO = Eoxd onset + 4.44 eV.51 49 Only a few examples of poly(biphenylmethylene)s have been described: a) Del Rosso, P. G.; Almassio, M. F.; Antollini, S. S.; Garay, R. O. Opt. Mater. 2007, 30, 478-485. b) Beinhoff, M.; Bozano, L. D.; Scott, J. C.; Carter, K. R. Macromolecules 2005, 38, 4147-4156. c) Havelka-Rivard, P. A.; Nagai, K.; Freeman, B. D.; Sheares, V. V. Macromolecules 1999, 32, 6418-6424. See also: d) Del Rosso, P. G.; Almassio, M. F.; Aramendia, P.; Antollini, S. S.; Garay, R. O. Eur. Polym. J. 2007, 43, 2584-2593. e) Fáber, R.; Staško, A.; Nuyken, O. Macromol. Chem. Phys. 2001, 202, 2321-2327. 50 a) Bohnen, A.; Räder, H. J.; Müllen, K. Synth. Met. 1992, 47, 37-63. b) Eiras, C.; Foschini, M.; Faria, R. M.; Gonçalves, D. Mol. Cryst. Liq. Cryst. 2002, 374, 493-496. 51 Bredas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. J. Am. Chem. Soc. 1983, 105, 6555-6559. Capítulo 1.2 65 Unfortunately, we were not able to measure the reduction potential of 13, and therefore, the corresponding LUMO energy level as well of those of p- quaterphenyl and p-terphenyl could only be estimated from the HOMO energy levels and the optical band gaps (ELUMO = EHOMO + Eg opt) (Table 2). These results show that linking two DPN subunits to p-terphenyl increases the energy of the HOMO orbital of p-terphenyl from -5.56 eV to -5.37 eV, a value slightly higher than the HOMO orbital of p-quaterphenyl (-5.41 eV). A similar situation is observed for the LUMO energy values, pointing to the effective electronic delocalization caused by the homoconjugated DPN subunits. 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 I ( A ) E (V) 1.169 1.046 Figure 3. Cyclic voltammogram of compound 13 in 0.1M n-Bu4NClO4 – CH2Cl2. 1.2.2.3 Fluorescent properties The fluorescence emission spectra of polymers 8, 11 and 2 as well as of those of reference model compounds 13 and 15 (Tables 1 and 2) measured in CH2Cl2 are shown in Figure 4. The emission peaks of all the compounds studied are observed in the UV region, between 366-337 nm in the case of the polymers and at 361 nm and 325 nm in models 13 and 15, respectively, as expected for compounds with p-phenylenes as chromophores. The influence of including homoconjugated DPN subunits in the backbone structure of the polymers is again very clear by comparing the λem values of polymer 8 (366 nm), model compound 13 (361 nm), p-terphenyl (338 nm) and Capítulo 1.2 66 p-quaterphenyl (364 nm). The same trend is observed for the case of polymer 11 (337 nm), model compound 15 (325 nm) and biphenyl (315 nm). Figure 4. Absorption and emission spectra of polymers 8, 11 and 2 and reference compounds 13 and 15 in CH2Cl2 excited at their respective longest wavelength absorption maximum. The shapes of the absorption and emission spectra of polymers 11 and 2 and model compound 15 follow the mirror image rule, although in the cases of the emission spectra of 11 additional shoulders in the emission band start to be appreciable. On the contrary, the shapes of 8 and 13 do not follow the mirror image rule and resemble the shape observed for p-quaterphenyl. The breakdown of the mirror image symmetry in the optical/emission spectra of oligo(p-phenylene)s has been extensively studied52 and a clear correlation between the phenylene ring librations and the violation of the mirror symmetry rule has been be established. Therefore, the different shapes observed for the emission of polymers 8 and 2 can be attributable to the lower degree of torsional freedom of the p-terphenyl subunit of 2 caused by the alkyl chains, while in polymer 8, as well as in 13, the librations of the unsubstituted aryl rings are responsible of the unsymmetrical shapes observed in the emission spectra. It should be mentioned that the librational barrier of the aryl rings in DPN is considerably high (12.5 kcal/mol).32,35 The Stokes shifts of polymers 8 (68 nm) and 11(54 nm) (Table 1) are relatively large and very similar to the values of the corresponding reference 52 Heimel, G.; Daghofer, M.; Gierschner, J.; List, E. J. W.; Grimsdale, A. C.; Müllen, K.; Beljonne, D.; Brédas, J.-L.; Zojer, E. J. Chem. Phys. 2005, 122, 54501. 250 300 350 400 450 500 A b s o rp ti o n /E m is s io n ( a .u .) Wavelength (nm) Em. Abs. Abs. Em. Em. Abs. 2 13 8 250 300 350 400 450 500 A b s o rp ti o n /E m is s io n ( a .u .) Wavelength (nm) Abs. Em. Abs. Em. 11 15 Capítulo 1.2 67 compounds 13 (66 nm) and 15 (53 nm) (Table 2). Therefore, the overlap of the absorption and emission spectra is weak. It should be noted that the Stokes shift in the case of polymer 2 (80 nm) is considerably higher than in polymer 8 (68 nm). Both polymers have a similar structural backbone of poly(terphenylmethylene), but in the case of 2 the alkyl chains linked to the central aryl ring diminish the electronic conjugation in the terphenyl subunit. In this case, the larger Stokes shift is mainly due to the pronounced blue shift of the absorption spectra of 2 (30 nm) caused by its limited conjugation rather than to the red-shift of 8, that places its λmax value even at lower wavelengths than the λmax of polymer 11, a poly(biphenylmethylene), while the differences in the emission spectra are not so pronounced (18 nm) and the λem follow the order 8 (366 nm) > 2 (348 nm) > 11 (337 nm). 1.2.3 Conclusion Suzuki polycondensation reaction has been used for the synthesis of block copolymers with alternating homoconjugation-conjugation derived from 7,7- diphenylnorbornane (DPN) ((poly(biphenylmethylene)s and poly(terphenylmethylenes)s). The special topology of homoconjugated DPN allows the preparation of conjugated biphenyls or p-terphenyls separated by a spacer with geometry halfway between conjugated and π-stacked aryl rings, which contribute to the delocalization of the electrons along the backbone structure of the polymers. The absorption and emission spectra of the polymers and model compounds demonstrate that the introduction of homoconjugated subunits leads to an extension of the delocalization that modify the electronic properties of the polymers in comparison to other systems in which the conjugated subunits are separated by saturated carbon atoms that act as interrupters of the conjugation. Also cyclic voltammetry studies, carried out on model compound 13, shows that homoconjugation enhances the degree of electron delocalization since lower oxidation potentials are observed upon increasing the molecular length by linking two DPN subunits to p-terphenyl. Our results show that the delocalization effect caused on oligo p-phenylenes by two homoconjugated aryl rings is in the same range than the effect produced by one additional Capítulo 1.2 68 conjugated aryl ring. The electron delocalization mediated by aromatic homoconjugation observed in our systems differs from the situation observed in homoconjugated acetylenes in which no significant homoconjugative stabilization is observed.53 In summary, the polymers described by us can be considered as a new class of delocalized structures with a degree of delocalization between all- conjugated block copolymer54 and block copolymers with conjugated segments separated by interrupters. The introduction of homoconjugated subunits in these materials may be an efficient method to modulate and control some important properties such as the band gap of the polymers, the dielectric constant,55 or their optical and electrochemical properties. The synthesis of new polymers with alternating homoconjugation-conjugation and the study of their optical and electronic properties are currently in progress. 53 For a review on homoconjugated acetylenes, see: de Meijere, A.; Kozhushkov, S. I. In Macrocyclic Structurally Homoconjugated Oligoacetylenes: Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotaxanes, in Top. Curr. Chem. 1999, 201, 1-42. 54 Scherf, U.; Gutacker, A.; Koenen, N. Acc. Chem. Res. 2008, 41, 1086-1097. 55 Maier, G. Prog. Polym. Sci. 2001, 26, 3-65. Capítulo 1.2 69 1.2.4 Experimental Section General Information 1H and 13C NMR spectra were recorded on a 200 MHz spectrometer. Chemical shifts are given in ppm relative to TMS (1H, 0.0 ppm) and CDCl3 ( 13C, 77.0 ppm). Coupling constants are given in Hertz. UV spectra were measured using hexane as solvent. Cyclic voltammetry experiments were performed with a computer controlled potentiostat in a three-electrode single-compartment cell (5 mL). The platinum working electrode consisted of a platinum wire sealed in a soft glass tube with a surface of A = 0.785 mm2, which was polished down to 0.5 m with polishing paste prior to use in order to obtain reproducible surfaces. The counter electrode consisted of a platinum wire and the reference electrode was a Ag/AgCl secondary electrode. All potentials were internally referenced to the ferrocene–ferrocinium couple. For the measurements, concentrations of 5.10−3 mol.L−1 of the electroactive species were used in freshly distilled and deaerated dichloromethane or acetonitrile and 0.1 M tetrabutylammonium perchlorate (Bu4NClO4) which was twice recrystallized from ethanol and dried under vacuum prior to use. All experiments were carried out under argon atmosphere using standard Schlenk techniques. Anhydrous solvents were distilled under argon from sodium/benzophenone ketyl. Flash chromatography was performed over silica gel 60 (230-400 mesh). All commercially available compounds were used without further purification. 1,4- Benzenediboronic acid bis(pinacol) ester (7), AgOTf and [Pd(PPh3)4] were purchased from commercial suppliers. The preparation of 3, 4, 5 and 6 have been described previously.40 Iodide 12 was obtained according to the procedure used for diiodide 6.40,56 Polymerization reactions have been carried up following the Suzuki policondensation reaction employed by us previously for the synthesis of polymer 2.39 Experimental procedures 2-endo-octyl-7-(4-iodophenyl)-7-phenyl-norbornane (12): A solution of 0.25 g (1.00 mmol) of I2 in 25 mL of CHCl3 was slowly added at 25ºC with vigorous stirring and protected from light to 0.36 g (1.00 mmol) of 2-endo-octyl-7,7-diphenylnorbornane (5) and 0.26 g (1.00 mmol) of AgOTf in 20 mL of CHCl3. After disappearance of iodine, silver iodide was separated by filtration and the organic solution was washed with saturated NaHCO3 (1 x 20 mL), 10% Na2S2O3 (2 x 20 mL), water (1 x 20 mL) and dried over MgSO4. After evaporation of the solvent under vacuum, the mixture of syn- and anti-(12) was purified by flash chromatography (silica gel, hexane/dichloromethane 80:20). Yield 51 %, colorless oil. 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.53 (d, 3J(H,H) = 8.4 Hz, 2H), 7.35 (d, 3J(H,H) = 8.4 Hz, 2H), 7.23- 7.02 (m, 5H), 2.97-2.92 (m, 2H), 1.90-1.75 (m, 2H), 1.69-1.42 (m, 4H), 1.40-1.10 (m, 14H), 0.88 (t, 3J(H,H) = 6.8 Hz, 3H), 0.81-0.72 (m, 1H) ppm; 13C NMR (50 MHz CDCl3, 25ºC, TMS): = 146.1, 145.7, 145.2, 137.4, 137.3, 129.6, 129.4, 128.5, 128.4, 127.3, 127.0, 125.5, 90.5, 65.7, 45.1, 41.8, 37.1, 35.9, 32.8, 31.9, 30.0, 29.6, 29.3, 28.7, 56 Kobayashi, Y.; Kumadaki, I.; Yoshida, T. J. Chem. Research 1977, 215. Capítulo 1.2 70 22.7, 20.7, 14.1 ppm. FTIR (film): ῦ = 3059, 3028, 2926, 2872, 2854, 1601, 1580, 1551, 1483, 1460, 1391, 1005, 908, 785, 715, 698 cm-1. MS (EI, 70 eV): m/z (%): 486 (M+, 100), 361 (39), 360 (70), 332 (53), 293 (41), 206 (80), 205 (94), 193 (58), 192 (86), 191 (51), 167 (45), 166 (29), 165 (48), 115 (43), 91 (75); Elemental analysis (%) calc for C27H35I: C 66.66, H 7.25; found: C 66.32, H 7.32. General procedure for the synthesis of boronates 9, 10 and 14: 1.2 mmol of n-BuLi in hexanes (or 2.4 mmol for the preparation of 9) were slowly added to a solution of 1.15 mmol of iodides 6 or 12 under argon atmosphere at -78ºC. The reaction was stirred for 2 h at -78ºC and then 2.30 mmol (or 4.60 mmol) of trimethyl borate were added. After stirring for 3 h at room temperature the reaction was quenched with water (20 mL) and extracted with Et2O (3 x 25 mL). The organic solution was washed with saturated aqueous NaCl (1 x 20 mL), dried over MgSO4 and the solvent was removed under vacuum. The residue was dissolved in CH2Cl2 (50 mL) and 1.4 mmol (or 2.8 mmol) of pinacol were added. After refluxing for 3 days using a Dean-Stark, the solvent was evaporated under vacuum and the boronates purified by flash chromatography (silica gel, hexane/diethylether 20:1). Boronate 9: (Yield 66 %): m.p. 217-220ºC; 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.64 (d, 3J(H,H = 6.9 Hz, 4H), 7.40 (d, 3J(H,H = 6.9 Hz, 4H), 3.12-2.98 (m, 2H), 1.96-1.83 (m, 2H), 1.70-1.45 (m, 4H), 1.35-1.17 (m, 38H), 0.92-0.84 (m, 3H), 0.81- 0.75 (m, 1H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 149.2, 148.8, 134.9, 126.9, 126.3, 83.5, 66.5, 44.9, 41.7, 37.1, 35.9, 32.8, 31.9, 30.0, 29.6, 29.3, 28.7, 24.8, 22.7, 20.7, 14.1 ppm; FTIR (film): ῦ = 2980, 2924, 2852, 1604, 1458, 1362, 1325, 1271, 1144, 1091, 908, 858, 734 cm-1. MS (EI, 70 eV): m/z (%): 612 (M+, 19), 486 (18), 442 (45), 427 (22), 419 (19), 101 (56), 91 (20), 83 (94), 73 (100), 57 (32), 55 (45); Elemental analysis (%) calc for C39H58B2O4: C 76.48, H 9.54; found: C 76.39, H 9.61. Boronate 10: (Yield 60 %): m.p. 128-130 ºC; 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.65 (d, 3J(H,H) = 7.4 Hz, 2H), 7.50 (d, 3J(H,H) = 8.4 Hz, 2H), 7.37 (d, 3J(H,H) = 7.4 Hz, 2H), 7.12 (d, 3J(H,H) =8.4 Hz, 2H), 3.15-2.95 (m, 2H), 1.93-1.82 (m, 2H), 1.75-1.40 (m, 4H), 1.38-1.10 (m, 26H), 0.93-0.75 (m, 4H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 149.0, 148.5, 145.7, 137.5, 135.1, 129.6, 129.4, 126.7, 126.5, 90.6, 83.6, 65.9, 45.0, 41.7, 37.2, 35.9, 32.8, 31.9, 29.9, 29.6, 29.3, 28.7, 28.5, 24.8, 22.7, 20.7, 14.1 ppm; FTIR (film): ῦ = 2922, 2851, 1608, 1400, 1361, 1323, 1271, 1143, 1092, 1005, 858, 825, 804, 650 cm-1; MS (EI, 70 eV): m/z (%): 612 (M+, 22), 486 (29), 485 (31), 419 (19), 217 (25), 101 (35), 83 (35), 73 (100), 72 (28), 57 (25), 55 (27); Elemental analysis (%) calc for C33H46BIO2: C 64.72, H 7.57; found: C 64.78, H 7.60. Boronate 14: (Yield 65 %): 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.67 (d, 3J(H,H) = 8 Hz, 2H), 7.47-7.34 (m, 4H), 7.18-7.02 (m, 2H), 7.00-6.89 (m, 1H), 3.01- 2.88 (m, 2H), 1.96-1.83 (m, 2H), 1.72-1.45 (m, 4H), 1.41-1.10 (m, 26H), 0.95-0.84 (m, 3H), 0.82-0.75 (m, 1H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 149.2, 145.9, 134.9, 128.3, 127.4, 127.2, 126.9, 126.6, 125.3, 83.5, 65.2, 45.1, 41.8, 37.2, 36.0, 32.9, 31.9, 30.0, 29.6, 29.3, 28.7, 24.8, 22.7, 20.7, 14.1 ppm; FTIR (film): ῦ = Capítulo 1.2 71 2959, 2928, 2852, 1711, 1608, 1398, 1362, 1261, 1144, 1090, 1020, 908, 808, 735, 650 cm-1; MS (EI, 70 eV): m/z (%): 487 ([M+H]+, 40), 486 (M+,100), 485 (27), 386 (16), 332 (13), 204 (18), 101 (22), 91 (13), 83 (23), 55 (17); Elemental analysis (%) calc for C33H47BO2: C 81.47, H 9.74; found: C 81.53, H 9.80. 4,4’’-bis(2-endo-octyl-7-phenyl-7-norbornyl)-p-terphenyl (13): A mixture of 0.83 g (1.72 mmol) of 12 and 0.42 g (0.86 mmol) of 7 in 20 mL of toluene and 70 mL of 1M solution of NaCO3 was degassed three times using the freeze-pump-thaw technique. 0.01 g (0.0086 mmol) of [Pd(PPh3)4] were added and the reaction was heated under argon for 24h, extracted with CH2Cl2 (3 x 25 mL) and dried over MgSO4. Evaporation of the solvent and purification of the residue by flash chromatography (silica gel, hexane) yielded 72 % of 13 as a white solid. m.p. 62-64 ºC; 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.53 (s, 4H), 7.50-7.40 (m, 12H), 7.27-7.15 (m, 4H), 7.10-7.00 (m, 2H), 3.10-2.95 (m, 4H), 2.03-1.82 (m, 4H), 1.75-1.45 (m, 4H), 1.42-1.06 (m, 32H), 0.95-0.73 (m, 8H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 146.2, 145.8, 145.4, 145.0, 139.4, 137.5, 128.3, 127.8, 127.6, 127.2, 127.0, 126.9, 125.3, 65.8, 45.2, 41.9, 37.2, 36.0, 32.9, 31.9, 31.6, 30.0, 29.6, 29.3, 28.7, 22.7, 20.8, 14.1 ppm; FTIR (film): ῦ = 3082, 3059, 3028, 2926, 2852, 1601, 1488, 1460, 1445, 1004, 812, 762, 711, 698 cm-1; UV/Vis (CH2Cl2): max (ε) = 295 nm (29800 mol-1dm3cm-1); MS (EI, 70 eV): m/z (%): 795 ([M+H]+, 64), 794 (M+, 100), 601 (38), 206 (20), 169 (19), 149 (17), 143 (20), 97 (16), 91 (55), 85 (34), 83 (25), 81 (23), 71 (34), 69 (40), 67 (35), 57 (55), 56 (16), 55 (43); Elemental analysis (%) calc for C60H74: C 90.62, H 9.38; found: C 90.60, H 9.35. 4,4’-bis(7-phenyl-2-endo-octyl-7-norbornyl)biphenyl (15): A mixture of 0.42 g (0.86 mmol) of 12 and 0.42 g (0.86 mmol) of 14 in 20 mL of toluene and 70 mL of 1M solution of NaCO3 was degassed three times using the freeze-pump-thaw technique. 0.01 g (0.0086 mmol) of [Pd(PPh3)4] were added and the reaction was heated under argon for 24h, extracted with CH2Cl2 (3 x 25 mL) and dried over MgSO4. Evaporation of the solvent and purification of the residue by flash chromatography (silica gel, hexane) yielded 78 % of 15 as colorless oil. 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.45-7.30 (m, 12H), 7.25-7.14 (m, 4H), 7.10-6.98 (m, 2H), 3.05-2.93 (m, 4H), 2.00- 1.82 (m, 4H), 1.70-1.43 (m, 4H), 1.40-1.02 (m, 32H), 0.98-0.76 (m, 8H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 146.3, 145.8, 145.0, 144.6, 137.8, 128.3, 127.7, 127.4, 127.2, 126.8, 125.3, 65.7, 45.2, 41.9, 37.2, 36.1, 32.9, 31.9, 31.6, 30.0, 29.7, 29.3, 28.7, 22.7, 20.8, 14.1 ppm; FTIR (film): ῦ = 3028, 2926, 2854, 1711, 1599, 1493, 1460, 1379, 908, 814, 735, 700, 650 cm-1; UV/Vis (CH2Cl2): max (ε) = 270 nm (26000 mol-1dm3cm-1); MS (EI, 70 eV): m/z (%): 719 ([M+H]+, 65), 718 (M+, 100), 564 (11), 526 (21), 525 (45), 143 (16), 91 (15), 55 (8) ; Elemental analysis (%) calc for C54H70: C 90.19, H 9.81; found: C 90.10, H 9.88. General procedure for the synthesis of polymers 8 and 11 by Suzuki policondensation reaction: A mixture of 0.86 mmol of boronate 7 or 9 and 0.86 mmol of iodide 6 in 20 mL of toluene and 70 mL of 1M solution of NaCO3 was degassed three times using the freeze-pump-thaw technique. 0.01 g (0.0086 mmol) of [Pd(PPh3)4] were added and the reaction was heated under argon for three days. The organic solution was separated and concentrated to a volume of 10 mL. Methanol (150 Capítulo 1.2 72 mL) was then added dropwise with vigorous stirring. The white precipitate was separated and purified by repeating the precipitation with methanol. Polymer 11 was also obtained by reaction of 1.76 mmol of 10 and 0.01 g (0.0086 mmol) of [Pd(PPh3)4] under the same reaction conditions. Polymer 8: (Yield 94 %): 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.60-7.10 (m, 12H), 3.20-2.90 (m, 2H), 2.00-1.90 (m, 2H), 1.85-1.10 (m, 18H), 0.90-0.80 (m, 4H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 145.3, 144.9, 139.4, 137.6, 128.6, 127.8, 127.6, 127.1, 126.9, 65.5, 45.3, 42.0, 37.2, 36.1, 33.0, 31.9, 31.2, 30.0, 29.7, 29.3, 28.8, 22.7, 20.8, 14.1 ppm; FTIR (film): ῦ = 2922, 2851, 1261, 1101, 1022, 806 cm-1. UV/Vis (CH2Cl2): max (ε) = 298 nm (14400 mol-1dm3cm-1); Elemental analysis (%) calc for (C33H38)n: C 91.19, H 8.81; found: C 91.23, H 8.79; weight-average molecular weight (Mw): 3470 and polydispersity index (PDI): 1.3. Polymer 11: (Yield 97 %): 1H NMR (200 MHz, CDCl3, 25ºC, TMS): = 7.60-7.10 (m, 8H), 3.10-2.95 (m, 2H), 2.00-1.80 (m, 2H), 1.70-1.00 (m, 18H), 0.95-0.75 (m, 4H) ppm; 13C NMR (50 MHz, CDCl3, 25ºC, TMS): = 144.9, 144.5, 137.8, 128.6, 128.3, 127.7, 127.4, 126.8, 65.4, 45.3, 42.0, 37.2, 36.0, 32.9, 31.9, 31.6, 30.0, 29.6, 29.3, 28.7, 22.7, 20.8, 14.1 ppm; FTIR (film): ῦ = 2922, 2851, 1261, 1101, 1022, 806 cm-1; UV/Vis (CH2Cl2): max (ε) = 283 nm (12400 mol-1dm3cm-1); Elemental analysis (%) calc for (C27H34)n: C 90.44, H 9.56; found: C 90.45, H 9.60; weight-average molecular weight (Mw): 6440 and polydispersity index (PDI): 1.4. Capítulo 1.3 73 1.3 A Joint Experimental and Computational Investigation on Homoconjugated Push-Pull Chromophores Derived from 7,7- Diphenylnorbornane We report herein the synthesis, spectroscopic properties and computational studies of novel aromatic homoconjugated compounds derived from 7,7-diphenylnorbornane (DPN). The UV/vis spectra of these compounds show bands corresponding to the respective chromophores as well as new homoconjugation bands and charge transfer absorptions in D-DPN-A push- pull derivatives. Homoconjugation between the aromatic rings strongly depends on the nature of the substitution at the aryl moieties. Therefore, electronic communication by homoconjugation can be easily tuned by controlling the electronic nature and positions of the substituents. The strong homoconjugative interaction is also reflected in the reactivity, NMR spectra and NLO properties of the compounds studied. DFT calculations nicely agree with the experimental data and shed light on the electronic delocalization via homoconjugation. (Eur. J. Org. Chem. 2012, 2643–2655) Capítulo 1.3 74 1.3.1 Introduction Over the past years a considerable effort has been devoted on the design, synthesis and study of the properties of conjugated push-pull molecular chromophores (D--A) and their oligomeric and polymeric derivatives.1,2,3,4,5 Interest in such systems is justified by their important technological applications in molecular electronics and optoelectronics6 as e. g. nonlinear optical (NLO) materials,6,7 molecular wires,8 solvatochromic probes,9 or organic photorefractives.10 Recently, several strategies have been developed in order to modulate the properties (HOMO-LUMO gap, solubility, processability) of push-pull systems. Thus, nonplanar D--A chromophores have been reported and the influence of nonplanarity on their conjugative 1 R. Gompper, H.-U. Wagner, Angew. Chem. Int. Ed. 1988, 27, 1437-1455. 2 a) G. Jayamurugan, J.-P. Gisselbrecht, C. Boudon, F. Schoenebeck, W. B. Schweizer, B. Bernet, F. Diederich, Chem. Commun. 2011, 47, 4520-4522; b) Y.-L. Wu, F. Bureš, P. D. Jarowski, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Chem. Eur. J. 2010, 16, 9592-9605; c) F. Bureš, W. B. Schweizer, J. C. May, C. Boudon, J.-P. Gisselbrecht, M. Gross, I. Biaggio, F. Diederich, Chem. Eur. J. 2007, 13, 5378-5387. 3 W. Akemann, D. Laage, P. Plaza, M. M. Martin, M. Blanchard-Desce, J. Phys. Chem. B 2008, 112, 358-368. 4 a) M. Moreno Oliva, J. Casado, M. M. M. Raposo, A. M. C. Fonseca, H. Hartmann, V. Hernández, J. T. López Navarrete, J. Org. Chem. 2006, 71, 7509-7520; b) B. Milián, E. Ortí, V. Hernández, J. T. López Navarrete, T. Otsubo, J. Phys. Chem. B 2003, 107, 12175-12183. 5 a) Electronic Materials: The Oligomeric Approach, (Eds.: K. Müllen, G. Wegner), WILEY-VCH, Weinheim, 1998; b) Handbook of Conducting Polymers, (Eds.: T. A. Skotheim, J. R. Reynolds), CRC Press, 2007. 6 a) Chem. Rev. 2007, 107, issue 4, special issue on organic electronics and optoelectronics; b) J. Mater. Res. 2004, 19, issue 7, special issue on organic electronics; c) G. S. He, L.-S. Tan, Q. Zheng, P. N. Prasad, Chem. Rev. 2008, 108, 1245-1330; d) J. W. Verhoeven, H. J. Van Ramesdonk, M. M. Groeneveld, A. C. Benniston, A. Harriman, Chem. Phys. Chem. 2005, 6, 2251-2260. 7 a) S. Barlow, S. R. Marder in Functional Organic Materials Eds.: T. J. J. Müller, U. H. F. Bunz), WILWY-VCH, Weinheim, 2007, pp. 393-437; b) Chem. Phys. 1999, 245, special issue on molecular nonlinear optics; c) J. Zyss, P. Kelley, P. F. Liao, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press, 1993. 8 Molecular Wires. From design to Properties, (Ed.: L. de Cola); Thematic issue, Top. Curr. Chem. 2005, 257, 1-170. 9 a) P. Milosevic, S. Hecht, Org. Lett. 2005, 7, 5023-5026; b) F. Würthner, G. Archetti, R. Schmidt, H.-G. Kuball, Angew. Chem. Int. Ed. 2008, 47, 4529-4532; c) H. Hartmann, K. Eckert, A. Schröder, Angew. Chem. Int. Ed. 2000, 39, 556-558. 10 O. Ostroverkhova, W. E. Moerner, Chem. Rev. 2004, 104, 3267-3314. Capítulo 1.3 75 properties has been investigated (1, Figure 1).11,12,13 A different approach involves the use of bridges between the donor and acceptor groups with non- conventional electron delocalization, such as cross-conjugated bridges (2),14 spirocompounds (3),15 and also saturated bicyclic connectors.16 At this respect, aromatic homoconjugated systems have received little attention. Examples of lateral homoconjugated push-pull systems derived from triptycene have been reported.17,18 However, electron delocalization by homoconjugation in iptycenes such as trypticene is not clear and remains controversial.19 Very recently, homoconjugated push-pull systems obtained by [2+2] cycloaddition reaction between 2,3-dichloro-5,6-dicyano-1,4- benzoquinone (DDQ) and N,N-dialkylanilino (DAA) (4, Figure 1) or ferrocene 11 a) S.-I. Kato, F. Diederich, Chem. Commun. 2010, 46, 1994-2006; b) B. Breiten, I. Biaggio, F. Diederich, Chimia 2010, 64, 409-413; c) S.-I. Kato, M. Kivala, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Chem. Eur. J. 2009, 15, 8687- 8691. See also: d) S. Sergeyev, D. Didier, V. Boitsov, A. Teshome, I. Asselberghs, K. Clays, C. M. L. Vande Velde, A. Plaquet, B. Champagne, Chem. Eur. J. 2010, 16, 8181-8190. 12 A. Ortiz, B. Insausty, M. R. Torres, M. Á. Herranz, N. Martín, R. Viruela, E. Ortí, Eur. J. Org. Chem. 2008, 99-108. 13 R. Gómez, C. Seoane, J. L. Segura, Chem. Soc. Rev. 2007, 36, 1305-1322. 14 a) A. B. Ricks, G. C. Solomon, M. T. Colvin, A. M. Scott, K. Chen, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 2010, 132, 15427-15434; b) R. P. Ortiz, R. M. Osuna, V. Hernández, J. T. López Navarrete, B. Vercelli, G. Zotti, V. V. Sumerin, E. S. Balenkova, V. G. Nenajdenko, J. Phys. Chem. A 2007, 111, 841-851; c) C. A. van Walree, V. E. M. Kaats-Richters, S. J. Veen, B. Wieczorek, J. H. van der Wiel, B. C. van der Wiel, Eur. J. Org. Chem. 2004, 3046-3056. 15 F. Rizzo, M. Cavazzini, S. Righetto, F. De Angelis, S. Fantacci, S. Quici, Eur. J. Org. Chem. 2010, 4004-4016. See also ref. [20]. 16 R. H. Goldsmith, J. Vura-Weis, A. M. Scott, S. Borkar, A. Sen, M. A. Ratner, M. Wasielewski, J. Am. Chem. Soc. 2008, 130, 7659-7669. 17 For recent reviews on iptycenes, see: a) L. Zhao, Z. Li, T. Wirth, Chem. Lett. 2010, 39, 658-667; b) J. H. Chong, M. J. MacLachlan, Chem. Soc. Rev. 2009, 38, 3301-3315; c) T. M. Swager, Acc. Chem. Res. 2008, 41, 1181-1189; d) J.-S. Yang, J.-L. Yan, Chem. Commun. 2008, 1501-1512. See also: V. R. Skvarchenko, V. K. Shalaev, E. I. Klabunovskii, Russ. Chem. Rev. 1974, 43, 951-966. 18 a) T. Nakazawa, I. Murata, J. Am. Chem. Soc. 1977, 99, 1996-1997; b) K. Yamamura, T. Nakazawa, I. Murata, Angew. Chem. Int. Ed. 1980, 19, 543-546; c) K. Yamamura, K. Nakasuji, H. Yamochi, Chem. Let. 1983, 627-630. 19 a) X. Gu, Y.-H. Lai, Org. Lett. 2010, 12, 5200-5203; b) V. J. Chebny, T. S. Navale, R. Shukla, S. V. Lindeman, R. Rathore, Org. Lett. 2009, 11, 2253-2256; c) T. Doerner, R. Gleiter, F. A. Neugebauer, Eur. J. Org. Chem. 1998, 1615-1623; d) H.-D. Martin, B. Mayer, Angew. Chem. Int. Ed. 1983, 22, 283-314. Capítulo 1.3 76 (Fc)-substituted alkynes have been described.20 The resulting D-A chromophores show strong intramolecular CT interactions and promising third- order nonlinear optical properties. Figure 1. Examples of non planar (1), cross-conjugated (2), spiro- (3), and homoconjugated (4) push-pull chromophores. Aromatic apical homoconjugated compounds derived from 7,7- diphenylnorbornane (DPN) (5c, Figure 2) are a family of interesting derivatives featuring non-conventional electron delocalization within the cofacially arranged aryl groups.21,26 Homoconjugated push-pull systems were synthesized and used for the first time to study the nature of face to face aromatic interactions.21 Further studies demonstrated that these compounds show remarkable second-order NLO properties, with βz(1064 nm) values comparable to those measured for linearly conjugated analogous.22 More recently, the first example of efficient photoinduced energy transfer mediated 20 S. Kato, M. T. R. Beels, P. La Porta, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Angew. Chem. Int. Ed. 2010, 49, 6207-6211. 21 A. García Martínez, J. Osío Barcina, A. De Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. 22 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, G. Rojo, F. Agulló-López, J. Phys Chem. B 2000, 104, 43-47. Capítulo 1.3 77 by an homoconjugated bridge in the heterodinuclear D-B-A complex [Ru- DPN-Ir]3+ has been reported.23 In previous works we have studied electron delocalization in DPN as well as in derived polymers24 and oligomers25 by absorption spectroscopy and TD- DFT calculations.26 The results of these investigations confirm that aromatic homoconjugation in acyclic systems is an effective mechanism for electron delocalization with an effective homoconjugation length for homoconjugated oligomers of 6-7 aryl rings. Our previous calculations also pointed out the importance of transannular interactions in push-pull systems derived from DPN. Now, in order to check this hypothesis and provide further information on electron delocalization in these aromatic homoconjugated systems, we have performed an extensive joint computational-experimental study in substituted DPN’s, with special emphasis on push-pull DPN derivatives. The electronic communication between the donor and acceptor moieties has been studied by UV/Vis and NMR spectroscopy. The experimental results were correlated with DFT and TD-DFT calculations. 1.3.2 Computational details Geometry optimizations without symmetry constraints were carried out using the Gaussian09 suite of programs27 at the dispersion corrected meta- 23 J. Osío Barcina, N. Herrero-García, F. Cucinotta, L. De Cola, P. Contreras- Carballada, R. M. Williams, A. Guerrero-Martínez, Chem. Eur. J. 2010, 16, 6033- 6040. 24 a) A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31; b) J. Osío Barcina, M. R. Colorado Heras, M. Mba, R. Gómez Aspe, N. Herrero García, J. Org. Chem. 2009, 74, 7148-7156. 25 N. Caraballo-Martínez, M. R. Colorado Heras, M. M. Blázquez, J. Osío Barcina, A. García Martínez, M. R. Torres Salvador, Org. Lett. 2007, 9, 2943-2946. 26 N. Herrero-García, I. Fernández, J. Osío Barcina, Chem. Eur. J. 2011, 17, 7327- 7335. 27 Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Capítulo 1.3 78 hybrid functional28 M06-2X functional in combination with the standard double- plus polarization 6-31+G(d) basis sets.29 Stationary points were characterized as minima by calculating the Hessian matrix analytically at this level. Calculations of absorption spectra were accomplished by using the time- dependent density functional theory (TD-DFT)30 method. The assignment of the excitation energies to the experimental bands was performed on the basis of the energy values and oscillator strengths. The B3LYP31 Hamiltonian was chosen because it was proven to provide reasonable UV/Vis spectra for a variety of chromophores26,32 including organometallic species.33 Total first hyperpolarizabilities (tot) were computed according to the following equation using the different ijk tensor components: Equation 1 Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. 28 Y. Zhao, D. G.Truhlar, Acc. Chem. Res. 2008, 41, 157 -167. 29 W. J. Hehre, L. Radom, P. v. R. Scheleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 76, and references therein. 30 a) M. E. Casida, Recent Developments and Applications of Modern Density Functional Theory, Vol. 4, Elsevier, Amsterdam, 1996; b) M. E. Casida, D. P. Chong, Recent Advances in Density Functional Methods, Vol. 1, World Scientific, Singapore, 1995, p. 155 31 a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789. 32 For a review, see: A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009-4037. 33 Some recent examples: a) V. N. Nemykin, E. A. Makarova, J. O. Grosland, R. G. Hadt, A. Y. Koposov, Inorg. Chem. 2007, 46, 9591-9601; b) M. L. Lage, I. Fernández, M. J. Mancheño, M. A. Sierra, Inorg. Chem. 2008, 47, 5253-5258; c) H. Braunschweig, T. Herbst, D. Rais, S. Ghosh, T. Kupfer, K. Radacki, A. G. Crawford, R. W. Ward, T. B. Marder, I. Fernández, G. Frenking, J. Am. Chem. Soc. 2009, 131, 8989; d) M. L. Lage, I. Fernández, M. J. Mancheño, M. A. Sierra, Chem. Eur. J. 2010, 16, 6616-6624. For recent examples of B3LYP and TD-B3LYP calculations on push- pull systems, see: e) P. D. Jarowski, Y.-L. Wu, W. B. Schweizer, F. Diederich, Org. Lett. 2008, 10, 3347-3350 and references [2a] and [14b]. Capítulo 1.3 79 1.3.3 Results and Discussion 1.3.3.1 Synthesis and structure of DPN’s For this study we have chosen the series of mono- and disubstituted derivatives of DPN (5 and 6) and 7-(o-fluorophenyl)-7-phenylnorbornane (FDPN, 7) depicted in Figure 2. The synthesis of these compounds was carried out according to the methodology described previously by us (Scheme 1).21-26 One of the advantages of DPN’s is that a large variety of different molecules can be prepared following standard and straightforward procedures. Electrophilic aromatic substitution reactions on both DPN and FDPN take place exclusively at the para position, since the ortho position is sterically hindered by the bridgehead hydrogen atom of norbornane. The only exception to this behaviour was found while attempting the synthesis of 7o, the FDPN derivative with two para nitro groups as substituents (Scheme 2). While nitration reaction of DPN yields the corresponding dinitro derivative 6h in high yield, reaction of 7c under the same conditions yields a 25:75 mixture of 7o and 8 (Scheme 2). Since these compounds are difficult to separate, the synthesis of 7o was carried out by nitration of the mononitro derivative 7l.21 Scheme 1. General synthetic routes for DPN and FDPN derivatives. Capítulo 1.3 80 Figure 2. Mono- and disubstituted derivatives of DPN and FDPN 5-7. The formation of the meta-substituted compound 8 can be explained considering that, in the first step of the nitration reaction, 7g is obtained as the main reaction product due to the deactivating effect of the fluorine atom (Scheme 2). In the second step, electrophilic aromatic substitution takes place at the meta position of the fluorinated ring induced by both the deactivating effects of fluorine and the nitro group of the adjacent homoconjugated aromatic ring. Moreover, nitration of 7g affords compound 8 in 86% yield. This fact, together with the experimental observation that reaction rate of the second nitration reaction is lower than the first nitration, is a clear evidence of strong transannular homoconjugative interaction in DPN’s, similar to that observed in Capítulo 1.3 81 cyclophanes.34,35,36 In a previous work we have shown that DPN’s can be considered as examples of “open chain cyclophanes” (protophanes).24b Compounds 9a-e derived from 2,2-diphenylpropane and 10b-c have been prepared as references for the study of the spectroscopic properties of DPN’s (Figure 3). It should be noted that in 10a-c, the most stable conformation is the orthogonal disposition, since the aryl rings cannot adopt the cofacial conformation because of the restricted mobility of the fused phenyl ring. Therefore, homoconjugative interactions are not expected in these derivatives. On the other hand, the most stable conformation of 2,2-diphenylpropanes is the helicoidal conformation. The synthesis of these compounds was carried out following the same procedures used for the analogous DPN’s starting from the 2,2-diphenylpropane and bicyclic compound 10a. 34 a) Modern Cyclophane Chemistry (Eds.: R. Gleiter, H. Hopf), Wiley-VCH, Weinheim, 2004; b) F. Diederich, Cyclophanes, Royal Society of Chemistry, Cambridge, 1991; c) Cyclophanes (Ed.: F. Vögtle), Springer, Heidelberg, 1983. 35 a) T. Moriguchi, K. Sakata, A. Tsuge, J. Chem. Soc., Perkin Trans. 2 2001, 934-938; b) A. Tsuge, T. Nishimoto, T. Uchida, M. Yasutake, T. Moriguchi, K. Sakata, J. Org. Chem. 1999, 64, 7246-7248; c) T. Moriguchi, M. Yasutake, K. Sakata, A. Tsuge, J. Chem. Res. (S) 1999, 78-79; d) T. Moriguchi, K. Sakata, A. Tsuge, J. Chem. Soc., Perkin Trans. 2 1997, 2141-2144; e) A. Tsuge, M. Yasutake, T. Moriguchi, K. Sakata, T. Yamato, S. Mataka, M. Tashiro, Chem. Lett. 1997, 413-414; f) A. Tsuge, T. Moriguchi, S. Mataka, M. Tashiro, Liebigs Ann. 1996, 769-771; g) A. Tsuge, T. Moriguchi, S. Mataka, M. Tashiro, J. Chem. Soc., Perkin Trans. 1 1993, 2211-2215. 36 For recent examples of transannular interactions in cyclophanes, see: a) L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842; b) J. K. Klosterman, Y. Yamauchi, M. Fujita, Chem. Soc. Rev. 2009, 38, 1714-1725; c) M. Fujitsuka, S. Tojo, T. Shinmyozu, T. Majima, Chem. Communn. 2009, 1553-1555; d) M. Shibahara, M. Watanabe, T. Iwanaga, T. Matsumoto, K. Ideta, T. Shinmyozu, J. Org. Chem. 2008, 73, 4433-4442; e) H. Hopf, Angew. Chem. Int. Ed. 2008, 47, 9808- 9812; f) G. F. Caramori, S. E. Galembeck, J. Phys. Chem. A 2007, 111, 1705-1712; g) J. W. Hong, H. Y. Woo, B. Liu, G. C. Bazan, J. Am. Chem. Soc. 2005, 127, 7435-7443; h) K. A. Lyssenko, M. y. Antipin, D. Y. Antonov, Chem. Phys. Chem. 2003, 4, 817- 823. Capítulo 1.3 82 Scheme 2. Synthesis of nitro derivatives of FDPN. Figure 3. Structures of reference compounds 9 and 10. The main structural features of the compounds described in this work are highlighted by the push-pull system 6i. The crystal structure of 6i (Figure 4) Capítulo 1.3 83 confirms the characteristic cofacial arrangement of the aryl groups in DPN’s. Thus, the values of the C15-C14-C7-C8 and C9-C8-C7-C14 torsion angles are 92.30 and 89.10 respectively. On the other hand, the value of the C14-C7-C8 bond angle is 107.80 and the distance between the ipso carbon atoms of the aryl rings (C14-C8), 2.468 Å, well below the sum of the van der Waals radii for two phenyl rings (3.4 Å).37a Figure 4. X-ray crystal structure of compound 6i. The crystal packing of 6i (Figure 5) shows some remarkable features. It has been described that nitroanilines crystallize into predictable arrays forming intramolecular hydrogen bonds between the amino and nitro groups. These interactions occur so frequently that can be used to establish hydrogen bond rules which are useful tools to predict and design crystalline materials.38 However, no nitro-amino hydrogen bonds are detected in the case of 6i. Instead, short amino-amino contacts are observed. The H2C atom of the amino group interacts with the N2’ of the neighbouring molecule: H2C···N2’ distance of 2.614 Å, with N2-H2C-N2’ angle of 144.60 and distance between N2 and N2’ amino nitrogen atoms, 3.352 Å. The shorter distance between amino and nitro groups is observed in the case of H2D and O1 (2.994 Å). 37 a) L. Yu, H.-J. Schneider, Eur. J. Org. Chem. 1999, 1619-1625; b) M. Mantina, A. C. Chamberlin, R.Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5806- 5812. 38 a) M. C. Etter, J. Phys. Chem. 1991, 95, 4601-4610; b) M. C. Etter, Acc. Chem. Res. 1990, 23, 120-126; c) T. W. Panunto, Z. Urbánczyk-Lipkowska, R. Johnson, M. C. Etter, J. Am. Chem. Soc. 1987, 109, 7786-7797. Capítulo 1.3 84 On the other hand, short contacts are detected between the nitro oxygen atoms and H10 and H18 hydrogen atoms of the neighbouring aryl rings of two different molecules (O2···H10 distance = 2.597 Å; O1···H18 distance = 2.618 Å). On the basis of distance criteria, the interaction between the amino groups can be considered as hydrogen bond since the distance (2.614 Å) is shorter than the sum of the van der Waals radii of hydrogen and nitrogen atoms (1.10 Å and 1.55 Å, respectively).37b Figure 5. Crystal packing of 6i showing the amino-amino short contacts. 1.3.3.2 Absorption spectroscopy study Absorption spectroscopy constitutes an appropriate method to study electron delocalization and transannular interactions in aromatic systems. In previous works we have used UV/Vis spectra to study electron delocalization in homoconjugated DPN’s26 as well as oligomers25 and polymers24 derived from DPN. These studies clearly show that aromatic homoconjugation is an effective mechanism for electron delocalization that resembles the situation described for polyphenylenes. We have also performed TD-DFT calculations on these systems,26 finding a good agreement between the TD-DFT computed lowest energy vertical transitions and the experimentally observed absorptions. Therefore, TD-DFT Capítulo 1.3 85 calculations can be used to accurately assign the vertical transitions responsible for the observed spectra in homoconjugated DPN’s. The UV/Vis spectra of DPN’s and FDPN’s show three important absorption bands: a) the bands of the corresponding chromophores attached to the aryl rings, b) the new homoconjugation bands, and c) charge-transfer bands in push-pull systems with strong electron withdrawing and electron donating groups in their structures. Tables 1-3 show the wavelengths of the absorption maxima of the bands for all compounds studied in this chapter. For those cases where the band appeared as a shoulder, the position of these absorptions has been established by the derivative method. The influence of electron delocalization by homoconjugation is revealed by the bathocromic shift of the chromophores’ bands in comparison to the corresponding spectra of benzene derivatives:39 compounds 5f (250 nm) and 6e (256 nm) and benzoic acid (226 nm); 5g (250 nm) and 6f (258 nm) and etoxycarbonylbenzene (228 nm); 5h (262 nm), 7f (259 nm) and 6g (269 nm) and acetophenone (242 nm); 5i (233 nm) and trifluoromethylbenzene (210 nm); 5j (289 nm), 7g (284 nm), 7l (285 nm) and 6h (284 nm) and nitrobenzene (251 nm). Furthermore, the position of the band depends on the effect of the substituent placed on the adjacent ring. This effect is similar to the transannular interaction described for cyclophanes.34-36 Thus, in the series of nitro derivatives 5j, 6h, 6i, 6j (DPN), 7g, 7l, 7o, 7p and 7q (FDPN) there is a correlation between the wavelength of the absorption band of the nitro groups and the corresponding p-Hammett substituent constant40 of the substituent placed at the opposite aryl ring. Figure 6 shows the absorption spectra of compounds 7g, 7o, 7p and 7q as well as the linear relationship between the wavelengths of the absorption maxima of the nitro group and the nature of the substituents placed at the adjacent aryl ring according to their p value. A similar situation is observed with the analogous DPN derivatives. 39 H.-H. Perkampus, UV-Vis Atlas of Organic Compounds, VCH, Weinheim, 1992. 40 C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195. Capítulo 1.3 86 Table 1. Absorption spectra (max, MeOH) of monosubstituted DPN’s and FDPN’s. Compound λmax/nm ε/M-1.cm-1 Compound λmax/nm ε/M-1.cm-1 Compound λmax/nm ε/M-1.cm-1 5ª 249 (13800)[a] 5i 233 (11600) 7f 259 (16000) 5b 238 (13800)[a] 5j 289 (10000) 7g 284 (11800) 5c 229 (13300)[a] 7a 249 (10300)[a] 7h 246 (10400)[a] 5d 234 (13600)[a] 7b 234 (15100)[a] 7i 234 (14700)[a] 5e 236 (12800)[a] 7c 226 (12300)[a] 7j 229 (13700)[a] 5f 250 (15000) 7d 232 (16000)[a] 7k 234 (16100)[a] 5g 250 (11800) 7e 232 (20200)[a] 7l 285 (11800) 5h 262 (15200) [a] Homoconjugation band. Figure 6. Absorption spectra of NO2-substituted FDPN’s and correlation between the absorption wavelength and the p value of the substituent placed on the adjacent homoconjugated ring. 250 300 350 0,0 0,2 0,4 0,6 0,8 1,0 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 272 274 276 278 280 282 284 286 288 290 W a ve le n g th ( n m )  p 7q 7p 7g 7o A b s o rb a n c e /a .u . Wavelength (nm) 7p NO 2 /Me-FDPN 7q NO 2 /OMe-FDPN 7g NO 2 -FDPN 7o (NO 2 ) 2 -FDPN Capítulo 1.3 87 Table 2. Absorption spectra (MeOH) of disubstituted DPN’s and FDPN’s with X = Y groups. Compound max/nm (ε/M-1.cm-1) Compound max/nm (ε/M-1.cm-1) 6a 259[b], 272(20000)[a] 6g 248(20700), 269(28400) 6b 234(12700), 255(18600)[a] 6h 284(16900) 6c 242(18300)[a] 7m 237[b], 253(12100)[a] 6d 230(7000), 247(11300)[a] 7n 239(16900)[a] 6e 234(10400), 256(15000) 7o 273(11900) 6f 235(17400), 258(26700) [a] Homoconjugation band. [b] Shoulder. Gas-phase TD-DFT calculations on compounds 7g, 7o,p,q also show the presence of two main absorptions. The band around 300 nm (which is slightly red-shifted in the calculations due to solvatochromism) is ascribed in all cases to the promotion of one electron from the HOMO to the LUMO. As expected, both frontier orbitals are  molecular orbitals, thus indicating the -* nature of this absorption. Inspection of the involved orbitals reveals that the HOMO is mainly centered in the flouro-aryl moiety whereas the LUMO is centered in the adjacent p-NO2-aryl group (Figure 7). For this reason, it is not surprising that a more effective charge transfer (i.e. a red-shift) occurs with better -donors attached to the para-position of the fluoro-aryl fragment in agreement with the above mentioned Hammett plot. Moreover, the band around 230 nm is ascribed to the HOMO-3 to LUMO transition by our TD- DFT calculations. As seen in Figure 7, the HOMO-3 is a delocalized orbital between both aryl substituents thus confirming the homoconjugated nature26 of this absorption. Capítulo 1.3 88 Figure 7. Computed molecular orbitals of compound 7p (isosurface value of 0.03 au). In the case of amino-substituted DPN’s and FDPN’s, the absorption band of the chromophore appears overlapped with the homoconjugation bands in most of the derivatives and can be observed only in compounds where the homoconjugation band is red shifted (vide infra). In these compounds, a similar behaviour is observed: i.e. the absorption band is red shifted in going from compound to 7u (224 nm) to 7m (237 nm). Finally, the effect of homoconjugation in DPN’s can be also observed by comparison of the absorption wavelength of the nitro derivatives 5j (289 nm) and 6h (284 nm) with the analogous 2,2-diphenylpropanes 9b and 9d (276 nm). Similarly, TD-DFT calculations assign this band (for 5j) to a combination of the HOMO-3 and HOMO-2 to LUMO vertical transitions (calculated excitation energy of 270 nm). The shape of these  molecular orbitals resembles that of HOMO-3 (7p), confirming the delocalization of electrons in both aryl moieties due to homoconjugation One of the most relevant features of the compounds studied in this work is related to the homoconjugation band. We have previously described that DPN shows a characteristic homoconjugation band at 229 nm. The position of this absorption depends on the torsion angle of the aryl rings and the extension of the homoconjugation. Thus, deviations from the cofacial conformation cause hypsochromic shifts of the band. On the other hand, a bathochromic shift is observed in DPN oligomers because of the extension of the homoconjugation.25,26 In the substituted DPN’s studied herein, the nature of the substituents on the aryl rings exerts a very important effect on the electron delocalization between the aromatic rings. Thus, electron withdrawing groups diminish the electron density and, consequently, the homoconjugative effect is almost imperceptible, Capítulo 1.3 89 as revealed by the hypsochromic shift of the homoconjugation band with e.g. nitro- substituted DPN’s and FDPN’s 5j, 6h, 7g, 7l and 7o. In contrast, electron donating groups show the opposite effect, as they increase the electron density and consequently the homoconjugation between the aryl rings. This is observed with methyl-, methoxy- and amino- substituted DPN´s and FDPN’s 5a, 5b, 6a, 6b, 6c, 7a, 7b, 7h, 7i, 7j, 7m and 7n in which bathochromic shifts of the corresponding homoconjugation bands are observed (Tables 1-3). The only exception to this behaviour was found in halogen-substituted DPN’s and FDPN’s 5d, 5e, 6d, 7d, 7e and 7k. The homoconjugation band in these derivatives is red shifted, pointing to a predominance of the conjugative effect of these atoms on the wavelength of the homoconjugation band, as observed in the absorption bands of halogen substituted benzenes.39 Strikingly, the homoconjugation band of FDPN (7c) is blue shifted in comparison with the band of DPN (5c). The reasons for this differential behaviour can be found in the inductive effect of the fluorine atom at the ortho position (which is in part responsible for the observed hypsochromic shift of FDPN)39 and the influence of this atom on the cofaciallity of the aryl rings (which would diminish the homoconjugation between the aryl rings).26 The substituents effect on the communication between the aryl groups in homoconjugated derivatives is clearly revealed by comparison with the UV/vis spectra of the orthogonal chromophores 10b and 10c. As mentioned above, electron releasing groups such as NO2 diminish the electron density between the aromatic rings and, consequently, homoconjugation is less effective. The absorption spectra of 10c shows an absorption maximum at 276 nm, the same wavelength observed for the diphenylpropane derivatives 9b and 9d. These bands are characteristic of aromatic nitro derivatives. The spectra of 5j (289 nm), 6h (284 nm) and 7o (273 nm) are quite similar, showing the effect of delocalization by homoconjugation and the deviation from the cofacial conformation in the case of 7o. The homoconjugation band in these compounds is blue shifted by the NO2 groups and is difficult to observe. Interestingly, the situation observed for the amino derivatives is remarkably different. The absorption spectra of the diamino orthogonal derivative 10b resembles that of aniline, showing an intense strong band at 239 nm (230 nm in Capítulo 1.3 90 aniline) and a weak absorption (1Lb band) at 285 nm (281 nm in aniline) (Figure 8). The spectra of diphenylpropane derivatives 9a (238 and 289 nm) and 9c (241 and 289 nm) are similar. While the homoconjugation bands are not observed in these compounds, the spectra of 6b and 7m are dominated by the homoconjugation bands at 255 and 253 nm, respectively. Moreover, the homoconjugation band is red shifted up to 272 nm in the case of compound 6a, in agreement with the higher electron donating nature of the NMe2 group. These results demonstrate that communication by homoconjugation between aromatic moieties can be easily tuned by controlling the electronic nature of the substituents attached at the aryl rings. Interestingly, our TD-DFT calculations assign the homoconjugation band in 6b to the HOMOLUMO+1 vertical transition (calc = 262 nm). Figure 9 nicely shows that this virtual orbital is delocalized between both aryl moieties thus confirming the electronic communication in this species. As expected, no similar delocalized orbital can be found in the non-cofacial analogue 10b. This provokes that both aryl groups are electronically isolated and therefore, this species behaves quite similarly to aniline. Figure 8. Absorption spectra of amino-substituted compounds. 240 260 280 300 320 0,0 0,5 1,0 1,5 A b s o rb a n c e /a .u . Wavelength (nm) 6b 9c 6a 10b Capítulo 1.3 91 The position of the homoconjugation bands strongly depends on the nature of the substituents. Figure 10 shows the absorption spectra of MeO-FDPN’s with different substituents on the homoconjugated aromatic ring. As can be seen, there is an excellent correlation (r2 = -0,996) between the position of the homoconjugation band and the p value of the respective group. Figure 9. Computed molecular orbitals of compound 6b (isosurface value of 0.035 au). Only the bromo-derivative 7s deviates from this behaviour, as observed before for the halogen-substituted DPN’s and FDPN’s (vide supra). The same behaviour is observed for the MeO-DPN’s 5b, 6c, 6j and 6k as well as in the series 5a-c, 6a-c, 7a-c, 7h-j and 7m-n. The situation observed in push-pull DPN’s with strong electron donating and releasing groups is particularly interesting. When both electron withdrawing and electron donor substituents are placed at the para positions, besides the chromophore and homoconjugation absorptions, charge transfer bands are observed in the corresponding UV/vis spectra of compounds 6i, 6j, 6k, 7p, 7q, 7r and 7v (Table 3). The absorption spectra of compounds 6j, 6k, 7p, 7q and 7r are shown in Figure 11. Compounds 6j and 7q show broad absorptions corresponding to two overlapping bands between 250-375 nm. These bands are the sum of the charge transfer band and the nitro group absorption. Capítulo 1.3 92 Figure 10. Absorption spectra of MeO-substituted FDPN and correlation between the absorption wavelength and the σp value of the substituent placed on the adjacent ring. The absorption spectra of 7n and 7t are omitted for clarity. Table 3. Absorption spectra (MeOH) of disubstituted DPN’s and FDPN’s with X  Y groups. Compound max/nm (ε/M-1.cm-1) Compound max/nm (ε/M-1.cm-1) 6i 247(13200), 293(9800), 320[b,c] 7r 225(12300),[a] 268(7600),288[b,c] 6j 227(12250),[a] 277(8100), 303[b,c] 7s 242(16500),[a] 270(6900) 6k 247(9800),[a] 260-290[c,d] 7t 237(14300)[a] 7p 286(7800), 275-340[c,d] 7u 247(12000)[a] 7q 223(14500),[a] 281(7800),[c,d] 288(7600) 7v 250(9300), 250-425[c,d] [a] Homoconjugation band. [b] Shoulder. [c] Charge transfer band. [d] Overlapping bands. Capítulo 1.3 93 Figure 11. Absorption spectra of compounds 6j, 6k, 7p, 7q and 7r showing the charge transfer bands. A similar situation is observed in 7p, although in this case a narrower band is observed, in accordance with the lower donating character of the methyl group. In the case of compound 7r, the charge transfer band is observed between 250-300 nm and in 6k the residual absorption at longer wavelength can be assigned to the charge transfer band. The cut-off of the CT bands in compounds 6j, 7p and 7q lies between 380-390 nm. Figure 12 shows the absorption spectra of compound 6i, 7v and the analogous 2,2-diphenylpropane derivative, 9e. Comparison of these spectra reveals the presence of a charge transfer band between 300-450 nm in 6i. This band is not observed or is much less pronounced in 9e (cut-off 385 nm). The spectrum of 7v shows a broad absorption band, sum of the NH2-, NO2-chromophores and the CT band, with a maximum at 250 nm and cut-off ~ 425 nm. Previous studies carried out on diphenylmethane and 2,2-diphenylpropane with nitro- and amino groups as substituents describe the presence of a weak charge transfer band as the tail of the long wavelength band of the nitro group.41 These results nicely illustrate the remarkable effect of homoconjugation in our compounds. In fact, this effect is just the consequence 41 a) H. Inoue, Y. Mikami, T. Yokotani, Bull. Chem. Soc. Jpn. 1973, 46, 3614-3615; b) W. N. White, J. Am. Chem. Soc. 1959, 81, 2912-2913. Capítulo 1.3 94 of the imposed geometry by the DPN fragment which places both aromatic rings in a cofacial orientation allowing for the observed charge transfer. Obviously, this geometrical constrain is not present in the analogous derivate 9e or orthogonal chromophores 10 (see Figure 13) and therefore, there is no chance for the electrons to delocalize by homoconjugation. Figure 12. Absorption spectra of compounds 6i and 9e. Figure 13. Fully optimized geometries (M06-2X/def2-SVP level) of compounds 6i and 9e and 10b. Capítulo 1.3 95 Comparison of the absorption spectra of 6i with the meta substituted analogous FDPN leads to some significant conclusions. Partial hydrogenation of 8 (Scheme 3) produces a mixture of meta-substituted nitro/amino derivatives 11 and 12. In the UV/vis spectra of these compounds (11, max = 283 nm; 12, max = 263 nm) no CT band are observed, showing that charge transfer from the donor to the acceptor groups is favoured by substituents placed at the para positions of the aromatic rings. In this regioisomer, the homoconjugative interaction reaches its maximum, according to the homoconjugated resonance structure of 6i depicted in Scheme 3. Scheme 3. Synthesis of meta FDPN’s 11 and 12 and resonance structures of push-pull derivative 6i. 1.3.3.3 NLO Properties In a previous work we described the first study reported to date on the NLO properties of homoconjugated compounds.22 Our results show that push-pull systems derived from DPN and FDPN present significant SHG hyperpolarizabilities. The values of z value measured for our DPN’s and FDPN’s are higher than the obtained for non-homoconjugated analogous and comparable to conjugated push-pull systems. Thus, the z(1064 nm) value Capítulo 1.3 96 measured for compound 6i was 21x10-30 esu, three times higher than the observed for 9e and equal to the measured for p-nitroaniline under the same experimental conditions. Herein we have computed the total first hyperpolarizability (βtot) values of different nitro-substituted DPN’s and FDPN’s (Table 4). As expected, the computed βtot values are generally higher in DPN’s than in their FDPN’s counterparts. This is mainly due to the effect of the fluorine atom at the ortho position, which slightly modifies the cofacial orientation, leading to a less effective homoconjugation. Table 4. Computed βtot (B3LYP/def2-SVP//M06-2x/def2-SVP level) for different DPN’s and FDPN’s. R βtot / 10-30 esu βtot / 10-30 esu NH2 29.85 23.70 OCH3 23.77 19.50 Br 15.20 12.67 CN 9.67 9.24 NO2 9.37 9.84 Figure 14. Plots of tot versus p substituent constants. Capítulo 1.3 97 Interestingly, push-pull systems exhibit higher βtot values than compounds possessing an electron-withdrawing group at the aryl group adjacent to the p- NO2-aryl fragment. Moreover, the tot computed for the NH2-systems is comparable to the tot value obtained for truly -conjugated push-pull systems,42 thus indicating that homoconjugation can be indeed as effective in communicating the donor and acceptor moieties in our DPN’s (or FDPN’s) as -conjugation. Not surprisingly, nice linear relationships were obtained when plotting the computed βtot values versus the corresponding p-Hammett substituent constants (Figure 14, correlation coefficient, r2, of -0.995 and - 0.986 for DPN’s and FDPN’s, respectively) as a consequence of the higher homoconjugation occurring with better -donor groups. 1.3.3.4 NMR spectroscopy To complete this study, we have also checked the influence of homoconjugation in DPN’s and FDPN’s by NMR spectroscopy. The chemical shifts of the most significant protons and carbon atoms of the compounds studied are listed in Table 5. These data show that the effect of a certain group in one of the aryl rings is transferred to the adjacent ring by means of homoconjugation. In Figure 15, the variation of the chemical shifts of C-7, C-12, C-15 and H- 15 with the p value of the respective group X in monosubstituted DPN’s 5a-j are shown. Similar graphs are obtained for FDPN’s. Although the variations caused by the substituents are, in some cases, not quite significant (e.g. the variations in the chemical shifts in H-15), from the large number of compounds studied some clear trends can be envisaged. First of all, the most sensitive atom to the influence of groups X is the ipso carbon atom placed on the adjacent homoconjugated ring (C-12, correlation coefficient of -0,951). The chemical shifts increments in C-12 are higher and show a better linear correlation than that observed for the C-7 carbon atom of the norbornane structure (r2 = 0,874). This fact confirms that the effects are transmitted through homoconjugative interactions between the aryl rings and 42 K. S. Thanthiriwatte, K. M. Nalin da Silva, J. Mol. Struct. (Theochem) 2002, 617, 169-175, and references therein. Capítulo 1.3 98 not through bonds via C-7. This phenomenon is similar to the transannular - electronic effect described in cyclophanes.34-36 The effect of substitution is less pronounced in C-15 and H-15, although there is a good correlation with p in both cases (r2 = 0,983 and r2 = 0,941, respectively). Table 5. Selected 1H NMR and 13C NMR data (, CDCl3, ppm) of DPN’s and FDPN’s . Compound H15 C7 C8 C11 C12 C15 5a 7.04 63.95 - - 146.63 125.01 5b 7.06 64.04 - - 146.37 125.18 5c 7.07 64.79 - - 145.97 125.29 5d 7.09 64.38 - - 145.45 125.57 5e 7.07 64.44 - - 145.34 125.58 5f 7.09 65.16 - - 144.87 125.77 5g 7.09 64.85 - - 144.94 125.75 5h 7.09 65.08 - - 144.86 125.75 5i 7.11 64.91 - - 144.96 125.79 5j 7.12 65.04 - - 144.09 126.07 7a - 61.37 133.04 127.15 - - 7b - 62.34 132.69 127.14 - - 7c - 62.22 132.23 127.47 144.26 125.58 7d - 61.68 131.92 127.78 - - 7e - 61.76 131.90 127.80 - - 7f - 62.31 131.36 127.97 - - 7g - 62.31 130.68 128.40 - - 7h 7.09 61.40 - - 145.08 125.23 7i 7.10 61.51 - - 144.74 125.45 7j 7.12 61.84 - - 144.58 125.49 7k 7.12 61.93 - - 143.64 125.87 7l 7.15 62.64 - - 142.60 126.41 Capítulo 1.3 99 Figure 15. Correlation between NMR chemical shifts (graph A, C-12; graph B, C-15; graph C, C-7; graph D, H-15) and p values in monosubstituted DPN’s 5a-j. 1.3.4 Conclusion We have synthesized a large family of aromatic homoconjugated compounds with substituents at the para and meta positions of the aryl rings, in order to carry out the first systematic study of the interactions between the aromatic moieties in this type of chromophores. The homoconjugative interactions in these compounds are clearly demonstrated by the absorption and NMR spectra, as well as by their reactivity. The UV/vis spectra show new homoconjugative bands whose wavelength maxima strongly depends on the electronic nature of the substituents (measured by their corresponding p value). Capítulo 1.3 100 TD-DFT calculations assign this homoconjugative bands to transitions involving molecular orbitals which are delocalized on both aryl moieties. On the other hand, the position of the bands of the chromophores placed in one of the aryl rings is influenced by the substituents attached at the para position of the cofacially arranged (homoconjugated) aromatic ring. These results are a clear indication of the importance of transannular homoconjugative interactions in the compounds studied in this work. Moreover, push-pull systems show intense intramolecular CT bands which are favoured when the substituents are placed at the para positions of the aromatic rings. Substitution at the meta position diminishes the homoconjugative interaction. Finally, NMR spectra show that the transannular interactions are transmitted by homoconjugation between the aromatic rings and not through the C-7 carbon atom of the norbornane framework. In summary, our joint experimental-computational study shows that homoconjugative interactions constitute indeed an effective way to provoke electronic communication which can be easily tuned by controlling the nature and position of the substituents. Thus, the proper selection of the substituents may lead to new organic materials with remarkable optical properties. Capítulo 1.3 101 1.3.5 Experimental Section General Information 1H and 13C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are given in ppm relative to TMS (1H, 0.0 ppm) and CDCl3 ( 13C, 77.0 ppm). Coupling constants are given in Hertz. All experiments involving organometallic reagents were carried out under argon atmosphere using standard Schlenk techniques. Anhydrous solvents were distilled under argon following standard procedures. Flash chromatography was performed over silica gel 60 (230-400 mesh). All commercially available compounds were purchased from commercial suppliers and used without further purification. The preparation of 5c, 6d, 6h-k, 7a-c, 7g-j, 7l-v, 13a-c, 14a-b and 9a-e has been described previously by us. 21-26 The preparation of 10a has been reported also.43 Scheme 4. Synthetic route for the preparation of compounds 5b, 5d, 5e, 5i, 6c, 7d and 7k. General reaction conditions: alcohols 13a-c or 14a-b/aromatic compound (benzene, anisole, chlorobenzene or bromobenzene)/TfOH. 43 L. Billet, G. Descotes, Bull. Soc. Chim. Fr. 1971, 2626-2628. Capítulo 1.3 102 General procedure for the synthesis of compounds 5b, 5d, 5e, 5i, 6c, 7d and 7k:21- 26 13.7 mmol of the corresponding 7-aryl-7-norbornanol 13 or 14 were dissolved in 25 mL of the aromatic derivative and 1.20 mL (13.7 mmol) of TfOH were slowly added at 0ºC with vigorous stirring. After 1 hour (the reactions were monitored by TLC), the reaction mixture was poured on 50 mL of water, washed with saturated NaHCO3 (2x25 mL), water (1x25 mL) and dried over MgSO4. Evaporation of the solvent under reduced pressure and purification of the residue by flash chromatography (silica gel/hexane/CH2Cl2) yielded the corresponding DPN or FDPN derivative. Compound 5b: Yield: 88%. White solid. M.p. 136.1-138.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.39 (d, 2H, J = 7.2 Hz), 7.32 (d, 2H, J = 8.7 Hz), 7.20 (t, 2H, J = 7.2 Hz), 7.06 (t, 1H, J = 7.2 Hz), 6.75 (d, 2H, J = 9.0 Hz), 3.71 (s, 3H), 3.10-3.95 (m, 2H), 1.70- 1.60 (m, 4H), 1.35-1.25 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 157.1, 146.4, 138.3, 128.2, 127.1, 125.2, 113.7, 64.0, 55.1, 41.8, 28.5, 28.4 ppm. IR (KBr): ῦ = 3010, 2950, 2870, 1620, 1415, 1255, 1040, 830, 705 cm-1. UV/Vis (MeOH) : max (ε) = 238 (13800 mol−1dm3cm−1), 265 (sh), 271 (sh), 280 (sh), 288 (sh) nm. MS (EI, 70 eV) m/z (%): 278 (M+, 100), 277 (23), 209 (22), 197 (45), 121 (24), 115 (29), 91 (34). Elemental analysis calcd (%) for C20H22O: C 86.28, H 7.97; found: C 86.05, H 7.81. Compound 5d: Yield: 60%. White solid. M.p. 122.0-125.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.50-7.30 (m, 4H), 7.28-7.15 (m, 4H), 7.09 (t, 1H, J = 7.6 Hz), 3.10-3.00 (m, 2H), 1.80-1.50 (m, 4H), 1.50-1.20 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 145.4, 144.6, 130.9, 128.7, 128.4, 128.3, 127.1, 125.6, 64.4, 41.7, 28.4, 28.3 ppm. IR (CCl4): ῦ = 3030, 2957, 2873, 1541, 1490, 1093, 1014, 720, 696 cm-1. UV/Vis (MeOH) : max (ε) = 234 (13600), 260 nm (1500 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 284 (M+ + 2, 140), 282 (M+, 100), 247 (100), 205 (55), 203 (30), 201 (40), 189 (59), 179 (30), 165 (43), 125 (46), 115 (40), 109 (65), 91 (45), 67 (36), 55 (28). Elemental analysis calcd (%) for C19H19Cl: C 80.68, H 6.78; found: C 80.93, H 6.87. Compound 5e: Yield: 25%. White solid. M.p. 167.0-170.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.38 (d, 2H, J = 7.3 Hz), 7.35-7.25 (m, 4H), 7.21 (t, 2H, J = 7.8 Hz), 7.07 (t, 1H, J = 7.3 Hz), 3.10-2.95 (m, 2H), 1.72-1.52 (m, 4H), 1.45-1.25 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 145.3, 145.1, 131.4, 129.1, 128.4, 127.1, 125.6, 119.1, 64.4, 41.7, 28.4, 28.3 ppm. IR (CCl4): ῦ = 3010, 2970, 2880, 1550, 1495, 1020, 720, 705 cm-1. UV/Vis (MeOH): max (ε) = 236 nm (12800 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 328 (M+ + 2, 31), 326 (M+, 31), 247 (71), 205 (35), 204 (27), 193 (31), 192 (80), 191 (55), 189 (25), 179 (35), 178 (35), 169 (37), 166 (27), 165 (58), 143 (30), 141 (26), 129 (45), 128 (28), 117 (40), 115 (49), 101 (29), 95 (28), 91 (100), 77 (22), 51 (19), 41 (29). Elemental analysis calcd (%) for C19H19Br: C 69.71, H 5.85; found: C 69.66, H 5.79. Compound 5i: Yield: 82%. White solid. M.p. 120.0-122.5 ºC. 1H NMR (300 MHz, CDCl3):  = 7.53 (d, 2H, J = 9.0 Hz), 7.45 (d, 2H, J = 9.0 Hz), 7.40 (d, 2H, J = 8.4 Hz), 7.22 (t, 2H, J = 7.0 Hz), 7.11 (t, 1H, J = 7.5 Hz), 3.12-3.00 (m, 2H), 1.70-1.50 (m, 4H), 1.42-1.28 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 150.1 (q, J = 1.4 Hz), 145.0, 128.5, 127.6, 127.5 (q, J = 47.0 Hz), 127.3, 125.8, 125.3 (q, J = 3.9 Hz), 124.0 (q, J = Capítulo 1.3 103 272.0 Hz), 64.9, 41.7, 28.3, 28.2 ppm. IR (CHCl3): ῦ = 3010, 2960, 2880, 1610, 1340, 1210, 1120, 830, 700 cm-1. UV/Vis (MeOH) : max (ε) = 233 (11600 mol−1dm3cm−1), 263 (sh), 273 (sh) nm. MS (EI, 70 eV) m/z (%): 316 (M+, 100), 274 (21), 273 (22), 271 (18), 248 (31), 247 (51), 235 (20), 183 (17), 179 (16), 165 (16), 115 (28), 91 (34), 81 (15). Elemental analysis calcd (%) for C20H19F3: C 75.91, H 6.06; found: C 76.08, H 6.15. Compound 6c: Yield: 85%. White solid. M.p. 194.8-197.0 º C. 1H NMR (300 MHz, CDCl3):  = 7.29 (d, 4H, J = 6.7 Hz), 6.74 (d, 4H, J = 6.7 Hz), 3.70 (s, 6H), 3.02-2.95 (m, 2H), 1.70-1.55 (m, 4H), 1.35-1.20 (m,4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 157.0, 138.7, 128.0, 113.6, 63.3, 55.4, 41.9, 28.5 ppm. IR (KBr): ῦ = 3010, 2970, 2880, 1610, 1515, 1450, 1300, 1250, 1180, 1040, 830 cm-1. UV/Vis (MeOH): max (ε) = 224 (sh), 242 (18300), 272 (3500), 283 nm (1500 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 308 (M+, 80), 277 (55), 227 (50), 200 (23), 159 (23), 145 (30), 121 (100), 91 (25). Elemental analysis calcd (%) for C21H24O2: C 81.77, H 7.85; found: C 81.88, H 7.97. Compound 7d: Yield: 63%. White solid. M.p. 117.0-119.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.50-7.35 (m, 3H), 7.20 (d, 2H, J = 8.5 Hz), 7.13-6.97 (m, 2H), 6.88 (ddd, 1H, J = 12.0, 8.0, 1.4 Hz), 3.35 (dt, J = 4.3, 4.3 Hz), 3.10-2.95 (m, 1H), 1.84-1.65 (m, 2H), 1.55-1.20 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 161.7 (d, J = 246.7 Hz), 142.8, 131.9 (d, J = 13.6 Hz), 131.3, 129.4 (d, J = 5.6 Hz), 129.1, 129.1, 128.3, 127.8 (d, J = 8.8 Hz), 124.1 (d, J = 3.2 Hz), 116.3 (d, J = 23.9), 61.7 (d, J = 2.5 Hz), 42.5, 41.3 (d, J = 8.1 Hz), 28.9, 28.3, 28.1, 27.2 ppm. IR (CCl4): ῦ = 3033, 2958, 2875, 1548, 1485, 1220, 1093, 1014, 761 cm-1. UV/Vis (MeOH): max (ε) = 232 (16000), 258 (1500), 264 (1800), 271 nm (1500 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 302 (M+ + 2, 14), 300 (M+, 46), 282 (35), 265 (51), 247 (36), 232 (47), 223 (49), 221 (28), 219 (52), 210 (30), 209 (27), 203 (27), 201 (28), 197 (25), 191 (25), 183 (44), 165 (36), 149 (38), 143 (28), 133 (33), 129 (41), 127 (34), 125 (59), 117 (37), 115 (57), 108 (100), 101 (37), 91 (52), 81 (35), 41 (35). Elemental analysis calcd (%) for C19H18ClF: C 75.85, H 6.03; found: C 75.69, H 6.12. Compound 7k: Yield 87%. White solid. M.p. 135.5-138.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.44 (d, 2H, J = 8.1 Hz), 7.37 (t, 1H, J = 8.46 Hz), 7.12 (t, 2H, J = 8.09 Hz), 7.20-7.04 (m, 3H), 3.39 (dt, 1H, J = 4.1, 4.1 Hz), 3.08-3.00 (m, 1H), 1.82-1.65 (m, 2H), 1.60-1.20 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 160.6 (d, J = 251.5 Hz), 143.6, 131.9 (d, J = 13.6 Hz), 130.8 (d, J = 6.8 Hz), 128.3, 127.5, 127.5, 127.3 (d, J = 3.2 Hz), 125.9, 119.8 (d, J = 27.9 Hz), 119.5 (d, J = 10.0 Hz), 61.9 (d, J = 3.1 Hz), 42.5, 41.1 (d, J = 8.4 Hz), 28.8, 28.4, 28.0, 27.2 ppm. IR (CCl4): ῦ = 3020, 2958, 2875, 1598, 1566, 1481, 1396, 866, 721 cm-1. UV/Vis (MeOH): max (ε) = 234 (16100), 263 (1800), 270 (2000), 277 nm (1800 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 346 (M+ + 2, 29), 344 (M+, 37), 278 (23), 276 (24), 265 (59), 263 (34), 223 (23), 222 (27), 211 (30), 210 (84), 209 (62), 207 (20), 197 (47), 196 (41), 189 (58), 187 (57), 183 (57), 170 (19), 157 (21), 144 (21), 133 (24), 129 (33), 116 (36), 115 (48), 107 (24), 104 (34), 94 (28), 91 (100), 81 (42), 79 (26), 77 (24), 65 (23), 51 (27), 41 (43). Elemental analysis calcd (%) for C19H18BrF: C 66.08, H 5.26; found: C 65.89, H 5.15. Capítulo 1.3 104 Synthesis of compound 7e:44 16 mg (1.00 mmol) of bromine were slowly added to a mixture of 270 mg (1.00 mmol) of FDPN and 510 mg (2.00 mmol) of AgTfO in 25 mL of CHCl3 at 25 ºC, in the dark. After 24 h (the reaction was monitored by TLC), the silver halide was separated by filtration and the organic solution was washed with 20 mL of saturated NaCO3H, 20 mL of 10% NaS2O3 and dried over MgSO4. Evaporation of the solvent at reduced pressure an purification of the residue by flash chromatography (silica gel, hexane) yielded 210 mg (62%) of 7e. White solid. M.p. 125.0-128.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.46 (td, 1H, J = 7.4 Hz), 7.35 (s, 4H), 7.15-7.00 (m, 2H), 6.88 (ddd, 1H, J = 12.1, 8.1, 1.5 Hz), 3.41-3.32 (m, 1H), 3.08- 3.00 (m, 1H), 1.84-1.65 (m, 2H), 1.55-1.20 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 161.7 (d, J = 246.7 Hz), 143.3, 131.9 (d, J = 13.6 Hz), 131.2, 129.5, 129.5, 129.4 (d, J = 5.6 Hz), 127.8 (d, J = 8.7 Hz), 124.1 (d, J = 3.2 Hz), 119.4, 116.3 (d, J = 23.9 Hz), 61.8 (d, J = 2.5 Hz), 42.5, 41.3 (d, J = 8.1 Hz), 28.9, 28.3, 28.1, 27.2 ppm. IR (CHCl3): ῦ = 3060, 2958, 2876, 1600, 1456, 1010, 669 cm-1. UV/Vis (MeOH): max (ε) = 232 (20200), 264 (2700), 272 (2400 mol−1dm3cm−1), 279 (sh) nm. MS (EI, 70 eV) m/z (%): 346 (M+ + 2, 33), 344 (M+, 35), 278 (30), 276 (30), 265 (65), 263 (39), 223 (58), 210 (87), 196 (37), 183 (60), 169 (38), 161 (16), 143 (41), 135 (46), 115 (43), 109 (100), 91 (30), 81 (48), 67 (25), 41(50). Elemental analysis calcd (%) for C19H18BrF: C 66.08, H 5.26; found: C 66.14, H 5.16. 44 Kobayashi, Y.; Kumadaki, Y.; Yoshida, T. J. Chem. Res. 1977, 215. Capítulo 1.3 105 Scheme 5. Synthetic route for the preparation of compounds 5a, 5f-h, 5j, 6b, 6e and 6f-h. I) NaNO2/TFA; II) H2/Pd/C 10%; III) CH3COCl/AlCl3; IV) a) (COCl)2/AlCl3, b) H2O; V) a) (COCl)2/AlCl3, b) EtOH. Capítulo 1.3 106 Scheme 6. Synthetic route for the preparation of compounds 6a, 7e, and 7k. Capítulo 1.3 107 Scheme 7. Synthetic route for the preparation of compounds 7v, 10c, and 10b. General procedure for the synthesis of compounds 5j, 6h and 8:45 80 mg (1.1 mmol, 5j) or 160 mg (2.2 mmol, 6h and 8) of NaNO2 were added to a solution of 1 mmol of DPN (5j and 6h) or FDPN (8) in 20 mL of TFA at 0 ºC. After 20 h at 25 ºC the reaction mixture was diluted with 50 mL of CH2Cl2, washed with saturated NaHCO3 (1x25 mL), water (2x30 mL) and dried over MgSO4. Evaporation of the solvent under reduced pressure and purification of the residue by flash chromatography (silica gel/hexane/CH2Cl2) yielded the corresponding nitro derivative. Compound 5j: Yield: 87%. White solid. M.p. 173.0-173.8 ºC. 1H NMR (300 MHz, CDCl3):  = 8.08 (d, 2H, J= 9.0 Hz), 7.58 (d, 2H, J= 9.0 Hz), 7.40 (d, 2H, J= 7.8 Hz), 7.24 (t, 2H, J= 7.8 Hz), 7.12 (t, 1H, J= 7.8 Hz), 3.15-3.05 (m, 2H), 1.72-1.62 (m, 2H), 1.60-1.50 (m, 2H), 1.45-1.30 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 153.8, 45 Uemura, A. Toshimitsu, M. Okano, J. Chem. Soc., Perkin Trans. 1, 1978, 1076- 1079. Capítulo 1.3 108 145.8, 144.1, 128.6, 128.0, 127.3, 126.1, 123.8, 65.0, 41.8, 28.2, 28.1 ppm. IR (KBr): ῦ = 3070, 2950, 2860, 1600, 1515, 1350, 1110, 845, 705 cm-1. UV/Vis (MeOH): max (ε) = 223 (sh), 289 nm (10000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 293 (M+, 94), 277 (22), 276 (41), 264 (29), 263 (100), 262 (37), 251 (33), 225 (41), 208 (25), 204 (35), 203 (30), 202 (34), 192 (65), 191 (63), 190 (29), 189 (38), 186 (29), 182 (40), 179 (27), 178 (54), 166 (30), 165 (71), 152 (28), 141 (27), 129 (39), 128 (43), 115 (89), 107 (27), 106 (30), 91 (98), 81 (38), 77 (39), 51 (30). Elemental analysis calcd (%) for C19H19NO2: C 77.78, H 6.53, N 4.78; found: C 77.81, H 6.66, N 4.69. Compound 6h: Yield: 94%. White solid. M.p. 263.8-264.5 ºC. 1H NMR (300 MHz, CDCl3):  = 8.12 (d, 4H, J = 9.0 Hz), 7.58 (d, 4H, J = 9.0 Hz), 3.18-3.10 (m, 2H), 1.65-1.55 (m, 4H), 1.50-1.40 (m, 4H). 13C NMR (CDCl3, 75 MHz): δ = 151.7, 146.0, 128.1, 124.0, 65.4, 41.9, 28.0. IR (KBr): ῦ = 3020, 2975, 2860, 1615, 1530, 1350, 850, 710 cm-1. UV/Vis (MeOH): max (ε) = 284 nm (16900 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 338 (M+, 14), 308 (37), 279 (36), 278 (100), 277 (41), 197 (37), 189 (24), 186 (30), 185 (28), 149 (28), 144 (24), 130 (33), 106 (69). Elemental analysis calcd (%) for C19H18N2O4: C 67.43, H 5.36, N 8.28; found: C 67.48, H 5.44, N 8.32. Compound 8: Yield: 60%. White solid. M.p. 188-189 ºC. 1H NMR (300 MHz, CDCl3):  = 8.42 (dd, 1H, J = 6.6, 2.9 Hz), 8.14 (d, 2H, J= 9.1 Hz), 8.07 (ddd, 1H, J = 9.0, 4.2, 2.9 Hz), 7.65 (dd, 2H, J = 9.1, 1.5 Hz), 7.08 (dd, 1H, J = 9.1, 9.0 Hz), 3.51- 3.38 (m, 1H), 3.29-3.17 (m, 1H), 1.90-1.62 (m, 2H), 1.60-1.31 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 164.4 (d, J = 258.5 Hz), 150.1, 146.4, 143.0 (d, J = 2.9 Hz), 132.8 (d, J = 16.0 Hz), 128.7, 128.7, 125.6 (d, J = 7.5 Hz), 124.4 (d, J = 10.8 Hz), 123.9, 117.5 (d, J = 29.5 Hz), 62.4 (d, J = 2.7 Hz), 43.0, 41.3 (d, J = 7.5 Hz), 28.6, 28.1, 27.8, 27.0 ppm. IR (KBr): ῦ = 2958, 1522, 1512, 1350 cm-1. UV/Vis (MeOH): max (ε) = 276 nm (16000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 356 (M+, 100), 339 (59), 297 (46), 267 (34), 207 (34), 81 (54), 67 (36). Elemental analysis calcd (%) for C19H17FN2O4: C 64.02, H 4.81, N 7.86; found: C 64.21, H 4.69, N 7.73. General procedure for the synthesis of compounds 16 and 10c:46 130 mg (1 mmol, 16) or 260 mg (2 mmol, 10c) of NO2BF4 were added to a solution of 1 mmol of compound 15 or 10a and 7.9 mg (0.03 mmol) of 18-crown-6 in 15 mL of CH2Cl2 under argon atmosphere at 0 ºC. After 4 h at 25 ºC, the reaction mixture was washed with water (2x25 mL) and dried over MgSO4. Evaporation of the solvent under reduced pressure and purification of the residue by flash chromatography (silica gel/hexane/Et2O 10:1) yielded the corresponding nitro derivative. Compound 16: Yield: 77%. Yellow solid. M.p. 68.0-70.0 ºC. 1H NMR (300 MHz, CDCl3):  = 8.10 (d, 2H, J = 9.0 Hz), 7.98 (bs, 1H), 7.61 (dd, 2H, J = 9.0, 1.5 Hz), 7.55-7.43 (m, 1H), 7.36 (dd, 1H, J = 12.9, 2.2 Hz), 7.20 (dd, 1H, J = 8.4, 2.2 Hz), 3.47- 3.34 (m, 1H), 3.14-3.02 (m, 1H), 1.90-1.15 (m, 8H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 160.7 (d, J = 248.3 Hz), 154.7 (d, J = 37.6 Hz), 151.5, 146.1, 135.1 (d, J = 11.5 Hz), 130.1 (d, J = 6.6 Hz), 129.0 (d, J = 14.1 Hz), 128.5, 128.5, 123.7, 116.2 (d, J = 3.2 Hz), 115.5 (q, J = 288.8 Hz), 109.1 (d, J = 29.6 Hz), 62.2 (d, J = 2.8 Hz), 42.7, 46 B. Masci, J. Chem. Soc., Chem. Commun. 1982, 1262-1263. Capítulo 1.3 109 41.3 (d, J = 7.6 Hz), 28.8, 28.2, 28.0, 27.1 ppm. IR (film): ῦ = 3325, 2959, 2878, 1717, 1620, 1605, 1543, 1520, 1425, 1348, 1209, 1175 cm-1. MS (EI, 70 eV) m/z (%): 423 (M++ H, 24), 422 (M+, 100), 405 (53), 392 (32), 363 (27), 354 (73), 333 (21), 321 (33), 220 (28), 91 (17), 81 (41), 57 (27), 55 (30). Elemental analysis calcd (%) for C21H18F4N2O3: C 59.70, H 4.30, N 6.63; found: C 59.58, H 4.49, N 6.51. Compound 10a:43 1H NMR (300 MHz, CDCl3):  = 7.58-7.46 (m, 4H), 7.44-7.36 (m, 1H), 7.33-7.22 (m, 2H), 7.16 (td, J = 7.6, 1.8 Hz, 1H), 6.73 (d, J = 7.6 Hz, 1H), 3.21 (m, 1H), 2.13-1.95 (m, 6H), 1.8-1.6 (m, 2H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 146.4, 144.7, 144.2, 128.2, 127.9, 126.4, 125.9, 125.6, 123.6, 123.6, 42.9, 35.1, 32.1, 27.2 ppm. Compound 10c: Yield: 25%. White solid. 1H NMR (300 MHz, CDCl3):  = 8.33 (d, J = 7.0 Hz, 2 H), 8.11 (d, J = 2.4 Hz, 1 H), 7.96 (dd, J = 8.4, 2.4 , 1 H), 7.61 (d, J = 7.0 Hz, 2 H), 6.71 (d, J = 8.4 Hz, 1 H), 3.35-3.29 (m, 1 H), 2.14-2.0 (m, 4 H), 2.0-1.88 (m, 2 H), 1.73-1.59 (m, 2 H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 152.1, 151.1, 147.0, 146.7, 145.4, 128.8, 124.0, 123.8, 121.4, 119.1, 44.1, 35.1, 31.8, 26.4 ppm. IR (KBr): ῦ = 3081, 2928, 2864, 1598, 1520, 1347, 1103, 850, 742 cm-1. UV/Vis (MeOH): max (ε) = 276 nm (19000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 324 (M+, 100), 296 (56), 295 (86), 279 (26), 250 (38), 249 (95), 204 (34), 203 (67), 202 (94), 189 (29), 136 (17), 101 (14), 77 (25). Elemental analysis calcd (%) for C18H16N2O4: C 73.94, H 5.52, N 9.59; found: C 74.12, H 5.71, N 9.82. General procedure for the synthesis of compounds 5a and 6b: A solution of 1 mmol of the corresponding nitroderivative in 150 mL of Et2O was hydrogenated (1 atm.) with 60 mg of 5% Pd/C. The catalyst was separated by filtration and after evaporation of the solvent at reduced pressure the residue was purified by flash chromatography (silica gel/hexane/Et2O). Compound 5a: Yield: 95%. Yellow oil. 1H NMR (300 MHz, CDCl3):  = 7.38 (d, 2H, J = 9.0 Hz), 7.26-7.15 (m, 4H), 7.04 (t, 1H, J = 9.0 Hz), 6.57 (d, 2H, J = 9.0 Hz), 3.23 (bs, 2H), 3.05-2.95 (m, 2H), 1.80-1.65(m, 4H), 1.40-1.20(m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 146.6, 143.5, 136.4, 128.2, 128.0, 127.0, 125.0, 115.2, 64.0, 41.7, 28.5, 28.4 ppm. IR (CCl4): ῦ = 3460, 3370, 3020, 2980, 2870, 1600, 1500, 1160, 690 cm-1. UV/Vis (MeOH): max (ε) = 249 nm (13800 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 263 (M+, 100), 186 (24), 182 (37), 130 (15), 115 (25), 106 (25), 91 (19). Elemental analysis calcd (%) for C19H21N: C 86.64, H 8.04, N 5.32; found: C 86.48, H 8.22, N 5.28. Compound 6b: Yield: 97%. Yellow solid. M.p. 201.6-202.8 ºC. 1H NMR (300 MHz, CDCl3):  = 7.16 (d, 4H, J = 8.7 Hz), 6.54 (d, 4H, J = 8.4 Hz), 3.39 (bs, 4H), 2.98-2.90 (m, 2H), 1.72-1.58 (m, 4H), 1.80-1.40 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 143.3, 137.1, 127.8, 115.2, 63.1, 41.7, 28.5 ppm. IR (CCl4): ῦ = 3450, 3350, 3020, 2980, 2870, 1620, 1510, 1275, 1180, 790, 760 cm-1. UV/Vis (MeOH): max (ε) = 234 (12700), 255 nm (18600 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 278 (M+, 100), 277 (42), 197 (36), 185 (27), 144 (20), 130 (32), 106 (64), 91 (6), 77 (13). Elemental Capítulo 1.3 110 analysis calcd (%) for C19H22N2: C 81.96, H 7.97, N 10.07; found: C 82.12, H 7.73, N 10.18. General procedure for the synthesis of compounds 11 and 12:47 40 mg of 10% Pd/C were added to a solution of 360 mg (1 mmol) of 8 and 0.61 mL (6 mmol) of cyclohexene in 20 mL of EtOH. The reaction mixture was refluxed 1 h (the reaction was monitored by TLC) and the catalyst was separated by filtration. After evaporation of the solvent at reduced pressure, the mixture of compounds obtained was separated by flash chromatography (silica gel, hexane/Et2O 10:1). Compound 11: Yield: 31%. Yellow solid. M.p. 138.0-140.0 ºC. 1H NMR (300 MHz, CDCl3):  = 8.08 (d, 2H, J = 9.0 Hz), 8.14 (dd, 2H, J = 9.0, 1.5 Hz), 6.79-6.63 (m, 2H), 6.42 (ddd, 1H, J = 8.5, 3.9, 2.9 Hz), 3.43-3.34 (m, 3H), 3.04-2.96 (m, 1H), 1.95- 1.77 (m, 1H), 1.70-1.52 (m, 2H), 1.47-1.35 (m, 5H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 154.3 (d, J = 237.5 Hz), 152.1, 145.9, 142.6 (d, J = 2.0 Hz), 131.1 (d, J = 14.7 Hz), 128.6, 128.6, 123.5, 116.9 (d, J = 25.5 Hz), 115.5 (d, J = 4.9 Hz), 114.8 (d, J = 8.5 Hz), 62.4 (d, J = 2.8 Hz), 42.6, 41.4 (d, J = 8.4 Hz), 28.9, 28.3, 28.2, 27.2 ppm. IR (film): ῦ = 3447, 3371, 3018, 2960, 1593, 1518, 1497, 1350, 1215 cm-1. UV/Vis (MeOH): max (ε) = 283(9300 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 326 (M+, 100), 283 (15), 258 (17), 138 (27), 124 (14), 81 (10). Elemental analysis calcd (%) for C19H19FN2O2: C 69.91, H 5.87, N 8.59; found: C 69.86, H 5.99, N 8.45. Compound 12: Yield: 30%. Yellow solid. M.p. 138.0-140.0 ºC. 1H NMR (300 MHz, CDCl3):  = 8.37 (dd, 1H, J = 6.6, 2.9 Hz), 7.97 (ddd, 1H, J = 9.0, 4.1, 2.9 Hz), 7.23 (dd, 2H, J = 8.6, 1.5 Hz), 7.01 (dd, 1H, J = 9.0, 8.5 Hz), 6.57 (d, 2H, J = 8.6 Hz), 3.65- 3.48 (bs, 2H), 3.37-3.27 (m, 1H), 3.09 (t, 1H, J = 3.8 Hz), 1.86-1.61 (m, 2H), 1.61-1.18 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 164.4 (d, J = 258.3 Hz), 144.6, 144.2 (d, J = 2.5 Hz), 135.1 (d, J = 16.1 Hz), 132.8, 128.6, 128.5, 125.5 (d, J = 8.2), 123.2 (d, J = 10.8 Hz), 117.2 (d, J = 27.0 Hz), 115.1, 61.6 (d, J = 3.0 Hz), 42.8, 41.2 (d, J = 8.2 Hz), 28.8, 28.5, 28.0, 27.2 ppm. IR (film): ῦ = 3476, 3387, 2963, 2939, 1533, 1514, 1475, 1352 cm-1. UV/Vis (MeOH): max (ε) = 263 nm (11000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 326 (M+, 100), 271 (20), 245 (35), 225 (15), 106 (12), 93 (11). Elemental analysis calcd (%) for C19H19FN2O2: C 69.91, H 5.87, N 8.59; found: C 70.12, H 5.76, N 8.71. Synthesis of compound 15: 320 mg (1.5 mmol) of trifluoroacetic anhydride were added to a solution of 280 mg (1.00 mmol) of 7h and 240 mg (3.0 mmol) of pyridine in 25 mL of CH2Cl2. After 2 h at 25 ºC the reaction mixture was washed with water (2x25 mL) and dried over MgSO4. Evaporation of the solvent at reduced pressure and purification by flash chromatography (silica gel, hexane/Et2O 10:1) yielded 250 mg (65%) of 15. Yellow solid. M.p. 140.0-142.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.75 (bs, 1H), 7.56-7.40 (m, 3H), 7.35-7.05 (m, 5H), 3.40 (dt, 1H, J = 3.9, 3.9 Hz), 3.05 (t, 1H, J = 3.2 Hz), 1.85-1.61 (m, 2H), 1.61-1.20 (m, 6H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 160.6 (d, J = 248.1 Hz), 154.6 (d, J = 37.6 Hz), 143.8, 134.1 (d, J = 11.2 47 I. D. Entwistle, R. A. W. Johnstone, T. J. Povall, J. Chem. Soc., Perkin Trans. I 1975, 1300-1301. Capítulo 1.3 111 Hz), 130.9 (d, J = 14.1 Hz), 130.3 (d, J = 7.0 Hz), 128.3, 128.3, 127.6, 127.5, 125.9, 115.8 (d, J = 3.2 Hz), 115.6 (q, J = 288.8 Hz), 108.9 (d, J= 29.7 Hz), 62.0 (d, J = 2.9 Hz), 42.6, 41.2 (d, J = 8.0 Hz), 28.9, 28.5, 28.1, 27.3 ppm. IR (film): ῦ = 3298, 3206, 2955, 2914, 2872, 1705, 1204, 1184 cm-1. MS (EI, 70 eV) m/z (%): 378, (M+ + H, 24) 377 (M+, 100), 335 (26), 309 (36), 308 (19), 296 (40), 220 (27), 115 (17), 91 (29), 84 (28), 51 (22), 49 (55). Elemental analysis calcd (%) for C21H19F4NO: C 66.82, H 5.08, N 3.71; found: C 66.89, H 5.19, N 3.64. Synthesis of compound 7v:48 15 mg (4.00 mmol) of NaBH4 were added to a solution of 210 mg (0.50 mmol) of 16 in 50 mL of EtOH at 25 ºC under argon atmosphere. After 24 h, 25 mL of water were added and the reaction mixture was extracted with CH2Cl2 (3x20 mL). The organic solution was dried over MgSO4 and the solvent was evaporated under reduced pressure. Purification of the residue by flash chromatography (silica gel, hexane/Et2O 10:4) yielded 120 mg (74%) of 7v as a yellow solid. M.p. 50.0- 52.0 ºC. 1H NMR (300 MHz, CDCl3):  = 8.08 (d, 2H, J = 9.0 Hz), 7.58 (dd, 2H, J = 9.0, 1.5 Hz), 7.19 (t, 1H, J = 8.6 Hz), 6.37 (dd, 1H, J = 8.6, 2.4 Hz), 6.22 (dd, 1H, J = 13.5, 2.4 Hz), 3.64 (bs, 2H), 3.34 (dt, 1H, J = 3.6, 3.6 Hz), 3.07-2.95 (m, 1H), 1.93- 1.07 (m, 8H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 161.5 (d, J = 245.4 Hz), 152.9, 146.8 (d, J = 11.5 Hz), 145.7, 130.0 (d, J = 7.45 Hz), 128.3, 128.2, 123.5, 120.4 (d, J = 14.4 Hz), 111.1 (d, J= 2.3 Hz), 102.8 (d, J = 27.3 Hz), 61.6 (d, J = 2.7 Hz), 42.6, 41.4 (d, J = 8.2 Hz), 28.8, 28.3, 28.1, 27.2 ppm. IR (film): ῦ = 3018, 2961, 2928, 1630, 1593, 1350, 1261 cm-1. UV/Vis (MeOH): max (ε) = 250 nm (9300 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 326 (M+, 100), 309 (28), 271 (17), 258 (18), 225 (22), 224 (19), 124 (25), 111 (17), 57 (17). Elemental analysis calcd (%) for C19H19FN2O2: C 69.91, H 5.87, N 8.59; found: C 69.83, H 5.97, N 8.63. Synthesis of compound 10b:49 Yield: 95%. 1H NMR (300 MHz, CDCl3):  = 7.24 (d, J = 6.6, Hz, 2 H), 6.75 (d, J = 6.6, Hz, 2 H), 6.60 (d, J = 2.3 Hz, 1 H), 6.47 (d, J = 8.0 Hz, 1 H ), 6.40 (dd, J = 8.0, 2.3 Hz, 1 H), 3.82-3.13 (m, 4 H), 3.06-2.89 (m, 1 H), 2.07- 1.77 (m, 6 H), 1.77-1.43 (m, 2 H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 145.3, 144.5, 144.4, 137.2, 135.3, 128.6, 124.4, 115.0, 112.1, 111.1, 41.4, 35.2, 32.6, 27.3 ppm. IR (KBr): ῦ = 3426, 3354, 3217, 3012, 2933, 2862, 1622, 1518, 1492, 1279, 824 cm-1. UV/Vis (MeOH): max (ε) = 239 nm (11000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 264 (M+, 99), 263 (13), 236 (90), 235 (100), 221 (37), 218 (20), 149 (26), 106 (19), 69 (29), 57 (8). Elemental analysis calcd (%) for C18H20N2: C 81.77, H 7.63, N 10.60; found: C 81.60, H 7.79, N 10.58. General procedure for the synthesis of compounds 5h, 6g, and 7f: 150 mg (1.10 mmol, 5h and 7f) or 290 mg (2.20 mmol, 6g) of AlCl3 were added to a solution of 90 mg (1.1 mmol, 5h, 7f) or 180 mg (2.2 mmol, 6g) of CH3COCl in 25 mL of CH2Cl2 at - 20 ºC with vigorous stirring. After 30 min, a solution of 1 mmol of the corresponding DPN or FDPN derivative in 5 mL of CH2Cl2 was slowly added. The reaction mixture was stirred 3 h, poured into 50 mL of ice water and extracted with CH2Cl2 (3x20 mL). The organic solution was dried over MgSO4 and the solvent was evaporated under 48 Z. H. Kuzdin, P. Lyzwa, J. Luczak, G. Andrijewski, Synthesis, 1997, 44-46. 49 M. Petrini, R. Ballini, G. Rosini, Synthesis 1987, 713-714. Capítulo 1.3 112 reduced pressure. The residue was purified by flash chromatography (silica gel, hexane/CH2Cl2 10:4). Compound 5h: Yield: 80%. White solid. M.p. 137.5-140.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.81 (d, 2H, J = 8.0 Hz), 7.51 (d, 2H, J = 8.0 Hz), 7.41 (d, 2H, J = 8.0 Hz), 7.21 (t, 2H, J = 7.3 Hz), 7.09 (t, 1H, J = 7.8 Hz), 3.15-3.05 (m, 2H), 2.51 (s, 3H), 1.72- 1.52 (m, 4H), 1.45-1.20 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 197.8, 151.8, 144.9, 134.5, 128.6, 128.5, 127.5, 127.3, 125.8, 65.1, 41.6, 28.3, 26.5 ppm. IR (CCl4): ῦ = 3010, 2980, 2880, 1680, 1605, 1410, 1275 cm-1. UV/Vis (MeOH): max (ε) = 262 nm (15200 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 290 (M+, 14), 91 (11), 43 (100). Elemental analysis calcd (%) for C21H22O: C 86.85, H 7.64; found: C 87.04, H 7.57. Compound 6g: Yield: 85%. White solid. M.p. 263.0-266.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.83 (d, 4H, J = 8.4 Hz), 7.51 (d, 4H, J = 8.4 Hz), 3.18-3.08 (m, 2H), 2.51 (s, 6H), 1.69-1.58 (m, 4H), 1.45-1.30 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 197.6, 150.5, 134.8, 128.7, 127.6, 65.3, 41.7, 28.2, 26.5 ppm. IR (KBr): ῦ = 3010, 2980, 2880, 1690, 1605, 1410, 1275, 970, 855, 830 cm-1. UV/Vis (MeOH): max (ε) = 248 (20700), 269 nm (18300 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 332 (M+, 10), 289 (8), 151 (8), 43 (100). Elemental analysis calcd (%) for C23H24O2: C 83.09, H 7.28; found: C 82.92, H 7.33. Compound 7f: Yield: 75%. White solid. M.p. 107.0-109.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.83 (d, 2H, J = 8.5 Hz), 7.57 (d, 2H, J = 8.2 Hz), 7.49 (td, 1H, J = 7.6, 2.0 Hz), 7.15-6.95 (m, 2H), 6.88 (ddd, 1H, J = 12.0, 7.9, 1.4 Hz), 3.40 (dt, 1H, J = 4.3, 4.3 Hz), 3.12-3.05 (m, 1H), 2.50 (s, 3H), 1.82-1.20 (m, 8H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 197.8, 160.8 (d, J = 246.9 Hz), 149.9, 134.7, 131.4 (d, J = 13.5 Hz), 129.5 (d, J = 5.4 Hz), 128.4, 128.0 (d, J = 8.7 Hz), 128.0, 127.9, 124.2 (d, J = 3.2 Hz), 116.3 (d, J = 23.9 Hz), 62.3 (d, J = 2.6 Hz), 42.5, 41.2 (d, J = 8.2 Hz), 28.8, 28.3, 28.1, 27.2, 26.5 ppm. IR (C Cl4): ῦ = 3035, 2958, 2875, 1683, 1602, 1487, 1357, 1271 cm-1. UV/Vis (MeOH): max (ε) = 259 nm (16600 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 308(M+, 14), 225(9), 43(100). Elemental analysis calcd (%) for C21H21FO: C 81.78, H 6.87; found: C 81.94, H 6.68. General procedure for the synthesis of compounds 5f-g and 6e-f:50 140 mg (1.10 mmol, 5f and 5g) or 280 mg (2.20 mmol, 6e and 6f) of oxalyl chloride were added to a solution of 150 mg (1.10 mmol, 5f or 5g) or 300 mg (2.20 mmol, 6e or 6f) of AlCl3 in 30 mL of CH2Cl2 at -20 ºC. After 30 min, a solution of 250 mg (1 mmol) of DPN in 5 mL of CH2Cl2 was slowly added. The reaction mixture was stirred 4 h, poured into 50 mL of ice water and extracted with CH2Cl2 (3x20 mL). The organic solution was dried over MgSO4 and the solvent was evaporated under reduced pressure. The residue was refluxed in chlorobenzene for 6 h and the solvent was evaporated at reduced pressure. The reaction product, without further purification, was refluxed for 2 h with NaEtO/EtOH in the case of esters 5g and 6f, or H2O/EtOH in the case of acids 5g and 50 Grützmacher, H.-F.; Mehdizadeh, A.; Mülverstedt, A. Chem. Ber. 1994, 127, 1163- 1166. Capítulo 1.3 113 6e. After extraction with Et2O (3x25 mL), the reaction products were purified by flash chromatography (silica gel, hexane/CHCl3). Compound 5f: Yield: 80%. White solid. M.p. 230.0-235.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.95 (d, 2H, J = 8.4 Hz), 7.53 (d, 2H, J = 8.7 Hz), 7.42 (d, 2H, J = 7.2 Hz), 7.23 (t, 2H, J = 7.2 Hz), 7.09 (t, 1H, J = 7.5 Hz), 3.16-3.06 (m, 2H), 1.72-1.52 (m, 4H), 1.40-1.20 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 172.0, 152.4, 144.9, 130.4, 128.5, 127.4, 127.3, 126.2, 125.8, 65.2, 41.7, 28.2 ppm. IR (CCl4): ῦ = 3010, 2980, 2890, 1690, 1605, 1420, 1280 cm-1. UV/Vis (MeOH): max (ε) = 250 nm (15000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 292 (M+, 64), 248 (22), 247 (100), 211 (28), 205 (39), 193 (21), 191 (26), 179 (42), 178 (35), 165(48), 143 (20), 129 (42), 128 (28), 117 (27), 115 (89), 91 (96), 81 (23), 77 (30), 44 (41), 41 (38). Elemental analysis calcd (%) for C20H20O2: C 82.15, H 6.90; found: C 82.28, H 6.85. Compound 5g: Yield: 72%. White solid. M.p. 83.0-86.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.89 (d, 2H, J = 8.7 Hz), 7.51 (d, 2H, J = 8.7 Hz), 7.42 (d, 2H, J = 8.7 Hz), 7.23 (t, 2H, J = 8.7 Hz), 7.09 (t, 1H, J = 8.7 Hz), 4.33 (q, 2H, J = 7.2 Hz), 3.15-3.05 (m, 2H), 1.72-1.52 (m, 4H), 1.40-1.20 (m, 7H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 167.2, 152.0, 144.9, 129.7, 128.4, 127.4, 127.3, 127.3, 125.7, 64.9, 60.8, 41.6, 28.3, 14.3 ppm. IR (KBr): ῦ = 3010, 2960, 2880, 1715, 1610, 1285, 1115, 775, 715 cm-1. UV/Vis (MeOH): max (ε) = 245 (sh), 250 nm (11800 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 320 (M+, 30), 248 (21), 247 (100), 205 (32), 191(28), 179 (20), 178 (24), 165 (36), 143 (22), 129 (33), 117 (35), 115 (51), 91 (77), 77 (15), 41 (19). Elemental analysis calcd (%) for C22H24O2: C 82.45, H 7.55; found: C 82.42, H 7.67. Compound 6e: Yield: 90%. White solid. M.p. > 350 ºC (d). 1H NMR (300 MHz, [D6]DMSO):  = 12.80 (bs, 2H), 7.79 (d, 4H, J = 8.7 Hz), 7.64 (d, 4H, J = 8.7 Hz), 3.30-3.24 (m, 2H), 1.58-1.40 (m, 4H), 1.40-1.20 (m, 4H) ppm. 13C NMR (75 MHz, [D6]DMSO): δ = 172.1, 151.8, 130.8, 129.5, 128.8, 66.5, 42.7, 29.0 ppm. IR (KBr): ῦ = 3010, 2960, 2880, 1690, 1605, 1420, 1280, 1190, 770 cm-1. UV/Vis (MeOH): max (ε) = 234 (10400), 256 nm (15000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 336 (M+, 17), 292 (26), 291 (100), 205 (25), 191 (19), 189 (18), 179 (24), 178 (26), 165 (29), 143 (20), 135 (25), 129 (36), 128 (20), 117 (26), 115 (60), 91 (51), 81 (46), 77 (24), 44 (72), 41 (31). Elemental analysis calcd (%) for C21H20O4: C 74.97, H 6.00; found: C 74.82, H 6.13. Compound 6f: Yield: 72%. White solid. M.p. 132.5-133.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.90 (d, 4H, J = 8.7 Hz), 7.48 (d, 4H, J = 8.7 Hz), 4.33 (q, 4H, J = 7.2 Hz), 3.15-3.05 (m, 2H), 1.70-1.55 (m, 4H), 1.42-1.26 (m, 10H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 166.4, 150.3, 129.8, 128.0, 127.3, 65.3, 60.7, 41.7, 28.2, 14.3 ppm. IR (CCl4): ῦ = 3040, 2970, 2880, 1720, 1610, 1275, 1115, 1025, 850, 725 cm-1. UV/Vis (MeOH): max (ε) = 235 (17400), 258 nm (26700 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 392 (M+, 11), 347 (18), 320 (24), 319 (100), 205 (17), 191 (19), 165 (25), 143 (24), 129 (30), 117 (31), 115 (30), 91 (28), 77 (10), 41 (16). Elemental analysis calcd (%) for C25H28O4: C 76.49, H 7.19; found: C 76.57, H 7.25. Capítulo 1.3 114 Synthesis of compound 6a: A mixture of 1.27 g (11.50 mmol) of 7-norbornanone,51 3.55 ml (28.70 mmol) of N,N-dimethylaniline and 5 mL of cc. HCl was refluxed for 48 h with vigorous stirring. The reaction mixture was neutralizated with 10% NaOH and extracted with CH2Cl2 (3x20 mL). The organic solution was washed with water (3x25 mL) and dried over KOH. The solvent was evaporated at reduced pressure and the residue purified by flash chromatography (silica gel, hexane/Et2O 7:3) yielding 0.96 g (25%) of 6a. Yellow solid. M.p. 232.0-235.0 ºC. 1H NMR (300 MHz, CDCl3):  = 7.24 (d, 4H, J = 9.9 Hz), 6.60 (d, 4H, J = 9.9 Hz), 3.00-2.90 (m, 2H), 2.84 (s, 12H), 1.70- 1.60 (m, 4H), 1.32-1.22 (m, 4H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 148.0, 135.3, 127.6, 112.7, 62.8, 41.7, 40.7, 28.7 ppm. IR (KBr): ῦ = 3050, 2980, 2880, 1620, 1525, 1360, 1180, 830, 820 cm-1. UV/Vis (MeOH): max (ε) = 259 (sh), 272 nm (20000 mol−1dm3cm−1). MS (EI, 70 eV) m/z (%): 334 (M+, 100), 333 (49), 290 (33), 253 (33), 213 (33), 167 (31), 146 (21), 139 (33), 138 (35), 134 (74), 131 (59), 126 (42), 118 (31), 117 (32), 44 (19), 42 (26). Elemental analysis calcd (%) for C23H30N2: C 82.58, H 9.05, N 8.38; found: C 82.71, H 9.20, N 8.27. Selected UV/vis spectra: Figure 16. 51 (a) P. G. Gassman, P. G. Pape, J. Org. Chem. 1964, 29, 160-163. (b) P. G. Gassman, J. L. Marshall, Org. Synth. 1968, 48, 68-72. 250 300 350 0,0 0,2 0,4 0,6 0,8 1,0 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 272 274 276 278 280 282 284 286 288 290 W a ve le n g th ( n m )  p 7q 7p 7g 7o A b s o rb a n c e /a .u . Wavelength (nm) 7p NO 2 /Me-FDPN 7q NO 2 /OMe-FDPN 7g NO 2 -FDPN 7o (NO 2 ) 2 -FDPN Capítulo 1.3 115 Figure 17. Figure 18. 240 260 280 300 320 0,0 0,5 1,0 1,5 A b s o rb a n c e /a .u . Wavelength (nm) 6b 9c 6a 10b 250 300 350 400 0,0 0,2 0,4 0,6 0,8 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 220 225 230 235 240 245 250 W a v e le n g th ( n m )  p 7u 7n 7t 7b 7r 7q A b s o rb a n c e /a .u . 7q MeO/NO 2 -FDPN 7b MeO-FDPN 7r MeO/CN-FDPN 7s MeO/Br-FDPN 7u MeO/NH 2 -FDPN Wavelength (nm) Capítulo 1.3 116 Figure 19. Figure 20. 250 300 350 400 0,0 0,2 0,4 0,6 0,8 A b s o rb a n c e /a .u . Wavelength (nm) 6j NO 2 /MeO-DPN 7q NO 2 /MeO-FDPN 7r CN/MeO-FDPN 7p NO 2 /Me-FDPN 6k CF 3 /MeO-DPN 250 300 350 400 450 0,0 0,2 0,4 0,6 A b s o rb a n c e /a .u . Wavelength (nm) 9e 6i 7v Capítulo 1.3 117 Figure 21. Figure 22. 250 300 350 400 0 A b s o rb a n c e /a .u . Wavelength (nm) 11 12 8 250 300 350 400 450 0,0 0,2 0,4 0,6 0,8 1,0 A b s o rb a n c e /a .u . Wavelength (nm) 5a NH 2 -DPN 6i NO 2 /NH 2 -DPN 5j NO 2 -DPN Capítulo 1.3 118 Figure 23. Figure 24. 250 300 350 400 0,0 0,2 0,4 0,6 0,8 A b s o rb a n c e /a .u . Wavelength (nm) 6j NO 2 /MeO-DPN 5b MeO-DPN 5j NO 2 -DPN 250 300 350 400 0,0 0,2 0,4 0,6 0,8 A b s o rp ti o n  max 7i MeO-FDFN 7g NO 2 -FDFN 7q NO 2 /MeO-FDFN Capítulo 1.3 119 Figure 25. Figure 26. 250 300 0,0 0,2 0,4 0,6 0,8 1,0 1,2 A b s o rb a n c e /a .u . wavelength (nm) 5b MeO-DPN 5i CF 3 -DPN 6k MeO/CF 3 -DPN 250 300 350 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 A b s o rb a n c e /a .u . Wavelength (nm) 5j NO 2 -DPN 9b NO 2 -DPP 7g NO 2 -FDPN Capítulo 1.3 120 NMR correlations: -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 142,0 142,5 143,0 143,5 144,0 144,5 145,0 145,5 146,0  ( p p m ) p A -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 125,2 125,4 125,6 125,8 126,0 126,2 126,4 126,6  ( p p m ) p B -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 61,4 61,6 61,8 62,0 62,2 62,4 62,6 62,8  ( p p m ) p C -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 7,09 7,10 7,11 7,12 7,13 7,14 7,15  ( p p m ) p D Figure 27. Correlation between NMR chemical shifts (graph A, C-12; graph B, C-15; graph C, C-7; graph D, H-15) and σp values in monosubstituted FDPN’s 7c and 7h-l. Capítulo 1.3 121 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 130,0 130,5 131,0 131,5 132,0 132,5 133,0 133,5 134,0  ( p p m ) p A -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 127,00 127,25 127,50 127,75 128,00 128,25 128,50  ( p p m ) p B -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 61,2 61,4 61,6 61,8 62,0 62,2 62,4  ( p p m ) p C Figure 28. Correlation between NMR chemical shifts (graph A, C-8; graph B, C-11; graph C, C-7) and σp values in monosubstituted FDPN’s 7a-g. HOMO-3 HOMO-2 LUMO Figure 29. Molecular orbitals of 5j responsible for the homoconjugation band Capítulo 1.3 122 III. CAPÍTULO 2 Capítulo 2.1 125 2.1 Efficient Photoinduced Energy Transfer Mediated by Aromatic homoconjugated bridges A new D-B-A dyad consisting of Ruthenium(II) and Iridium(III) species separated by an homoconjugated bridge derived from 7,7-diphenylnorbornane [Ir-Nor-Ru]3+ has been synthesized. The photophysical and electrochemical properties of the heterodinuclear complex have been compared with those of the analogous homodinuclear complexes [Ru-Nor-Ru]4+ and [Ir-Nor-Ir]2. Transient absorption spectra on the nanosecond and sub-picosecond timescales show for the first time that an homoconjugated bridge can mediate efficiently in the photoinduced energy transfer from the Iridium (III) to the Ruthenium(II) center according to a Dexter-type mechanism. (Chem. Eur. J. 2010, 16, 6033 – 6040) Capítulo 2.1 126 2.2.1 Introduction The design of supramolecular multicomponent systems for photoinduced energy/electron transfer is an important field of research with applications in the development of electroluminescent displays, molecular scale devices and solar energy conversion systems.1 In donor-bridge-acceptor (D-B-A) dyads, not only the chromophores but also the bridge plays a fundamental role in mediating the energy transfer process and the search of bridges with molecular wire behavior still remains a challenge.2 The electronic coupling between donor and acceptor, which is a main determining factor for the (Dexter) energy/electron transfer processes, can be provided by various types of electronic interactions that are inherent to the intervening medium between donor and acceptor. Whereas much attention is focused on -conjugated bridges,2,3 also - conjugation (through  bond interaction),4 cross-conjugated pathways,5 helical bridges (through foldamer coupling),6 -stacked systems7 and hexa- arylbenzenes with toroidal delocalization8 are modes for electronic communication that can be very effective (as compared to through (vacuum) space separation). 1 a) V. Balzani, F. Scandola, Supramolecular Photochemistry, Horwood, Chichester, 1993; b) V. Balzani, A. Credi, M. Venturi, Molecular Devices. Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim, 2008. 2 Molecular Wires. From design to Properties, (Ed.: L. de Cola); Thematic issue, Top. Curr. Chem. 2005, 257, 1-170. 3 W. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Nature 1998, 396, 60- 63. 4 a) R. M. Williams, M. Koeberg, J. M. Lawson, Y.-Z. An, Y. Rubin, M. N. Paddon- Row, J. W. Verhoeven, J. Org. Chem. 1996, 61, 5055-5062; b) H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 1987, 109, 3258-3269. 5 a) B. C. van der Wiel, R. M. Williams, C. A. van Walree, Org. Biomol. Chem. 2004, 2, 3432-3433. For a review on cross-conjugation, see: b) M. Gholami, R. R. Tykwinski, Chem. Rev. 2006, 106, 4997-5027. 6 M. Wolffs, N. Delsuc, D. Veldman, N. V. Anh, R. M. Williams, S. C. J. Meskers, R. A. J. Janssen, I. Huc, A. P. H. J. Schenning, J. Am. Chem. Soc. 2009, 131, 4819-4829. 7 a) T. A. Zeidan, Q. Wang, T. Fiebig, F. D. Lewis J. Am. Chem. Soc. 2007, 129, 9848- 9849; b) M. Smeu, R. A. Wolkow, H. Guo J. Am. Chem. Soc. 2009, 131, 11019-11029. 8 a) C. Lambert, Angew. Chem. Int Ed. 2005, 44, 7337-7339; b) S. V. Rosokha, I. S. Neretin, D. Sun, J. K. Kochi, J. Am. Chem. Soc. 2006, 128, 9394-9407. Capítulo 2.1 127 Next to -, -, spiro-,9 toroidal and cross-conjugation (Figure 1), an unexplored area for D-B-A systems is provided by aromatic homoconjugation. Homoconjugation can be defined as the orbital overlap of two -systems separated by a non-conjugated group, such as CH2 (IUPAC).10 Homoconjugative interactions between double and triple bonds have been extensively studied. Figure 1. Examples of systems showing a): toroidal conjugation, b) spiro- conjugation, c) cross-conjugation, d) homoconjugation and e) -stacking. Electron delocalization in homoconjugated alkenes is well established in the case of cationic homoaromatic compounds in which the positive charge is the driving force for delocalization.10e,f However, the situation in neutral homoconjugated molecules remains controversial, even in the case of homoaromatic compounds.10a-f,h Surprisingly, homoconjugative interactions between aromatic rings have received less attention. In that respect, it has been 9 T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, Chem. Rev. 2007, 107, 1011-1065. 10 For a review on homoconjugated acetylenes, see: a) A. de Meijere, S. I. Kozhushkov, Top. Curr. Chem. 1999, 201, 1-42. See also: b) A. de Meijere, S. I. Kozhushkov, R. Boese, T. Haumann, D. S. Yufit, J. A. K. Howard, L. S. Khaikin, M. Traetteberg, Eur. J. Org. Chem. 2002, 485-492. For recent studies on homobenzene, see: c) Z. Chen, H. Jiao, J. I. Wu, R. Herges, S. B. Zhang, P. von R. Schleyer, J. Phys. Chem. A 2008, 112, 10586-10594; d) F. Stahl, P. von R. Schleyer, H. Jiao, H. F. Schaefer III, K.-H. Chen, N. Allinger, J. Org. Chem. 2002, 67, 6599-6611. For a review on homoaromaticity, see: e) R. V. Williams, Chem. Rev. 2001, 101, 1185-1204. See also: f) C. Lepetit, B. Silvi, R. Chauvin, J. Phys. Chem. A 2003, 107, 464-473. For inorganic molecules with homoconjugation/homoaromaticity, see: g) Q. Zhang, S. Yue, X. Lu, Z. Chen, R. Huang, L. Zheng, P. von R. Schleyer, J. Am. Chem. Soc. 2009, 131, 9789-9799. Stabilizing homoconjugative interactions between double and triple bonds are described in: h) R. Gleiter, R. Merger, H. Irngartinger, J. Am. Chem. Soc. 1992, 114, 8927-8932. Capítulo 2.1 128 argued that in diphenylmethane, the simplest candidate for aromatic homoconjugated compounds, the saturated methylene group should act as a barrier to conduction.11 Diphenylmethane can be described as a free rotator whose most stable conformation is the helical disposition, thus avoiding homoconjugative interactions between the aromatic rings.12 This situation can be modified by forcing the aryl rings to adopt a cofacial conformation as we have found in the case of 7,7-diphenylnorbornane (DPN) (1) (Figure 2).12,13 We have shown that in oligomers and polymers derived from DPN, aromatic homoconjugation contributes to the electron delocalization along the backbone structure.13a-c These results show that the delocalization mediated by aromatic homoconjugation is more effective than in homoconjugated acetylenes, where no significant homoconjugative stabilization is observed.10a,b In order to gain further understanding of the role played by the bridging unit, we report now the synthesis and photophysical properties of the first example of a D-B-A dyad with aromatic homoconjugated bridge 5 as well as its homodinuclear analogs 3 and 4 (Figure 2). 11 a) D. K. James, J. M. Tour, Top. Curr. Chem. 2005, 257, 33-62. For examples of block copolymers with diphenylmethane subunits acting as conjugation interrupters, see: b) K.-Y. Peng, S.-A. Chen, W.-S. Fann, J. Am. Chem. Soc. 2001, 123, 11388- 11397; c) P. G. Del Rosso, M. F. Almassio, S. S. Antollini, R. O. Garay, Opt. Mater. 2007, 30, 478-485; d) M. Beinhoff, L. D. Bozano, J. C. Scott, K. R. Carter, Macromolecules 2005, 38, 4147-4156; e) P. G. Del Rosso, M. F. Almassio, P. Aramendia, S. S. Antollini, R. O. Garay, Eur. Polym. J. 2007, 43, 2584-2593. 12 A. García Martínez, J. Osío Barcina, The Diphenylmethane Moiety in Encyclopedia of Supramolecular Chemistry, (Eds.: J. L. Atwood, J. W. Steed), Marcel Dekker, New York, 2004, 452-456. 13 a) J. Osío Barcina, M. R. Colorado Heras, M. Mba, R. Gómez Aspe, N. Herrero García, J. Org. Chem. 2009, 74, 7148-7156; b) N. Caraballo-Martínez, M. R. Colorado Heras, M. M. Blázquez, J. Osío Barcina, A. García Martínez, M. R. Torres Salvador, Org. Lett. 2007, 9, 2943-2946; c) A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31; d) A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. Capítulo 2.1 129 Figure 2. Structures of DPN and complexes 3, 4 and 5. Capítulo 2.1 130 2.2.2 Results and Discussion As chromophores for this study, we have chosen complexes containing Ru(II)14 and Ir(III)15 species due to the effective molecular wire behaviour that has been observed in dinuclear Ir(III)/Ru(II) complexes with conjugated p- phenylene bridges.16 Iridium complexes forming part of supramolecules for the monitoring of energy and electron transfer processes have been widely studied, and the literature presents several examples of interesting wire-like molecules based on bis-terpyridine linear geometries.15 Additionally, iridium metal complexes are being extensively studied for the potential and very promising application in electroluminescent devices thanks to their high photo-stability and emission tunability.17 The synthesis of compounds 3, 4 and 5 (Figure 2) has been carried out following the methodology described previously for the preparation of DPN derivatives and Ir(III)/Ru(II) complexes (Scheme 1). Alkyl chain (C8H17) is introduced in the norbornane skeleton (2) in order to increase the solubility of the derivatives during the synthetic route. 14 S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, Top. Curr. Chem. 2007, 280, 117-214. 15 a) L. Flamigni, A. Barbieri, C. Sabataini, B. Ventura, F. Barigelletti, Top. Curr. Chem. 2007, 281, 143-203. b) L. Flamigni, J.-P. Collin, J.-P. Sauvage, Acc. Chem. Res. 2008, 41, 857-871. 16 a) S. Welter, F. Lafolet, E. Cecchetto, F. Vergeer, L. De Cola, Chem. Phys. Chem. 2005, 6, 2417-2427. See also: b) M. Cavazzini, S. Quici, C. Scalera, F. Puntoriero, G. La Ganga, S. Campagna, Inorg. Chem. 2009, 48, 8578-8592; c) C. Sabatini, A. Barbieri, F. Barigelletti, K. J. Arm, J. A. G. Williams, Photochem. Photobiol. Sci. 2007, 6, 397-405; d) K. J. Arm, J. A. G. Williams, Chem. Commun. 2005, 230-232; e) M. Cavazzini, P. Pastorelli, S. Quici, F. Loiseau, S. Campagna, Chem. Commun. 2005, 5266-5268. 17 For representative examples, see: a) A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 8723-8732; b) W. J. Finkenzeller, M. E. Thompson, H. Yersin, Chem. Phys. Lett. 2007, 444, 273- 279; c) J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713-1727; d) A. Guerrero-Martínez, Y. Vida, D. Dominguez-Gutierrez, R. Q. Albuquerque, L. De Cola, Inorg. Chem. 2008, 47, 9131-9133. Capítulo 2.1 131 Scheme 1. a) Br2 (88%); b) 10/ PdCl2(dppf)/KAcO/DMSO (87%); c) 11/ Pd(PPh3)4/ Na2CO3/toluene/H2O (54%); d) [Ru(bpy)2Cl2]/DME/ethylene glycol (2:1)/ultrasound (85%); e) [Ir(ppyFF)2(µ-Cl)]2/ethylene glycol/CHCl3 (3:1) (66 %); f) [Ir(ppyFF)2(µ-Cl)]2/ethylene glycol/CHCl3 (3:1) (51 %); g) [Ru(bpy)2Cl2]/ ethylene glycol/CHCl3 (3:1)/ultrasound (62%). 1.1.2.1 Photophysical properties 1.1.2.1.1 Absorption and emission spectroscopy The absorption spectra of the homodinuclear complexes [Ir-Nor-Ir]2+ and [Ru-Nor-Ru]4+, and the heterodinuclear compound [Ir-Nor-Ru]3+ in diluted (optical density < 0.1) air-equilibrated acetonitrile at 293 K closely resemble the sum of the individual spectra of the mononuclear units [Ir(ppyFF)2(bpy)]+ and [Ru(bpy)3] 2+ (see Figure 3). Capítulo 2.1 132 The spectrum of [Ir-Nor-Ru]3+ shows both absorption bands of the two homodinuclear species. The intense peaks at 246 nm and 288 nm can be assigned to spin-allowed ligand-centered, 1LC, transitions involving the fluorinated phenylpyridines (ppyFF) and the peripheral bipyridines (bpy),18,19 together with transitions associated to the preferred cofacial disposition of the aryl ring in the DPN subunit.13 Figure 3. Absorption spectra of [Ru(bpy) 3] 2+ (a), [Ir(ppyFF)2(bpy)]+ (b), [Ru-Nor-Ru]4+ (c), [Ir-Nor-Ru]3+ (d), and [Ir-Nor-Ir]2+ (e) in dilute acetonitrile solution at 298 K. Moreover, the broad band centred around 326 nm can be assigned to spin- allowed -* transitions localized on the DPN substituted bridging bipyridines,16a which includes the weaker spin-allowed Ir-based MLCT transitions, as also observed for [Ir-Nor-Ir]2+ complex.18,20 Additionally, in the visible region (400-550 nm) we can find the typical spin-allowed Ru-based MLCT absorption band,14 that is half as intense as observed for the [Ru-Nor-Ru]4+ complex. 18 a) S. O. Garces, K. A. King, R. J. Watts, Inorg. Chem. 1988, 27, 3464-3471; b) K. Ichimura, T. Kobayashi, K. A. King, R. J. Watts, J. Phys. Chem. 1987, 91, 6104-6106. 19 See e.g. K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1994. 20 F. Lafolet, S. Welter, Z. Popovic, L. De Cola, J. Mater. Chem. 2005, 15, 2820-2828. Capítulo 2.1 133 In order to quantify possible energy-transfer processes after excitation of the energy donor component (see below), we have to consider that no selective excitation on the iridium MLCT band is possible, due to the full overlap in the absorption bands of the two ruthenium and iridium homodinuclear species (Figure 3). However, the dinuclear complexes spectra show an iso-absorptive point at about 332 nm, in which the Ir and Ru moieties absorb the same fraction of incident light. Figure 4a shows the emission spectra of [Ir-Nor-Ir]2+, [Ir-Nor-Ru]3+, [Ru- Nor-Ru]4+, and the reference compound [Ir(ppyFF)2(bpy)]+, recorded upon excitation at 332 nm, at room temperature from dilute acetonitrile solutions (optical density < 0.1). Figure 4. Emission spectra of [Ir(ppyFF)2(bpy)]+ (•••••), [Ir-Nor-Ir]2+(-----), [Ru-Nor-Ru]4+ (-•-•-), and [Ir-Nor-Ru]3+ (—) in (a) dilute acetonitrile solution at 298 K, and (b) a butyronitrile rigid matrix at 77 K (exc = 332 nm). The luminescence spectrum of the homodinuclear complex [Ir-Nor-Ir]2+ exhibits an emission centered at 526 nm, which originates from a state with mixed 3MLCT – 3LC character, mostly located on the bipyridine ligand, as for the parent compound [Ir(ppyFF)2(bpy)]+.15a It is noteworthy that [Ir-Nor-Ir]2+ complex shows a 20 nm blue-shifted emission, when compared to similar homodinuclear iridium complexes with full extended -conjugation,16a since the presence of a sp3 carbon, bearing the DPN subunit, diminishes the Capítulo 2.1 134 conjugation in the bridge between the two iridium centers, thus causing a raise in the LUMO orbital energy.13a The homodinuclear complex [Ru-Nor-Ru]4+ displays an emission band centered at 625 nm, slightly red-shifted as compared to [Ru(bpy)3] 2+,14 due to the larger conjugation on one of the bipyridines, that lowers its LUMO level and consequently the energy of the 3MLCT transition.16a Keeping the excitation wavelength at 332 nm, we have recorded the luminescence spectrum of the heterodinuclear complex [Ir-Nor-Ru]3+, which shows the complete quenching of the iridium-based emission, and a broad band centered at 625 nm, as observed for [Ru-Nor-Ru]4+ complex. No significant difference in the Ru-based emission intensities are observed for [Ir-Nor-Ru]3+ and [Ru-Nor-Ru]4+ complexes after excitation at 332 nm, which implies very efficient energy transfer (see Table 1 and below). Table 1. Photophysical data 298 K[a] 77 K[b] IrIII RuII IrIII RuII max/ nm  / ns[d] max/ nm  / ns[d] 102 .  max/ nm  / μs[d] max/ nm / μs[d] [Ir-Nor-Ir]2+ 526 150 - - 1.8 508 37.0 - - [Ru-Nor-Ru]4+ - - 625 197 7.4 - - 593 5.9 [Ir-Nor-Ru]3+ - [c] 625 200 7.4 [c] - 590 5.8 [Ir(ppyFF)2(bpy)]+ 529 140 - - 2.2 484 4.4 - - [Ru(bpy)3]2+ - - 619 619 6.2 - - 579 5.7 [a] In aerated acetonitrile, exc = 332 nm. [b] In a butyronitrile rigid matrix, exc = 332 nm. [c] Too low in intensity to be detected accurately by [d]. [d] Time-correlated single-photon counting method. In Figure 4b the low-temperature emission spectra at diluted conditions are shown, reflecting the same trend observed at room temperature. Both [Ir-Nor- Ir]2+ and [Ru-Nor-Ru]4+ complexes exhibit structured emission profiles, with maxima at respectively at 508 nm and 580 nm; the first emission band is 18 nm blue-shifted when compared to the room temperature emission, while the Ru- based homodinuclear complex shows a larger hypsochromic shift of 45 nm. This behaviour matches the statement of a mixed 3LC – 3MLCT state for the Capítulo 2.1 135 [Ir-Nor-Ir]2+ complex emission, which in rigid matrix, due to the strong destabilization of the 3MLCT state, is predominantly a ligand centered emission, whereas the [Ru-Nor-Ru]4+ emission retains its 3MLCT character.21 The emission spectrum of the heterodinuclear [Ir-Nor-Ru]3+ complex is essentially identical to that of [Ru-Nor-Ru]4+ compound, even at this low temperature, showing again the complete intramolecular quenching of the iridium unit emission. All the photophysical data related to the emission spectra of the complexes are listed in Table 1, including the emission quantum yields and the time- resolved measurements. The lifetimes of the Ru-based emission in the heterodimetallic complex at room temperature and in the frozen matrix are very similar to those of complexes [Ru(bpy)3] 2+ and [Ru-Nor-Ru]4+,14 which shows analogous excited states. However, the marked lifetime differences of the iridium centered emission at 77 K in the case of the complex [Ir-Nor-Ir]2+ and the iridium parent compound [Ir(ppyFF)2(bpy)]+, has been ascribed to a low energy, long lived emission due to a 3LC state localized on the homoconjugated bridge unit of iridium homodinuclear complexes,16a which at low temperature becomes the lowest excited state. Electrochemical characterizations were performed by cyclic voltammetry in 10-3M acetonitrile solutions, containing 0.1M t-Bu4NPF6 as supporting electrolyte, where characteristic electrochemical features of iridium and ruthenium complexes were observed.14,22 1.1.2.1.2 Transient absorption spectroscopy The nanosecond transient absorption spectra of [Ir(ppyFF)2(bpy)]+, [Ir-Nor- Ir]2+ and [Ir-Nor-Ru]3+ complexes were recorded upon excitation at 330 nm at room temperature in deaerated acetonitrile solutions (Figure 5). The transient absorption spectra of the dinuclear iridium complex register a long-lived broad 21 M. G. Colombo, A. Hauser, H. U. Güdel, Inorg. Chem. 1993, 32, 3088-3092. 22 a) P. Coppo, E. A. Plummer, L. De Cola, Chem. Commun. 2004, 1774-1775; b) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387. Capítulo 2.1 136 absorption, stretching from 400 to 820 nm (Figure 5a), which arises from several contributions, such as the bpy radical anion and the ligand-centred triplet state. The absence of such long-lived transient absorption bands in deaerated [Ir(ppyFF)2(bpy)]+ solutions (Figure 5b), indicates the formation of the excited state of the bpy-oligophenylene-DPN ligand for 4. In the case of the [Ir-Nor-Ru]3+ complex, the transient spectra (Figure 5c) exhibit two features in the region from 400-850 nm. The negative absorption at 460 nm is related to the bleaching of the Ruthenium centred ground state, whereas no bands attributed to the Iridium component are observed. The broad feature in the region from 500-850 nm is assigned to the formation of the radical anion of the bpy-oligophenylene-DPN ligand. All bands decay monoexponentially with lifetimes slightly longer than those registered by time-resolved emission measurements, due to the existence of possible underlying long lived absorbing species that modifies the evolution at the selected wavelengths. Since it was not possible to monitor the energy transfer processes on the nanosecond time-scale for the iridium-ruthenium mixed metal complexes,16a sub-picosecond transient absorption spectroscopy was performed. Figure 6a shows the femtosecond transient absorption data matrix obtained for an acetonitrile solution of the [Ir-Nor-Ru]3+ complex after laser excitation at 370 nm,23 where several processes can be observed. Positive transient absorptions are shown in red shades and negative bands are shown in purple- blue. After laser excitation, a broad band is formed between 500 and 800 nm, corresponding to the iridium centred excited state, which decays abruptly within the first 150 ps of the measurement. Concomitantly with this decay, two new bands appear: a positive absorption below 400 nm, ascribed to the reduced bipyridine radical anion on the ruthenium moiety and a negative transient absorption, located between 400 and 500 nm, which originates from the bleaching of the ruthenium centred ground state. As the process evolves, this state is depleted, while the 3MLCT excited state is formed, and the band becomes more negative over time. 23 For description and optical layout see SI of: J. Baffreau, S. Leroy-Lhez, N. Van Anh, R. M. Williams, P. Hudhomme, Chem. Eur. J. 2008, 14, 4974-4992. Capítulo 2.1 137 By overlaying transient absorption spectra at different time delays we obtain Figure 6b. For comparison, the sub-picosecond transient absorption spectra of the two homodinuclear complexes were also recorded, showing characteristic features for these types of systems. 20,24 Figure 5. Transient absorption spectra and decay kinetics of a) [Ir-Nor-Ir]2+, b) [Ir(ppyFF)2(bpy)]+, c) [Ir-Nor-Ru]3+ complexes in acetonitrile solution at 293 K (exc = 332 nm, <5 mJ pulse-1, 2 ns half width at half maximum, FWHM). The insets show the decay for a) and c) at 600 nm, and b) at 500 nm. 24 a) J. K. McCusker, Acc. Chem. Res. 2003, 36, 876-887; b) S. Welter, N. Salluce, P. Belser, M. Groeneveld, L. De Cola, Coord. Chem. Rev. 2005, 249, 1360-1371. Capítulo 2.1 138 Figure 6. (a) Sub-picosecond transient absorption data matrix of [Ir-Nor- Ru]3+ complex in acetonitrile (λexc = 370 nm, 130 fs FWHM). Dark-lined grey is negative, light grey is positive. b) Overlay of several sub-picosecond absorption spectra at different time delays. c) Kinetics profiles at 375 nm and d) at 600 nm. The analysis of the kinetics of the energy transfer process in the [Ir-Nor- Ru]3+ system was obtained from the band evolution at 375 nm, that shows a complete quenching of the iridium centred excited state takes place within the Capítulo 2.1 139 first 150 ps of the measurement (Figure 6c). A reasonable complementarity is observed in Figure 6d that shows a decay of the signal at 600 nm as time proceeds. We ascribe this fast component to the energy transfer occurring from the higher lying iridium triplet state to the lower lying ruthenium triplet state. The energy transfer rate has been calculated from kET = 1/ – 1/0, where 0 is the iridium lifetime given by the time-resolved emission measurements, and  is the quenched lifetime obtained from the kinetic analysis (30.9 ps). A global fit procedure using TIMP was applied to the data-matrix,25 evaluating all ~300 kinetic traces, resulting in an energy transfer rate of kET = 3.24  1010 s-1. Taking into account an unquenched lifetime of 150 ns (see Table 1) and a quenched lifetime of 30.9 ps, an energy transfer efficiency of 99.98 % has been calculated (=1-q/ref). Although there are several examples based on iridium/ruthenium and ruthenium/osmium bimetallic complexes interconnected by linear polyphenylene conjugated spacers,2,16a no examples of energy transfer processes in organometallic based homoconjugated systems have been reported to our knowledge. Thus, a reasonable comparison between these full extended  conjugated complexes and the homoconjugated [Ir-Nor-Ru]3+ compound, in terms of the kET dependence with the intermetallic distance, can be done. Regarding the estimated Ir-Nor(C7)-Ru distance and the energy transfer rate between the metal units (29.7 Å, 3.24  1010 s-1), an intermediate behaviour is observed respect to previously reported binuclear complex bearing a bridge consisting of four phenylene groups such as [Ir-ph4-Ru]3+ ( 28.3 Å, 3.6  1011 s-1) complex,16a in which energy transfer proceeds via a clear Dexter mechanism.26 Even though the observed energy transfer process for the [Ir-Nor-Ru]3+ compound is slower than in the [Ir-ph4-Ru]3+ case, due to the higher energy of the triplet state localized on the homoconjugated spacer, the rate of this process is fast in relation with other full extended  conjugated species.24 Within a Dexter-type energy transfer mechanism (double electron transfer), several 25 a) I. H. M. van Stokkum, D. S. Larsen, R. van Grondelle, Biochim. Biophys. Acta: Bioenergetics 2004, 1657, 82-104; b) I. H. M. van Stokkum, R. H. Lozier, J. Phys. Chem. B 2002, 106, 3477-3485; c) K. M. Mullen, I. H. M. van Stokkum, J. Stat. Software 2007, 18, issue 3, special volume . 26 F. Barigelletti, L. Flamigni, M. Guardigli, A. Juris, M. Beley, S. Chodorowski- Kimmes, J.-P. Collin, J.-P. Sauvage, Inorg. Chem. 1996, 35, 136-142. Capítulo 2.1 140 bridge related aspects are of key importance. The mixing of donor and acceptor orbitals with the bridge orbitals, which is governed by symmetry and the energy gap, is essential,2,3,4 since electronic coupling is required. As such the donor-bridge coupling is rather combination specific and comparison with different donor chromophores is less useful. It should be noted that electron delocalization in aromatic homoconjugated systems is less effective than in conjugated compounds,13 and therefore the energy band gap is higher for homoconjugated bridges.13a This result indicates that the energy transfer takes place according to a Dexter-type mechanism which formally consists of a double electron exchange between donor excited- state and acceptor.27 2.2.3 Conclusion In conclusion, the photophysical behaviour of [Ir-Nor-Ru]3+ demonstrates that energy transfer between donor/acceptor components through aromatic homoconjugation is an effective mechanism, and could be used for vectorial energy and electron-transport over very long distances (e.g. 3 nm). This is the first example reported to date of effective photoinduced energy transfer mediated by aromatic homoconjugated bridges and provides a new tool to tune the properties of D-B-A systems by changing the structural features of the bridging unit. Work is currently in progress in our laboratories to design novel D-B-A systems with aromatic homoconjugated bridges and to study the possibility of molecular wire behaviour in these complexes. 27 D.L. Dexter, J. Chem. Phys. 1953, 21, 836-850. Capítulo 2.1 141 2.2.4 Experimental Section General Information 1H and 13C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are given in ppm relative to TMS (1H, 0.0 ppm) and CDCl3 ( 13C, 77.0 ppm). Coupling constants are given in Hertz. All experiments were carried out under argon atmosphere using standard Schlenk techniques. Anhydrous solvents were distilled under argon following standard procedures. Flash chromatography was performed over silica gel 60 (230-400 mesh). All commercially available compounds were purchased from commercial suppliers and used without further purification. The preparation of 2,13b 11,28 Ru(bpy)2Cl2, 29 and [Ir(ppyFF)2Cl2] 30 have been described previously. Boronate 813a was obtained following a modified procedure starting from dibromide 7 instead of the analogous diiodide. Experimental procedures Dibromide 7: Bromine in excess (0.2 mL) was slowly added over 387 mg of 2 (1.1 mmol) at room temperature and the reaction mixture was stirred during 45 minutes. Then 10% NaHSO3 solution was slowly added until disappearance of the red colour. The resulting slurry was extracted with CH2Cl2 (3x15 mL), washed with water (1x15 mL) and dried over MgSO4. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, hexane) to give 489 mg (88%) of the desired product. 1H NMR (300 MHz, CDCl3):  = 7.33 (m, 4H), 7.23 (m, 4H), 2.98-2.79 (m, 2H), 1.89-1.76 (m, 2H), 1.71-1.40 (m, 4H), 1.40-1.08 (m, 14H), 0.88 (t, J = 6.6 Hz, 3H), 0.80 (d, J = 7.1 Hz, 1H); 13C NMR (75 MHz, CDCl3):  = 144.8, 144.4, 131.7, 131.6, 129.1, 128.9, 119.4, 65.3, 45.3, 42.0, 37.2, 35.8, 32.8, 32.0, 30.0, 29.7, 29.3, 28.7, 28.6, 22.7, 20.7, 14.2; MS (ESI, m/z): 516 (M+, 6), 518 (M+ + 2, 11), 520 (M+ + 4, 6); Elemental analysis (%) calc for C27H34Br2: C 62.56, H 6.61; found: C 62.54, H 6.60. Boronate 8: A dry Schlenk flask placed under argon was charged with a mixture of 40 mg (0.08 mmol) of 7, 41 mg (0.16 mmol) of 10, 45 mg (0.46 mmol) of anhydrous potassium acetate and 2 mL of anhydrous DMSO. Oxygen was removed through three freeze-pump-thaw cycles and 5 mg (6.1x10-3 mmol) of PdCl2(dppf) were added over a mild flow of argon. The reaction was heated at 100 ºC for 15 h and the cooled residue was filtered through a short column containing a mixture of celite and fluorisil. The column was washed with hexane and the resulting solution washed with CH2Cl2 (3x15 mL) and water until disappearance of red colour. After drying over MgSO4 and 28 a) S. Altobello, C. A. Bignozzi, S. Caramori, G. Larramona, S. Quici, G. Marzanni, R. Lakhmiri, J. Photochem. Photobiol. A 2004, 166, 91. b) R. A. Kipp, Y. Li, J. A. Simon, R. H. Schmehl, J. Photochem. Photobiol. A 1999, 121, 27. 29 a) P. A. Lay, A. M. Sargeson, H. Taube, Inorg. Synth. 1986, 24, 291. b) B. P. Sullivan, D. J. Salmon, T. J. Meyer, Inorg. Chem. 1978, 17, 3334. 30 Y. You, S. H. Kim, H. K. Jung, S. Y. Park, Macromolecules 2006, 39, 349. Capítulo 2.1 142 removal of the solvent under reduced pressure, 41 mg (87%) of 8 were obtained and used in the next step without further purification.13a Ligand 9: A dry Schlenk flask placed under argon was charged with a mixture of 168 mg (0.27 mmol) of 8, 153 mg (0.49 mmol) of 11, 5 mL of toluene and 5 mL of 1.5 M aqueous solution of Na2CO3. Oxygen was removed through three freeze-pump-thaw cycles and 29 mg (0.02 mmol) of Pd(PPh3)4 were added over a mild flow of argon. After heating at 95 ºC for 63 h, the reaction mixture was extracted with CH2Cl2 (3x15 mL) and dried over MgSO4. The solvent was removed under pressure and the residue purified by flash chromatography (silica gel, CH2Cl2/MeOH 40:1). 109 mg (54%) of 9 were obtained. 1H NMR (300 MHz, CDCl3):  = 8.72 (m, 6H), 8.47 (d, J = 7.9 Hz, 2H), 7.90-7.80 (m, 6H), 7.76 (dd, J = 8.3 and 1.8 Hz, 4H), 7.67-7.60 (m, 10H), 7.44- 7.40 (m, 2H), 3.13-3.08 (m, 2H), 2.0-1.90 (m, 2H), 1.75-1.25 (m, 4H), 1.25-1.10 (m, 14H), 0.90-0.80 (m, 4H); 13C NMR (75 MHz, CDCl3):  = 156.5, 156.0, 149.5, 149.2, 149.1, 145.9, 145.4, 141.8, 137.3, 137.1, 136.6, 128.0, 127.8, 127.5, 127.2, 127.1, 123.9, 121.4, 118.9, 65.7, 45.4, 42.1, 37.3, 36.1, 33.0, 31.9, 31.3, 30.1, 29.7, 29.4, 28.8, 22.7, 20.9, 14.1; MS (FAB, m/z): 822 (M + 2H)+ ; Elemental analysis (%) calc for C59H56N4: C 86.30, H 6.87; found: C 86.26, H 6.85. [Ru-Nor-Ru] (3): 43 mg (0.05 mmol) of 9 and 48 mg (0.1 mmol) of [Ru(bpy)2Cl2] were dissolved in 7.5 mL of a DME/ethylene glycol mixture (2:1) and heated in an ultrasonic bath using ethylene glycol as external solvent. After 30 minutes (the reaction was monitored by TLC) the solvents were removed under vacuum by bulb-to-bulb distillation and the residue was purified by flash chromatography (silica gel, CH3CN/MeOH/H20/NaCl 4:1:1:0.1). Organic solvents were evaporated and excess NH4PF6 dissolved in MeOH (saturated solution) was added to the resulting aqueous solution. After anionic exchange, the red microcrystalline solid was filtered over celite and washed with water. Elution of the solid with acetone and evaporation of the solvent yielded 95 mg (85%) of complex 3. 1H NMR (300 MHz, CD3CN):  = 8.88 (s, 2H), 8.81 (d, J = 8.3 Hz, 2H), 8.63 (dd, J = 8.0 and 3.7 Hz, 8H), 8.24-8.12 (m, 10H), 8.06 (d, J = 8.3 Hz, 4H), 7.97-7.72 (m, 26H), 7.58-7.47 (m, 10H), 3.27-3.17 (m, 2H), 1.90- 1.75 (m, 2H), 1.70-1.40 (m, 4H), 1.40-1.10 (m, 14H), 0.95-0.85 (m, 4H); MS (ESI, m/z): 969.2 [M+ - 2PF6], 597.8 [M+ - 3PF6]; HRMS (ESI, m/z): [M+ - 4PF6] calc for C99H88N12Ru2: 412.13354; found: 412.13378. [Ir-Nor-Ir] (4): 90 mg (0.11 mmol) of 9 and 134 mg (0.06 mmol) of [Ir(ppyFF)2(µ- Cl)]2 dissolved in 28 mL of a CHCl3/MeOH mixture (3:1) were refluxed under argon for 4 h. After evaporation of the solvents the residue was purified by flash chromatography (silica gel, CH2Cl2/MeOH 9:1). The solvents were removed under vacuum and the solid dissolved in a minimal amount of CHCl3. Complex 6 was precipitated as hexafluorophosphate salt by adding a saturated solution of NH4PF6 in MeOH. The solid was filtered over celite, washed with water and diethyl ether and eluted with acetonitrile. Evaporation of the solvent yielded 164 mg (66%) of 4. 1H NMR (300 MHz, CD3CN):  = 8.79 (d, J = 1.5 Hz, 2H), 8.74 (d, J = 8.2 Hz, 2H), 8.35 (m, 4H), 8.20 (td, J = 7.9 and 1.4 Hz, 2H), 8.08-7.88 (m, 12H), 7.84-7.80 (m, 6H), 7.71-7.62 (m, 12H), 7.57 (t, J = 6.6 Hz, 2H), 7.10 (dd, J = 12.3 and 6.1 Hz, 4H), 6.73 (t, J = 11.1 Hz, 4H), 5.77 (dd, J = 8.6 and 2.4 Hz), 3.27-3.16 (m, 2H), 1.90-1.35 (m, Capítulo 2.1 143 6H), 1.35-1.20 (m, 14H), 0.94-0.82 (m, 4H); MS (ESI, m/z): 2111.5 [M+ - PF6], 983.3 [M+ - 2PF6]; HRMS (ESI, m/z): [M+ - 2PF6] calc for C103H80N8F8Ir2: 983.28183; found: 983.28223. [Ir-Nor-bpyph] (6): 99 mg (0.12 mmol) of 9 and 73 mg (0.06 mmol) of [Ir(ppyFF)2(µ- Cl)]2 dissolved in 56 mL of a CHCl3/MeOH mixture (3:1) were refluxed under argon for 4 h. After evaporation of the solvents the residue was purified by flash chromatography (silica gel, CH2Cl2/MeOH 9:1). The solvents were removed under vacuum and the solid dissolved in a minimal amount of CHCl3. Complex 6 was precipitated as hexafluorophosphate salt by adding a saturated solution of NH4PF6 in MeOH. The solid was filtered over celite, washed with water and diethyl ether and eluted with acetonitrile. Evaporation of the solvent yielded 94 mg (51%) of 6. 1H NMR (300 MHz, CDCl3):  = 8.79-8.68 (m, 5H), 8.54 (d, J = 8.1 Hz, 1H), 8.39 (d, J = 9.1 Hz, 1H), 8.33 (d, J = 9.4 Hz, 1H), 8.02 (t, J = 7.9 Hz, 1H), 7.93-7.57 (m, 13H), 7.54- 7.31 (m, 11H), 7.23 (t, J = 6.1 Hz, 1H), 7.15 (t, J = 7.3 Hz, 2H), 7.04 (t, J = 6.3 Hz, 1H), 6.94-6.79 (m, 1H), 6.71-6.53 (m, 2H), 5.71 (dd, J = 8.2 and 2.2 Hz, 2H), 3.16- 3.02 (m, 2H), 2.05-1.35 (m, 6H), 1.35-1.20 (m, 14 H), 0.86-0.76 (m, 4H); MS (ESI, m/z): 1393.5 [M+ - PF6]; HRMS (ESI, m/z): [M+ - PF6] calc for C81H68F4N6Ir: 1393.50708; found: 1393.50788. [Ir-Nor-Ru] (5): Complex 5 was obtained following the procedure described for 3 by reacting 81 mg (0.053 mmol) of 6 and 37 mg (0.076 mmol) of [Ru(bpy)2Cl2] disolved in 28 mL of a ethylene glycol/CHCl3 mixture (3:1). Purification of the resulting solid was achieved by flash chromatography (silica gel, CH2Cl2/MeOH 9:1). After evaporation of the solvents the residue was dissolved in a minimal amount of CHCl3 and precipitated adding saturated NH4PF6 solution in MeOH. The complex was filtered over celite, washed with water and diethyl ether and eluted with acetonitrile. Evaporation of the solvent yielded 74 mg (62%) of 5. 1H NMR (300 MHz, CD3CN):  = 8.80 (s, 1H), 8.78 (s, 1H), 8.75 (d, J = 8.7 Hz, 1H), 8.71 (d, J = 8.1 Hz, 1H), 8.53 (dd, J = 8.0 and 3.5 Hz, 4H), 8.36 (m, 2H), 8.21 (t, J = 7.9 Hz, 1H), 8.15-7.89 (m, 13H), 7.88-7.61 (m, 22H), 7.56 (t, J = 6.5 Hz, 1H), 7.49-7.38 (m, 5H), 7.11 (dd, J = 12.5 and 6.4 Hz, 2H), 6.73 (t, J = 12.1 Hz, 2H), 5.78 (dd, J = 8.6 and 2.4 Hz, 2H), 3.25-3.16 (m, 2H), 1.90-1.40 (m, 6H), 1.40-1.20 (m, 14H), 0.95-0.85 (m, 4H); MS (ESI, m/z): 976.2 [M+ - 2PF6], 602.5 [M+ - 3PF6]; HRMS (ESI, m/z): [M+ - 3PF6] calc for C101H84N10F4RuIr: 602.51631; found: 602.51664. Electrochemistry Electrochemical measurements were performed in 10-3M acetonitrile solutions, containing 0.1M t-Bu4NPF6 as supporting electrolyte (redox potentials versus E1/2 (Fc/Fc+) in Table 2). Cyclic voltammograms of [Ir-Nor-Ir]2+ show, in the anodic scan, the presence of a reversible process at E1/2 = +1.24 V, as similarly observed for the reference system [Ir(ppyFF)2bpy]+, then assigned to the Iridium-centred oxidation.22 The voltammograms of [Ru-Nor-Ru]4+ and [Ir-Nor-Ru]3+ show both a reversible oxidation wave at E1/2 = +0.87 V and E1/2 = +0.89 V respectively, due to the Ruthenium-centred oxidation process.14 At higher values, for the heterodinuclear Capítulo 2.1 144 complex, around E1/2 = +1.32 V, we could observe the irreversible, under our experimental conditions, potential wave of the Iridium-centred oxidation. In the cathodic scan, the homodinuclear [Ir-Nor-Ir]2+ complex undergoes two reduction processes, centered at E1/2 = -1.69 V and at E1/2 = -2.40 V. The first reduction takes place on the phenyl-substituted bipyridines and it is indeed slightly shifted to a less negative potential when compared to the reference compound [Ir(ppyFF)2bpy] +, due to the increased  conjugation on the bipyridine ligand; interestingly, a similar trend was observed in ref. [22], where this shift toward less negative potentials was even larger (E1/2 = -1.69 V) because of the presence of a fully conjugated phenylene bridge between the two central cores. The reduction occurring at E1/2 = -2.40 V, as for the reference complex, takes place on the fluorinated phenylpyridines, and it is barely visible due to adsorption phenomena at the electrode surface. Common features of the homobinuclear complexes are observed in the anodic and cathodic scans of the [Ir-Nor-Ru]3+ complex, in which the voltammogram shows two reversible processes, centered at E1/2 = -1.86 V and at E1/2 = -2.19 V, and one irreversible reduction waves beyond E1/2 = -2.40 V. Table 2. Redox potentials of complexes [Ru-Nor-Ru]4+ and [Ir-Nor-Ir]2+, and the reference complexes [Ru(bpy)3] 2+ and [Ir(ppyFF)2bpy] +. Oxidation processes Reduction processes IrIII/IrIV/V RuII/RuIII/V 1 / V 2 / V 3 / V [Ru(bpy)3]2+ [a] - 0.89 -1.72 -1.95 -2.26 [Ru-Nor-Ru]4+ [b] - 0.87 -1.71 -1.91 -2.23 [Ir(ppyFF)2bpy]+[a] 1.23 - -1.71 -2.39 [c] - [Ir-Nor-Ir]2+ [b] 1.24 - -1.69 -2.40 [c] - [Ir-Nor-Ru]3+ [b] 1.32 [d] 0.89 -1.86 -2.19 -2.43 [c] [a] From ref. [16a]. [b] Conditions: 10-3M solutions in acetonitrile (containing 0.1M t- Bu4NPF6) at 293 K; Pt disk electrode; scanning rate = 50 mV.s-1; redox potentials versus E1/2 (Fc/Fc+). [c] Adsorption on the electrode. [d] Irreversible process. Capítulo 2.1 145 Femtosecond transient absorption spectra Figure 7. Transient absorption spectrum of [Ru-Nor-Ru]4+ in acetonitrile after laser light excitation at 370 nm. The transient absorption spectrum of the ruthenium binuclear complex shows characteristic features for these type of complexes (Figure 7).24 Between 400 and 500 nm an intense negative band, corresponding to the bleaching of the ground state, can be observed. Above 500 nm a very broad absorption band extends to the infrared region, characteristic of highly delocalized excited states. This signal has been assigned to the MLCT transition involving the biphenyl appended bipyridine. Another positive band can be observed below 400 nm that is assigned to the reduced bpy. This assignment is done after comparison with the transient spectra of the parent compound Ru(bpy)3 2+.24 The lifetime of the excited state of this compound is very long when compared to the employed time window. A trace measured at 600 nm shows the immediate formation of the excited state after laser light excitation. The excited state does not decay within our time window, Figure 8. -15x10 -3 -10 -5 0 5 10 15  A 800700600500400 wavelength / nm 50 100 207 499 1028 2028 3308 ps Capítulo 2.1 146 Figure 8. Trace at 600 nm showing the formation of the excited state at 600 nm after laser light excitation. Figure 8 shows the transient absorption spectrum of the iridium bimetallic complex. Again, a very broad absorption band is observed, indicating the presence of a delocalized excited state on the biphenyl appended ligand.20 No negative bands, related to the bleaching of the ground state, are observed, probably due to an overlap of signals in the 400 nm region of the spectrum as the indentation in the transient signal indicates in this area. Also in this case, as shown in Figure 10, the excited state decays with a long lifetime and then can not be observed within the employed time window. Figure 9. Transient absorption spectrum of [Ir-Nor-Ir]3+ in acetonitrile after laser light excitation at 370 nm. 5x10 -3 4 3 2 1 0  A 300250200150100500 time / ps -1.0 -0.5 0.0 0.5 1.0 x 1 0 -3 Trace at 600 nm -10x10 -3 -5 0 5 10  A 800700600500400 wavelength / nm 50 100 199 499 1029 2068 3308 ps Capítulo 2.1 147 Figure 10. Trace at 600 nm showing the formation of the excited state at 600 nm after laser light excitation. 8x10 -3 6 4 2 0  A 300250200150100500 time / ps 2 1 0 -1 -2 x 1 0 -3 Trace at 600 nm Capítulo 2.1 148 Capítulo 2.2 149 2.2 Rational Design of a non-Basic Molecular Receptor for Selective NH4 +/K+ Complexation. A new molecular receptor (1) for ammonium recognition has been designed and constructed only with carbon atoms. This molecular receptor can coexist in two different isoenergetic conformations but, upon complexation, the conformers are no longer isoenergetic, and a basket shaped conformation becomes clearly more stable. The preorganized tetrahedral structure of this basket shaped molecule favours the complexation of ammonium ions by N- H··· interactions with the four phenyl groups of the host. A similar behaviour is not observed in a similar, but less preorganized, reference molecule. ESI-MS competition experiments show that 1 is able to bind NH4 + over K+ selectively. This is the first example of a neutral molecular receptor that shows a remarkable NH4 +/K+ selectivity. DFT-calculations provide insight into the nature of host-guest interactions of both 1·NH4 + and 1·K+ complexes as well as in the mechanism involved in multiple cation- interactions and the influence of these interactions on the conformational stability and the selective binding of the host. Chem. Eur. J. 2012, 18, DOI: 10.1002/chem.201201642 Capítulo 2.2 150 2.2.1 Introduction The design of artificial synthetic receptors for the molecular recognition of ammonium and alkylammonium ions has been one of the most important challenges from the very beginning of Supramolecular Chemistry. The importance and variety of ammonium ions in chemistry and molecular biology has been the driving force of the enormous effort devoted to the development of efficient molecular receptors for selective ammonium complexation.1,2,3,4,5 A major problem encountered in the design of ammonium ion receptors is that related to the interference from potassium ion. Although ammonium ion prefers a tetrahedral coordination in contrast to the octahedral preference of potassium, the similar diameter of both guests (286 pm for NH4 + and 266 pm for K+) makes the selective recognition of ammonium over potassium difficult. Several strategies have been developed in order to overcome this problem, resulting in a series of molecular receptors that show high NH4 +/K+ selectivity.6,7,8,9,10,11,12 However, all the hosts described until now posses several 1 T. Schrader, M. Maue, in Functional Synthetic Receptors, (Eds.: T. Schrader, A. D. Hamilton), WILEY-VCH, Weinheim, 2005, pp. 111-164. 2 Encyclopedia of Supramolecular Chemistry (Eds.: J. L. Atwood, J. W. Steed), Marcel Dekker, New York, 2004. 3 Comprehensive Supramolecular Chemistry, (Eds.: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle), Vol. 1, Molecular Recognition: Receptors for Cationic Guests, Pergamon, 1996. 4 J. W. Steed, J. L. Atwood, Supramolecular Chemistry, John Wiley & Sons, Chichester, 2009. 5 A. Späth, B. König, Beilstein J. Org. Chem. 2010, 6, 1-111. 6 A. Lélias-Vanderperre, J.-C. Chambron, E. Espinosa, P. Terrier, E. Leize-Wagner, Org. Lett. 2007, 9, 2961-2964. 7 J. Kim, Y. K. Kim, N. Park, J. H. Hahn, K. H. Ahn, J. Org. Chem. 2005, 70, 7087- 7092. 8 a) J. Chin, J. Oh, S. Y. Jon, S. H. Park, C. Walsdorff, B. Stranix, A. Ghoussoub, S. J. Lee, H. J. Chung, S.-M. Park, K. Kim, J. Am. Chem. Soc. 2002, 124, 5374-5379; b) S. Y. Jon, J. Kim, M. Kim, S. H. Park, W. S. Jeon, J. Heo, K. Kim, Angew. Chem. Int. Ed. 2001, 40, 2116-2119; c) K. H. Ahn, S.-G. Kim, J. Jung, K.-H. Kim, J. Kim, J. Chin, K. Kim, Chem. Lett. 2000, 170-171; d) J. Chin, C. Walsdorff, B. Stranix, J. Oh, H. J. Chung, S.-M. Park, K. Kim, Angew. Chem. Int. Ed. 1999, 38, 2756-2759. 9 A. Rahman, N.-H. Kwon, M.-S. Won, M.-H. Hyun, Y.-B. Shim, Anal. Chem. 2004, 76, 3660-3665. 10 S.Sasaki, T. Amano, G. Monma, T. Otsuka, N. Iwasawa, D. Citterio, H. Hisamoto, K. Suzuki, Anal. Chem. 2002, 74, 4845-4848. 11 K. S. Oh, C.-W. Lee, H. S. Choi, S. J. Lee, K. S. Kim, Org. Lett. 2000, 2, 2679-2681. Capítulo 2.2 151 heteroatoms in their structure and, therefore, hydrogen bonds are the main noncovalent interactions involved in the ammonium ion recognition or, at least, they play an important role as secondary forces. To our knowledge, no molecular receptor for selective ammonium recognition based exclusively on cation- (or N-H···) interactions13 has been described until now. Such a receptor should have a preorganized cavity size able to complex ammonium ion and four complementary aromatic rings disposed in a tetrahedral arrangement in order to facilitate the selective binding of ammonium over potassium ion by N-H··· interactions, since the positive charge of NH4 + is located predominantly on the hydrogen atoms. In this paper, we report the synthesis and complexation behaviour of the first neutral molecular receptor that shows a remarkable NH4 +/K+ selectivity based exclusively on N-H··· interactions. 2.2.2 Results and Discussion With the conditions mentioned above in mind, we have designed and synthesized the tripodal basket-shaped14,15 molecular receptor 1 (Scheme 1). The non preorganized compound 5 has been prepared also as a reference for the study of the complexation properties of 1. In previous works we have shown that the inclusion of the preorganized 7,7-diphenylnorbornane subunit 12 H.-S. Kim, H. J. Park, H. J. Oh, Y. K. Koh, J.-H. Choi, D.-H. Lee, G. S. Cha, H. Nam, Anal. Chem. 2000, 72, 4683-4688. 13 a) J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303-1324; b) G. W. Gokel, S. L. De Wall, E. S. Meadows, Eur. J. Org. Chem. 2000, 2967-2978; c) E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210-1250; d) L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842. 14 For reviews and highlights on tripodal receptors, see: a) S. E. Gibson, M. P. Castaldi, Angew. Chem. Int. Ed. 2006, 45, 4718-4720; b) C. Moberg, Angew. Chem. Int. Ed. 2006, 45, 4721-4723; c) B. Kuswandi, Nuriman, W. Verboom, D. N. Reinhoudt, Sensors, 2006, 6, 978-1017; d) C. Moberg, Angew. Chem. Int. Ed. 1998, 37, 248-268. 15 For recent examples of molecular baskets, see: a) J. Hornung, D. Fankhauser, L. D. Shirtcliff, A. Praetorius, W. B. Schweizer, F. Diederich, Chem. Eur. J. 2011, 17, 12362-12371; b) S. Rieth, J. D. Badjić, Chem. Eur. J. 2011, 17, 2562-2565; S. Stojanović, D. A. Turner, C. M. Hadad, J. D. Badjić, Chem. Sci. 2011, 2, 752-759; d) H. Cui, N. G. Akhmedov, J. L. Petersen, K. K. Wang, J. Org. Chem. 2010, 75, 2050- 2056; e) X. Bao, S. Rieth, S. Stojanović, C. M. Hadad, J. D. Badjić, Angew. Chem. Int. Ed. 2010, 49, 4816-4819. Capítulo 2.2 152 instead of diphenylmethane in supramolecular structures exerts a dramatic influence on the stability of the corresponding complexes.16 Scheme 1. Synthesis of molecular basket 1: a) BuLi/Et2O; 7-norbornanone. b) BuLi/Et2O; 7-norbornanone; H2O. c) Benzene/TfOH. d) tBuLi/THF; 7- norbornanone; H2O. The aryl rings in 1 are forced to adopt a cofacial conformation by the steric hindrance of the norbornane moieties, as can be observed in other 7,7- 16 a) A. García Martínez, J. Osío Barcina, M. R. Colorado Heras, A. de Fresno Cerezo, M. R. Torres Salvador, Chem. Eur. J. 2003, 9, 1157-1165; b) A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, Chem. Eur. J. 2001, 7, 1171-1175. Capítulo 2.2 153 diphenylnorbornanes described by us,17 thus resulting in a preorganized tetrahedral aromatic receptor. On the contrary, in compound 5 no preferred conformation is observed since diphenylmethane derivatives behave as free rotators.18 On the other hand, molecular receptor 1 may exist as two stable conformations, i.e. the C3-symmetric basket-shaped conformation (1a) with the three lateral phenyl rings oriented in the same direction and the C1-symmetric alternate or partial-basket conformation (1b). X-ray crystal studies reveal that in the solid state 1 crystallizes in the P1 space group adopting the alternate conformation 1b where phenyl groups A and B are oriented in a direction opposite to ring C (Figure 1). All three phenyl groups are disposed cofacially respect to the central aryl ring. The values of the corresponding torsion angles are C18-C13-C4-C10: 85.89o and C13-C4-C10-C6: 88.96o (ring A), C26-C12- C7-C5: 98.92o and C12-C7-C5-C11: 95.40o (ring B), and C19-C9-C2-C1: 74.56o and C9-C2-C1-C11: 71.53o (ring C). 17 a) N. Herrero-García, I. Fernández, J. Osío Barcina, Chem. Eur. J. 2011, 17, 7327- 7335; b) J. Osío Barcina, N. Herrero-García, F. Cucinotta, L. De Cola, P. Contreras- Carballada, R. M. Williams, A. Guerrero-Martínez, Chem. Eur. J. 2010, 16, 6033- 6040; c) J. Osío Barcina, M. R. Colorado Heras, M. Mba, R. Gómez Aspe, N. Herrero García, J. Org. Chem. 2009, 74, 7148-7156; d) N. Caraballo-Martínez, M. R. Colorado Heras, M. M. Blázquez, J. Osío Barcina, A. García Martínez, M. R. Torres Salvador, Org. Lett. 2007, 9, 2943-2946; e) A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31; f) A. García Martínez, J. Osío Barcina, A. De Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. 18 See: A. García Martínez, J. Osío Barcina, in The Diphenylmethane Moiety, pp. 452- 456, in ref. 2. Capítulo 2.2 154 Figure 1. Crystal structure of 1 (hydrogen atoms are omitted for clarity). Crystal packing shows that 1 crystallizes with one molecule of acetone (Figure 2). The oxygen atom of acetone exhibits CH···O interactions with the bridgehead hydrogen atoms of norbornanes A and B (CH···O distances 2.696 and 2.583 Å, respectively), thus contributing to stabilize the conformation observed in the crystal structure. Also of note is that methyl groups of acetone are oriented towards the A and B phenyl groups of the neighbouring molecule forming linear arrays. The shortest CH··· distances are 3.032 and 3.025 Å, only slightly higher than the sum of the van der Waals radii of a hydrogen atom and a phenyl group (2.9 Å), pointing to CH··· interactions as forces that contribute to the crystal packing structure. Figure 2. Crystal packing of 1 showing the CH···O interactions with acetone. Capítulo 2.2 155 In solution, a rapid equilibrium exists between the basket-shaped conformation 1a and the alternate conformation 1b. Density functional theory (DFT) calculations at the M062X/TZVP//M062X-def2-SVP level19 show that these conformations are almost degenerated (∆E = 0.2 kcalmol-1) (Figure 3). Therefore, the conformation observed in the solid state can be attributed to favourable packing forces and not to the stability of the conformers. The computed low rotation barrier which converts 1a into 1b (E≠ = 8.6 kcal.mol-1) suggests that 1 can coexist in both conformations at room temperature. This barrier energy is comparable to the rotational barrier of the phenyl group in 7,7-diphenylnorbornane (11.2 kcal.mol-1).17a,d Moreover, a similar situation has been reported for 7,7-diphenylnorbornane oligomers where an equilibrium between the isoenergetic Z- and U-shaped conformations has been described.17a,d Figure 3. Computed isomerization process for compound 1 (hydrogen atoms are omitted for clarity). Gas-phase energy values (at the M062X/TZVP//M062X/def2-SVP level) are given in kcalmol-1. 19 All calculations were carried at the dispersion-corrected meta-hybrid M062x functional using the def2-SVP basis sets. Single point energy calculations were performed at the M062x/TZVP level over the M062x/def2-SVP geometries. For the complexation energies, the basis set superposition error were taken into account for the TZVP basis set energy values. Capítulo 2.2 156 In order to check the complexation properties of 1, we carried out two different competition experiments and investigated the results by positive ESI- MS spectrometry. Electrospray spectrometry has proven to be an appropriate tool for the study of supramolecular complexes and non-covalent interactions,20,21,22 particularly in the case of ammonium receptors.6,7 First, we investigated the differential behaviour of compounds 1 and 5. Interestingly, when an equimolecular mixture of 1, 5 and NH4PF6 was examined, only the corresponding peak of the 1 + NH4 + complex at m/z = 606 was detected. The relative ESI-MS response factor (R = R[1 + NH4+]/ R[5 + NH4+] = 10.3) confirms the higher affinity of 1 in the complexation of NH4 +.This results shows very clearly the importance of the preorganization afforded by the norbornane frameworks in molecular receptor 1 in comparison to compound 5, as reported previously by us for the case of 7,7-diphenylnorbornane derived macrocycles and complexes.16 In a second experiment we studied the selective complexation of NH4 + over K+ by receptor 1. The competition experiment using an equimolecular mixture of 1, NH4PF6 and KPF6 showed the peaks of the 1:1 complexes [1·NH4 +] and [1·K+] at m/z = 606 and m/z = 627, respectively. The relative intensity of these peaks (I[1·NH4 +] / I[1·K+] = 5.1) shows that receptor 1 has a clear preference for binding NH4 + over K+. This result is comparable or even better than the reported for cage-type basic molecular receptors.6,7 To our knowledge, this is the first example of a molecular receptor based only on carbon atoms that shows a remarkable NH4 +/K+ selectivity since no heteroatoms that could coordinate with NH4 + are present in the structure of 1. This fact demonstrates the importance of the tetrahedral disposition of the phenyl groups in molecular receptor 1, that should favour the selective complexation of NH4 + over K+ by NH··· interactions. 20 M. Kogej, C. A. Schalley, in Analytical Methods in Supramolecular Chemistry, (Ed.: C. Schalley), WILEY-VCH, Weinheim, 2007, pp. 104-162. 21 a) N. B. Cech, C. G. Enke, Mass Spectrom. Rev. 2001, 20, 362-387; b) F. Inokuchi, Y. Miyahara, T. Inazu, S. Shinkai, Angew. Chem. Int. Ed. 1995, 34, 1364-1366; c) H. Konishi, K. Takahashi, M. Nakamura, H. Sakamoto, K. Kimura, J. Incl. Phenom. Macrocycl. Chem. 2006, 54, 147-152. 22 Although several reports claim that ESI-MS reflect the situation of complexes in solution (See: E. Leize, A. Jaffrezic, A. Van Dorsselaer, J. Mass Spectrom. 1996, 31, 537-544, and ref. 6), extrapolation of the data obtained in gas phase to the situation in solution must be made carefully (see ref. 20, pp. 118). Capítulo 2.2 157 To gain further insight into the complexation properties of receptor 1, we computationally explored the different species formed upon complexation of ammonium and potassium cations with compound 1.23 Figure 4a shows the M062x/def2-SVP optimized geometries of the corresponding 1:1 complexes, where the guest molecule interacts with 2 to 4 aryl fragments of the host molecule 1. The complexation energies gathered in Figure 4b (which include the basis set superposition error at the M062x/TZVP level)20 clearly indicate that, as expected, the more aryl groups interacting with the guest molecule the more exothermic the formation of the complex is. Moreover, although conformer 1b is slightly more stable than conformer 1a (by only 0.2 kcalmol-1, see above), the basket shaped conformation becomes more stable upon complexation with both NH4 + and K+ due to the presence of an additional guest-aryl group interaction. Interestingly, from the data in Figure 4b, it becomes obvious that the complexation of NH4 +, either with 1a or 1b, is always favoured over the complexation of K+ (∆E ≈ 4 kcalmol-1), which reflects the greater selectivity of our receptor 1 towards the binding of ammonium over potassium cations, as experimentally observed. 23 DFT calculations have been successfully used in studies of cation- interactions of NH4 + and alkaline metals cations with benzene and several molecular receptors: a) L. K. Engerer, T. P. Hanusa, J. Org. Chem. 2011, 76, 42-49; b) Y. Wang, Z. Xu, Y. Gao, L. Zhang, H. Li, J. Phys. Chem. A 2009, 113, 7097-7102; c) R. Wu, T. B. McMahon, J. Am. Chem. Soc. 2008, 130, 12554-12555; d) A. B. Rozhenko, W. W. Schoeller, M. C. Letzel, B. Decker, C. Agena, J. Mattay, Chem. Eur. J. 2006, 12, 8995-9000; e) R. Sa, W. Zhu, J. Shen, Z. Gong, J. Cheng, K. Chen, H. Jiang, J. Phys. Chem. B 2006, 110, 5094-5098; f) A. T. Macias, J. E. Norton, J. D. Evanseck, J. Am. Chem. Soc. 2003, 125, 2351-2360; g) W.-L. Zhu, X.-J. Tan, C. M. Puah, J.-D. Gu, H.-L. Jiang, K.-X. Chen, C. E. Felder, I. Silman, J. L. Sussman, J. Phys. Chem. A 2000, 104, 9573-9580; h) Y. Inoue, S. Sugio, J. Andzelm, N. Nakamura, J. Phys. Chem. A 1998, 102, 646-648. See also: i) E. A. Orabi, G. Lamoureux, J. Chem. Theory Comput. 2012, 8, 182-193; j) F. B. Sayyed, C. H. Suresh, J. Phys. Chem. A 2011, 115, 9300-9307; k) M. S. Marshall, R. P. Steele, K. S. Thanthiriwatte, C. D. Sherrill, J. Phys. Chem. A 2009, 113, 13628- 13632; l) D. Kim, S. Hu, P. Tarakeshwar, K. S. Kim, J. Phys. Chem. A 2003, 107, 1228-1238; m) A. Mohajeri, E. Karimi, THEOCHEM 2006, 774, 71-76. Capítulo 2.2 158 Figure 4. (a) M062x/def2-SVP optimized geometries of complexes [1a·NH4 +], [1b·NH4 +], [1a·K+], and [1b·K+]. (b) Complexation energies (in kcalmol-1, as E = E(complex) – E (1) – E(cation)) computed at the M062x/TZVP//M062x/def2-SVP level (including the corresponding basis set superposition error). Capítulo 2.2 159 Therefore, it can be concluded that receptor 1 is an excellent model compound for the study not only of multiple cation- interactions (which are known to play a fundamental role in supramolecular complexes and biological systems involving ion channels)24 but also for the study of the relationship between the binding strength and the position and number of the aryl groups in the molecular receptor. The nature of the host-guest interaction in the ammonium complexes has been addressed next by means of the second-order perturbation theory (SOPT) of the Natural Bond Orbital (NBO) method.25 As instance, for complex [1b·NH4 +](3), a good number of stabilizing two-electrons delocalizations from the occupied (C=C)-molecular orbitals of the aryl-groups to the vacant *(N- H) molecular orbitals were found. The corresponding associated second-order perturbation energies (E(2)) are gathered in Table 1, which shows that the more significant * interaction occur from the aryl group at the base of the cavity. Similar * delocalizations can be also found in the analogues ammonium complexes depicted in Figure 4a. The conformational flexibility of receptor 1 allows the calculation of the interaction energies (N+-H··· and K+··· interactions) between the cationic guests and the flipping phenyl groups in our dynamic model compound by means of molecular balances.16b,26 Thus, on going from [1a·NH4 +](4) to [1b·NH4 +](3), the NH4 +··· interaction energy with the flipping phenyl rig can be obtained from the energy difference between complexes [1a·NH4 +](4) and [1b·NH4 +](3). 24 a) S. A. Pless, J. D. Galpin, A. P. Niciforovic, C. A. Ahern, Nat. Chem. Biol. 2011, 7, 617-623; b) R. C. Dumbar, J. D. Steill, J. Oomens, J. Am. Chem. Soc. 2011, 133, 9376- 9386; c) A. T. Macias, J. E. Norton, J. D. Evanseck, J. Am. Chem. Soc. 2003, 125, 2351-2360; d) K. Murayama, K. Aoki, Chem. Commun. 1997, 119-120. For studies of cation- interactions in ammonium ion complexation by enzyme -pockets, see: e) L. M. Salonen, C. Bucher, D. W. Banner, W. Haap, J.-L. Mary, J. Benz, O. Kuster, P. Seiler, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2009, 48, 811-814; f) M. Zürcher, F. Diederich, J. Org. Chem. 2008, 73, 4345-4361. See also: g) U. Akgun, S. Khademi, Proc. Natl. Acad. Sci.USA 2011, 108, 3970-3975. 25 a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218; b) A. E. Reed, F. J. Weinhold, J. Chem. Phys. 1985, 83, 1736-1740; c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746; d) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926. 26 I. K. Mati, S. L. Cockroft, Chem. Soc. Rev. 2010, 39, 4195-4205. Capítulo 2.2 160 Table 1. Second-order perturbation energies (E(2)) associated to the stabilizing * interactions in complex [1b·NH4 +](3).[a] Interaction E (2) / kcalmol-1  (C2=C3)  * (N1-H1) -0.84  (C14=C15)  *(N1-H1) -4.97  (C18=C19)  *(N1-H1) -0.38  (C34=C39)  *(N1-H1) -0.10  (C35=C36)  *(N1-H1) -0.32  (C4=C5)  *(N1-H2) -1.39  (C6=C7)  *(N1-H2) -1.96  (C18=C19)  *(N1-H2) -0.11  (C34=C39)  *(N1-H2) -0.13 [a] All data have been computed at the M062x/def2-SVP level. This value is then corrected by the energy difference between conformations 1a and 1b, resulting in the following equation: EN-H··· = (E[1a·NH4+](4) - E[1b·NH4+](3)) – (E1a - E1b). For the K+··· interaction energy a similar equation is obtained: EK + ··· = (E[1a·K+](4) - E[1b·K+](3)) – (E1a - E1b). The values obtained for the interaction energies according to these equations are very similar: EN-H··· = -7.2 kcalmol-1 and EK + ··· = -7.1 kcalmol-1. On the other hand, the interaction energies between the cationic guests and the new interacting phenyl group on going from [1b·NH4 +](3) (or [1b·K+](3)) to [1b·NH4 +](2) (or [1b·NH4 +](2)) can be obtained directly from the energy difference between the two complexes. The values obtained for the N+-H··· and K+··· interaction energies in this case are also very similar, 9.2 and 9.3 kcalmol-1 respectively. It should be noted that the experimental values of the NH4 +·benzene and the K+·benzene interaction energies are almost the same, - 19.3 kcalmol-1 and -19.2 kcalmol-1 respectively,13 a result in agreement with our calculations. All these data afford some interesting conclusion about the characteristics of multiple cation- interactions in our model compound. The contribution of the phenyl groups to the stability of the complexes is different in each case, being less important (≈ 2 kcalmol-1) the contribution of the fourth group (on going Capítulo 2.2 161 from 1b·guest (3) to 1b·guest (2)) than the afforded from the third phenyl group (on going from 1a·guest (4) to 1b·guest (3)). 2.2.3 Conclusion In summary, the first receptor based only on a carbonated skeleton able to bind selectively NH4 + over K+ in its preorganized cavity has been rationally designed. This molecular receptor can coexist in two different and almost isoenergetic conformations, which are able to form 1:1 complexes with NH4 + and K+ through multiple cation- interactions. Strikingly, both conformers exhibit a remarkable greater selectivity for NH4 + over K+ through genuine NH··· interactions, as revealed by DFT-calculations. Upon complexation, the conformers are no longer isoenergetic, and the basket shaped conformation becomes clearly more stable. The molecular receptor described in this work provides interesting information about multiple cation- interactions and the influence of these interactions on the conformational stability and the selective binding of the host. Further studies towards the synthesis of novel non- heteroatom based receptors are currently underway in our laboratories. Capítulo 2.2 162 2.2.4 Experimental Section General Information 1H and 13C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are given in ppm relative to TMS (1H, 0.0 ppm) and CDCl3 ( 13C, 77.0 ppm). Coupling constants are given in Hertz. All experiments involving organometallic reagents were carried out under argon atmosphere using standard Schlenk techniques. Anhydrous solvents were distilled under argon following standard procedures. Flash chromatography was performed over silica gel 60 (230-400 mesh). All commercially available compounds were purchased from commercial suppliers and used without further purification. The preparation of 2 was carried out following the sequential metal-halogen exchange reaction described in the literature. 27 7-Norbornanone was synthesized according to a described procedure. 28 Compound 5 has been described elsewhere. 29 Experimental procedures Compound 2: BuLi (9.9 mL 1.6 M in hexanes, 15.9 mmol) was slowly added at -78 ºC to a solution of 5 g (15.9 mmol) of 1,3,5-tribromobenzene in 25 mL of Et2O. After 20 min, 1.74 g (15.9 mmol) of 7-norbornanone dissolved in 10 mL of Et2O were added dropwise into the flask. The reaction mixture was stirred for 4 h at 25 ºC and then, cooled at -78 ºC before adding BuLi (9.9 mL 1.6 M in hexanes, 15.9 mmol). After 20 min, 1.74 g (15.9 mmol) of 7-norbornanone dissolved in 10 mL of Et2O wee again added into the flask. The reaction mixture was stirred for 4 h, quenched with 50 mL of water and extracted with Et2O (3 x 20 mL). The combined organic layer was washed with water (2 x 25 mL) and dried over MgSO4. Evaporation of the solvent at reduced pressure and purification of the residue by flash chromatography (silica gel, hexane/Et2O 7:3) yielded 2 (1.5 g, 25%) as a white solid. 1H NMR (300 MHz, CDCl3):  = 7.57 (d, 1H, J = 1.4 Hz), 7.55 (t, 2H, J = 1.4 Hz), 2.34 (s, 4H), 2.14 (m, 4H), 1.78 (s, 2H), 1.50-1.22 (m, 10H) ppm; 13C NMR (75 MHz, CDCl3):  = 145.5, 130.0, 125.3, 123.0, 88.0, 42.5, 28.7, 27.7 ppm; MS (70 eV): m/z (%) = 378 (30) [M+ + 2], 376 (30) [M+], 360 (6), 358 (4), 323 (15), 321 (16), 297 (100), 295 (95), 293 (91), 267 (86), 265 (84), 187 (52), 168 (38), 131 (46), 111 (74), 3 (88); Elemental analysis (%) calc for C20H25BrO2: C 63.65, H 6.68; found: C 63.46, H 6.71. 27 a) L. S. Chen, G. J. Chen, C. Tamborski, J. Organometallic. Chem. 1981, 215, 281- 291. b) L. S. Chen, C. Tamborski, J. Fluorine Chem. 1995, 75, 117-120. c) G. J. Chen, C. Tamborski, J. Organometallic. Chem. 1983, 251, 149-158. 28 a) P. G. Gassman, P. G. Pape, J. Org. Chem. 1964, 29, 160-163. b) P. G. Gassman, J. L. Marshall, Org. Synth. 1968, 42, 287. 29 a) K. S. Choi, M. K. Park, B. H. Han, Bull. Korean Chem. Soc. 1998, 19, 1257-1261; b) T. Fujimoto, S. Tani, K. Takano, M. Ogawa, M. Nagasawa, Macromolecules 1978, 11, 673-677. Capítulo 2.2 163 Compound 3: 210 mg (0.56 mmol) of 2 were dissolved in 15 mL of anhydrous benzene and 182 mg (1.2 mmol) of trifluoromethanesulfonic acid were slowly added at 0 ºC.16,17 After 10 min (the evolution of the reaction was monitored by TLC) the reaction was quenched with 10% NaHCO3 and extracted with Et2O (3 x 15 mL). The organic solution was washed with 10% NaHCO3 (2 x 25 mL), water (1 x 25 mL) and dried over MgSO4. Evaporation of the solvent at reduced pressure and purification of the residue by flash chromatography (silica gel, hexane/Et2O 9:1) yielded 3 (193 mg, 70%) as a white solid. 1H NMR (300 MHz, CDCl3):  = 7.46 (m, 1H), 7.35 (d, 4H, J = 8.4 Hz), 7.21 (t, 4H, J = 8.0 Hz), 7.20 (s, 2H), 7.07 (t, 2H, J = 7.3 Hz), 3.02 (s, 4H), 1.69-1.47 (m, 8H), 1.35-1.26 (m, 8H) ppm; 13C NMR (75 MHz, CDCl3):  = 148.0, 145.2, 128.3, 127.5, 127.3, 125.7, 125.3, 122.1, 64.8, 41.8, 28.3, 28.3 ppm; MS (70 eV): m/z (%) = 498 (77) [M+ + 2], 496 (77) [M+], 418 (82), 417 (95), 327 (73), 325 (74), 171 (100), 129 (89), 91 (92); Elemental analysis (%) calc for C32H33Br: C 77.24, H 6.69; found: C 77.08, H 6.72. Compound 4: tBuLi (1.17 mL 1.7 M in pentane, 2 mmol) was slowly added to a solution of 500 mg (1 mmol) of 3 in 30 mL of THF at -78 ºC. After 4 min, a solution of 110 mg (1 mmol) of 7-norbornanone in 5 mL of THF was added dropwise. The reaction mixture was stirred for 8 h, diluted with 50 mL of water and extracted with Et2O (3 x 25 mL). The organic solution was dried over MgSO4 and after evaporation of the solvent, the residue was purified by flash chromatography (silica gel, hexane/Et2O 9:1) to yield 4 (360 mg, 68%) as a white solid. 1H NMR (300 MHz, CDCl3):  = 7.48 (m, 1H), 7.38 (d, 4H, J = 8.4 Hz), 7.25 (d, 2H, J = 1.6 Hz), 7.18 (t, 4H, J = 7.8 Hz), 6.98 (t, 2H, J = 7.3 Hz), 2.99 (s, 4H), 2.25 (s, 2H), 2.05 (m, 2H), 1.85-1.75 (m, 3H), 1.61-1.51 (m, 4H), 1.45-1.16 (m, 15H) ppm; 13C NMR (75 MHz, CDCl3):  = 146.3, 146.1, 142.1, 128.6, 127.5, 126.2, 125.6, 123.7, 88.3, 65.3, 42.6, 42.1, 28.8, 28.7, 27.8 ppm; MS (70 eV): m/z (%) = 528 (17) [M+], 446 (62), 445 (100), 417 (36), 357 (57), 171 (68), 129 (59), 91 (79); Elemental analysis (%) calc for C39H44O: C 88.58, H 8.39; found: C 88.63, H 8.41. Compound 1: Compound 1 (365 mg, 90%) was obtained as a white solid following the same procedure described for 3, using 364 mg (0.69 mmol) of 4 and 103 mg (0.69 mmol) of TfOH. 1H NMR (300 MHz, CDCl3):  = 7.35 (d, 6H, J = 7.2 Hz), 7.17 (s, 3H), 7.16 (t, 6H, J = 7.3 Hz), 7.01 (t, 3H, J = 7.3 Hz), 3.03 (s, 6H), 2.94 (m, 6H), 1.69- 1.58 (m, 6H), 1.42-1.23 (m, 12H), 1.23-1.13 (m, 6H) ppm; 13C NMR (75 MHz, CDCl3):  = 146.2, 145.1, 128.0, 127.1, 125.0, 123.4, 64.9, 41.7, 28.4, 28.4 ppm; MS (70 eV): m/z (%) = 588 (56) [M+], 418 (35), 417 (82), 349 (73), 348 (95), 258 (78), 257 (100), 179 (93), 165 (82), 129 (56), 91 (95); Elemental analysis (%) calc for C45H48: C 91.78, H 8.22; found: C 91.81, H 8.20. Compound 5: A mixture of 500 mg (1.5 mmol) of 1,3,5-tribromomethylbenzene, 184 mg (0.76 mmol) of AlCl3, 0.2 mL of CH3NO2 and 40 mL of benzene 30 was stirred at 25 ºC for 5 h. The reaction mixture was poured into 75 mL of 1% HCl and extracted with Et2O (3 x 15 mL). The combined organic layer was washed with water (2 x 20 mL) and 30 S. Mataka, Y. Tsuda, K. Takahashi, M. Tashiro, Org. Prep. Proced. Int. 1981, 13, 93-96. Capítulo 2.2 164 dried over MgSO4. After evaporation of the solvent at reduced pressure, the residue was purified by flash chromatography (silica gel, hexane/Et2O 9:1) to give 5 (110 mg, 70%) as a white solid. 1H NMR (300 MHz, CDCl3):  = 7.35-7.10 (m, 15H), 6.91 (s, 3H), 3.93 (s, 6H) ppm; 13C NMR (75 MHz, CDCl3):  = 141.3, 141.2, 128.9, 128.4, 127.6, 126.0, 41.8 ppm. MS (70 eV): m/z (%) = 348 (85) [M+], 257 (100), 179 (66), 165 (39), 91 (86), 69 (40), 57 (56). ESI-MS spectrum of 1 + NH4PF6 + KPF6 Figure 5. ESI-MS spectrum of 1 + NH4PF6 + KPF6 (10-4 M, THF/MeOH 1:1). [1 + NH4 +]: m/z = 606.42; [1 + K+]: m/z = 627.34. Capítulo 2.2 165 Response factors of receptors 1 and 5 Figure 6. ESI-MS response factors of [1 + NH4 +] and [5 + NH4 +]. Relative response factor R = R[1 + NH4+]/ R[5 + NH4+] = 10.3. Capítulo 2.2 166 Computational Details Geometry optimizations without symmetry constraints were carried out using the Gaussian09 suite of programs 31 at the M06-2X 32 /def2-SVP 33 level of theory. Stationary points and saddle point TS were characterized as minima or transition state by calculating the Hessian matrix analytically at this level. Single point energy calculations were performed using the same functional with the triple- plus polarization TZVP basis set on the geometries optimized at the M06-2X/def2-SVP level. This level is denoted as M06-2X/TZVP//M06-2X/def2-SVP. The basis set superposition error (BSSE) values were calculated for the TZVP basis set for the different ammonium and potassium complexes using the counterpoise procedure. 34 31 Gaussian 09, Revision B.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. 32 Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241. 33 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305 34 S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys. 1996, 105, 11024-11031. IV. DISCUSIÓN GENERAL Discusión general 169 En este capítulo se presenta, en español, una discusión integradora de los resultados descritos en apartados anteriores, comparando las conclusiones de los mismos y valorando la consecución de los objetivos propuestos al comienzo del trabajo. Se incluye también una breve mención a resultados relacionados aún sin publicar. IV.1 Capítulo 1 IV.1.1 Estudio de la deslocalización electrónica por homoconjugación en compuestos aromáticos y sistemas poliméricos. Para estudiar si es posible la deslocalización electrónica en moléculas aromáticas mediante homoconjugación, así como las similitudes y diferencias que este fenómeno presenta en comparación con los sistemas aromáticos conjugados, se ha sintetizado una gran variedad de derivados del DPN. También se han preparado algunos compuestos que sirven de referencia para este estudio, con estructuras similares, pero en los que la deslocalización electrónica no es posible. El conjunto de estos compuestos puede dividirse en dos grandes grupos: por una parte moléculas pequeñas u oligómeros cortos299 y por otra parte sistemas poliméricos.300 En la Figura 1 pueden verse las moléculas y oligómeros homoconjugados utilizados para este estudio (1-10) así como los compuestos de referencia análogos (11-14). En la Figura 2 se describen los polímeros homoconjugados sintetizados (15 y 16). Las características de estos polímeros se comparan con las de 17, obtenido previamente en nuestro grupo de investigación,301 así como también con los compuestos 9 y 10, cuyas estructuras forman parte de las de los polímeros 15 y 16. 299 N. Herrero-García, I. Fernández, J. Osío Barcina, Chem. Eur. J. 2011, 17, 7327- 7335. 300 J. Osío Barcina, M. R. Colorado Heras, M. Mba, R. Gómez Aspe, N. Herrero García, J. Org. Chem. 2009, 74, 7148-7156. 301 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, A.-D. Schlüter, J. Frahn, Adv. Mater. 1999, 11, 27-31. Discusión general 170 Como instrumento para el estudio de la deslocalización electrónica se ha empleado principalmente la espectroscopia UV-vis y, en algunos casos los correspondientes potenciales de oxidación. El estudio experimental se completa con cálculos computacionales DFT. Figura 1. Estructura de los compuestos homoconjugados estudiados y de las moléculas empleadas como referencia. Figura 2. Estructura de los polímeros homoconjugados estudiados. Discusión general 171 Los datos de la espectroscopia UV-vis de los compuestos estudiados y de los cálculos TD-DFT llevados a cabo se recogen en la Tabla1. Tabla 1. Datos de UV-vis (max) de los compuestos 1-13. exp/ nm [a] calc/ nm [b] Transición [c] r (BLA) [d] exp/ nm [a] calc/ nm [b] Transición [c] 1 228 237 (0.18) HOMO→ LUMO (5.75) 0.0039 8 268 292 (0.70) HOMO→ LUMO (4.70) 2 242[e] 255 (0.42) HOMO→ LUMO (5.38) 0.0077 9 272 288 (0.98) HOMO→ LUMO (4.74) 222 220 (0.02) HOMO-5→ LUMO 0.0068 10 295 316 (1.51) HOMO→ LUMO (4.34) 3 248[e] 265 (0.63) HOMO→ LUMO (5.21) 0.0076 12 251 265 (0.65) HOMO→ LUMO (5.06) 232 232 (0.01) (banda de combinación) 0.0077 13 257 276 (0.67) HOMO→ LUMO (4.94) 4 250[e] 272 (0.84) HOMO→ LUMO (5.12) 14 -- 246 (0.13) (banda de combinación) 231 240 HOMO-1 →LUMO+1 5 -- 273 (1.07) HOMO→ LUMO (5.06) 6 218 234 (0.08) HOMO-1 →LUMO(46%)[f] HOMO →LUMO (29%) 7 259 274 (0.67) HOMO→LUMO (4.94) [a] Datos experimentales a temperatura ambiente (MeOH). [b] Valores calculados (TD- B3LYP/def2-SVP) en fase gaseosa de las energías de excitación verticales; los valores de la fuerza de los osciladores se indican entre paréntesis. [c] Las diferencias de energía HOMO-LUMO (en eV) se indican entre paréntesis. [d] Valores calculados de la alternancia en las longitudes de enlace (BLA). [e] En hexano. [f] Contribución relativa de la transición. Discusión general 172 El análisis de los datos aportados por la espectroscopia UV-vis permite llegar a una serie de conclusiones acerca de la deslocalización electrónica en los compuestos homoconjugados estudiados: 1. La deslocalización electrónica en el DPN (1) se traduce en una nueva banda (banda de homoconjugación) en el espectro UV-vis centrada a 228 nm. Esta banda no se observa en el difenilmetano (11). En la Figura 3 pueden verse los orbitales HOMO-3 y LUMO del DPN que muestran claramente la deslocalización electrónica existente entre los anillos aromáticos. Los cálculos TD-B3LYP/def2-SVP llevados a cabo reproducen muy bien los datos experimentales asignando la banda de homoconjugación del DPN a la transición entre los orbitales HOMO y LUMO (Figura 3). HOMO-3 HOMO LUMO Figura 3. Orbitales HOMO, HOMO-3 y LUMO del DPN. 2. Se ha comprobado que la posición de la banda de homoconjugación en derivados del DPN es muy sensible a pequeñas variaciones del ángulo torsional Cipso-C7-Cipso’-Corto’. Así, se observa un desplazamiento hipsocrómico e hipocrómico (max = 218 nm, ε = 10900) de la correspondiente banda de homoconjugación en el derivado 6. El impedimento estérico de los grupos metilo en este compuesto produce una desviación de la cofacialidad en los anillos aromáticos (el ángulo torsional en el caso de 6 es 77.4º), con la consiguiente disminución de la homoconjugación, situación que se ve reflejada en la banda de absorción. Esto explica que en el caso del difenilmetano (ángulo torsional en estado sólido 63.5º) las interacciones homoconjugativas entre los fenilos sean muy pequeñas y no se reflejen en su espectro UV-vis. En la Figura 4 puede verse la variación del valor de max (calculada) con el ángulo torsional. Como puede observarse, desviaciones pequeñas de la cofacialidad tienen un efecto muy notable sobre la posición de la banda de homoconjugación. Discusión general 173 Figura 4. Variación del valor de max (calculada, azul) del DPN con el ángulo torsional Cipso-C7-Cipso’-Corto’. 3. La extensión de la deslocalización electrónica por homoconjugación al pasar del DPN a los correspondientes oligómeros, dímero (2) (max = 242 nm), trímero (3) (max = 248 nm) y tetrámero (4) (max = 250 nm) produce un desplazamiento batocrómico e hipercrómico de la banda de homoconjugación, comportamiento idéntico al observado en derivados conjugados. Se observa además la aparición de nuevas bandas en el espectro UV-vis a menor longitud de onda en el caso de de los oligómeros (Tabla 1, Figura 5). Por otra parte, el espectro UV-vis del trímero del difenilmetano (14) es prácticamente idéntico al del difenilmetano, sin que se observe ningún indicio de banda de homoconjugación. Discusión general 174 Figura 5. Espectros UV-vis del DPN (negro) y de los correspondientes dímero (rojo), trímero (verde) y tetrámero (azul). Los resultados obtenidos permiten estimar por primera vez la longitud de homoconjugación efectiva para el caso de derivados aromáticos homoconjugados, que resulta estar en torno a 5-6 subunidades de DPN. Los datos experimentales coinciden muy bien con los calculados para los mismos sistemas (Figura 6). Este resultado es muy parecido al descrito para oligofenilenos conjugados unidos por la posición orto.302 Figura 6. Valores de max (experimentales y calculados) en oligómeros del DPN. 302 J. He, L. C. Jason, S. H. Wadumethrige, K. Thakur, L. Dai, S. Zou, R. Rathore, S. Hartley, J. Am. Chem. Soc. 2010, 132, 13848-13857. 250 300 0 20000  (nm) Discusión general 175 Los cálculos TD-DFT también reproducen muy bien los datos experimentales de la espectroscopia UV-vis (Tabla 1), asignando las bandas de homoconjugación a transiciones HOMO-LUMO. En la Figura 7 pueden verse los orbitales frontera del trímero del DPN, 3. Se observa claramente la deslocalización electrónica entre los fenilos homoconjugados en el orbital LUMO, de manera similar a lo descrito para el DPN (Figura 3). Además, los cálculos TD-DFT explican la aparición de las bandas adicionales a menor longitud de onda observadas en el caso de los oligómeros (Tabla 1). HOMO LUMO Figura 7. Orbitales HOMO y LUMO del trímero del DPN. 4. Los espectros UV-vis de derivados homoconjugados con sustituyentes bifenilo (7 y 8) también ponen de manifiesto el efecto de la deslocalización electrónica por homoconjugación. La banda de homoconjugación en estos compuestos aparece solapada con la del bifenilo en el caso de 7 y como un hombro en torno a 239 nm (determinado mediante la primera derivada) en el caso de 8, es decir, desplazada batocrómicamente con respecto al DPN. La comparación de los valores de max de 7 (259 nm) y 8 (268 nm) con los del bifenilo (247 nm) (Figura 8) muestran una vez más el efecto de la homoconjugación aromática. Los cálculos TD-DFT asignan estas bandas a transiciones HOMO-LUMO (Tabla 1). En la figura 9 pueden verse los orbitales frontera de 7 y 8. En ambos casos es patente la deslocalización electrónica en los correspondientes orbitales LUMO. Es importante señalar que los espectros UV-vis de los compuestos análogos derivados del difenilmetano (12 y 13), preparados como referencia, son diferentes a los de los derivados homoconjugados 7 y 8 y a su vez, parecidos a los del bifenilo, con valores de max de 251 nm (12) y 257 nm (13). Discusión general 176 220 240 260 280 300 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 A b s o rb a n c ia /u .a .  (nm) 8 7 Bifenilo Figura 8. Espectros UV-vis de los derivados del DPN 7, 8 y del bifenilo (referencia). HOMO LUMO Figura 9. Orbitales frontera de los compuestos 7 y 8. 5. En la Introducción de esta Memoria se comentó la gran importancia que tienen actualmente los polímeros conjugados. Una vez demostrado que la deslocalización electrónica puede tener lugar de forma eficaz en moléculas y oligómeros homoconjugados, nos ha parecido interesante extender este estudio Discusión general 177 a sistemas poliméricos. Para ello se han preparado los polímeros 15 y 16, comparándose sus propiedades con las del polímero 17, preparado previamente en nuestro grupo de investigación. La característica más destacable de estos polímeros es que alternan homoconjugación y conjugación en sus estructuras. La subunidad conjugada en el caso de 15 (bifenilo) es más corta que la que se encuentra en el caso de 16 (terfenilo), por lo que la importancia de la deslocalización por homoconjugación es mayor en el caso de 15. Por otra parte, la diferencia entre 16 y 17 estriba en que en el caso del polímero 17, la introducción de cadenas alquílicas en la subunidad de terfenilo, necesarias para aumentar la solubilidad, disminuyen la coplanaridad de los anillos y, por tanto, la deslocalización electrónica. Nosotros hemos pensado eludir esta limitación introduciendo las cadenas alquílicas en la estructura del norbornano en 15 y 16. Se han sintetizado también los compuestos 9 y 10, presentes como subunidades monoméricas en las estructuras de los polímeros estudiados. La información obtenida a partir de estas moléculas y de los hidrocarburos bifenilo, p-terfenilo y p-cuaterfenilo servirán para completar el estudio de los polímeros. Los resultados obtenidos se resumen en las Tablas 2 y 3 (ver también la Tabla 1). Del análisis de los resultados de la Tabla 2 se deduce que la homoconjugación aromática contribuye de manera eficaz a la deslocalización electrónica en estos compuestos. Así se desprende de los datos de UV-vis, donde se observa un desplazamiento batocrómico de la bandas de absorción del bifenilo (247 nm) y del terfenilo (274 nm) en comparación con 9 (272 nm) y 10 (295 nm). Estos resultados parecen indicar que el grado de deslocalización electrónica provocado por dos fenilos homoconjugados es similar al de un anillo conjugado, dado que el espectro UV-vis de 9 se asemeja más al del p-terfenilo, mientras que el de 10 es similar al del p-cuaterfenilo (292 nm) (Figura 10). Esta semejanza se observa también en los correspondientes espectros de emisión, en los que puede observarse que tanto 9 como 10 presentan desplazamientos de Stokes considerables (53 y 66 nm, respectivamente), con valores muy similares a los del p-terfenilo y p-cuaterfenilo (64 y 72 nm) (Figura 10). Discusión general 178 Por último, los valores de las diferencias de energía entre los orbitales HOMO-LUMO así como los correspondientes potenciales de oxidación también ponen de manifiesto el efecto de la deslocalización electrónica en estos derivados homoconjugados y su paralelismo con los patrones conjugados p-terfenilo y p-cuaterfenilo. Los cálculos DFT realizados con 9 y 10 están de acuerdo con los datos experimentales. En la Figura 11 se muestran los orbitales frontera de ambos compuestos. Al igual que en sistemas mencionados anteriormente, la deslocalización electrónica entre los fenilos homoconjugados puede apreciarse claramente en los correspondientes orbitales LUMO. Las bandas observadas en los espectros UV-vis se corresponden con transiciones HOMO-LUMO entre estos orbitales, según los cálculos TD-DFT llevados a cabo. Tabla 2. Propiedades de los compuestos 9 y 10, y de las referencias bifenilo, p- terfenilo y p-cuaterfenilo. [a] En CH2Cl2. [b] En nm. [c] En CH2Cl2 con nBu4NClO4 0.1 M como electrolito; los potentiales se midieron empleando un electrodo Ag/AgCl como referencia; los valores de los potenciales vs. Fc/Fc+. [d] En CH3CN con nBu4NClO4 0.1 M como electrolito; los potentiales se midieron empleando un electrodo Ag/AgCl como referencia; los valores de los potenciales vs. Fc/Fc+. [e] Lit. λabs [a,b] λem [a,b] Desplaza- miento de Stokes[b] λonset [b] Eg opt (eV) Eoxd 1/2(V) EHOMO (eV) ELUMO (eV) 9 272 325 53 310 4.00 - - - 10 295 361 66 335 3.70 1.11[c] 1.18, 1.43[d] -5.37 -1.67 Bifenilo 247 315 68 278 4.46 - - - p-Terfenilo 274 338 64 312 3.97 1.44[d] (1.5[e]) -5.56 -1.59 p- Cuaterfenilo 292 364 72 334 3.71 1.09[c] -5.41 -1.70 Discusión general 179 Tabla 3. Propiedades de los polímeros 15, 16 y 17. [a] Determinado por GPC en THF. [b] En nm. Figura 10. Espectros de absorción y emisión de los compuestos 9 y 10 y de las referencias bifenilo, p-terfenilo y p-cuaterfenilo. HOMO LUMO Figura 11. Orbitales frontera de 9 y 10. Rto. (%) Mw [a] Mn [a] PDI [a] λabs [b] λem [b] Desplaza- miento de Stokes [b] λonset [b] Eg opt (eV) 15 97 6440 4650 1.4 283 337 54 319 3.89 16 94 3470 2600 1.3 298 366 68 342 3.62 17 94 21600 8820 2.4 268 348 80 308 4.02 300 350 400 450 E m is ió n /u . a . (nm) 10 Terf Cuat Bif 9 300 A b s o rc ió n /u . a .  (nm) 10 Terf Cuat Bif 9 Discusión general 180 Una vez estudiados los compuestos de referencia 9 y 10, se procedió a investigar las propiedades de los correspondientes polímeros 15, 16 y 17, obtenidos mediante reacciones de policondensaciónde Suzuki303 (Tabla 3). De la comparación de los datos experimentales obtenidos a partir de los espectros UV-vis y de emisión (Figura 12) puede concluirse que al pasar de los monómeros a los correspondientes polímeros se produce un incremento de la deslocalización electrónica, más apreciable en el caso del polímero con subunidades de bifenilo (15). Por otra parte, y como cabía esperar, un aumento de la conjugación en la subunidad de terfenilo al pasar del polímero 17 a 16 se traduce en un desplazamiento batocrómico de la correspondiente banda de absorción en el espectro UV-vis (298 nm vs. 268 nm). Sin embargo, el polímero 17 muestra el mayor valor del desplazamiento de Stokes de los tres estudiados. Figura 12. Espectros UV-vis y de emisión de los polímeros 15, 16 y 17 y de las moléculas referencia 9 y 10. En resumen, el conjunto de resultados, tanto experimentales como computacionales, descritos en esta parte de la presente Memoria permiten concluir que la homoconjugación aromática constituye un mecanismo muy eficaz de deslocalización electrónica, tanto en moléculas como en oligómeros y polímeros homoconjugados. Esta es la primera vez que se describe y explica con detalle este fenómeno, que puede ser la base para el diseño de una gran variedad de sistemas con deslocalización electrónica no convencional. La importancia de estos resultados es más destacable si se tiene en cuenta que en 303 J. Sakamoto, M. Rehahn, G. Wegner, A. D. Schlüter, Macromol. Rapid Commun. 2009, 30, 653-687; b) Conjugated Polymer Synthesis, Ed.: Y. Chujo, Wiley-VCH, Weinheim, 2010. 300 400 A b s o rc ió n /E m is ió n /u . a . (nm) 15 abs. 15 em. 9 abs. 9 em. bifenilo abs. bifenilo em. 250 300 350 400 450 A b s o rc ió n /E m is ió n /u . a .  (nm) 17 em. 17 abs. 16 em. 16 abs. 10 abs. 10 em. terfenilo abs. terfenilo em. Discusión general 181 sistemas homoconjugados neutros formados por dobles y/o triples enlaces no se produce deslocalización electrónica. Por otra lado, nuestros estudios señalan que la deslocalización electrónica por homoconjugación aromática es muy sensible a variaciones estructurales pequeñas, por ejemplo en los ángulos torsionales que afectan a la cofacialidad de las moléculas. Esto explica la falta de deslocalización en el difenilmetano y en derivados del tripticeno. IV.1.2 Estudio de la deslocalización electrónica por homoconjugación en compuestos con sustituyentes. Sistemas push-pull. Una vez investigada la deslocalización electrónica en hidrocarburos, parece lógico extender este estudio a sistemas sustituidos. Esto permitiría analizar la influencia de la sustitución en la homoconjugación aromática y cómo puede modularse la deslocalización electrónica mediante el empleo de diferentes sustituyentes. De especial interés dentro de este grupo de derivados son los sistemas con sustituyentes dadores y aceptores de electrones en la misma molécula (sistemas push-pull) debido a sus importantes aplicaciones (Ver introducción del capítulo I). Con objeto de llevar a cabo este estudio hemos sintetizado una familia muy amplia de derivados del DPN con diferentes sustituyentes (Figura 13) y hemos estudiado su reactividad y sus espectros UV-vis y de RMN. El estudio se completa con cálculos computacionales DFT. Discusión general 182 Figura 13. Estructura de los derivados sustituidos sintetizados. También se han sintetizado una serie de derivados análogos, no homoconjugados, que servirán como referencias en este estudio (Figura 14). En el caso de los compuestos derivados del difenilpropano (9a-e), la comunicación entre los anillos aromáticos por homoconjugación no existe o es muy débil debido a la inestabilidad de la conformación cofacial, mientras que en los derivados del sistema biciclo[2.2.2]octano la conformación cofacial está imposibilitada por razones estructurales. Estos derivados representan una situación opuesta a la del DPN. Discusión general 183 Figura 14. Moléculas no homoconjugadas sintetizadas como referencias. Del conjunto de datos experimentales obtenidos con estos derivados cabe obtener las siguientes conclusiones: 1. Los espectros UV-vis de los compuestos estudiados muestran tres bandas de absorción importantes: a) la banda del cromóforo unido al anillo aromático, b) la banda de homoconjugación y c) bandas de transferencia de carga en el caso de sistemas push-pull. La extensión de la deslocalización por homoconjugación se pone claramente de manifiesto al comparar los espectros UV-vis de los derivados del DPN y del o-fluoro-DPN (FDPN) monosustituidos con los derivados del benceno con los mismos sustituyentes, observándose desplazamientos batocrómicos de las bandas de absorción de los cromóforos del orden de 20-35 nm. Por otra parte, la posición de estas bandas en derivados disustituidos depende del sustituyente situado en el otro anillo aromático, existiendo una relación lineal entre los valores de max y los de σp de los sustituyentes, observándose desplazamientos batocrómicos con sustituyentes dadores de electrones, que aumentan la homoconjugación, y el efecto contrario con grupos desactivantes. En la Figura 15 puede verse este efecto para el caso de NO2- FDPNs con grupos -NO2, -Me, -H y -OMe en el anillo homoconjugado. La misma relación se observa en el caso de los DPNs análogos. Discusión general 184 250 300 350 0,0 0,2 0,4 0,6 0,8 1,0 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 272 274 276 278 280 282 284 286 288 290 W a ve le n g th ( n m )  p 7q 7p 7g 7o A b s o rb a n c e /a .u . Wavelength (nm) 7p NO 2 /Me-FDPN 7q NO 2 /OMe-FDPN 7g NO 2 -FDPN 7o (NO 2 ) 2 -FDPN Figura 15. Espectros de absorción de NO2-FDPNs y correlación de los valores de max vs. σp de los sustituyentes. Los cálculos TD-DFT aportan información muy relevante que permite interpretar los datos experimentales y confirmar las interacciones homoconjugativas presentes en estos derivados. Así, en el caso de los compuestos descritos en la Figura 15, los cálculos confirman la presencia de dos bandas importantes. Por una parte, la banda que aparece a mayor longitud de onda se asigna en todos los casos a transiciones electrónicas entre los orbitales HOMO y LUMO. En la Figura 16 pueden verse los orbitales para el caso del derivado del NO2-FDPN con un sustituyente -Me en el fenilo homoconjugado. Como puede observarse, el orbital HOMO está centrado principalmente en el anillo con -F y -Me, mientras que el orbital LUMO lo está en el fenilo sustituido con el grupo -NO2. Por otra parte, la banda de homoconjugación, muy visible a 223 nm en el caso del derivado FDPN-OMe y que aparece como un hombro en el caso del FDPN-Me se atribuye, de acuerdo con nuestros cálculos TD-DFT, a una transición electrónica desde los orbitales HOMO-3 y LUMO. En la Figura 16 puede verse el orbital HOMO-3 de FDPN- Me involucrado en esta transición. Se trata de un orbital con deslocalización entre los dos anillos aromáticos, lo que confirma la naturaleza Discusión general 185 homoconjugativa de esta banda de absorción. Por último, la comparación de los espectros UV-Vis de los compuestos NO2-DPN y NO2-DPN-NO2 con los derivados análogos del difenilpropano 9b y 9d muestran asimismo el efecto de la homoconjugación, observándose desplazamientos batocrómicos de las correspondientes bandas de 19 nm. HOMO-3 HOMO LUMO Figura 16. Orbitales HOMO-3, HOMO y LUMO del compuesto FDPN-Me. 2. La banda más característica en los espectros UV-vis de los derivados del DPN estudiados es la de homoconjugación. La posición de esta banda presenta una fuerte dependencia de la naturaleza de los sustituyentes unidos a los anillos aromáticos. Así, sustituyentes desactivantes provocan una menor interacción homoconjugativa entre los fenilos al disminuir la densidad electrónica en los anillos aromáticos. Como consecuencia, la banda de homoconjugación en estos derivados experimenta un desplazamiento hipsocrómico, que puede hacer que la banda de homoconjugación no sea fácil de distinguir al aproximarse su longitud de onda a la zona del ultravioleta lejano (~ 200 nm). Por el contrario, el incremento de la densidad electrónica provocado por sustituyentes dadores de electrones favorece las interacciones homoconjugativas y provoca desplazamientos batocrómicos de la banda de homoconjugación. El caso más notable de los estudiados es el del derivados del DPN con dos grupos –NMe2 en el que la banda de homoconjugación aparece a 272 nm. En la Figura 17 pueden verse los espectros UV-vis de este compuesto, del (NH2)2-DPN y de los compuestos de referencia derivados del difenilpropano y del biciclo[2.2.2]octano, 9c y 10b. Discusión general 186 240 260 280 300 320 0,0 0,5 1,0 1,5 A b s o rb a n c e /a .u . Wavelength (nm) 6b 9c 6a 10b Figura 17. Espectros UV-vis de los compuestos (Me2N)2-DPN (6a) , (NH2)2- DPN (6b) y de las referencias 9c y 10b. El efecto de la homoconjugación resulta evidente ya que en el caso de 9c y 10b, sus espectros son muy similares, con bandas a 241 nm y 239 nm respectivamente, y a su vez, parecidos al espectro de la anilina (230 nm), es decir, sin bandas de homoconjugación. Por el contrario, el espectro de (NH2)2- DPN presenta dos bandas, una a ~ 233 nm, similar a la banda de la anilina y a las descritas para 9c y 10b, y una segunda banda a 255 nm (banda de homoconjugación). Los cálculos TD-DFT realizados en el caso de (NH2)2-DPN indican que la banda de homoconjugación corresponde a una transición entre los orbitales HOMO y LUMO + 1 (Figura 18). Como puede verse, el orbital LUMO + 1 está deslocalizado entre los dos anillos aromáticos. Este orbital deslocalizado está ausente en el caso de 10b. Discusión general 187 HOMO LUMO + 1 Figura 18. Orbitales HOMO y LUMO + 1 del compuesto (NH2)2-DPN (6b). Otro aspecto importante de los espectros de los derivados homoconjugados es la variación de la posición de la banda de homoconjugación con los sustituyentes. En la Figura 19 puede observarse cómo varía la longitud de onda de la banda de homoconjugación en una serie de derivados del MeO-DPN. La correlación entre la posición de la banda y el valor de σp de los sustituyentes es muy buena (r2 = -0.996). 250 300 350 400 0,0 0,2 0,4 0,6 0,8 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 220 225 230 235 240 245 250 W a v e le n g th ( n m )  p 7u 7n 7t 7b 7r 7q A b s o rb a n c e /a .u . 7q MeO/NO 2 -FDPN 7b MeO-FDPN 7r MeO/CN-FDPN 7s MeO/Br-FDPN 7u MeO/NH 2 -FDPN Wavelength (nm) Figura 19. Espectros UV-vis de MeO-DPNs y correlación entre los valores de max vs. σp de los sustituyentes. Discusión general 188 3. El último aspecto destacable de los espectros UV-vis de los compuestos homoconjugados estudiados es la aparición de bandas de transferencia de carga en sistemas con un sustituyente activante en uno de los fenilos y otro desactivante en el otro anillo aromático (sistemas push-pull). Los ejemplos más significativos de estas bandas de transferencia de carga pueden verse en la Figura 20. Figura 20. Espectros UV-vis de sitemas push-pull homoconjugados. También en esta ocasión la homoconjugación desempeña un papel muy importante en la aparición de la transferencia de carga. En la Figura 21 pueden verse los espectros de los compuestos NO2-DPN-NH2 (6i), NO2-FDPN-NH2 (7v) y del análogo derivados del difenilpropano (9e). Mientras que la banda de transferencia de carga es claramente visible en el caso de NO2-DPN-NH2, entre 300-450 nm, tan solo aparece como una absorción residual, menos intensa y solapada con la banda del cromóforo Ph–NO2, en el caso de 9e. Este resultado puede explicarse considerando que la homoconjugación entre los anillos aromáticos hace disminuir la diferencia de energía entre los orbitales implicados en el proceso de transferencia de carga. Por otra parte, este fenómeno estaría favorecido por la cofacialidad de los anillos aromáticos en los DPNs así como por la estabilidad de la especie resultante debido a una mayor deslocalización electrónica en el caso de derivados homoconjugados sustituidos en la posición para (Figura 22). 250 300 350 400 0,0 0,2 0,4 0,6 0,8 A b s o rb a n c e /a .u . Wavelength (nm) 6j NO 2 /MeO-DPN 7q NO 2 /MeO-FDPN 7r CN/MeO-FDPN 7p NO 2 /Me-FDPN 6k CF 3 /MeO-DPN Discusión general 189 Figura 21. Espectros UV-vis de NO2-DPN-NH2 (6i), NO2-FDPN-NH2 (7v) y del análogo derivados del difenilpropano (9e) Figura 22. Estructura y síntesis de sistemas push-pull sustituidos en la posición meta. Estas suposiciones se ven confirmadas por el hecho de que los espectros de los derivados análogos al NO2-DPN-NH2 con uno de los grupos en posición meta (11 y 12) (Figura 22) no se observan bandas de transferencia de carga. La síntesis de estos compuestos se llevó a cabo a partir del dinitroderivado 8. A su vez, este se obtuvo por nitración de 7g, que conduce al isómero meta por la suma de los efectos desactivantes del flúor y del anillo aromático homoconjugado con un grupo NO2. Este resultado pone de manifiesto el efecto de la homoconjugación también en la reactividad de los derivados del DPN. El efecto de la homoconjugación no solo es patente en las propiedades ópticas y la reactividad de los compuestos estudiados. También se pone de 250 300 350 400 450 0,0 0,2 0,4 0,6 A b s o rb a n c e /a .u . Wavelength (nm) 9e 6i 7v Discusión general 190 manifiesto al estudiar los espectros de RMN. El efecto que ejercen los sustituyentes de un anillo aromático sobre los desplazamientos químicos (1H y 13C) de las señales del anillo homoconjugado se transmiten principalmente a las posiciones ipso y para, y no al C7 del norbornano, como cabría esperar si estos efectos se transmitieran a través de los enlaces. Por último hay que destacar que los sistemas push-pull descritos en este apartado han demostrado poseer propiedades ONL muy interesantes y similares a la de compuestos conjugados con los mismos sustituyentes.304 Nuestros cálculos DFT (B3LYP/def2-SVP//M06-2x/def2-SVP) permiten reproducir los resultados experimentales descritos previamente por nosotros, lo cual permitirá predecir las propiedades ONL de otros derivados homoconjugados. Del conjunto de resultados descritos en esta parte de la Memoria puede concluirse que la deslocalización electrónica por homoconjugación en sistemas con sustituyentes se pone de manifiesto en su reactividad, sus propiedades ópticas y ONL y en sus espectros de RMN. Los cálculos DFT realizados ayudan a explicar los datos experimentales obtenidos de los espectros UV-vis así como la deslocalización electrónica entre los anillos aromáticos. Por otra parte, la homoconjugación en estos compuestos depende en gran medida del tipo y la posición de los sustituyentes presentes en los anillos, lo cual permite controlar el grado de comunicación entre ellos. IV.2 Capíulo 2 IV.2.1 Aplicaciones de sistemas homoconjugados en el diseño de cables moleculares y OLEDs Una vez investigados los aspectos básicos de la homoconjugación aromática en moléculas con y sin sustituyentes, así como en oligómeros y polímeros homoconjugados, nos ha parecido interesante iniciar el estudio de las aplicaciones de estos sistemas. La eficacia de la deslocalización electrónica en 304 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, G. Rojo, F. Agulló- López, J. Phys Chem. B 2000, 104, 43-47. Discusión general 191 los derivados del DPN, similar a la encontrada en compuestos conjugados, los convierte en candidatos idóneos para llevar a cabo este estudio. Una de las aplicaciones de los compuestos conjugados más interesantes desarrolladas en los últimos años es la de su utilización como cables moleculares, capaces de intervenir o mediar en el transporte de electrones o de energía entre dos extremos de una molécula, formando díadas D-B-A (D = dador de electrones o energía; B = puente, molécula conjugada; A = aceptor de electrones o energía). Hasta la fecha se ha investigado el comportamiento de un número muy elevado de puentes conjugados, pero no de sistemas homoconjugados, por lo que decidimos iniciar este estudio como parte del presente trabajo. Para ello se han sintetizado los complejos descritos en la Figura 23.305La elección del complejo bimetálico heteronuclear Ir -Nor-Ru (5) se basó en los buenos resultados descritos para sistemas D-B-A en los que intervienen complejos de Ir(III) y Ru(II), como dadores y aceptores, respectivamente, en procesos de transferencia de energía.306 Los complejos homonucleares de Ru(II), Ru-Nor-Ru (3), e Ir(III), Ir-Nor-Ir (4), se sintetizaron como referencias para el estudio del comportamiento de 5. En la Figura 24 pueden verse los espectros de absorción y emisión de estos complejos. Los espectros de absorción y emisión de los complejos Ru-Nor-Ru e Ir-Nor- Ir son muy similares a los de las referencias [Ru(bpy)3] 2+ e [Ir(ppyFF)2(bpy)]+ con bandas de absorción (max) a 288 nm (Ru-Nor-Ru) y 247, 298 y 350 nm (Ir-Nor-Ir) y bandas de emisión a 625 nm (Ru-Nor-Ru) y 526 nm (Ir-Nor-Ir) (Tabla 4). Por otra parte, el espectro de absorción del complejo heteronuclear Ir-Nor-Ru (Figura 25) es la suma de los espectros de los complejos homonucleares, con bandas a 246, 288, 326 y 400-550 nm. Para estudiar la transferencia de energía en el complejo Ir-Nor-Ru se utilizó una exc de 332 nm. A esta longitud de onda los complejos de Ir y Ru absorben la misma fracción de radiación. El espectro de emisión de Ir-Nor-Ru (Figura 25, Tabla 4) muestra tan solo una banda a 625 nm, correspondiente a la emisión del complejo de Ru(II). No hay rastro de la emisión por parte del 305 J. Osío Barcina, N. Herrero-García, F. Cucinotta, L. De Cola, P. Contreras- Carballada, R. M. Williams, A. Guerrero-Martínez, Chem. Eur. J. 2010, 16, 6033- 6040. 306 S. Welter, F. Lafolet, E. Cecchetto, F. Vergeer, L. De Cola, Chem. Phys. Chem. 2005, 6, 2417-2427. Discusión general 192 complejo de Ir(III), lo cual indica que se ha producido la total desactivación (quenching) de la emisión de este centro o, lo que es lo mismo, que ha tenido lugar una transferencia de energía muy eficaz desde el Ir al Ru. Figura 23. Estructura de los complejos metálicos estudiados. Discusión general 193 a) b) Figura 24. Espectros de absorción (a) y emisión (exc =332 nm) (b) (acetonitrilo diluido, 298 K) de los complejos Ru-Nor-Ru e Ir-Nor-Ir. 300 400 500 600 700 800 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 In te n s it y / a . u . A b s o rb a n c e  / nm Figura 25. Espectros de absorción y emisión del complejo bimetálico heteronuclear Ir-Nor-Ru (acetonitrilo, 293 K). 300 400 500 600 0 20000 40000 60000 80000 100000 120000 140000  / M -1 c m -1  / nm [Ru(bpy) 3 ] 2+ [Ru-Nor-Ru] 4+ [Ir(ppyFF) 2 bpy] + [Ir-Nor-Ir] 2+ 400 500 600 700 800 0,0 0,2 0,4 0,6 0,8 1,0 [Ru(bpy) 3 ] 2+ [Ru-Nor-Ru] 4+ [Ir(ppyFF) 2 bpy] + [Ir-Nor-Ir] 2+ I / a . u .  / nm Discusión general 194 Tabla 4. Datos fotofísicos de los complejos estudiados. [a] En acetonitrilo, exc = 332 nm. [b] En matriz rígida de acetonitrilo, exc = 332 nm. [c] Intensidad demasiado baja para poder medirse con precision mediante [d]. [d] Determinado mediante el método de recuento de fotones individuals correlacionados temporalmente (time-correlated single-photon counting method). Para seguir la evolución del proceso de transferencia de energía en el complejo Ir-Nor-Ru se recurrió a la espectroscopia de absorción de transitorios en la escala de sub-picosegundos (no fue posible hacerlo en la escala de tiempos de nanosegundos). Los resultados obtenidos se exponen en la Figura 26. a) b) Figura 26. Espectros de absorción de transitorios en la escala de sub- picosegundos del complejo Ir-Nor-Ru. En la Figura 26a se muestran los datos de la espectroscopia de absorción transitoria a intervalos de tiempo de femtosegundos. En color azul se aparecen 298 K [a] IrIII max [nm]  [ns] [d] RuII max [nm]  [ns] [d] 102 ×  77 K [b] IrIII max [nm]  [s] [d] RuII max [nm]  [s] [d] [Ir-Nor-Ir]2+ 526 150 - - 1.8 508 37.0 - - [Ru-Nor-Ru]4+ - - 625 197 7.4 - - 593 5.9 [Ir-Nor-Ru]3+ - [c] 625 200 7.4 [c] - 590 5.8 [Ir(ppyFF)2(bpy )]+ 529 140 - - 2.2 484 4.4 - - [Ru(bpy)3] 2+ - - 619 156 6.2 - - 579 5.7 Discusión general 195 las bandas negativas mientras que en rojo aparecen las positivas. Tras la excitación, se observa la formación de una banda ancha entre 500-800 nm correspondiente al estado excitado centrado en el Ir. Esta banda decae rápidamente durante los primeros 150 ps al mismo tiempo que aparecen dos bandas nuevas: una positiva por debajo de 400 nm, y otra negativa entre 400- 500 nm. Esta última banda se corresponde con la pérdida de intensidad de la emisión del centro de Ru. La figura 26b se obtiene por superposición de varios espectros de absorción transitoria. La cinética del proceso de transferencia de energía se obtuvo a partir de la evolución de la banda a 375 nm, que muestra que la desactivación completa del centro de Ir tiene lugar durante los primeros 150 ps. La velocidad de la transferencia de energía resultó ser kET = 3.24 x 1010 s-1 y la eficacia del proceso del 99.98%. Estos datos demuestran que, aunque la velocidad de la transferencia de energía es algo menor que en díadas con puentes conjugados debido a que la deslocalización electrónica no es tan eficaz en compuestos homoconjugados, la transferencia de energía tiene lugar mediante un mecanismo de tipo Dexter. En resumen, los resultados obtenidos permiten afirmar que los sistemas homoconjugados pueden emplearse para el transporte eficaz de energía y electrones a distancias largas (~ 3 nm). Nuestros datos son los primeros descritos que emplean este tipo de puentes homoconjugados. Discusión general 196 En este capítulo se exponen también resultados previos, no publicados, que forman parte de los estudios llevados a cabo en la presente Memoria. En concreto, se ha estudiado la aplicación del complejo Ru-Nor-Ru descrito anteriormente en la construcción de OLEDs. Una de las aplicaciones más relevantes de los compuestos orgánicos conjugados es su utilización en el diseño de diodos orgánicos emisores de luz (OLED’s).307,308,309,310,311,312,313 El empleo de materiales orgánicos en estos dispositivos presenta ventajas importantes en comparación con los análogos inorgánicos como son su facilidad de procesado y la enorme variedad estructural de las moléculas orgánicas, lo que permite estudiar en profundidad la relación estructura-propiedades en estos dispositivos. En la Figura 27 se representa de manera esquemática la estructura interna típica de un OLED. Básicamente, éste consiste en una serie de capas de materiales orgánicos situadas entre un ánodo, con frecuencia de óxido de titanio y estaño (ITO), y un cátodo metálico de Mg-Ag o Li-Al. Al aplicarse un voltaje externo al dispositivo se produce la migración de electrones y huecos desde las respectivas capas de materiales orgánicos hacia la capa emisora. La formación y consiguiente relajación de los excitones produce la emisión de luz. Cátodo Capa transportadora de electrones Capa emisora Capa de bloqueo de excitones Capa transportadora de huecos Ánodo Figura 27. Representación esquemática típica de un OLED. 307 Yersin, H. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, Germany, 2008. 308 Organic Light-Emitting Devices. Synthesis, Properties and Applications, (Eds: K. Müllen, U. Scherf), Wiley-VCH, Weinheim, 2006. 309 Organic Electroluminescence, Kafafi Z. H., Ed.; Taylor Francis, Boca Raton, 2005. 310 J. Liu, Q. Pei, Curr. Org. Chem. 2010, 14, 2133-2144. 311 Z. Ma, P. Sonar, Z.-K. Chen, Curr. Org. Chem. 2010, 14, 2034-2069. 312 A. C. Grimsdale, Curr. Org. Chem. 2010, 14, 2196-2217; h) C. Li, Z. Bo, Polymer 2010, 51, 4273-4292. 313 Chiu, C.-W.; Chow, T. J.; Chuen, C.-H.; Lin, H.-M.; Tao, Y.-T. Chem. Mater. 2003, 15, 4527. Discusión general 197 Hasta ahora se ha utilizado una gran variedad de compuestos orgánicos en el diseño de OLED’s, incluyendo complejos metálicos con ligados orgánicos conjugados.314 Sin embargo, la utilización de sistemas homoconjugados en estos dispositivos permanece inexplorada hasta la fecha, en vista de lo cual, y dadas las buenas propiedades que han demostrado poseer los complejos metálicos homoconjugados descritos previamente, hemos decidido comenzar el estudio de la utilización de los mismos en el diseño de OLEDs. Este trabajo se está llevando a cabo en colaboración con el Prof. Miguel Clemente, del Instituto de Ciencia Molecular de la Universidad de Valencia. Los resultados obtenidos hasta la fecha con el complejo homoconjugado Ru-Nor-Ru (Figura 28) son muy prometedores. Figura 28. Estructura del complejo Ru-Nor-Ru y del polímero poli-TPD utilizados en la preparación de OLEDs. Para el estudio con el complejo Ru-Nor-Ru se han preparado dispositivos con la siguiente estructura (Figura 29):315a  Sustrato de ITO  Capa de polimero (polyTPD de 70-80 nm) depositado por spin coating  Pelicula LB del complejo Ru-Nor-Ru mezclado con una molecula anfifilica (SME, metil estearato)  Capa evaporada de Ba/Ag para cerrar el circuito 314 R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093-2126. 315 a) H. J. Bolink, E. Baranoff, M. Clemente-León, E. Coronado, N. Lardiés, A. López-Muñoz, D. Repetto, Md. K. Nazeeruddin, Langmuir 2010, 26, 11461-11468; b) H. J. Bolink, E. Baranoff, M. Clemente-León, E. Coronado, A. López-Muñoz, D. Repetto, M. Sessolo, Md. K. Nazeeruddin, Langmuir 2009, 25, 79-83. Discusión general 198 Figura 29. Arquitectura de los dispositivos estudiados. El aspecto más novedoso de los dispositivos diseñados en este caso es que para hacer la capa emisora se ha empleado la técnica LB en lugar de las más habituales como son la evaporación o el spin-coating.17 El polímero semiconductor poli-TPD se emplea con mucha frecuencia en la construcción de OLEDs como capa transportadora de huecos. Por otra parte, la técnica LB presenta la ventaja de que es muy fácil cambiar de contraión, lo que permite estudiar el efecto que diferentes iones tienen sobre las propiedades emisoras del OLED. En la figura 30 se muestran los resultados obtenidos hasta la fecha con los contraiones F-, BF4 -, PF6 -, (SiW12O40) 4-. Figura 30. Espectros de emisión de los dispositivos preparados con diferentes contraiones. Discusión general 199 Como puede observarse en la Figura 30, el color de la luz emitida al aplicar el voltaje depende del contraión utilizado en cada caso. Este es un resultado muy interesante ya que podría controlarse la longitud de onda de la luz emitida por el dispositivo mediante un sencillo cambio del contraión. IV.2.2 Diseño de receptores moleculares para la complejación selectiva NH4 +/K+ Tanto el diseño de receptores moleculares selectivos como el estudio de las interacciones no covalentes involucradas en la formación de los correspondientes complejos receptor-huésped siguen siendo retos importantes en Química Supramolecular. En nuestro grupo de investigación hemos venido utilizando el DPN como subunidad estructural de diversos tipos de compuestos para el estudio de interacciones aromáticas (cara-cara y lado-cara),316,317 interacciones no covalentes CH··· y OH···,318 y en el diseño de receptores moleculares que formen complejos estables con cationes metálicos, como el catión Ag+.319 La base de estos estudios estriba en el elevado grado de preorganización que presentan el DPN y sus derivados. Esta preorganización no solo hace posible la deslocalización electrónica entre los anillos aromáticos, sino que convierte al DPN en un sustituto ventajoso del difenilmetano, subunidad muy utilizada en Química Supramolecular. Hay que tener en cuenta que los factores de carácter entrópico, como por ejemplo el grado de libertad conformacional del receptor, desempeñan un papel fundamental a la hora de diseñar sustratos complementarios con el huésped y que formen con éste complejos estables. En esta ocasión nos propusimos diseñar un receptor molecular neutro, es decir, sin heteroátomos básicos como el oxígeno o el nitrógeno que puedan 316 A. García Martínez, J. Osío Barcina, A. De Fresno Cerezo, R. Gutiérrez Rivas, J. Am. Chem. Soc. 1998, 120, 673-679. 317 A. García Martínez, J. Osío Barcina, A. de Fresno Cerezo, Chem. Eur. J. 2001, 7, 1171-1175. 318 J. Osío Barcina, I. Fernández, M. R. Colorado Heras, Eur. J. Org. Chem. 2012, 940- 947. 319 A. García Martínez, J. Osío Barcina, M. R. Colorado Heras, A. de Fresno Cerezo, M. R. Torres Salvador, Chem. Eur. J. 2003, 9, 1157-1165. Discusión general 200 interaccionar con el huésped, capaz de complejar de manera selectiva el ión amonio frente al catión potasio. El diseño de este tipo de receptores es uno de los problemas clásicos en Química Supramolecular debido a que ambos cationes tienen tamaños muy similares y geometrías esféricas. Por otra parte, este receptor, al estar constituido exclusivamente por hidrocarburos aromáticos sería un buen modelo para el estudio de las interacciones catión- (NH4 +··· y K+···) involucradas en la formación de los complejos. Con estas ideas previas diseñamos y sintetizamos el receptor 1 (Figura 32). En este compuesto, debido a la presencia de subunidades de DPN, los anillos aromáticos se encuentran situados en una conformación tetrahédrica, formando un receptor con geometría de “cesta molecular”, lo cual debería favorecer la complejación de iones NH4 + frente al K+ mediante el establecimiento de interacciones N-H···. También se obtuvo el compuesto 5, derivado del difenilmetano, como referencia menos preorganizada. Figura 31. Estructuras y síntesis de la cesta molecular 1 y del compuesto de referencia 5. Discusión general 201 El análisis por rayos-X de la estructura de 1 en estado sólido confirma que los fenilos laterales se sitúan en conformación cofacial con respecto al fenilo central (Figura 33), adoptando una conformación alternada con dos de los fenilos en sentido contrario con respecto al tercero. Figura 32. Estructura cristalina de 1. De acuerdo con cálculos DFT (M06-2X/TZVP/M062x-def2-SVP) las dos conformaciones representativas de 1, la conformación cesta y la alternada son prácticamente isoenergéticas (Figura 34), existiendo un equilibrio rápido entre ambas en disolución. Este resultado está de acuerdo con observaciones previas descritas por nosotros para otros derivados del DPN. Figura 33. Proceso de isomerización del receptor 1. Datos obtenidos mediante cálculos DFT (M06-2X/TZVP/M06-2X-def2-SVP). Discusión general 202 Una vez comprobados los aspectos estructurales de la cesta molecular 1, procedimos a estudiar su comportamiento como receptor molecular. Para ello se llevaron a cabo dos experimentos de competencia, cuyos resultados se analizaron empleando espectrometría de masas con ionización por electrospray (ESI-MS). En un primer experimento se analizó una mezcla equimolecular de los compuestos 1, 5 y NH4PF6. En este caso solo se detectó la presencia del pico a m/z = 606, correspondiente al complejo 1·NH4 +. Este resultado pone de manifiesto la importancia de la preorganización y confirma nuestra hipótesis de partida en el sentido de la idoneidad del empleo de DPNs en la construcción de receptores moleculares en lugar de difenilmetano. En un segundo experimento de competencia se analizó una disolución con cantidades equimoleculares del receptor 1 y las sales NH4PF6 y KPF6. Se detectó la formación de los complejos 1·NH4 + (m/z = 606) y 1·K+ (m/z = 627). La intensidad relativa de los picos (I[1·NH4 +]/I[1·K+] = 5.1) (Figura 34) pone de manifiesto que la cesta molecular 1 muestra una clara preferencia por el catión amonio frente al potasio, de acuerdo con nuestra idea inicial según la cual un receptor preorganizado, con anillos aromáticos en disposición tetrahédrica complementarios con los enlaces N-H del ión NH4 + favorecería la complejación receptor·NH4 +. Este es un resultado muy notable ya que constituye el primer ejemplo de receptor molecular hidrocarbonado que muestra una elevada selectividad NH4 +/K+, basada tan solo en interacciones catión···. Figura 34. Espectro ESI-MS de la disolución 1:NH4PF6:KPF6 (1:1:1) en MeOH/THF (1:1). Discusión general 203 a) (b) Figura 35. a) Geometrías optimizadas (M06-2X/def2-SVP) de los complejos [1a·NH4 +], [1b·NH4 +], [1a·K+], y [1b·K+]. b) Energías de complejación: E = E(complejo) – E (1) – E(catión), en kcalmol-1) (M06-2X/TZVP//M06-2X/def2- SVP, incluyendo los correspondientes errores de superposición de bases) Discusión general 204 Una vez más los cálculos computacionales DFT aportan información muy relevante que ayuda a interpretar los datos experimentales. En la Figura 35 se muestran los resultados obtenidos con los diferentes complejos que pueden formarse en el experimento de competencia. Se han calculado las geometrías y las energías de los complejos que pueden intervenir en el proceso de complejación y que dan lugar a la selectividad NH4 +/K+ observada. Los cationes más estables son aquellos en los que el receptor adopta la conformación de cesta estableciendo cuatro interacciones catión· con los respectivos huéspedes. Por tanto, tras la complejación el equilibrio entre las dos conformaciones isoenergéticas (cesta y alternada) de 1 se desplaza hacia la conformación que da lugar a los complejos más estables. Por otra parte, en todos los casos estudiados los complejos 1·NH4 + resultan ser más estables que los complejos 1·K+, independientemente del número de interacciones catión· que intervengan. La contribución de las interacciones NH· en el complejo 1·NH4 +, responsables en última instancia de la selectividad observada, queda puesta de manifiesto por los cálculos NBO llevados a cabo que indican la presencia de interacciones entre los orbitales ocupados (C=C) de los fenilos y los orbitales vacíos σ*(N-H). Por último, los datos de las energías de complejación recogidos en la Figura 35 permiten estudiar las interacciones múltiples catión· que se producen en los complejos y estimar la contribución de cada grupo arilo a medida que pasamos desde los sistemas menos estables, con dos interacciones catión·, a los complejo más estables con el receptor en conformación de cesta. De acuerdo con estos datos, la contribución de un tercer fenilo al pasar de 1b·catión (2) a 1b·catión (3) es ~ 9.2 kcalmol-1, mientras que la del cuarto fenilo al pasar de 1a·catión (4) es ~ 7.1 kcalmol-1. Por tanto el conjunto de datos aportados por los cálculos computacionales suministran información relevante acerca del mecanismo de complejación en sistemas en los que se establecen interacciones múltiples catión·, muy importantes en sistemas biológicos. En resumen, en esta parte del trabajo presentado se describe el primer ejemplo de un receptor molecular sin centros básicos que muestra una selectividad NH4 +/K+ elevada. Las uniones receptor·huésped en los complejos estudiados se establecen únicamente a través de interacciones catión·. Los cálculos DFT realizados aportan información muy relevante que permite Discusión general 205 interpretar los mecanismos de complejación y la selectividad observada en nuestro receptor molecular. Discusión general 206 V. CONCLUSIONES Conclusiones 209 V. Conclusiones A continuación se exponen las conclusiones más relevantes que pueden extraerse del trabajo llevado a cabo en la presente Tesis Doctoral:  De los estudios llevados a cabo en el presente trabajo se deduce que, al contrario de lo observado en sistemas formados por dobles o triples enlaces, la homoconjugación aromática permite la comunicación electrónica entre los anillos aromáticos de forma muy eficaz.  La deslocalización electrónica observada en los sistemas estudiados es comparable a la descrita en oligofenilenos conjugados y se pone de manifiesto tanto en la reactividad como en las propiedades espectroscópicas de las moléculas, oligómeros y polímeros estudiados.  La deslocalización electrónica en sistemas homoconjugados puede modularse fácilmente mediante la introducción de sustituyentes en diferentes posiciones de las moléculas.  Los cálculos computacionales DFT realizados confirman los resultados experimentales y aportan información muy relevante que ayuda a interpretar el fenómeno de la homoconjugación aromática. Asi, las bandas de homoconjugación observadas en los espectros UV-vis se asignan a transiciones HOMO-LUMO que involucran a orbitales moleculares con deslocalización electrónica entre los anillos aromáticos.  Se describe el primer ejemplo de transferencia de energía fotoinducida en sistemas dador-puente-aceptor en el que la subunidad puente está formada por moléculas homoconjugadas. Los estudios llevados a cabo muestran que la transferencia de energía se produce mediante un mecanismo tipo Dexter con una eficacia del 99.98%.  Se describe el primer ejemplo de un receptor molecular hidrocarbonado que muestra una selectividad NH4 +/K+ elevada, basada exclusivamente en interacciones catión-. Los cálculos DFT llevados a cabo aportan información importante acerca del origen de la selectividad observada, Conclusiones 210 así como del mecanismo de complejación en sistemas receptor- huésped en los que están involucradas interacciones no covalentes múltiples. Tesis Noelia Herrero García PORTADA ABREVIATURAS INDICE I. INTRODUCCIÓN GENERAL Y OBJETIVOS II. CAPÍTULO 1 III. CAPÍTULO 2 IV. DISCUSIÓN GENERAL V. CONCLUSIONES